
A Text Transformation Scheme For
Degenerate Strings

Jacqueline W. Daykin1,2, Bruce Watson1,3

1Department of Informatics, King’s College London, UK
2Department of Computer Science, Royal Holloway, University of London, UK

3Information Science Department, Stellenbosch University, South Africa
Jackie.Daykin@kcl.ac.uk bwwatson@sun.ac.za

Abstract

The Burrows-Wheeler Transformation computes a permutation of a string of let-
ters over an alphabet, and is well-suited to compression-related applications due
to its invertability and data clustering properties. For space e�ciency the input
to the transform can be preprocessed into Lyndon factors. We consider scenarios
with uncertainty regarding the data: a position in an indeterminate or degener-
ate string is a set of letters. We first define Indeterminate Lyndon Words and
establish their associated unique string factorization; we then introduce the novel
Degenerate Burrows-Wheeler Transformation which may apply the indeterminate
Lyndon factorization. A core computation in Burrows-Wheeler type transforms
is the linear sorting of all conjugates of the input string - we achieve this in the
degenerate case by applying lex-extension ordering. Indeterminate Lyndon fac-
torization, and the degenerate transform and its inverse, can all be computed in
linear time and space with respect to total input size of degenerate strings.

1 Introduction

This paper focuses on strings involving uncertainty – such strings are known as
indeterminate, or equivalently, degenerate strings and consist of nonempty subsets
of letters over an alphabet ⌃1 Algorithms for indeterminate strings have been
described in [10].

Motivation for degenerate strings arises from applications such as interface data
entry and bioinformatics. With degenerate biological strings, nucleotide sequences

Copyright

c� by the paper’s authors. Copying permitted only for private and academic purposes.

In: Costas S. Iliopoulos, Alessio Langiu (eds.): Proceedings of the 2nd International Conference
on Algorithms for Big Data, Palermo, Italy, 7-9 April 2014, published at http://ceur-ws.org/

1Terminology: indeterminate is common in theoretical computer science; degenerate is used in
molecular biology.

23

are often written using the five letter alphabet {A, T,G,C,N}, where N denotes
an unspecified nucleotide. For instance, ANTAG may correspond to four di↵er-
ent interpretations: AATAG, ATTAG, AGTAG and ACTAG. Such degenerate
strings can express polymorphisms in DNA/RNA sequences. Longest common
subsequence computations apply to determining the homology of two biological
sequences [20]; pattern matching techniques honed to degenerate DNA/RNA se-
quences are designed in [11].

A Lyndon word is defined as a (generally) finite word which is strictly minimal
for the lexicographic order of its conjugacy class; the set of Lyndon words permits
the unique maximal factorization of any given string [3].

In 1994, Burrows and Wheeler [2] introduced a transformation for textual data
demonstrating, not only data clustering properties, but also suitability for block
sorting compression. The Burrows-Wheeler Transform (BWT) operates by per-
muting the letters of a given text to obtain a modified text which may be more
suitable for compression – the transform is therefore used by many text compres-
sion or compression-related applications, and some self-indexing data structures
[1]. Space saving techniques with the BWT can be achieved by first factoring the
input text or string into Lyndon words [13].

In Next-Generation Sequencing (NGS), large unknown DNA sequences are frag-
mented into small segments (a few dozen to several hundreds of base pairs long).
This process generates masses of data, typically several million “short reads”.
Alignment programs attempt to align or match these reads to a reference genome;
alignment was initially performed by applying hashing or the su�x tree/array data
structures – subsequently, e�ciency in memory requirement was achieved by us-
ing the BWT. Motivated by the degeneracy associated with genome sequencing,
we introduce here a collection of novel and related concepts: a linear Degenerate
Burrows-Wheeler Transform, an Indeterminate Su�x Array, Indeterminate Con-
jugacy and Indeterminate Lyndon Words.

2 Definitions and Preliminaries

A string (word) is a sequence of zero or more characters or letters over a totally
ordered alphabet ⌃. The set of all non-empty strings over ⌃ is denoted by ⌃+. The
empty string is indicated by "; we write ⌃⇤ = ⌃+ [". Strings will be identified
in mathbold such as w, x. We will use standard terminology from stringology:
border, border-free, prefix, su�x, primitive, conjugate, etc. – see [19].

An indeterminate string x = x[1 . . .m] on an alphabet ⌃ is a sequence of
nonempty subsets of ⌃; x is equivalently known as a degenerate string. Specif-
ically, an indeterminate string x has the form x = x1x2 · · ·xm, where each xi is a
set of letters over ⌃, and while |x| = m, computationally we will be accounting for

the total size of the string, that is ||x|| = n =
mX

i=1

|xi|; if some |xi| = 1 then this is

the usual case of a single letter in a string denoted as x
i

. So a typical instance of
a degenerate string may have the form u = u1u2

u
3

u4u5

· · ·um�1um

; in a regular
string all sets are unit size. Moreover, with degeneracy we can allow the xi to be
multisets. We also write the sets in degenerate strings in mathbold (unless they

A Text Transformation Scheme for Degenerate Strings

24

are known to be unit size) - there is no ambiguity as regular and degenerate strings
are used in di↵erent contexts here.

3 The Burrows-Wheeler Transform

The Burrows-Wheeler text transformation scheme was invented by Michael Bur-
rows and David Wheeler in 1994 [2], and has become widely applied [1].

The basic BWT algorithm permutes an input string T (text) of n characters
into a transform in three conceptual stages: first the n rotations (cyclic rotations
or conjugates) of T are formed; these rotations are then sorted lexicographically
giving the n⇥ n BWT matrix M ; finally the last (right-most) character of each of
the rotations, that is the last column of the matrix M , is extracted into a string L
(last). In addition to L, the algorithm computes the index i of the occurrence of
the original text T in the sorted list of rotations. The pair (L, i) is known as the
transform, that is BWT(T) = (L, i). Furthermore, the BWT can be constructed
e�ciently since the heart of the computation is sorting the rotations which, by
applying a fast su�x-sorting technique such as [12], can be achieved in linear time.
It is the data clustering properties of this transform, usually exhibiting long runs
of identical characters, together with the fact that it is invertible, that has sparked
so much interest.

Given only L and the index i, the original text T can be reconstructed in linear
time [2]. Observe that the first column F ofM can be obtained by lexicographically
sorting the characters of L. By constructing a Hamiltonian cycle of L and F , the
Last-First Mapping, the input can be recovered.

A simple observation shows that, since by definition a Lyndon word is the strictly
least amongst its conjugates, if the input text forms a Lyndon word, then the index
i will be 1 and therefore redundant, thus o↵ering a space saving of O(log n) bits.
Accordingly, BWT variants have been considered: Scott followed by Kufleitner
introduced the bijective Multi-Word BWT; Kufleitner also proposed the bijective
Sort Transform initiated earlier by Schindler – these variants are based on the
Lyndon factorization of the input [9, 13, 18].

The BWT has also been implemented in bioinformatics: to reduce the mem-
ory requirement with hashing-based sequence alignment, BWT-based alignment
utilities were developed including SOAP2 [15] and BOWTIE [14].

4 Indeterminate Lyndon Words

A Lyndon word is a primitive and border-free word which is strictly minimal for
the lexicographical order of its conjugacy class [17] – let L denote the set of Lyndon
words over the totally ordered alphabet ⌃. These patterned words exhibit many
interesting properties [16], including:

Proposition 4.1 [8] A word w 2 ⌃+ is a Lyndon word if and only if it is lexico-
graphically less than each of its nonempty proper su�xes.

Proposition 4.2 [8] A word w 2 ⌃+ is a Lyndon word if and only if either w 2 ⌃
or w = uv with u, v 2 L, u < v.

A Text Transformation Scheme for Degenerate Strings

25

Importantly, the set L of Lyndon words permits the unique maximal factoriza-
tion of any given string, hence useful for applications.

Theorem 4.3 [3] Any word w 2 ⌃+ can be written uniquely as a non-increasing
product w = u

1

u

2

· · ·u
k

of Lyndon words.

In 1983, Duval [8] developed an algorithm for factorization that runs in linear time
and constant space.

We now introduce the set IL of Indeterminate Lyndon Words – given an in-
determinate string x = x1x2 · · ·xm, the first step in defining these new Lyndon
words is to assign an order to each of the sets xi (which are not necessarily dis-
tinct). So for each 1  i  m, let xi denote the lexicographic ordering of xi (the
letters are lined up in the given alphabet order) written as a string. For example,
if xi = {c, a, t, g} then xi = acgt. Hence, under the convention that the order of
elements in a set doesn’t matter, we have a bijective mapping G : xi ! xi for
1  i  m, or simply G : x ! x. Furthermore, we can allow multisets under this
mapping. Note that if ||x|| = n, and if we assume an integer alphabet, that is, if
the range of letters in the alphabet is O(n), an array of length |⌃| su�ces to map
the given alphabet onto an integer alphabet {1, 2, ..., k}, k  n. Therefore each of
the sets xi can be sorted in time O(|xi|); hence the total time to compute x is
O(n).

We can now state a required definition, lex-extension order, for the lexicographic
order of given indeterminate strings u,v over ⌃ mapped to u,v.

Definition [4, 6] Suppose that according to some factorization F , two strings
u, v 2 ⌃+ are expressed in terms of nonempty factors:
u = u

1

u

2

· · ·u
m

,v = v

1

v

2

· · ·v
n

. Then u <
LEX(F)

v if and only if one of the
following holds:
(1) u is a proper prefix of v (that is, ui = vi for 1  i  m < n); or
(2) for some i 2 1..min(m,n),uj = vj for j = 1, 2, ..., i � 1, and ui < vi (in
lexicographic order).

In the case of an indeterminate string u = u1u2 · · ·um, the factorization F is
given by the sets u1u2 · · ·um mapped to u1u2 · · ·um; for brevity we will write
u <

LEX

v. However, if all sets are unit size then the factorization F of regular
strings is the individual letters, each x

i

is x
i

, and u <
LEX

v is simply the usual
lexicographic order of strings u < v.

We can now proceed to clarify the concept of conjugacy for an indeterminate
string.

Definition An indeterminate string y = y1y2 · · ·ym is a conjugate (or cyclic rota-
tion) of an indeterminate string x = x1x2 · · ·xm if y[1 . . .m] = x[i . . .m]x[1 . . . i�
1] for some 1  i  m (for i = 1,y = x).

Definition An indeterminate string x over ⌃+ is an Indeterminate Lyndon Word
if it is strictly minimal for the lex-extension order of its congugacy class under the
mapping G : x ! x.

A Text Transformation Scheme for Degenerate Strings

26

Similarly to each letter being a Lyndon word for regular strings, each single
set of letters is likewise an indeterminate Lyndon word. Clearly Duval’s linear
Lyndon factorization algorithm [8] extends directly to the indeterminate case via
lex-extension order and linear comparison of the substrings xi. We can also trivially
derive results analogous to those for the classic case – we give some examples, where
IL is the set of Indeterminate Lyndon Words.

Proposition 4.4 An indeterminate word w 2 ⌃+ is an indeterminate Lyndon
word if and only if it is less in lex-extension order than each of its nonempty
proper su�xes.

Proposition 4.5 An indeterminate word w 2 ⌃+ is an indeterminate Lyndon
word if and only if either w is a single set of letters or w = uv with u, v 2 IL,
u <

LEX

v.

A subset W of ⌃+ is known as a factorization family (FF) if and only if for
every nonempty string x on ⌃ there exists a factorization of x over W – note that
⌃ ✓ W . We proceed to show that the set of indeterminate Lyndon words forms
an UMFF (unique maximal factorization family) [4].

Lemma 4.6 (The xyz Lemma [4]) An FF W is an UMFF if and only if whenever
xy,yz 2 W for some nonempty y, then xyz 2 W.

Lemma 4.7 [7] The set IL of Indeterminate Lyndon Words forms an UMFF.

Furthermore, as detailed in [7] we are introducing here a new circ-UMFF [5],
namely the set IL of Indeterminate Lyndon Words.

5 A Degenerate Burrows-Wheeler Transform

The degenerate Burrows-Wheeler Transform - denoted D-BWT - is a very simple
extension of the original transformation, which relies only on further use of lexi-
cographic ordering. Given a degenerate string x = x[1 . . .m] = x1x2 · · ·xm, to
construct the D-BWT, we first perform all the mappings G : xi ! xi specified in
Section 4 in linear time. As in the original BWT transformation, we will generate
the sorted rotations – the D-BWT matrix – of the input string. To do this we
apply a fast su�x-sorting algorithm, such as that of Ko and Aluru [12], tweaked
to handle substrings, thus forming an indeterminate su�x array. Note that an in-
determinate su�x of x has the form xi xi+1 · · ·xm, and the indexes in the array
will be a subset of {1, 2, . . . , n}.

Given x, we first perform a pre-sorting of the substrings x1, x2, · · · ,xm into
lex-extension order, resulting in a re-labelling ⇡

1

⇡
2

· · ·⇡
m

of x, where each ⇡
i

is just
a letter or ordinal number. For example, x = {abc}{e}{ad}{abc}{bce} ! ADBAC
or 14213. This can be achieved using Bucket Sort on the finite ordered alphabet
⌃ (assumed in Section 4), with the buckets labelled by the characters in ⌃. This
process is repeated in each bucket where the length of each xi is O(n) - hence O(n)
overall.

A Text Transformation Scheme for Degenerate Strings

27

The indeterminate string x has now been re-labelled as a string of letters
⇡
1

⇡
2

· · ·⇡
m

each according to their lex-extension order in x. Therefore we can
straightforwardly apply an existing linear letter-based su�x-sorting technique to
yield a su�x array for the indexes i 2 {1 . . .m}. A trivial mapping of each array

element i !
i�1X

j=1

|xj | + 1 then gives the required indeterminate su�x array. The

overall linear - O(n) - time and space complexities follow from the original O(m)
method (for instance [12]) along with O(n) total string length.

Given the D-BWT matrix, in the degenerate case the transform is the last
right-most column of ordered sets, specifically a permutation of x = x1x2 · · ·xm,
together with the index of the given text in the matrix. Using the re-labelling to
letters ⇡

i

, the transform can be encoded as letters and the inverse achieved using
the classic linear Last-First mapping. Finally the inverse mappings ⇡

i

! xj ! xj

reconstruct the original degenerate string, hence overall linear.
Furthermore, if we assume that the input text has been factored into indetermi-

nate Lyndon words, then this avoids an index to the rotation in the matrix which is
the input text. Once factored, and again using the re-labelling to letters xj ! ⇡

i

,

the bijective multi-word BWT described by Kufleitner [13] can be applied directly,
followed by inverse mappings from the ⇡

i

to recover the indeterminate subsets in
the input text.

References

[1] D. Adjeroh, T. Bell, and A. Mukherjee. The Burrows-Wheeler Transform:
Data Compression, Su�x Arrays, and Pattern Matching. Springer Publishing
Company, Incorporated, 1 edition, 2008.

[2] M. Burrows, D. J. Wheeler, M. Burrows, and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical report, 1994.

[3] K. T. Chen, R. H. Fox, and R. C. Lyndon. Free di↵erential calculus IV —
The quotient groups of the lower central series, volume 68. Ann. Math., 1958.

[4] D. E. Daykin and J. W. Daykin. Lyndon-like and v-order factorizations of
strings. J. Discrete Algorithms, 1(3-4):357–365, 2003.

[5] D. E. Daykin and J. W. Daykin. Properties and construction of unique maxi-
mal factorization families for strings. Int. J. Found. Comput. Sci., 19(4):1073–
1084, 2008.

[6] J. W. Daykin and W. . F. Smyth. A bijective variant of the burrows-wheeler
transform using v-order. 2013. Submitted.

[7] J. W. Daykin and B. Watson. Indeterminate string factorizations and degen-
erate text transformations. 2013. Submitted.

[8] J.-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms,
4(4):363–381, 1983.

A Text Transformation Scheme for Degenerate Strings

28

[9] J. Y. Gil and D. A. Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012.

[10] J. Holub and W. F. Smyth. Algorithms on indeterminate strings. In Proc.
14th Australasian Workshop on Combinatorial Algs., pages 36–45, 2003.

[11] C. S. Iliopoulos, L. Mouchard, and M. S. Rahman. A new approach to pat-
tern matching in degenerate DNA/RNA sequences and distributed pattern
matching. Math. in Computer Science, 2(4), 2008.

[12] P. Ko and S. Aluru. Space e�cient linear time construction of su�x arrays. In
Proceedings of the 14th Annual Conference on Combinatorial Pattern Match-
ing, CPM’03, pages 200–210, Berlin, Heidelberg, 2003. Springer-Verlag.

[13] M. Kufleitner. On bijective variants of the Burrows-Wheeler Transform. In
J. Holub and J. Zdárek, editors, Stringology, pages 65–79. Prague Stringology
Club, Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, 2009.

[14] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
e�cient alignment of short DNA sequences to the human genome. Genome
Biol., 10(3):R25, 2009.

[15] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966–1967, 2009.

[16] M. Lothaire. Combinatorics on Words (Cambridge Mathematical Library).
Cambridge University Press; 2nd Edition, 1997.

[17] R. C. Lyndon. On Burnside’s problem. Transactions of the American Math-
ematical Society, 77:202–215, 1954.

[18] M. Schindler. A fast block-sorting algorithm for lossless data compression. In
Proceedings of the Conference on Data Compression, volume 469, 1997.

[19] W. Smyth. Computing Patterns in Strings. Addison-Wesley, 2003.

[20] Y.-T. Tsai. The constrained longest common subsequence problem. Informa-
tion Processing Letters, 88(4):173 – 176, 2003.

A Text Transformation Scheme for Degenerate Strings

29

