
Implementing the Instance Store

Sean Bechhofer, Ian Horrocks, Daniele Turi∗

Information Management Group
Department of Computer Science

University of Manchester
Manchester, UK

<lastname>@cs.man.ac.uk

Abstract

We describe the implementation of the instance store, a DL system using a
combination of TBox reasoning and database queries to perform efficient and
scalable role-free ABox reasoning.

1 Introduction

Description Logic (DL [8]) reasoning over individuals is an important aspect of the
vision behind the Semantic Web and it is crucial in applications of ontologies in areas
such as bioinformatics (gene description) and web-service discovery. This also poses
new challenges for ontological reasoning. Firstly, applications might require vast vol-
umes of individuals exceeding the capabilities of existing reasoners. Secondly, while
one can assume that changes in the terminological part of an ontology are relatively
infrequent, the above scenarios requiredynamic, frequentand, possibly,concurrent
modificationof the information related to the individuals in ontologies.

To tackle this problem we have developed a Java component, calledinstance Store
(iS) [3]. As a starting point, we postulate there is no direct relation between instances,
ie the ABox is role-free. This means that reasoning over instances can be reduced to
reasoning over their descriptions (possibly involving properties). From an architec-
tural point of view, the ontology of classes can then be treated as a static schema,
loaded from a file into a DIG [9] compliant TBox reasoner such as FaCT [13] or
RACER [12], while all the assertions about the individuals are dynamically added to
and retrieved from adatabase. This way, we can exploit robust enterprise database
technology offeringpersistency, scalability, andsecureandconcurrenttransaction

∗Work partly funded by the European Union MONET Project (IST-2001-34145).



management. All this, while ensuring both the soundness and completeness of the
resulting reasoning for role-free ABoxes.

We have discussed the basic ideas behindiS , its performance, and related and
future work in [14]. In this paper, we present its architecture and implementation
issues in detail.

2 Architecture

The architecture ofiS is shown in Figure 1 while its functionality is encapsulated in

Figure 1: Architecture ofiS



three basic methods as shown in Figure 2.

Figure 2: Basic class diagram ofiS API

The recent W3C recommendation for web ontology languages is OWL [11], while
the (de facto) XML standard for communicating with DL reasoners is the DIG Inter-
face [9]. This is reflected in our design of theiS , which consists of a core component
working with DIG ontologies and descriptions and of an OWL wrapper around it us-
ing the OWL API [5] and the DIG Interface API [1] to translate OWL to DIG and
vice versa.

2.1 OWL Wrapper

In the OWL wrapper the ontology is in OWL and, at initialisation time, it is parsed
into a JavaOWLOntology object using the OWL API. The iS accepts OWL de-
scriptions either as JavaOWLDescription objects of the OWL API, or as descrip-
tion strings in OWL Abstract Syntax [10]. OWL ontologies and descriptions are
submitted to the reasoner using suitable parsers and renderers in the OWL API and
XMLBeans [7] and other classes from the DIG Interface API. (See Figure 3 for an
overview.)

Figure 3: OWL to DIG

The iS also has a simple XSLT stylesheet which can convert DIG descriptions to
descriptions in OWL abstract syntax.



2.2 Core Component

The first operation (initialise ) connects to the database (creating the tables if
needed) and the reasoner and loads the ontology into the reasoner.

The second operation (addAssertion ) stores in the database the fact that in-
dividual (as a URI) is an instance of (DIG) description, together with additional in-
formation gathered through calls to the reasoner, such as the atomic concepts in the
ontology the individual is instance of, and the position of the description in the tax-
onomy.

The third operation (retrieve ) again uses the database and the reasoner (with
respect to the ontology) to retrieve all individuals (again as URIs) which are instances
of the description query.

3 Database

TheiS tries to minimise the amount of reasoning required at retrieval time by storing
as much information as possible about the descriptions used both during assertion and
retrieval. For this we use a relational database whose schema is depicted in Figure 4.

Figure 4: Database Schema foriS



Each description (either asserted or retrieved) is assigned a unique numerical iden-
tifier and stored in a dedicatedDescriptions table; the identifier acts as primary
key and the descriptions are indexed. The assertions are stored in the corresponding
table1 containing contains individuals and the identifiers of their associated descrip-
tions; the latter are foreign keys referencing ids in the descriptions table; the individ-
ual/descriptionId pair forms a primary key. Next, we use aTypes table containing
description ids and all the primitive concepts in the ontology which subsume them;
again the description ids are foreign keys, the concept/descriptionId pair is a primary
key, and the concepts are indexed. Finally, we use three more tables of the same type
asTypes to store the primitive concepts which are, respectively, equivalent to, parent
of and child of a given description.

We have implemented the above schema using three different DBMS: MySQL,
Oracle, and Hypersonic. The latter is mostly for testing and demo purposes; it is
entirely in Java and requires no installation other than including the corresponding jar
in the classpath; each database consists of simply two files, one with properties and
one with a script incrementally updated with the issued SQL statements.

MySQL offers the best performance, but it lacks set operations so in our algo-
rithms below we mostly refer to the Oracle implementation.

4 Algorithms

Apart from the initialisation phase, the main functionality ofiS consists of asserting
that an individual is an instance of a class and retrieving all instances of a description.
In both cases,iS first checks if the description is already in store. If this is not the
case, theniS uses the TBox reasoner to classify it and then stores the result as shown
in Algorithm 1.

Algorithm 1 storeClassification(Description D) : int

1: id← database.addDescription(D)
2: classification← reasoner .classify(D)
3: database.addToTypes(id, classification.getAncestors())
4: if classification.getEquivalents() 6= ∅ then
5: database.addToTypes(id, classification.getEquivalents())
6: database.addToEquivalents(id, classification.getEquivalents())
7: else
8: database.addToParents(id, classification.getParents())
9: database.addToChildren(id, classification.getChildren())

10: end if
11: return id

1Here we refer to this table asAssertions , but in the actual implementation it is, misleadingly,
calledprimitive .



In order to satisfy the constraint that there is a single description for each indi-
vidual in the assertions table, before adding an assertion we first check whether the
individual is already in store. If this is the case, then the corresponding description is
conjuncted with the new description (unless subsumed). See Algorithm 2 for details.

Algorithm 2 addAssertion(Individual I,Description D)
1: if isInStore(I) then
2: DI ← database.getDescription(I)
3: if not reasoner .subsumes(D,DI) then
4: D ← D uDI

5: retract(I)
6: else
7: return
8: end if
9: end if

10: if reasoner .isInconsistent(D) then
11: raiseException
12: end if
13: if isStored(D) then
14: id← database.getDescriptionId(D)
15: else
16: id← storeClassification(D)
17: end if
18: INSERT INTO Assertions VALUES (I, id)

As for retrieval, the first step is to check whether the description whose instances
are required is consistent. Next,iS checks whether the description is in store and, if
not, the description and its classification are stored in the database. After this pre-
processing phase, the actual algorithm begins.

Firstly, iS checks whether the description is equivalent to any primitive concept
in the ontology. Since, at this stage, the classification of the description is already in
the database, it is sufficient to query the table of equivalents. This is done in Query 1.
Note that the query is a join which effectively returns all the ids of descriptions sub-
sumed by primitive concepts equivalent to the query description. If the set returned

Query 1 idsFromEquivalents(int id)
SELECT DISTINCT Types.descriptionId FROM Types, Equivalents

WHEREid = Equivalents.descriptionId
AND Equivalents.concept = Types.concept

by such query is not empty theniS can just return the individuals corresponding to
such description ids in the table of assertions.

In general, however, there might be no primitive concept equivalent to the query
description. In that case we have to return the instances of children of the query



description and also check all the instances of its parents. There is a particular
case though when this task can be accomplished in a relatively straightforward way,
namely when the conjunction of the parents of the query description is equivalent
to the query description: we then know that the desired set of instances consists of
the intersection of the instances of each parent, union the instances of the children of
description. (See Query 2.)

Query 2 allIndividuals(int id, Set {p1, . . . , pn})
SELECT DISTINCT individual FROM Assertions

WHERE descriptionId IN (
SELECT descriptionId FROM Types WHERE concept = p1

INTERSECT
...
INTERSECT
SELECT descriptionId FROM Types WHERE concept = pn

UNION
SELECT Types.descriptionId FROM Types, Children

WHERE Children.concept = Types.concept
AND Children.descriptionId = id)

When the above does not hold, theiS has then to perform the following, more
complex process. First, collect all the description ids corresponding to instances of
parents which are not also instances of children. This is performed by Query 3.

Query 3 getCandidates(int id, Set {p1, . . . , pn})
SELECT DISTINCT description FROM Descriptions

WHERE Descriptions.id IN (
SELECT descriptionId FROM Types WHERE concept = p1

INTERSECT
...
INTERSECT
SELECT descriptionId FROM Types WHERE concept = pn

MINUS
SELECT Types.descriptionId FROM Types, Children

WHERE Children.concept = Types.concept
AND Children.descriptionId = id)

Next, ask the TBox reasoner to compute the subset of the above candidate de-
scriptions which are subsumed by the query description. This requires a single DIG
ask, but as many internal checks as there are candidates. Here the performance of the
reasoner really matters. The instances of this set together with the instances of the
children of the query description forms then the final result. (See Algorithm 3 for full
details.)



Algorithm 3 retrieve(Description D) : Set

1: if reasoner .isInconsistent(D) then
2: raiseException
3: end if
4: if isStored(D) then
5: id← database.getDescriptionId(D)
6: else
7: id← storeClassification(D)
8: end if
9: equivalents← database.idsFromEquivalents(id)

10: if equivalents 6= ∅ then
11: return database.getIndividuals(equivalents)
12: end if
13: parents← database.getParents(id)
14: if reasoner.subsumes(D, and(parents)) then
15: return database.allIndividuals(id, parents)
16: end if
17: candidates← database.getCandidates(id, parents)
18: descriptions← database.childrenDescr(id) ∪ reasoner .getSubsumed(D, candidates)
19: return database.getIndividuals(descriptions)

5 Enterprise iS
In many applications, many different clients might want to accessiS concurrently and
securely. This can be easily accomplished thanks to our architectural choices. Indeed,
we have developed an Enterprise Java Beans version ofiS which is deployed using
the JBoss [4] J2EE application server. (See Figure 5.) It consists of:

1. a wrapper forInstanceStore implementing theSessionBean interface;

2. a managed bean (MBean) wrapper for the reasoner;

3. a Hibernate [2] version ofBackingStore .

Hibernate allows to persist the plain Java objects corresponding toiS descriptions,
individual, and primitive concepts. Object-relational mappings define the way the
relevant properties in the objects are mapped to entries in a relational database. We
used XDoclet [6] to generate the Hibernate object-relational mapping as well as the
local and remote interfaces to the beans.

As for the reasoner, the use of managed beans means that several instances of the
same TBox reasoner can be dynamically spawned when required by the clients (at
least if the TBox reasoner is available as a DLL, ie dynamically linked library).



Figure 5: EnterpriseiS deployed using JBoss

6 Conclusions

The architectural choices made in the implementation ofiS ensure that we use ap-
propriate technologies for appropriate tasks. It is clear that at some point the reasoner
must be used in order to retrieve individuals, but in our approach it is only used when
necessary. Databases are well suited to handling large amounts of data and are opti-
mised for the performance of operations such as joins and intersections – for example
the queries described in the query in Figure 2.

As discussed in Section 5, the architecture also allow us to make use of function-
ality supported by existing component architectures such as Enterprise Java Beans.
Then issues like concurrency and security can be passed off to the application servers
running the beans.

The use of a database back end also allows us to support persistency. A-boxes
may well include large amounts of data, and we can make use of the fact that this is



precisely a task that databases are designed to support. There is still, of course, the
question of persistent storage of the ontology within the reasoner, but again the sep-
aration of the reasoning component from the instance storage means that alternative
reasoner implementations can simply be “swapped in” as necessary.

Acknowledgements. Phillip Lord participated in the early stages of the implemen-
tation of theiS and Nick Taylor and David Roberts from Stilo International PLC
participated in the development of the enterpriseiS .

References
[1] DIG Interface API.http://dig.sourceforge.net .

[2] Hibernate.http://www.hibernate.org .

[3] Instance Store API.http://instancestore.man.ac.uk .

[4] JBoss.http://www.jboss.org .

[5] OWL API. http://sourceforge.net/projects/owlapi .

[6] XDoclet. http://xdoclet.sourceforge.net .

[7] XMLBeans. http://xml.apache.org/xmlbeans .

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors.The Description Logic Handbook — Theory, Implementation and Appli-
cations. Cambridge University Press, 2003.

[9] Sean Bechhofer. The DIG description logic interface: DIG/1.1. InProceedings of the 2003
Description Logic Workshop (DL 2003), 2003.

[10] Sean Bechhofer, Peter F. Patel-Schneider, and Daniele Turi. OWL Web Ontology Language Con-
crete Abstract Syntax, December 2003. Available fromhttp://owl.man.ac.uk/2003/
concrete/latest/ .

[11] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Pe-
ter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language Reference. Tech-
nical Report REC-owl-ref-20040210, The Worldwide Web Consortium, February 2004. Avail-
able fromhttp://www.w3.org/TR/2004/REC-owl-ref-20040210/ .

[12] Volker Haarslev and Ralf Moller. Description of the RACER system and its applications. In
Rajeev Gore, Alexander Leitsch, and Tobias Nipkow, editors,Automated reasoning: First Inter-
national Joint Conference, IJCAR 2001, Siena, Italy, June 18–23, 2001: proceedings, volume
2083 ofLecture Notes in Artificial Intelligence, New York, NY, USA, 2001. Springer-Verlag Inc.

[13] Ian Horrocks. Using an expressive description logic: FaCT or fiction? InProc. of the 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages 636–647, 1998.

[14] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The Instance Store: DL reasoning with
large numbers of individuals. InProc. of the 2004 Description Logics Workshop (DL 2004),
pages 31–40, 2004.


