
Querying the Semantic Web with Racer + nRQL

Volker Haarslev1, Ralf Möller2, and Michael Wessel2

1 Concordia University, Montreal
Email: haarslev@cs.concordia.ca

2 Technical University of Hamburg-Harburg
Email: {r.f.moeller | mi.wessel}@tuhh.de

Abstract. This paper introduces a description logic query language for
retrieving A-box individuals that satisfy specific conditions. The lan-
guage is substantially more expressive than traditional concept-based re-
trieval languages offered by previous description logic reasoning systems.
The new language is implemented in the Racer system. We demonstrate
the applicability of nRQL (new Racer Query Language) to OWL seman-
tic web repositories and evaluate the performance of the current state of
the art query answering engines for description logics using the Lehigh
University Benchmark (LUBM).

1 Motivation

The semantic web is aimed at providing machine “understandable” meta data
information for web resources. The most prominent semantic web meta data
markup language is OWL/RDF. Its design is heavily influenced by description
logics (DLs) [1]. Racer [2, 3] is a description logic system for the very expressive
DL ALCQHIR+(D−). Racer can also process OWL Lite knowledge bases, as
well as OWL DL with approximations for nominals, see also [4]. Racer’s most
prominent feature is that it is a true A-box reasoner; i.e., Racer not only provides
means for representing meta data schema described in OWL ontologies, but also
extensionally specified information, e.g., representing the actual web resources
with concrete individuals and their interrelationships. Obviously, as such it is
not only important to reason about web resources on an intensional level, but
also being able to actually extensionally query these resources.

In this paper we show how Racer’s new A-box query language nRQL(new
Racer query language) can be used to provide access to extensionally specified
information in A-boxes. We demonstrate the applicability of nRQL (pronounce:
nercle) to OWL semantic web repositories and evaluate the performance of the
current state of the art query answering engines for description logics using the
Lehigh University Benchmark (LUBM).

The language nRQL augments and extends Racer’s functional API for query-
ing a knowledge base (a knowledge base, KB for short, is simply a T-box/A-box
tuple (T ,A). For instance, Racer provides a query function for retrieving all in-
dividuals mentioned in an A-box that are instances of a given query concept. Let
us consider the A-box {has child(alice, betty), has child(alice, charles)}. If we
are interested in finding individuals for which it can be proven that a child exists,

in the Racer system, the function concept instances can be used. However, if we
would like to find all tuples of individuals x and y such that a common parent
exists, currently, it is not possible to directly express this in sound and complete
DL systems such as, for instance, Racer.

The paper is structured as follows: first we introduce the new Racer query
language. Basic knowledge in description logics is necessary to understand the
introduction to nRQL. We discuss and demonstrate the utility of nRQL with ex-
amples. We then demonstrate the feasibility of the approach by benchmarking
the performance of Racer + nRQL using the so-called Lehigh University Bench-
mark (LUBM) [5]. Finally, we briefly discuss the relationship to OWL-QL [6]
and comment on future research.

2 The New Racer Query Language - nRQL

Racer supports the DL ALCQHIR+(D−) with, for instance, algebraic con-
straints (concrete domains) such as linear inequations for the reals and equations
for strings. In the following we describe the syntax and semantics of nRQL. We
start with some auxiliary definitions:

Definition 1 (Individuals, Variables, Object Names). Let I and V be two
disjoint sets of individuals and variables, respectively. The set O =def V ∪ I is
the set of object names. We denote variables with letters x, y, . . .; individuals
are named i, j, . . .; and object names with a, b,

Query atoms are the basic syntax expressions of nRQL:

Definition 2 (Query Atoms). Let a, b ∈ O; C be an ALCQHIR+(D−) con-
cept expression, R a nRQL role expression (a nRQL role expression is either a
ALCQHIR+(D−) role expression, or a negated ALCQHIR+(D−) role expres-
sion); P one of the concrete domain expressions offered by Racer; and f, g be
so-called attributes (whose range is defined to be one of the available concrete
domains offered by Racer). Then, the set of nRQL atoms is given as follows:

– Unary concept query atoms: C(a)
– Binary role query atoms: R(a, b)
– Binary constraint query atoms: P (f(a), g(b))
– Binary same-as atoms: same as(a, i)
– Unary has-known-successor atoms: has known successor(a,R)
– Negated atoms: If A is a nRQL atom, then so is \(A), a so-called negation

as failure atom or simply negated atom.

nRQL also offers various syntactic abbreviations (“macros”) to facilitate query
formulation. For example, it is possible to use role chains followed by an at-
tribute within binary constraint query atoms: the atom ((λ(age1, age2).(age1 +
70) < age2)(age(has child(x)), age(has father(has father(x))))) retrieves all
individuals x having a child being at least 70 years younger than its grand grand-
father. This given atom is just an abbreviation for the complex conjunction
has child(x, y)∧ has father(x, z)∧ has father(z, u)∧ ((λ(age1, age2).(age1 +
70) < age2)(age(y), age(u))).

Definition 3 (nRQL Queries). A nRQL Query has a head and a body. Query
bodies are defined inductively as follows:

– Each nRQL atom A is a body; and
– If b1 . . . bn are bodies, then the following are also bodies:
• b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the object
names (ai ∈ O) mentioned in body. A nRQL Query is then an expression of the
form

ans(ai1 , . . . , aim
)← body(a1, . . . , an),

The expression ans(ai1 , . . . , aim) is also called the head, and (i1, . . . , im) is an
index vector with ij ∈ 1 . . . n. A conjunctive nRQL query is a query which does
not contain any ∨ and \ operators.

The predicate ans should be understood as a keyword. Note that, similar to
other logical languages, it is also possible to use individuals as “constants” in
the head of queries.

Before we consider atoms with variables, we define truth of ground query
atoms.

Definition 4 (Ground Query Atoms). A ground query atom is a query atom
that does not contain any variables. A positive ground query atom is a ground
query atom that is not negated.

To define truth of ground query atoms, we will need the standard notion of
logical implication or logical entailment. Assuming that inds(A) returns the set
of all individuals mentioned in A-box A we first start with positive atoms.

Definition 5 (Entailment of Positive Ground Query Atoms). Let K =
(T ,A) be an ALCQHIR+(D−) knowledge base.

A positive ground query atom A is logically entailed (or implied) by K iff
every model I of K is also a model of A. In this case we write K |= A. Moreover,
if I is a model of K (A) we write I |= K (I |= A). We therefore have to specify
when I |= A holds. In the following, if the atom A contains individuals i, j, it
will always be the case that i, j ∈ inds(A). From this it follows that iI ∈ ∆I and
jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

– If A = C(i), then I |= A iff iI ∈ CI .
– If A = R(i, j), then I |= A iff (iI , jI) ∈ RI .
– If A = P (f(i), g(j)), then I |= A iff (fI(iI), gI(jI)) ∈ P I .
– If A = same as(i, i), then I |= A.
– If A = same as(i, j), then I 6|= A.
– If A = has known successor(i, R), then I |= A iff for some j ∈ inds(A):
I |= R(i, j).

It is important to note that the properties of roles and concepts referred to
in the query atoms are defined in the knowledge base K. For example, if the
role has descendant has been declared as transitive in K, then has descendant
is transitive in the queries as well, since in models of K has descendantI =
(has descendantI)+ must hold. If has father is declared as a feature (a func-
tional role), then it is treated as a feature in queries as well.

Also note that same as(i, j) is basically a syntactical notion. Suppose that in
some models (∆I , ·I), iI = jI holds. Thus, i and j are basically different names
for the same domain individual in these models. Even if iI = jI in all models,
still A 6|= same as(i, j) holds. Also note that the unique name assumption for
A-box individuals is no longer enforced in Racer 1.8. A corresponding atom
same domain individual(i, j) will be added to a future nRQL version.

Now that we have defined truth of of positive ground query atoms, we can
define truth of arbitrary ground query atoms:

Definition 6 (Truth of Ground Query Atoms). Let A be a ground query
atom. Let K = (T ,A) be a knowledge base (T-box/A-box tuple). A ground atom A
is either TRUE in K (we write K |=NF A) or FALSE in K (we write K 6|=NF A).
The relationship |=NF resp. trueness of ground query atoms is inductively defined
as follows:

– If A is positive (does not contain “\”): K |=NF A iff K |= A
– Otherwise: K |=NF \(A) iff K 6|=NF A

It is important to note that for each query body or atom q, q is TRUE iff \(q)
is FALSE, and vice versa. Note that this does not hold for the usual entailment
relationship. For example, consider the A-box {woman(betty)}. Given K =def

(∅,A), woman(betty) is TRUE, and mother(betty) is FALSE, since we cannot
prove that betty is a mother. Thus, \(mother(betty)) is TRUE. In contrast,
¬mother(betty) is obviously FALSE. Moreover, (mother t ¬mother)(betty) =
>(betty) is not the same as (mother(betty)) ∨ (¬mother(betty)).

In order to check whether K |=NF A, we can use the basic consistency check-
ing and A-box retrieval methods offered by Racer. The symbol “|=NF ” shall
remind the reader of the employed “Negation as Failure” semantics (i.e., sup-
pose A is positive, then K |=NF \(A) iff K 6|= A, which means \(A) is TRUE in
K, see below for examples).

The truth definition of ground atoms can be extended to complex ground
query bodies in the obvious way (i.e., K |=NF b1 ∧ · · · ∧ bn iff ∀bi : K |=NF bi,
and analogously for ∨ and \).

Having defined truth of ground query atoms and bodies, we can specify the
semantics of queries which are not ground, but first we need one more piece of
notation. The rationale behind the next definition is best understood with an
example: consider the query ans(betty) ← woman(betty). The answer to this
query should either be ∅ (in case K 6|= woman(betty)), or {(betty)} (in case K |=
woman(betty)). A reasonable statement is that ans(betty) ← \(woman(betty))
should be the complement query of ans(betty)← woman(betty). Thus,

ans(betty)← \(woman(betty)) should therefore return the set { (i) | i ∈ inds(A) }
if K 6|= woman(betty)) and { (i) | i ∈ inds(A) } \ {betty} if K |= woman(betty).
Thus, within \(woman(betty)), betty behaves in fact like a variable. To cap-
ture this behavior, we replace the individuals in the atoms with representative
variables and use same as statements as follows:

Definition 7 (α-Substitution). Let A be an atom that contains at most one
“\” (note that A = \(\(A))). Denote the set of mentioned individuals in A as
inds(A). Then, α(A) is defined as follows:

– If inds(A) = ∅, then α(A) =def A.
– If A is positive and inds(A) = {i, j} (possibly i = j), then α(A) =def

A[i←xi,j←xj] ∧ same as(xi, i) ∧ same as(xj , j).
– If A = \(A′) is negative and inds(A) = {i, j} (possibly i = j), then α(A) =def

\(A′[i←xi,j←xj]
) ∨ \(same as(xi, i)) ∨ \(same as(xj , j)).

Note that A[i←xi,j←xj] means “substitute i with xi, and j with xj”. For example,
α(R(i, j)) = R(xi, xj) ∧ same as(xi, i) ∧ same as(xj , j), but α(\(R(i, j))) =
\(R(xi, xj))∨\(same as(xi, i))∨\(same as(xj , j)). We extend the definition of
α to query bodies in the obvious way. However, we need to bring the bodies into
negation normal form (NNF) first, such that “\” appears only in front of atoms.
This is simply done by applying DeMorgan’s Law to the query body (from the
given semantics it follows that \(A∧B) ≡ \(A)∨\(B), \(A∨B) ≡ \(A)∧\(B),
\(\(A)) ≡ A). The semantics of a nRQL query can now be paraphrased as
follows:

Definition 8 (Semantics of a Query). Let ans(ai1 , . . . , aim)← body(a1, . . . , an)
be a nRQL query q such that body is in NNF. Let β(ai) =def xai

if ai ∈ I, and ai

otherwise; i.e., if ai is an individual we replace it with its representative unique
variable which we denote by xai

. Let K be the knowledge base to be queried, and
A be its A-box. The answer set of the query q is then the following set of tuples:

{ (ji1 , . . . , jim
) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,
K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =def TRUE and {} =def FALSE.

Note that we assume the unique name assumption (UNA) for the variables here.
However, the implemented query processing engine also offers non-UNA variables
(prefixed with $). For reasons of brevity we decided not to include them in the
formal definitions in this paper. There are various other features in nRQL (which
is still under development) which have been left out here. Please refer to [3] for
the full list of nRQL features.

2.1 Example Session

In the following we discuss standard query patterns and discuss the expressivity
of nRQL. As a running example we use the following simple knowledge base.

T-box: Role Declarations:
has child v has descendant transitive(has descendant)

inv has child
.
= inv(has child) attribute(age, integer)

has father v inv has child feature(has father)
has mother v inv has child feature(has mother)

man v person
woman v person
brother v man
parent

.
= person u (∃has child.person)

mother
.
= woman u parent

grandmother
.
= motheru
∃has child.∃has child.person

A-box:
woman(alice), woman(betty), brother(charles),
(≤ 1has sibling)(charles), has sister(eve, doris),
has child(alice, betty), has child(alice, charles), has child(betty, doris),
has child(betty, eve), has sibling(charles, betty), has sister(doris, eve)

For example, ans(x) ← grandmother(x) asks for all instances of type grand-
mother from the current A-box to be bound to the variable x. The answer is
{(alice)}. If we query with ans(x) ← (¬grandmother)(x) we get {(charles)},
since Charles is known to be a man. Due to the open world semantics, the
other women in the A-box (Eve, Doris, Betty) might be grandmothers as well,
and we just don’t know. Consequently, ans(x) ← \(grandmother(x)) yields
{(doris)(eve)(charles)(betty)}, due to the negation as failure semantics. This is
the complement of the first query.

If we just want to know if there are any known grandmothers at all in the
current A-box, we can simply query with ans()← grandmother(x), and Racer
replies TRUE.

As specified, it is possible to use A-box individuals within queries: ans() ←
woman(betty) yields TRUE. Consequently, for ans() ← man(betty) the answer
is FALSE. If A-box individuals (here betty) are used within a query head, they
are listed in the bindings as well: ans(betty) ← woman(betty) yields {(betty)}.
However, for ans(betty)← man(betty) the answer is again FALSE.

To give an example of a binary role query atom, consider ans(mother, child)←
has child(mother, child) which yields the answer set {(betty, doris)(betty, eve)
(alice, betty)(alice, charles)}. If we want to know who is not a child of whom,
we use ans(x, y) ← \(has child(x, y)) and get the complement of the previ-
ous query (minus tuples excluded due to the UNA for variables). If we are just
interested in the children of Betty, we ask Racer with ans(child of betty) ←
has child(betty, child of betty) and get {(doris), (eve)}.

To give an example of a binary constraint query atom, consider ans(x) ←
> (has father ◦has mother ◦ age(x), has mother ◦has father ◦ age(x)), which
asks for persons whose father’s mother is older than their mother’s father.

Suppose we want to know for which individuals we have explicitly mod-
eled children in the A-box. For this purpose, the query ans(x) ← has know

successor(has child, x) can be used. Note that the main reason for having atoms
of this type is related to negation: suppose we want to retrieve the A-box individ-
uals which do not have a child. The query ans(x)← \(has child(x, y)) cannot be
used, since first the complement of has child(x, y) is computed, and then the pro-
jection to x is carried out. Thus, ans(x)← \(has known successor(x, has child))
must be used. We already noted that this query is not equivalent to ans(x) ←
\(∃has child.>(x)).

To illustrate the problem, suppose we want to query for mothers not having
any explicitly modeled children in the A-box. Obviously, these mothers cannot be
retrieved with ans(x) ← \(∃has child.>(x)), since motherhood implies having
a child. But this child need not be explicitly modeled in the A-box. Therefore,
the query ans(x) ← mother(x) ∧ \(has known successor(x, has child)) must
be used. The syntax ans(x)← mother(x)∧has child(x, NIL) is also understood
by Racer.

To give an example of a more complex conjunctive query, suppose we are
interested in all mothers of male persons: ans(x, y) ← mother(x) ∧ man(y) ∧
has child(x, y). Racer replies: {(alice, charles)}. Due to the UNA for variables,
the query ans(x, y) ← man(x) ∧ man(y) returns ∅, since Charles is the only
man. The same applies to ans(x)← man(x) ∧man(charles), since x has to be
bound to a man different from Charles.

We ask the reader to refer to the Racer manual [3] for examples of disjunctive
queries and other nRQL peculiarities. In the following it will be sufficient to
consider simple conjunctive queries whose variables range over A-box individuals.

3 Benchmarking Racer + nRQL

The so-called Lehigh University Benchmark (LUBM, [5]) was developed to fa-
cilitate the evaluation and comparison of OWL semantic web repositories. The
LUBM consists of a OWL ontology modeling universities; i.e. concepts for per-
sons, student, professors, publications, courses etc. as well as appropriate rela-
tionships for such a universe of discourse are modeled. A benchmark generator
written in Java is capable to generate extensional data corresponding to this
ontology; i.e. a set of departments, professors, students, courses, and so on is
generated. A set of 13 benchmarking queries is defined, ranging from simple
queries that can be answered using plain relational look-up techniques to more
complicated queries which require dense OWL reasoning techniques in order to
be answered completely. The LUBM queries are simple conjunctive queries refer-
encing only concept and role names and can be mapped to nRQL. Please refer to
[5] for more information about the queries. Figure 1 shows LUBM queries 9 and
12 - note that www.University0.edu is an individual, and subOrganizationOf
is a transitive role.

In [5], the system DLDB, which is a relational database system (Microsoft
Access) augmented with a DL-based query rewriting engine, is benchmarked ac-
cording to this LUBM and it is observed that the queries 11, 12 and 13 cannot be
completely answered with the current DLDB implementation, i.e. in its current
state of development, DLDB is an incomplete OWL semantic web repository.

Q9: (retrieve

(?x ?y ?z)

(and (?x Student)

(?y Faculty)

(?z Course)

(?x ?y advisor)

(?x ?z takesCourse)

(?y ?z teacherOf)))

Q12: (retrieve

(?x ?y www.University0.edu)

(and (?x chair)

(?y Department)

(?x ?y memberOf)

(?y www.University0.edu

subOrganizationOf)))

Fig. 1. LUBM Queries 9 und 12

For our benchmark, we used a LUBM repository comprising 1 university with
14 departments. We then ran the 13 queries on repositories of increasing size (on
a P4 2.8 GHz 1 GB RAM machine running Linux) starting from a university
with 1 department, and adding departments one by one to the repository. The
answer time of each query is measured 10 times on repositories of increasing size,
and the average answer time is recorded.

We ran the benchmark with three different settings: in setting 1, the A-box
is not realized before queries are answered which means that the set of concept
names an individual is an instance of is not computed before querying starts.
In setting 2, the A-box is first realized. Setting 3 refers to a new incremental
two-phase tuple-at-a-time query processing mode in Racer 1.8 (see below for an
explanation). The A-box sizes, loading and realization time are also given in
Figure 2.

With the current Racer version (1.8) it is not yet possible to load a whole
university from the LUBM due to the initial A-box consistency test which has
to be performed before query answering starts; we therefore had to stop at 5
departments.

From Figure 2 (note the logarithmic scale), we can observe the following: in
setting 1, queries 1, 3, 7, 10 and 13 can be answered within fractions of a second,
even if 5 departments are loaded. These queries as well as queries 4 and 5 show
constant runtime behavior. This is not surprising, since they refer to individuals
from the A-box, and are therefore very specific. For the queries 2, 8, 9, 11 and
12 an exponential increase in answering time is suggested. However, only queries
8, 9 and 12 need more than 55 seconds when 5 departments are loaded. These
are the hard ones in setting 1. Query 12 needs even 2912 seconds.

In setting 2, with a realized A-box, the situation changes: query 12 can now
be answered in 12 seconds! Queries 1, 3, 4, 5, 7, 10 and 13 still show constant
behavior and run only slightly faster. It is also suggested that the exponential
increase for queries 2, 8 and 9 is somehow slightly alleviated (more sampling
points are needed in order to be more concise about this). However, only query
12 really benefits from setting 2. The overall execution times for the other queries
are only slightly faster.

The analysis suggests that using a realized A-box can alleviate an exponen-
tial increase in query answering time. However, prior realization only pays off
when queries are posed that need deep reasoning capabilities for being answered

0.01

0.1

1

10

100

1000

10000

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 1, Logarithmic Scale, Unrealized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

0.01

0.1

1

10

100

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 2, Logarithmic Scale, Realized ABox)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 5000 10000 15000 20000 25000

S
ec

on
ds

No. of Individuals

Runtime Performance of LUBM Queries 1-13 (Setting 3)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13

Deps. # Inds. Load Realization

1 2402 13.53 59.15
2 4254 22.40 202.80
3 5996 28.53 543.20
4 7740 36.48 881.25
5 9555 52.40 1447.86

Fig. 2. Runtime Behavior of LUBM Queries - Setting 1, 2, 3

completely. Note that DLDB could not answer query 12. A-box realization times
increase quite drastically, as Figure 2 shows. Queries 8 and 9 are hard in both
settings. Query 12 becomes much easier in setting 2. Query 8 and 9 are also
among the hardest queries for DLDB [5].

Let us now discuss setting 3. Since version 1.8, Racer supports incremen-
tal query answering. Thus, rather than retrieving the whole solution set in a
single step (set-at-a-time approach), client applications can load elements from
the solution set in a way that proceeds tuple by tuple (tuple-at-a-time itera-
tor approach). Additionally, Racer 1.8 can be configured in such a way that
nRQL queries are answered with optimized algorithms known from relational
databases. Thus, similar to DLDB, Racer treats an A-box as a database and
rewrites queries in order to support T-box information for information retrieval.
In addition to DLDB, Racer also supports inverse roles in this process. In Fig-
ure 2 setting 3 the times for retrieving all tuples that are also found by DLDB
(plus some more due to inverse roles) are indicated. Racer 1.8 supports a query
function that indicates when the last of these “cheap” answers is returned. Af-
ter this point, Racer switches to full A-box mode and retrieves the remaining
tuples. However, much more computational resources are required (see the dis-
cussion above). It is up to the application to decide if it is worth the effort.
Figure 2 setting 3 indicates that Racer 1.8 provides comparable performance for
similar services as offered by hybrid systems such as DLDB, but offers complete
reasoning if required.

4 Related Work, Discussion & Conclusion

For querying OWL semantic web repositories, the query language OWL-QL has
been proposed [6]. An OWL-QL query is basically a full OWL KB together
with a specification which of the URIs referred to in the query pattern are to be
interpreted as variables. Variables come in three forms: must-bind, may-bind, and
do-not bind variables. OWL-QL uses the standard notion of logical entailment:
query answers can be seen as logically entailed sentences of the queried KB.
Unlike in nRQL, variables cannot only be bound to constants resp. explicitly
modeled A-box individuals, but also to complex OWL terms which are meant to
denote the logically implied domain individual(s) from ∆I . Thus, if variables in
the query patterns are substituted with answer bindings, the resulting sentences
are logically entailed by the queried KB. For must-bind variables, bindings have
to be provided. May-bind variables may provide bindings or not, and do-not-bind
variables are purely existentially quantified (“existential blanks in the query”).
Moreover, OWL-QL queries are full OWL KBs, and this implies that not only
extensional queries like in nRQL must be answered, but also “structural queries”
are possible, such as “retrieve the subsuming concept names of the concept name
father”. Similar functions are also offered by Racer’s API, but are not available
in nRQL However, nRQL is not really a subset of OWL-QL. In OWL-QL, neither
negation as failure nor disjunctive A-boxes can be expressed. Moreover, binary
constraint query atoms of nRQL as well as negated has-known-successor query
atoms “are missing” in OWL-QL. The latter ones have in fact been requested by
the first users of the nRQL implementation. This might indicate that a limited
kind of autoepistemic or closed-world query facilities should be present in a DL
query language.

In this paper we have presented the Racer + nRQL semantic web repository,
as well as some preliminary benchmarking results.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.:
The Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Haarslev, V., Möller, R.: Racer system description. In: International Joint Confer-
ence on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy. (2001)

3. Haarslev, V., Möller, R.: The Racer user’s guide and reference manual (2003)
4. Haarslev, V., Möller, R.: Optimization techniques for retrieving resources described

in owl/rdf documents: First results. In: Proceedings of the Ninth International
Conference on Principles of Knowledge Representation and Reasoning (KR2004),
Whistler (Canada) (2004)

5. Guo, Y., Heflin, J., Pan, Z.: Benchmarking DAML+OIL repositories. In: Proc. of
the Second Int. Semantic Web Conf. (ISWC 2003). Number 2870 in Lecture Notes
in Computer Science, Springer-Verlag (2003) 613–627

6. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - a language for deductive query an-
swering on the semantic web. Technical Report KSL-03-14, Knowledge Systems
Lab, Stanford University, CA, USA (2003)

