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Abstract

Motivated by the development of an information system based on Descrip-
tion Logics (DL), which provides efficient support for searching mathe-
matical models in chemical process engineering, an n-ary existential quan-
tifier for Description Logics is proposed. We show that the quantifier can
be paraphrased using concept conjunctions and disjunctions and qualified
number restrictions. Due to its high cost in current DL systems, the pe-
riphrasis does not allow for practical applications. We state the need for
an efficient implementation of the proposed n-ary existential quantifier.

1 Introduction
The use of mathematical models in chemical process engineering is becoming
more and more popular because models permit the study of design alternatives
by means of simulation on a cheap computer instead of actually having to build a
real plant to experiment with. A major problem which impedes more widespread
use of modelling and simulation is the cost and effort required to develop suitable
models. However, chemical engineering is based on recurring pieces of process
equipments to be reused in various combinations and thus there is a potential
for reusing models already developed in different contexts.

As model development is performed in various business units using different
simulation tools, a specific information system to support model reuse has been
prototypically developed [1]. An important feature of such a system is its ability
to organize all created models in a way which is meaningful to the users of the



system. Further, the system must provide an efficient search functionality which
can be used to look up models that are candidates for being reused. In this
contribution, two promising methods to find appropriate models are examined:
the formulation of queries, in which the desired properties of the model are
specified by the user, and the exploration of a class hierarchy, in which models
are arranged according to certain criteria.

A rather simple realization of queries can be a keyword search in textual
model documentations. More sophisticated solutions could make use of a data-
base in which all relevant model information is stored. A model search via
exploration is impeded by at least three critical issues: the definition of suitable
model classes, their arrangement within a taxonomy, and the assignment of im-
plemented models to classes. As a model library grows, the need to split classes
into subclasses may arise, resulting in the necessity to reassign existing models
to the new classes. This assignment should be done automatically. Things are
complicated by the fact that multiple inheritance of classes must be provided as
several discriminators are appropriate to define subclasses.

Both search method can make use of a DL-based knowledge base. In a
conventional approach, one would distinguish between a TBox, providing the
concepts and roles relevant to the domain, and an ABox, in which existing
models are described by means of the vocabulary of the TBox. In Section 2, we
will expand on this approach. An alternative, that overcomes the difficulties of
the first strategy, is discussed in Section 3. The idea is to represent mathematical
models as concepts, in a way such that subsumptions between the concepts can
be interpreted as specialization relationships between the corresponding models.
However, this approach requires an n-ary existential quantifier, whose semantics
is proposed in Section 4. We conclude with stating the need for efficient DL
systems providing the n-ary existential quantifier (Section 5).

2 Representation of mathematical models

by individuals
A simple TBox that provides concepts to describe mathematical models on a
coarse level is shown in a UML class diagram-like representation in Figure 1.
Note that, for simplification, we do not distinguish explicitly between models and
the modelled systems. Each model is assumed to describe either an Apparatus or
a Plant comprising several Apparatuses. In each Apparatus, certain Phenomena
can occur, e.g. chemical Reactions.

In the following example, we assume that the individuals main-reaction, an
Esterification, and side-reaction, an Alkylation, contain information about specific
reactions, i.e. the reactants and the products of the reaction. For instance, the
reactants of the main-reaction are the Substances butanol and acetic-acid:

has-reactant(main-reaction, butanol) , has-reactant(main-reaction, acetic-acid) .
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Figure 1: Representing mathematical models as individuals in an ABox

An Apparatus, in which only the main-reaction occurs, can be described as follows:

(Apparatus u 6 1 has-phenomenon)(reactor-with-main-reaction) ,

has-phenomenon(reactor-with-main-reaction, main-reaction) .

For a Plant, whose only Apparatus is a reactor-with-main-reaction, we can write

(Plant u 6 1 has-apparatus)(plant-1) ,

has-apparatus(plant-1, reactor-with-main-reaction) .

In a similar way, the ABox can be extended by assertions that describe the mod-
els plant-2, plant-3 and plant-4, each of them characterized by a certain number
of certain Apparatuses (Figure 1). By the help of the resulting knowledge base,
we can do a search for models that comply with certain criteria. For instance, to
determine the models that describe an Apparatus in which an Alkylation occurs,
we can define the concept

Query ≡ Apparatus u ∃ has-phenomenon.Alkylation .

DL reasoners can identify reactor-with-main-and-side-reaction as an individual
of the Query concept. Furthermore, the architecture of the knowledge base
presented so far supports the exploration of a hierarchy. We can introduce
special classes of Models and define corresponding concepts, e.g. a Reactor,

Reactor ≡ Apparatus u ∃ has-phenomenon.Reaction .

A DL reasoner can calculate the subsumption hierarchy of the primitive and



defined concepts, and for each concept, the associated individuals can be de-
termined (Figure 1). Hence, a user searching for Reactor models can start the
exploration of the model library at the general Model concept, and, by gradually
refining his search, he will choose the Apparatus and then the Reactor concept.
The individuals of the latter, e.g. reactor-with-main-reaction, represent models
with the desired properties. In particular, this approach supports the automatic
assignment of models to model classes as it is required above. There is no need
to specify the affiliation of models to certain classes; this assignment is rather
performed only on the basis of the concept definitions and the ABox assertions.

This approach suffers from several deficiencies. First, one might oppose the
necessity to introduce rather identical individuals like reactor-with-main-reaction-
1 and reactor-with-main-reaction-2. Even if these two individuals represent two
distinguishable objects in the real world, the only information we are interested
in here is the occurrence of two reactors-with-main-reaction within plant-3.

Apart from this practical point of view, the representation of mathemati-
cal models by individuals involves some fundamental difficulties. Mathematical
models in chemical engineering are abstract descriptions of real world systems in
the sense that only those aspects are factored in which are regarded as essential
for a certain task, e.g. the dimensioning of a chemical reactor. Frequently, the
abstraction in the modelling process goes even behind that scope: We consider
the mathematical model of an esterification reactor in which all necessary equa-
tions are given, but in which substance dependent parameters are not defined;
these parameters are rather to be chosen depending on the specific esterification
reactions which are to be examined by the help of the model. Such a general
esterification model is no model building block in the sense of the definition
by Marquardt [2] because not all its characteristic properties, that is to say
the substances within the model, can be given. Nevertheless, today’s modelling
tools like gPROMS or Aspen Plus provide object oriented techniques that allow
the implementation of such general models, their multiple instantiation, and the
enrichment of the instances with the necessary information. Thus, we require
a knowledge management system that can handle these models adequately. By
means of ABox assertions, the general esterification reactor could be represented
in the following way:

Esterification(esterification) , Apparatus(esterification-reactor) ,

has-phenomenon(esterification-reactor, esterification) .

Here, the individual esterification-reactor does not denote a specific reactor model,
but the models of all possible esterification reactors. Consequently, the repre-
sentation of the generic esterification reactor by a concept is more appropriate:

Esterification-Reactor ≡ Apparatus u ∃ has-phenomenon.Esterification .

Obviously, the reactor-with-main-reaction is an individual of the Esterification-
Reactor concept. This fact can also be interpreted in the sense that the reactor-



with-main-reaction is more special than the Esterification-Reactor: Whereas the
generic model Esterification-Reactor is indeterminate with respect to a certain
esterification, the model reactor-with-main-reaction describes a Reactor for the
esterification of butanol and acetic-acid. A consequent development of this train
of thought leads to the idea to represent all models in the knowledge base by
the help of concepts. This approach enables the determination of specializa-
tion relationships between models via the calculation of subsumptions. In the
following section, we will discuss the advantages and problems of this method.

3 Representation of mathematical models

by concepts

For most of the individuals introduced in the previous section, their transla-
tion into concepts is quite straightforward. We assume that the concept Main-
Reaction represents a specific Esterification and that Side-Reaction describes a
certain Alkylation. Then, for the two reactors, we can define the concepts

Reactor-With-Main-Reaction ≡ Apparatus u ∃ has-phenomenon.Main-Reaction ,

Reactor-With-Main-And-Side-Reaction ≡ Apparatus

u ∃ has-phenomenon.Main-Reaction u ∃ has-phenomenon.Side-Reaction .

If the unique name assumption is adopted, then reactor-with-main-and-side-reaction
is an individual of the concept

Reactor-With-At-Least-Two-Reactions ≡ Apparatus

u > 2 has-phenomenon.Reaction ,

whereas the concept Reactor-With-Main-And-Side-Reaction is not subsumed by
Reactor-With-At-Least-Two-Reactions. From an application point of view, this
subsumption is desirable. It can be achieved by formulating the disjointness of
the generic concepts Esterification and Alkylation by the help of an appropriate
axiom. Furthermore, we observe the subsumption

Reactor-With-Main-And-Side-Reaction v Reactor-With-Main-Reaction ,

that expresses the idea that the first reactor is more special than the second be-
cause an additional reaction, the Side-Reaction is taken into account. In analogy
with the individuals plant-1, plant-2, and plant-3, the concepts

Plant-1 ≡ Plant u ∃ has-apparatus.Reactor-With-Main-Reaction ,

Plant-2 ≡ Plant u ∃ has-apparatus.Reactor-With-Main-And-Side-Reaction ,

Plant-3 ≡ Plant u > 2 has-apparatus.Reactor-With-Main-Reaction

represent specific Plants, each of them comprising of one or two of the Reactors.
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Figure 2: Specialization hierarchy of mathematical models

In the previous section, the concept Esterification-Reactor has been introduced
as a representation of a general esterification reactor. In the corresponding
definition, the existence of an individual of Esterification as a role filler for has-
phenomenon is required, but no further restrictions, as for example 6 1 has-
phenomenon, are involved in the definition. The conformance of the semantics of
the concept Esterification-Reactor with the idea of a general esterification reactor
as an apparatus with an esterification reaction and possibly other phenomena is
apparent.

The concept Plant-1 is a representation of the same plant which is described
by the individual plant-1, i.e. it consists of an reactor, in which the main reaction
occurs, but there are no further apparatuses in the plant. Nevertheless, in
the concept definition above, an existential restriction is used rather than an
exactly restriction. When specific models are described, our approach results
in a certain inconsistency between the semantics of the introduced concepts
and the objects that are represented by the concepts. But, by accepting this
inconsistency, we gain the possibility to determine specialization relationships
between mathematical models via the determination of subsumptions between
concepts. The concept definitions lead to the hierarchy in Figure 2 that expresses
intuitively comprehensible specialization relationships.

A naive attempt to describe plant-4 by a concept could look as follows,

Plant-4-a ≡ Plant u > 1 has-apparatus.Reactor-With-Main-Reaction

u > 1 has-apparatus.Reactor-With-Main-And-Side-Reaction ,

but as Reactor-With-Main-And-Side-Reaction v Reactor-With-Main-Reaction, the
first existential restriction subsumes the second one. Therefore, we get the
equivalence

Plant-4-a ≡ Plant u > 1 has-apparatus.Reactor-With-Main-And-Side-Reaction .

Differently from the approach in the definition of Reactor-With-Main-And-Side-



Reaction, here the formulation of an axiom postulating the disjunction of the
two filling concepts of the role has-apparatus is not feasible: It would result in
the unsatisfiability of Reactor-With-Main-And-Side-Reaction. Nevertheless, the
definition of a concept

Plant-4 ≡ Plant u > 2 has-apparatus.Reactor-With-Main-Reaction

u > 1 has-apparatus.Reactor-With-Main-And-Side-Reaction

guarantees an appropriate classification of Plant-4 with respect to Plant-2 and
Plant-3 (Figure 2): The model represented by Plant-4 is more special than the
model Plant-2 because of the existence of an additional reactor, and it is more
special than the model described by Plant-3, because the two plants have one
reactor type in common and the second reactor of Plant-4 is more special than
the remaining reactor in Plant-3.

In natural language, the concept definition above can be read: ”Plant-4 has
two Reactors-With-Main-Reaction and one Reactor-With-Main-And-Side-Reaction,
the latter possibly coinciding with one of the former two.” But, as this de-
scription of Plant-4 requires further knowledge about the filling concepts of the
role has-apparatus, that is to say the existence of a subsumption relationship
between them, the proposed solution is not satisfying. More desirable is a direct
formalization of the description ”Plant-4 has a Reactor-With-Main-Reaction, and,
in addition, a Reactor-With-Main-And-Side-Reaction.” We propose the notation

Plant-4 ≡ Plant u ∃ has-apparatus.( Reactor-With-Main-Reaction,

Reactor-With-Main-And-Side-Reaction) .

Clearly, the representation of mathematical models by the help of concepts over-
comes the difficulties that are involved by an approach making use of individu-
als. The subsumption hierarchy in Figure 2 exhibits another advantage of this
method: Whereas for the first approach only a limited number of concepts, which
are to be given explicitly by the user, is the basis for the classification of models,
here, all models in the knowledge base are potential candidates as superclasses
for more detailed models. The hierarchical organization of the knowledge base is
induced by its own content. We hypothesize that such model hierarchies, rang-
ing from generic concepts to concrete implemented models, are a worthwhile
help for a user in search of a certain model.

4 An n-ary existential quantifier
A practical realization of the envisaged knowledge base could not be achieved due
to the difficulties we hint at above: Current DL implementations do not provide
a concept constructor that describes role relationships between the individuals of
the constructed concept on the one hand and the distinct individuals of several,
possibly different concepts on the other hand.



Definition

We introduce an n-ary existential quantifier ∃r.(C1, ..., Cn), where r is a role and
the Ci, i ∈ {1, ..., n}, are concepts, and define its semantics as follows:

(∃r.(C1, ..., Cn)
)I

=
{

a ∈ ∆I ∣∣ ∃b1, ..., bn ∈ ∆I :

(∀ i ∈ {1, ..., n} : bi ∈ CI
i ∧ (a, bi) ∈ rI) ∧

(∀ i, j ∈ {1, ..., n}, i 6= j : bi 6= bj)
}

.

Obviously, if C ≡ Ci ∀i ∈ {1, ..., n}, one has ∃r.(C1, ..., Cn) ≡ > n r.C, and
in particular ∃r.(C) ≡ ∃r.C. The examples discussed in the previous section
suggest that even in the general case, the n-ary existential quantifier can be
paraphrased in a DL that provides conjunction and disjunction of concepts as
well as qualified number restrictions.

Theorem

Let n be a positive integer, r a role, and Ci for i ∈ {1, ..., n} concepts. Then

∃r.(C1, ..., Cn) ≡
l

J⊆{1,...,n}
J 6=∅

[
> ‖J ‖ r.

( ⊔
j∈J

Cj

)]
.

Proof

For an interpretation I on a domain ∆I and a ∈ ∆I , we define RI
i (a) = { b ∈

CI
i | (a, b) ∈ rI }. Then, to prove the theorem, we have to show that for all

interpretations I and for all a ∈ ∆I

∃b1, ..., bn ∈ ∆I : ( ∀i ∈ {1, ..., n} : bi ∈ RI
i (a) ) ∧

(∀i, j ∈ {1, ..., n}, i 6= j : bi 6= bj ) ,

if and only if

∀J ⊆ {1, ..., n} :
∥∥ ⋃

j∈J
RI

j (a)
∥∥ ≥

∥∥J
∥∥ . (∗)

For a given interpretation I and a ∈ ∆I , this is the statement of Hall’s Theorem
[3, 4], which, in its formulation by Cameron [5], says that a family RI

i (a) of
subsets of a set ∆I has a system of distinct representatives, if and only if it
satisfies Hall’s condition (∗).

Remarks

The theorem shows that the proposed existential quantifier does not extend the
expressiveness of a DL with concept conjunctions and disjunctions and qualified



number restrictions. For instance, to describe Plant-4, comprising at least one
Reactor-With-Main-Reaction and, in addition, at least one Reactor-With-Main-
And-Side-Reaction, we can write

Plant-4 ≡ Plant u ∃ has-apparatus.( Reactor-With-Main-Reaction,

Reactor-With-Main-And-Side-Reaction)

≡ Plantu > 1 has-apparatus.Reactor-With-Main-Reaction

u > 1 has-apparatus.Reactor-With-Main-And-Side-Reaction

u > 2 has-apparatus.( Reactor-With-Main-Reaction t
Reactor-With-Main-And-Side-Reaction ) ,

and because of the subsumption Reactor-With-Main-And-Side-Reactionv Reactor-
With-MainReaction, we get the same expression for Plant-4 as above:

Plant-4 ≡ Plant u > 2 has-apparatus.Reactor-With-Main-Reaction

u > 1 has-apparatus.Reactor-With-Main-And-Side-Reaction

Nevertheless, the periphrasis of the quantifier does not allow for practical appli-
cations: ∃r.(C1, ..., Cn) is expressed as a conjunction of 2n − 1 qualified number
restrictions, for most of which the filling concept is a disjunction of several
concepts. Apart from its sheer length – an algorithm for the generation of
the translation taking into account formal simplifications due to subsumptions,
equivalencies, and disjointness of some of the Ci is given in [6] – the high cost of
the constructors in the periphrasis impedes any efficient reasoning. For example,
if the existential quantifiers in the TBox

A ≡ ∃(C1, C2, C3, C4) , B ≡ ∃(D1, D2, D3, D4) , Ci v Di ∀i ∈ {1, 2, 3, 4}

are paraphrased, it takes RACER approximately 30 minutes to classify the con-
cepts1. Thus, for an efficient implementation of a DL providing the proposed
existential quantifier, an extension of current DL algorithms or even a new al-
gorithmic approach is needed.

5 Conclusion

A formalization of mathematical process models in terms of concepts as defined
in Description Logics has been successfully applied. Based on concept definitions
that approximately describe a model to be developed, suitable candidates for
reuse can be determined by means of a simple subsumption calculation.

1This test was performed with RACER V1.7.21 on a Windows 2000 system with an AMD
Athlon XP 1700+ processor and 1.5 GByte RAM.



However, in addition to common Description Logics, an n-ary existential
quantifier is needed in order to successfully represent models and their properties
as described in [2]. Although this quantifier has been paraphrased in [6], this
approach is not promising due to the time- and space-consuming behavior of
reasoning with paraphrased concept definitions.

Hence we propose the extension of Description Logics by this quantifier so
that more efficient implementations of it can be directly realized in descrip-
tion logic systems. Note that, for the application presented in this paper, such
implementations do not need to allow for conjunctions of n-ary existential quan-
tifications referring to the same role or cyclic concept definitions.
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