Development of an Intelligent Tutor for
Description Logics

Christel Kemke
Shamima Mithun
Department of Computer Science
University of Manitoba, Winnipeg, Canada
{ckemke,shamima}@cs.umanitoba.ca

Abstract

Description Logic languages have gained a lot of attention and more
and more relevance over the past 10 or 20 years. Although it can be
foreseen, that this development will have a serious impact on education
and training of I'T professionals, in academics and industry, the expertise
in this area is rare, and training is so far mostly constrained to occa-
sional tutorials at conferences, or written resources like course notes and
manuals.

In this paper, we introduce the DL Tutor, an integrated, interactive
Tutoring System for Description Logics. We discuss the principle compo-
nents and architecture of the DL Tutor, which includes an error diagnosis
and feedback module, as well as a verbalization component for trans-
forming DL expressions into “normal” natural language, and describe its
current implementation. The DL Tutor can be used as an additional
interface on top of a DL knowledge representation system. Currently,
the DL Tutor works with the Loom/PowerLoom language and knowledge
representation system.

1 Introduction

Description Logics (DL) are a family of knowledge representation languages
that have been extensively studied in the Artificial Intelligence community over
the past 20 years [3, 4, 8, 14, 15, 12]. The development of Description Logics
as formal knowledge representation language in Artificial Intelligence is going
back to a publication by Brachman and Schmolze in 1985 describing ‘KL-ONE’
(‘Knowledge Language One’) [5]. The proposal of KL-ONE was undoubtedly
a ground-breaking milestone in the development of Knowledge Representation



Languages, which initiated a trend towards better formal foundations of KR and
ATl in general. In this context, Description Logics as KR paradigm is becoming
more and more influential. DL also gained considerable attention in the past few
years, in particular as a core language for the development of the Semantic Web
(2, 9, 10, 13]. Therefore, it is to be expected that Description Logics languages
will become more widely used in the near future. This will affect the computer
science community in academics as well as in industry, and leads to the question
of how to introduce the concepts of DL to students and IT professionals, and get
them acquainted with the use of DL as KR language and its underlying formal
foundations.

Tutorials for Description Logics exist so far only as human presentations, or
electronically as written text, with additional exercises, but without integration
into an implemented knowledge representation system, like Loom/PowerLoom
or Classic. Since description logic languages are declarative languages but in
some ways similar to programming languages, they offer an ideal basis for the
development of an integrated tutoring system, which allows learning-while-doing
as emphasized in [11].

The explicitly well-defined semantics of DL languages provides in addition a
good basis for detecting conceptual misunderstandings and errors, and for pro-
viding advice on a deeper level, which has not yet been achieved for automated
programming languages tutors so far (cf. the Smalltalk Tutor by Chee et al.
[6, 7], the interactive Lisp textbook ELM-ART II by Weber and Specht [18], the
Java Tutor by Sykes and Franek [17] and - with a different view - the Tutoring
System SIAL for Computational Logic [16] and the MinLog system, a Proof
System for Logic with an integrated Tutor [1]).

This paper outlines the development of an interactive, integrated tutoring
system for Description Logics, the so-called DL Tutor. The current version
of the DL Tutor is integrated with PowerLoom, a fully functional, implemented
knowledge representation system, whose core language is a variant of Description
Logics [12].1

2 Overview of the DL Tutor

The DL Tutor is aimed at providing user assistance on several levels, starting
with a syntactic analysis of the user input. The DL tutor diagnoses syntax er-
rors made by the users and classifies these errors according to the constructs
or concepts of the DL language the novice DL user did not know, gives some
explanation on the errors made and the correct syntax, and thus provides ad-
vice and help on writing DL expressions correctly. In addition, the DL Tutor

! This project has been funded by the University of Manitoba Research Grants Program,
URGP



comprises a natural language verbalization component, which transfers DL ex-
pressions into natural language statements. The natural language formulation
of the DL construct should be easier to read and more understandable than the
original DL expression, and thus help the user to become clear about what s/he
has communicated to the knowledge representation system.

The following sections outline the general architecture of the DL Tutor and
its modules, and describe the current status of implementation and design.

3 Architecture of the DL Tutor

The DL Tutor is intended to act as an interface between the user and the Power-
Loom system (or another DL system). The user enters DL expressions as usual.
The DL Tutor analyzes every entered expression on the syntactic level, checks it
for correctness, and if necessary produces an error message and error feedback.
The tutor also performs a verbalization of the DL expression, i.e. it generates a
natural language sentence corresponding to the meaning of the DL expression.
The current DL tutor comprises the following main modules (see fig. 1):

Interaction
Handler

NN

Syntactic Error
Analysis Detection

Tokenizer Error
Diagnosis

I
Error
Feedback

|

Error
Figure 1: Overall Architecture of the DL Tutor

Verbalization

Correcti on

NL
Verbalize
Patterns

NL Feed -
back
Patterns

e the Syntactic Analysis module,

e the Error Diagnosis and Feedback module, and



e the Verbalization module.

The Syntactic Analysis is a kind of pre-processing module, which checks whether
the user input is adhering to the syntax of the given DL language, i.e. in this
implementation the PowerLoom language. If the user’s input is syntactically
correct, it will be directly passed to the Verbalization, which generates a natural
language form of the DL construct. Both of these modules, as well as the Error
Diagnosis, access as common resource a set of grammar rules, which describe
the syntax of the underlying DL language. The Error Diagnosis provides a
classification and specification of the error, and thus enables a focused, adjusted
feedback through the Error Feedback module. The generation of error feedbacks
involves natural language templates, i.e. patterns whose variables are replaced
with respective verbal tokens from the analyzed input. The instantiated pattern
is then modified to form a proper natural language sentence. The Feedback
module has in addition an Error Correction component, which constructs correct
DL expressions from the entered ill-formed structures, based on the diagnosed
error and the DL (PowerLoom) lexicon and grammar as stored in the DL Syntax
source (see fig.2).

3.1 Processing in the DL Tutor

The processing is performed in the DL Tutor according to the following steps:

1. Prompt the user to input a DL expression.
2. Read the user input.

3. Tokenize the input. In the tokenization, the system separates each token
by identifying spaces or parentheses.

4. The tokens are then tagged using the pre-defined DL grammar (s. fig.2).
5. Next, the tokenized input is parsed using a top-down parsing method.

6. If a parsing error occurs, the input statement is first checked for a possible
mistake in the use of DL constructor keywords (e.g. defconcept, defrelation
etc.).

7. If a keyword error is found, the user receives a feedback message with an
indication of the error and a suggested replacement for the wrong keyword.

8. If any other error was found during parsing, the respective error is reported
to the user. The tutor system generates an error message based on the
grammar rule(s) which failed during parsing. The generation of the error
message is using natural language templates.

9. The tutor then suggests a correction of the input. If the user accepts the
correction, the modified expression is assumed as new DL statement, and
the system continues with an analysis in step 4.



10. If no error occurred during parsing, a template based verbalization of the
input expression takes place. For various kinds of DL constructs, there
are pre-defined templates, which are instantiated with the tagged tokens
derived in steps 3 and 4. In a recursive manner, each sub-expression of
the parsed DL statement - corresponding to phrases in natural language
parsing - is transformed into a natural language expression. Then the
transformed sub-expressions are combined and further verbalized to form
a complete natural language sentence. This sentence is displayed as output
to the user.

3.2 Syntactic Analysis

The Syntactic Analysis module first performs the tokenization in which it sep-
arates all the opening brackets, closing brackets, keywords, operators, variables
and other words occurring in the DL formula. Then it assigns syntactic markers,
so-called 'tags’ to every token and parses the input expression, using predefined
grammar rules for the specific DL language. We use, for example, the following
predefined grammar rules to parse ‘assert’-statements in PowerLoom:

assertS — (assert cond)/ (assert fa)

fa — (forall(V)(opr cond cond))

V — wvar [/ var V / ((var con) V

opr —» = | &

var — 1s-alpha

cond — (term) / (bbool cond cond) (ubool cond) (term?2)
bbool — and | or

ubool — not

term2 — con value / rel con value

value — is-alpha

term — rel V / rel value V' / con var | rel value con var

where rel is a user-defined relation and con is a user-defined concept.? If the
tutor receives, for example, the input
(assert (company MegaSoft))

it will first separate ‘assert’, ‘company’, ‘MegaSoft’ and all the brackets as
tokens. Next, the system will use the grammar rules to tag the tokens and parse
the input. Firstly, it tags the complete formula as an assert statement because
it finds a match with the rule asserS — (assert cond). The parsing process
then recognizes that the sub-expression ‘(company MegaSoft)’ can be marked

2Initially, the system has no user-defined concepts or relations. If the user enters during
runtime a correct statement defining a concept/relation, this concept/relation is added to the
concept-list/relation-list.



as cond, ‘company’ as con and ‘MegaSoft’ as var.

Syntactic
Analysis

%gge}
DL
I.ex]con

Figure 2: Syntactic Analysis

3.3 Error Diagnosis and Feedback

The DL Tutor detects an error based on problems during the syntactic analysis.
Currently, diagnosed errors are either on the lexical token level, or on the gram-
matical phrase/sentence level. Typical errors on the token level include a wrong
spelling of DL keywords, which occurs when the user is not yet accustomed
with the respective DL syntax and forgot the exact form of the keyword, or in
particular when s/he used another DL dialect before. Another typical error on
the token level is a wrong reference to a non-existing concept or relation in an
assert-statement. The tutor is able to check whether the respective concept or
relation referred to in the assert statement has already been defined and exists
in the knowledge base; if this is not the case, the statement will be marked as
faulty using a respective error identification. Other simple errors on this level
are missing parentheses, and wrong use of variable identifiers.

Errors on the grammatical level are detected during parsing, based on viola-
tions of the given grammatical rules, which result in a parser failure. Since the
parser has from the tokenization process knowledge about the complete input
structure, the tutor can diagnose the location of the error as well as indicate
a possible correction, by comparing the generated, faulty parse with possibly
applicable grammatical rules at the respective parse position.

The Error Feedback takes the error information as determined by the Error
Identification, as well as the generated parse output and the general syntactic
knowledge to produce an adequate response for the user. Firstly, the identified
error is printed out to the user, for example that an unidentified token should
be a keyword. The location of the error in the input structure is indicated as



well. Next, a correction statement is produced by referring to a similar proper
token or grammatical rule, for example suggesting a proper keyword which can
replace the wrong token. In addition, last, the whole statement is corrected and
suggested to the user.

Error Diagnosis
Analyzed rsssnnasensns »| & Feedback
User Input Handler

Error Error Error
Identification Feedback Corr ection
Error Error
Indication Explana tion

NL Feed -
back
Patterns

Figure 3: Components of the Error Diagnosis and Feedback Module

This whole procedure should achieve that
e the user becomes aware of certain mistakes s/he makes or misconceptions
and misunderstandings s/he might have;
e the user receives information about how to correct this mistake;

e the user may receive further information in the form of explanations of
grammatical rules (not yet completely implemented)

e the user does not have to retype the DL expression if the tutor’s diagnosis
and the suggested modified expression is correct and acceptable.

The following are samples of dialogues between the DL Tutor and a user. ?

Example 1

DL input: (defrelati has-floor ((?b building) (?f floor)))
Syntax is not correct.
Incorrect start ‘defrelati’ of DL statement.

3For better readability, the communication printed here has been slightly modified from
the original system display.



Is defrelati meant to be defrelation? (Y/N) :y
Verbalization: ‘has-floor’ is a relation between ‘building’ and ‘floor’.

Comment: The first line contains the tutor’s system prompt and the DL input
from the user. The tutor detects a syntax error and communicates this to the
user (line 2). In line 3, the error is identified as a wrong start of a DL statement,
and the respective wrong token is mentioned (‘defrelati’ should have been a
keyword). The tutor can find a suitable keyword and suggests to substitute the
wrong token with it. The last line contains the natural language form generated
by the Verbalization module.

Example 2

DL input: (assert (position left)
Syntax is not correct.
The closing parenthesis ) is missing after left).

Comment: In this example, the tutor diagnoses a missing closing bracket, and
produces an error feedback which includes an error identification and location,
in this case the last matching closing bracket plus the word before.

Example 3
DL input: (assert (foll (?x ?y)(=(has-color 7x ?y)(and (furniture 7x)(color

7))
Syntax is not correct.
foll must be a defined concept, or substitute foll with forall.

Comment: Both diagnosed error types, i.e. the wrong token ‘foll’ referring either
to an unknown concept, or meaning the ’forall’ constructor, are possible errors.

It is possible to include further mechanisms, like pattern matching and comple-
tion, or a further look-ahead and better prediction during the parsing process
to resolve ambiguities as in example 3 above. This would improve the quality
(specificity and correctness) of the error diagnosis and identification.

3.4 Verbalization

The Verbalization component, currently works with a subset of the PowerLoom
language. The syntactic constructs which are mostly used and most common to
all DL languages, are modelled using a syntax adapted to PowerLoom(see fig.2).
Basic constructs included in the current version are defconcept, defrelation, as-
sert, and forall.

The Verbalization module transforms DL formulas into natural language
expressions using

e the tokenized, parsed input produced by the Syntax Analysis,



e natural language templates for sub-structures,

e construct-specific transformations.

Once the tagging and parsing are complete, the system uses the produced
information to transform the DL formula into a natural language sentence. The
generation process is progressing recursively from the innermost terms in the
DL statement, which is interpreted first, outwards to the outmost expressions,
until the entire statement is transformed into a natural language expression.

In the following example, a relation definition ’has-floor’ is verbalized. The
transformation of the expression:

(defrelation has-floor ((?b building) (?f floor)))
yields the verbalization:
‘has-floor’ is a relation between ‘building’ and ‘floor’.

In the following example, a relation constraint forall is asserted to the knowl-
edge base, involving variables standing for instances of the related concepts. The
literal transformation of the expression

(assert (forall (?x ?y) (= (has-color ?x ?y) (and (furniture ?x) (color ?y)))))
produces the output

If the relation ‘has-colour’ holds between any instances ?r and ?y, then %z
must be a ‘furniture’ and 2y must be a ‘colour’.

Slightly different forms of outputs have been generated so far in various tests
of the system interaction. It is intended to make the choice of the output form
dependent on either the purpose of the application, i.e. whether it is supposed
to act more like a human tutor and communicating agent with the user (meta-
natural or meta-technical mode), or whether it is supposed to act as a passive,
reactive, feedback system which just reflects the user’s input or the user’s action
(natural or technical mode).

DL input: (assert (position left))

natural: left is a position.

meta/natural: You asserted left as a position.

technical: left is an instance of the concept position.

meta/technical: You asserted that left is an instance of the concept position.

DL input: (defconcept yes (?z flat-surface))

meta-natural: You defined yes as a kind of flat-surface.

meta-technical: You defined a new concept yes as sub-concept of the concept
flat-surface.

Last, the hypothetical example below shows different forms of response by the



DL Tutor. These can be produced relatively easy based on the processing mech-
anisms already implemented in the current version of the DL Tutor:

DL input: (ssert (position left))

error detection: Syntax is not correct.

error diagnosis: Incorrect start ‘ssert’ of the DL statement.

eract explanation: ‘ssert’ should be a DL constructor.

general explanation: The first token after the first opening parenthesis must be
a DL constructor.

verbose: ‘ssert’ should be a DL constructor, since it is the first token after the
first opening parenthesis.

correction: Is ‘ssert’ meant to be assert? (Y/N):y

verbalization: ‘left’ is a ‘position’.

confirmation: You asserted ‘left’ as a ‘position’.

4 Conclusion

The DL Tutor has been designed and implemented in a prototypical form, cur-
rently with an integrated connection to a paradigmatic, functional DL language,
the PowerLoom knowledge representation and reasoning system. The DL tutor
provides a syntactic analysis, with an error detection and diagnosis facility for
the syntactic language level; an error feedback which provides comments related
to occurred errors at different levels of detail and technicality; and a correction
of ill-formed DL user inputs. Another branch of the DL Tutor deals with the
verbalization of DL expressions, i.e. the generation of natural language sentences
corresponding to the DL construct specified by the user.

The DL Tutor still needs improvement, for example in the verbalization
and natural language generation part, which should produce more coherent and
eloquent expressions. The verbalization should include at a later stage also
a ‘describe’ feature, which is supposed to collect from the knowledge base all
descriptive information related to a specific concept (or instance or relation),
and provide a coherent textual description of this concept.

Future developments of the DL Tutor include the integration of a User Model.
This will provide a better adaptation to the specific user, e.g. by storing pre-
ferred interaction and verbalization modes, and - more importantly - to keep
track of the user’s knowledge and mistakes, by recording the DL constructs
which have been properly used (‘positive knowledge’) and those which have
been incorrectly used by the specific user (‘negative knowledge’).

An adaptation to other DL languages is also in the scope of future work. The
current parser, which handles only right-recursion, will be substituted with an
Early-Parser to allow arbitrary context-free grammar rules. The verbalization
module does require some modified procedures to build a complete verbalization



recursively, based on the pre-defined verbal templates, which are currently used
for tranforming sub-structures of a DL-expression into natural language phrases.

In the longer term, the DL Tutor should also include and use semantic knowl-
edge. For example, a more semantically oriented error diagnosis and feedback
can address issues of consistency and coherence related to adding new definitions
to an existing knowledge base. A mini-version of this feature, which checks on
the proper use of existing concepts and relations in input constructs, is already
integrated in the current system.

Tests of an improved version of the DL Tutor are planned for the following
months, with higher-level computer science students in the context of a formal
logic course and a natural language processing course.

References

[1] H. Benl, U. Berger, H. Schwichtenberg, M. Seisenberger, and W. Zuber.
Proof theory at work: Program development in the minlog system. In
W. Bibel and P.H. Schmitt, editors, Automated Deduction, Vol. II. Kluwer,
1998.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, May 2001, 2001.

[3] Ronald J. Brachman, Alex Borgida, Deborah L. McGuiness, and Peter F.
Patel-Schneider. “Reducing” CLASSIC to Practice: Knowledge Represen-
tation Theory Meets Reality. Artificial Intelligence, 114(1-2):203-237, 1999.

[4] Ronald J. Brachman, Deborah L. McGuiness, Peter F. Patel-Schneider,
and Lori A. Resnick. Living with CLASSIC: when and how to use a KL-
ONE-like language. In John Sowa, editor, Principles of Semantic Networks.
Morgan Kaufmann, San Mateo, US, 1990.

[5] Ronald J. Brachman and J. Schmolze. An overview of the kl-one knowledge
representation system. Cognitive Science, 9:171-216, 1985.

[6] Y.S. Chee. SMALLTALKER: A cognitive apprenticeship multimedia learn-
ing environment for learning Smalltalk programming. In Proceedings of
ED-MEDIA 94-World Conference on Educational Multimedia and Hyper-
media, pages 492-497, Vancouver, BC, Canada, 1994.

[7] Y.S. Chee and S. Xu. SIPLeS: supporting intermediate Smalltalk program-
ming through goal-based learning scenarios. In Proceedings of AI-ED 97:
8th World Conference on Artificial Intelligence in Education, pages 95-102,
Kobe, Japan, 1997.



[8] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in Description Logics. In Gerhard Brewka, editor,
Principles of Knowledge Representation, pages 191-236. CSLI Publications,
Stanford, California, 1996.

[9] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Deborah L. McGuiness,
and Peter F. Patel-Schneider. OIL: An Ontology Infrastructure for the
Semantic Web. IEEFE Intelligent Systems, 16(2), 2001.

[10] James Hendler and Deborah L. McGuinness. The DARPA Agent Markup
Language. IEEFE Intelligent Systems, 15(6), 2000.

[11] J. Herrington and R. Oliver. Using situated learning and multimedia to
investigate higher-order thinking. Journal of Interactive Learning Research,
10(1), 1999.

[12] Robert MacGregor and Raymond Bates. The Loom Knowledge Representa-
tion Language. Technical Report ISI-RS-87-188. USC Information Sciences
Institute, Marina del Rey, CA, 1987.

[13] D. L. McGuinness, Richard Fikes, James Hendler, and Lynn Andrea Stein.
DAML+OIL: An Ontology Language for the Semantic Web. IEEE Intelli-
gent Systems, 17(7), 2002.

[14] D.L. McGuinness. Ezplaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, 1996.

[15] Peter F. Patel-Schneider, Deborah L. McGuinness, Ronald J. Brachman,
Lori Alperin Resnick, and Alex Borgida. The CLASSIC Knowledge Rep-

resentation System: Guiding Principles and Implementation Rationale.
SIGART Bulletin, 2(3):108-113, 1991.

[16] A. Simon, A. Martinez, M. Lpez, J.A. Maestro, J.M. Marquis, and
C. Alonso. Learning computational logic with an intelligent tutoring sys-
tem: SIAL. In Proceedings of the First International Congress on Tools for
Teaching Logic, Salamanca, Spain, 2000.

[17] E. R. Sykes and F. Franek. A prototype for an intelligent tutoring system
for students learning to program in JavaTM. In TASTED International
Conference on Computers and Advanced Technology in Education, Rhodes,
Greece, 2003.

[18] G. Weber and M. Specht. User modeling and adaptive navigation support
in WWW-based tutoring systems. In C. Tasso A. Jameson, C. Paris, editor,
User Modeling, pages 289-300. Springer-Verlag, 1997.



