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Abstract Knowledge about the distribution of data provides the basis for various
tasks in the context of Linked Open Data, e.g. for estimating the result set size
of a query, for the purpose of statistical schema induction or for using informa-
tion theoretic metrics to detect patterns. In this paper I investigate the potential of
obtaining estimates for such distributions from samples of Linked Data. There-
fore, I consider three sampling methods applicable to public RDF data on the
Web as well as smoothing techniques to overcome the problem of unseen events
in the sample space of a distribution. In a systematic empirical evaluation I look
into the effects of these techniques on the quality of distributions approximated
from samples. The obtained insights help to assess the quality impact of com-
binations of sampling and smoothing techniques on five prototypical structures
over which distributions are estimated. Furthermore, the results demonstrate the
potential and the limitations of these techniques, motivating further work in the
direction of sampling from Linked Open Data.

1 Introduction

Estimating the distribution of instances in data storage systems plays an important role
for various applications. Query optimisation techniques rely on such information for
estimating the result set size for a query [17]. Data mining solutions perform statisti-
cal analytics to detect patterns in the data [7]. Encoding algorithms may make use of a
distribution for an efficient compression and storage of the managed data and in eval-
uation settings distributions have been used to assess the stability of index structures
over evolving data [6]. In the context of relational database management systems the
analysis of stored data for the purpose of estimating distributions and densities has a
long tradition [16,10,15]. For data published on the Linked Open Data (LOD) cloud, so
far, such analytics have been pursued far less. Only in a few, very specific settings the
distribution of data on the LOD cloud has been investigated.

One reason might be the lack of a predefined schema which provides a clear struc-
ture over which to estimate distributions of data items. Another reason might be the dif-
ficulty to obtain sufficient data for reliable estimates of a distribution. However, recent
developments provide some techniques and solutions to these problems. For instance,
methods for schema induction and schema-level indices [14,20] can be used to extract
a schema on the basis of data observations. In fact, such index structures have success-
fully been employed in settings where densities were used for a large scale analysis of
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LOD [8]. Thus, it seems the right time to consider a more thorough investigation of how
to obtain reliable estimates of data distributions in an efficient and scalable way which
is suitable for processing data on the Linked Data cloud.

With this paper I would like to take a first step in this direction. Thus, I address two
of the challenges which will need to be solved for efficient and effective estimation of
distributions over Linked Data: sampling and smoothing. Both will play a major role
when dealing with distributions over Linked Data in the future. Sampling techniques
will be a key contributing factor as they enable large scale processing of Linked Data.
Given the recent growth rate of the Web of Data it is becoming less and less feasable
to analyse the entirety of all data published on the LOD cloud. Moreover, the dynamics
and change rate [4] of the data call for a large scale monitoring of the data to keep
distributions up to date. The obvious response to counter this problem is to downscale
the data volume—and here comes sampling into the play.

The second topic—smoothing—is closely related to sampling, but addresses an-
other dimension of the problem. The liberty of data providers to model data as they
please as well as the decentralised approach of everyone being able to add, change
or remove data in an ad-hoc fashion will lead to a particular phenomenon: the sample
space over which to model a distribution is not fixed but the events in this space are flex-
ible and evolving. Take, for instance, the question of how data instances are distributed
over RDF class types. At any time a data provider can come up with a new class type
and start using it immediately to describe entities on the Web. Any distribution which
has been obtained over previous data will not be aware of this class type. Accordingly
any application making use of the distribution will operate with a zero probability. This
causes problems in various contexts and applications (e.g. when performing an infor-
mation theoretic analysis). The importance of this problem becomes even more obvious
when introducing sampling approaches. Using only a small slice of the Linked Data
cloud to estimate distributions over the entire data space will almost certainly mean that
some rare combinations of data characteristics have not been observed in the sample.
Smoothing techniques aim at overcoming this problem, by reserving some probability
mass for unseen events.

Hence, given the importance of sampling and smoothing, in this paper I will con-
sider three well established approaches for sampling Linked Data as well as smoothing
techniques to overcome the problem of unseen events. The investigated distributions
and their sample spaces of schema-level structures are taken from related work and
represent typical information used in different application settings. The contribution
of the paper at hand is therefore an analysis of the impact of different combinations
of sampling and smoothing on estimating distributions over different types of schema
structures. Furthermore, the paper provides a baseline for future work on more specific
and sophisticated approaches for either sampling or smoothing techniques.

The remainder of the paper is structured as follows. I will formalise the data model
used throughout the paper as well as the considered sampling techniques in Section 2.
Subsequently, Section 3 gives an overview of schema-level structures which are fre-
quently used as events in a sample space for estimating distributions over Linked Data
and presents classical smoothing techniques. An empirical evaluation and comparison
of combinations of smoothing and sampling techniques and their impact on the qual-
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ity of the obtained distributions is presented in Sections 4 and 5. Finally, I will review
related work in Section 6 before concluding the paper with a summary of the findings
and a roadmap for future work.

2 Sampling Linked Open Data

Linked Open Data can be perceived as a distributed labeled graph. This view provides
the basis for formalising the underlying data model in the N-Quad [3] representation.
In this representation, Linked Data comes in the form of quads (s, p, o, c) where s cor-
responds to the subject of an RDF triple, p to the predicate and o to the object. The last
entry c provides the context, i.e. the URI at which this triple has been published on the
LOD cloud. Formally, a data set of quads is a relationR ⊂ (U∪B)×U×(U∪B∪L)×U ,
where U is the set of all (possible) URIs, B the set of blanks nodes, L the set of literals
and U , B and L are pairwise disjunct.

The sampling approaches discussed in this paper can be formalised as a random
selection process over a set B of base elements. This set B is derived from the quads
R, but focusses on certain aspects of the data. All sampling approaches considered in
this paper are then based on selecting elements in B according to a uniform probability
distribution.

The set of elements selected from B then defines the criteria for selecting a subset of
corresponding and relevant quads from the set R. Thus, we need two functions: (1) the
function restrict : R → B which provides a base element for a quad and (2) a function
expand : B → P(R) which provides for each base element in B the set of quads
relevant to it. Sampling is then performed over the set B using a uniform distribution,
i.e. the probability of selecting a specific element b ∈ B is p(b) = 1

|B| . The overall
sampling approach is implemented in three steps: (1) by computing the set B from R
using restrict, (2) by performing a sampling on B and (3) by expanding the obtained
subset of B into a reduced RDF data graph via the expand function.

There are three straight forward approaches for sampling which can easily be ex-
pressed in such a formalisation framework. None of them requires a deeper interpreta-
tion or analysis of the data or the incorporation of background knowledge. I will focus
on these approaches because they are unbiased and therefore should be more suitable
to provide a representative sample. (See Section 6 for related work on biased sampling
techniques).

Triple (Edge) Based Sampling. The RDF data graph can be sampled using an edge
based approach. This means to directly select the edges with a probability inverse pro-
portional to the overall number of edges. The edges correspond to the triple statements
of the elements in R, as each quad contains a description for the connection of two
nodes. Formally, the functions restrict and expand are defined as follows.

restrict : (s, p, o, c) 7→ (s, p, o) (1)
expand : (s, p, o) 7→ {(s, p, o, c) | ∃c : (s, p, o, c) ∈ R}. (2)
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USU (Node) Based Sampling. The second standard approach for sampling graph data
is to select a subset of the nodes. The sample of the graph is then composed on the basis
of the selected nodes and their adjacent edges. In RDF this corresponds to sampling
from the set of URIs used to model entities. This means that literals and blank nodes
can be ignored. In the context of this paper the sampling is implemented on the basis
of URIs appearing in the subject positions of triples, so called Unique Subject URIs
(USU)1. Once the USUs have been selected in the random process the sample of the
Linked Data graph is constructed by adding all edges which are adjacent to a URI in
this set. In the formal representation this leads to the following definitions for the two
functions:

restrict : (s, p, o, c) 7→ s (3)
expand : s 7→ {(s, p, o, c) | ∃p, o, c : (s, p, o, c) ∈ R}. (4)

Context Based Sampling. The last sampling paradigm I will cover in this paper is based
on the context of a quad. This means sampling is performed on the set of data sources
on the Linked Data cloud. Once a data source is selected for inclusion in the sample,
all data provided by this source is used to estimate a distribution. Effectively, in the
functions restrict and expand we only need to consider the context c provided in the
quads.

restrict : (s, p, o, c) 7→ c (5)
expand : c 7→ {(s, p, o, c) | ∃s, p, o : (s, p, o, c) ∈ R}. (6)

Context based sampling is probably the most natural approach for sampling on the
LOD cloud. It aligns very well with the paradigm of dereferencing a URI to look up
information provided there. Thus, selecting a subset of all URIs for dereferencing and
using all information made available under these URIs is intuitive and easy to imple-
ment in practical applications. Nevertheless, we consider the other two sampling models
for the sake of completeness and for providing a comparison.

3 Estimating and Smoothing Densities

For any density estimation it is necessary to first define a sample space Ω. It is the
events in this space Ω for which we attempt to determine probabilities. In the context
of Linked Data the events are defined on the basis of the observed triples and typically
align with a structural or content related feature of the graph and its nodes and edges.

Related work provides several considerations about different kinds of data struc-
tures which can serve as events. For instance, a common scenario is to ask how likely

1 Theoretically, an alternative would be to consider also URIs in the object position. However,
given the structures which serve as events in the sample space this will have no practical effect
on the distributions. The reason is, that an object URI which never appears in the subject
position of a triple will not be assigned to any of these structures.
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it is to observe a particular RDF class type or a particular predicate. Density informa-
tion about this basic structures can serve in RDF triple stores to estimate the size of
a result set. More complex events can be obtained when combining these basic struc-
tures into property sets (PS, also referred to as characteristic sets) [17,14], type sets
(TS) [14] or extended characteristic sets (ECS) combining arbitrary sets of types and
predicates [4,7].

The notation in this paper is based on the definition of Linked Data index models [6]
and considers a set K of structural elements as the events in the sample space Ω. Thus,
it is the elements in K for which we seek to estimate the distribution of data items D.
A function σD : K → P(D) provides the set of data elements in D which comply with
a given structure definition in k ∈ K, e.g. all entities of a specific RDF type. Thus, σD
provides us with a formal function to assign observations in the data to the events in the
sample space Ω.

If we have access to the full data set D, we basically have observed the full pop-
ulation and all frequencies. Thus, we can easily estimate the distribution using a max-
imum likelihood estimation (MLE). In this case the event k ∈ Ω has a probability
P̂MLE(k) =

|σD(k)|
N , where |σD(k)| is the number of observations we have made for k

in D and N is the overall number of all observations.
When operating on a sample S of the full data set D, the estimation of the distribu-

tion of the events becomes more difficult for several reasons. First of all, certain events
k ∈ Ω might not have been observed. Thus, it is difficult to construct Ω itself from the
observations. A common approach in comprable scenarios (e.g. language modelling)
is to introduce an artificial event <UNKNOWN>. This event is a representative for all
events which were not foreseen in the sample space constructed over a sample S of
data D.

However, using a maximum likelihood estimator would still assign a zero probabil-
ity to this event, because the function σS operating on the sample S would provide an
empty set. Furthermore, also the estimates for the seen events will be skewed. For in-
stance, an event k which in the full data set occurred exactly once (i.e. |σD(k)| = 1) and
which is contained in the random sample (i.e. also |σS(k)| = 1) would be overestimated
in its probability, as the size of the sample is smaller then the overall population. Thus,
if M is the number of events observed in the sample, a maximum likelihood estimation
P̂MLE = |σS(k)|

M = 1
M is too high by a factor of N

M .
Smoothing techniques are meant to overcome such problems. They smooth the dis-

tribution by removing probability mass from the made observations and redistributing
it to unseen events. This should counterbalance both of the above mentioned problems.
The smoothing techniques used in this paper are very well established but also quite
simplistic. Yet, they can serve as future baseline for more sophisticated approaches.

Laplace Smoothing In Laplace smoothing the number of observations for each event
k is artificially increased by one (therefore it is sometimes also referred to as add-one
smoothing). This gives an estimator of:

P̂Laplace(k) =
|σS(k)|+ 1

M + |Ω|
(7)
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While there are certain conceptual critics towards Laplace smoothing (e.g. a ten-
dency to overestimate rare events), it is commonly applied in practice.

Lidstone Smoothing Lidstone Smoothing is a generalisation of Laplace smoothing.
Instead of adding a value of one to all event counts, it involves a parameter λ:

P̂Lidstone,λ(k) =
|σS(k)|+ λ

M + λ|Ω|
(8)

The smaller λ is chosen the closer is P̂Lidstone,λ to a maximum likelihood estimator
P̂MLE. For very high values of λ, P̂Lidstone,λ gets closer to a uniform distribution.

4 Empirical Evaluation

The general idea of the empiric evaluation provided here is to see how distributions
estimated over different sample sizes, sampling approaches and smoothing techniques
deviate from the distribution over a full dataset.

4.1 Metrics

The task addressed in this paper is the comparison of distributions. In particular, we
want to find out how close a distribution obtained from a sample is to the distribution
over the full data set. A common metric to compare density functions and distributions
is Kullback-Leibler divergence. Kullback-Leibler divergence compares two distribu-
tions in an information theoretic context and provides an asymmetric distance between
the distributions. In this section I will briefly introduce the definition of this distance
function and explain the interpretation in the context of compression theory.

Kullback-Leibler divergence is based on the definition of cross entropy. Assume we
have two probability distributions P1(X) and P2(X). In the setting of this paper, P1

would correspond to the true distribution over the full data while P2 is the distribution
estimated over a sample. Then the cross entropy is defined as:

H(P1, P2) = −
∑
k∈K

P1(X = k) log(P2(X = k)) (9)

In the context of compression theory, cross entropy can be interpreted as the aver-
age number of bits needed to encode events following the distribution P1 based on an
optimal prefix-free code [11] derived from P2. If the two distributions are equivalent,
then cross entropy corresponds to the normal entropy H(P1). The entropy of P1 also
provides a lower bound for cross entropy. Based on this interpretation, the Kullback-
Leibler divergence gives the deviation in entropy relative to the entropy for P1 and is
defined as:

DKL(P1, P2) = H(P1, P2)−H(P1) (10)

Therefore, if two distributions are equivalent, they have a Kullback-Leibler diver-
gence of zero. This is a desirable feature for our evaluation as it renders the comparison
of distributions over samples of data independent from the different levels of the entropy
observed for different sample spaces defined by different observable structures.
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Table 1. Average number of triples for sampling data based on the sampling method
and the sampling rate.

Sampling-Rate Sampling Method
Context Triple USU

0.05 825,276 817,050 808,085
0.1 1,645,758 1,638,891 1,645,041
0.2 3,308,450 3,279,957 3,294,814
0.3 4,903,447 4,917,632 4,916,383
0.4 6,487,714 6,547,144 6,546,638
0.5 8,134,887 8,194,817 8,181,503
0.6 9,895,754 9,828,583 9,840,084
0.7 11,487,162 11,462,177 11,451,802
0.8 13,151,521 13,099,584 13,099,766
0.9 14,765,467 14,740,145 14,767,641

4.2 Data Set and Experimental Setup

We use data from the Dynamic Linked Data Observatory (DyLDO) data set [13,12].
The motivation for using this data set is its careful design to cover a wide range of
data source and many different domains. Under many aspects the data set has been
designed to correspond to a representative extract of the Linked Data cloud. Details
on the design considerations and their implementation for the data set can be found in
the original publications. The DyLDO data set provides weekly crawls of LOD data
sources starting from always the same set of seed URIs. However, as in the context of
this paper we are not interested in temporal aspects but merely want to leverage the well
motivated composition of DyLDO we only use the initial snapshot taken at the 6th of
May 2012 which contains 16,376,867 RDF statements in N-Quad format.

Starting from this full data set I generated samples of decreasing size. The sample
size was defined by a sampling rate. This rate covered values from 90% down to 10% in
steps of 10% and an additional very small sample of 5%. To avoid unfortunate random
configurations of the samples I repeated the process for each sample size and sampling
method ten times. Thus, in total I created 300 samples (three sampling techniques, ten
sample sizes, ten iterations), which were all taken independently from each other (in the
probabilistic sense). Table 1 shows the average size (in number of triples) of the samples
for each sampling method and sampling rate. The numbers illustrate that none of the
sampling techniques exhibits a systematic tendency to generate too large or too small
samples. This is visible in particular also in Figure 1 which depicts the same numbers
as a plot. The lines for each sampling technique are essentially the same.

For each sample I constructed index structures2 to obtain frequency counts and es-
timated distributions using the different smoothing techniques. For Lidstone smoothing
the parameter was set to λ = 0.5, 0.1, and 0.01. For each such configuration of sam-

2 The implementation of the index structures as well as sampling and smoothing tech-
niques is available under an open source license at https://github.com/gottron/
lod-index-models.

https://github.com/gottron/lod-index-models
https://github.com/gottron/lod-index-models
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Figure 1. Average size of the samples for each of the sampling techniques depending
on the sample rate.

pling technique and smoothing approach I then computed the distribution for each of
the samples and compared it via Kullback-Leibler divergence to a maximum likelihood
estimation of the distribution over the full dataset. The obtained values were used to plot
a curve of how the divergence evolves on the basis of the sampling rate. This process
is also illustrated in Figure 2. The plots presented in the subsequent section actually
show the average values for Kullback-Leibler obtained over the ten samples generated
for each combination of sampling technique and sampling rate.

5 Results

Let us first compare the different sampling techniques. In Figure 3 we can observe how
Kullback-Leibler divergence increases when reducing the size of the sample. Each plot
corresponds to a different structure used as events for the sample space (RDF types,
predicates, type sets, predicate sets and extended characteristic sets). The different lines
in the plot demonstrate the value of the Kullback-Leibler divergence for the three dif-
ferent sampling strategies based on triples, USUs and context. All distributions for the
settings in Figure 3 were smoothed using the Laplace approach.

The plots illustrate nicely how the different sampling strategies affect the quality of
the density estimations. Sampling based on USUs shows a very low Kullback-Leibler
divergence even for high sampling rates. This behaviour is consistent across all types
of structures considered as events. However, we can also observe that the quality of
distributions estimated for simpler structures, e.g. the RDF types or predicates, is better
than for the more complex structures, e.g. ECS. This is plausible as the definition of
an extended characteristic set involves more triple statements, namely each RDF type
assignment and all used predicate URIs. Thus, sampling is more likely to cause the loss
of some of the information required to reliable obtain the actual structure.

This is also the reason why triple based sampling demonstrates the worst quality on
this type of structures. When using triple based sampling for a subsequent estimation
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Figure 2. Evaluation process: On the basis of the full data set I took independent sam-
ples of different sizes using the different sampling techniques. Each of the samples was
used with different smoothing techniques to estimate the distribution of the full data set.

of the distribution of PS and ECS structures Kullback-Leibler divergence is increas-
ing very fast, even for high sampling rates of around 80%. Obviously, sampling just
a fraction of the predicates leads to wrong structures and to strong deviations in the
overall distribution. For type sets, interestingly, this effect is far less strong. One expla-
nation can be that there are less type set combinations than property sets combinations
in the analysed data set (25,727 TS vs. 35,985 PS). Thus, there are far less combinations
which can be confused and distort the distribution. Furthermore, entities are typically
annotated with only a few RDF types (if at all). Thus even after sampling, the odds are
quite high to still observe a quite representative set of RDF types and their combina-
tions. For the distributions over structures which are based on single triple statements,
i.e. the RDF types and predicates, triple based sampling is behaving extremely well and
comparable to or even slightly better than USU based sampling.

When employing sampling based on the context, the quality of estimated distribu-
tion is never the best. However, on the more complex structures it behaves better than the
triple based sampling. And for sampling rates going down to 50% the Kullback-Leibler
divergence also is not too high for all structures. An explanation for the sub-optimal
behaviour is that context based sampling is prone to a domain bias. Based on the actual
contexts sampled certain “regions” of the Linked Data cloud might be covered better
than others. This might also explain that the plots of Kullback-Leibler divergence over
context samples show more variance and look more rugged than the plots for the other
sampling techniques.
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(a) Distribution of RDF types
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(b) Distribution of predicates

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

K
u
llb

a
c
k
-L

e
ib

le
r 

D
iv

e
rg

e
n
c
e

Sampling Ratio

Context Triple USU

(c) Distribution of TS
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(d) Distribution of PS
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(e) Distribution of ECS

Figure 3. Comparison of Kullback-Leibler divergence for the three different sampling
strategies when using Laplace smoothing.

In Figure 4 we see the impact of different smoothing techniques on the Kullback-
Leibler divergence. The figures do not show all combinations, but illustrate some of the
corner cases as well as realistic settings. Figure 4(a), for instance, shows how the dis-
tributions estimated over predicates behave when using a context based sampling. The
choice of the smoothing model shows very little effect on the quality of the estimated
distribution. Also in Figure 4(b), showing the divergence for triple based sampling, the
lines for the different smoothing techniques essentially match. Note, the different reso-
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(a) Predicates, context sampling
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(b) Predicates, triple sampling
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(c) ECS, context sampling
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(d) ECS, USU sampling

Figure 4. Comparison of smoothing techniques for selected structure types and sam-
pling methods.

lution on the y-axis. As stated above, the quality for predicate estimates is by far better
when using triple based sampling. However, with the more detailed resolution in Fig-
ure 4(b), we can identify a slight advantage for Lidstone smoothing with a small value
for parameter λ.

Looking at the estimates for the more challenging ECS structures, instead we ob-
serve a different behaviour. In Figure 4(c) we see again context based sampling. How-
ever, in this setting, Laplace smoothing shows the best performance. In the better per-
forming USU sampling, instead the order is reversed. Here it is again Lidstone smooth-
ing with a small setting for λ which provides the lowest deviation when estimating the
distribution of data items over extended characteristic sets.

While in the previous examples we observed relatively small difference in qual-
ity between the individual smoothing techniques, we can see some examples for a
stronger impact in Figure 5. In both shown plots we observe strong changes in Kullback-
Leibler divergence. The most extreme case certainly is Figure 5(b), where the diver-
gence reaches values of up to 3 at small sampling rates.
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(a) TS, triple sampling
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Figure 5. Examples for smoothing having a strong impact on Kullback-Leibler diver-
gence.

6 Related Work

In the database world the estimation of densities has a long tradition in the context of
query result set size estimation. Mannino et al. [16] describe how a statistical profile of
a database can be used for query optimisation and performance prediction. The paper
describes in detail how estimates for distributions can be used to estimate the cardinality
of result sets for typical operators (join, select, etc.). Also aggregate operators (count,
average) can benefit from statistical information over the data distribution [10]. A good
and brief overview of sampling approaches in the context of database systems can be
found in [15].

For sampling on RDF data there is relatively little work, so far. Sundra et al. [19]
use samples of large graphs for the purpose of visualising data. The reduction in data
volume helps to generate visualisations which can still be interpreted by human end
users. Harth et al. [9] use data summaries to implement an approximative index struc-
ture over Linked Data. The data summaries correspond to initial random samples of
data from the Web which are subsequently extended. Also the construction of graph
summaries corresponds to a certain degree to sampling RDF data. Campinas et al. [2]
used such graph summaries to assist users in formulating SPARQL queries. However,
none of these works systematically investigated the impact of sampling methods on the
quality of the resulting smaller data graph.

Estimates of distributions over RDF Data find their application in several scenarios.
Obtained from locally stored data sets they are used for the purpose of query opti-
misation to estimate the result set size for query fragments [17]. The knowledge of
these selectivity estimates is used for optimising execution plans of queries. Also in a
federated setting of distributed data sources such result set size estimations have been
employed [5]. Another application making use of distributions of the data are pattern
detection methods such as an information theoretic analysis of LOD for the purpose of
detecting redundancy on a schema level [7] or a statistical schema induction [20].
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7 Conclusions

In this paper I addressed the task of sampling the LOD graph for the purpose of es-
timating data distributions. I looked at the effects of standard sampling and smooth-
ing techniques on the quality of the estimates of distributions. In an empirical eval-
uation it could be observed that an USU based sampling over the modelled entities
provides the best results for obtaining reliable distributions. This could motivate data
providers to describe their entire data set with a small excerpt based on this sam-
pling technique. The examples could easily be incorporated, for instance, in a VoID
description [1] using void:exampleResource. Otherwise, the experiments showed that
context based sampling—which is the most plausible and realistic sampling technique
for LOD—provides acceptable results. However, it requires higher sampling rates. Re-
garding smoothing techniques it was not possible to identify a general best choice. In
many cases the techniques had hardly any effect on the quality of the estimated distri-
butions.

While the paper at hand gives an overview of how existing standard techniques
perform, it can only provide first insights and a baseline for further investigations. Thus,
in future work I will investigate alternative smoothing techniques. A very promising
idea seems to adopt generalised approaches from the context of language modelling [18]
and transfer them to the domain of Linked Open Data. The idea here is to break down
unobserved composite structures (e.g. a type set) into groups of smaller composites
which have been observed in a sample.
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