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Abstract. A tractor gearbox test rig has been used to collect signals from different types of 

bearing faults. For vibration monitoring accelerometers have been used to obtain vibration 

data. For fuel-injectors a bearing checker has been used in order to collect acoustic data. One 

class Self Organizing Maps (OCSOM) are used for detecting faults when exposed to actual 

data from the system representing a yet unknown state. Feature extraction was performed 

using seven features. The feature vectors are then fed to the OCSOM for training. OCSOM 

classification gave promising results (more than 95% correct classification). The fusion of 

features from both the vertical and the horizontal accelerometer resulted in accurate fault 

detection. In the case of the fuel-injectors the feasibility of using one-class SOM has been 

tested in the detection of signal deviations indicating failure with high detection performance.  

Keywords: novelty detection, condition monitoring, neural networks, unsupervised 

learning, self organizing map. 

1   Introduction 

The use of vibration signals is quite common in the field of condition monitoring of 

rotating machinery. By comparing the signals of a machine running in normal and 

faulty conditions, detection of faults like mass unbalance, rotor rub, shaft 

misalignment, gear failures and bearing defects is possible. These signals can also be 

used to detect the incipient failures of the machine components, through an on-line 

monitoring system, reducing the possibility of catastrophic damage and the down 

time. The procedure of fault diagnosis starts with data acquisition, followed by 

feature extraction, fault detection and identification. Feature extraction is critical for 

the success of the diagnostic procedure. Extended defects in the inner and outer races 

are common in rolling element bearings (see an example in Fig. 1). 

The use of vibration signals is quite common in the field of condition monitoring 

and fault diagnosis of bearings (Xu et al., 2009). To inspect raw vibration signals, a
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wide variety of techniques have been introduced that may be categorized into two 

main groups: classic signal processing (McFadden and Smith, 1984) and intelligent 

systems (Paya et al., 1997).  

 

 
 

Fig. 1. Example of an extended fault in the inner race.  

In the current work vibration monitoring is applied in the health condition 

monitoring and fault detection of two tractor components, the tractor gear box and 

the fuel-injectors. An approach from artificial intelligence, Self Organizing Maps 

(SOM) are used in the form of One Class SOM for detecting deviations in the 

vibration response of faulty bearings and subsequently in the acoustic response of 

fuel-injectors associated with malfunction due to wear. 

2   Materials and Methods 

Two experimental platforms (one for bearings and one for fuel-injectors) have been 

developed and used for commissioning experiments on fault detection and 

performing data acquisition. These data were further processed to extract specific 

features and develop novelty detection techniques relevant to fault presence. Details 

are presented in the following sections. 

2.1   Gear box test platform data acquisition 

A gearbox test rig has been used in order to collect signals from different types of 

bearing faults. A photograph of the rig showing the position of the accelerometers 

and the encoder at the output shaft is shown in Fig. 2 (Sawalhi, 2007). Two types of 

faults (inner race and outer race crack) were tested under a 50 Nm load, while setting 

the output shaft speed to 10 Hz (600 rpm). Vibration signals were collected using two 

accelerometers positioned on the top of the gearbox casing above the defective 

bearing (vertical accelerometer) and sideways respectively (horizontal 
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accelerometer). The 1.35 seconds (65536 samples) signals were sampled at 48 kHz. 

A photo-reflective switch was placed near the output shaft to measure its speed by 

providing a once per rev tacho signal. The torque for each case was measured at the 

input shaft. 

 

Fig. 2. The spur gear rig.  

2.2   Fuel-injector data acquisition 

The Bearing Checker (manufactured by SPM Instrument) was used for the fuel-

injector measurements (Fig. 3). Normally, this instrument is used to measure the 

level of impulse during operation of the machine via an embedded microprocessor 

impulse analyzer samples from different bearings and record the operational status. 

The Bearing Checker has a 1.5 mm headphone jack as shown in. The computer's 

sound card has a corresponding audio input. So the wire with nail jack 1.5 mm was 

connecting the output of the Bearing checker to the input of the computer sound card. 

In this the transfer of sound from the Bearing checker to the computer. The 

registration and storage of sound was performed using the free program Audacity. 

The sound was saved in mp3 format with Bit rate 128kbps. To control the audio 

recording earphones were used which were connected to a computer. 

Data acquisition of fuel-injector sounds was performed on fuel-injectors of a New 

Holland TN65N multipurpose tractor, three fuel-injectors controlled electronically, 

one healthy (fuel-injector1), one slightly damaged (fuel-injector2) and one audibly 

deviating from a healthy state (fuel-injector3). 

Additionally, data acquisition of fuel-injector sounds was performed on fuel-

injectors of a Zetor 7711 tractor, used for viticulture, four fuel-injectors controlled 

mechanically, fuel-injectors4-5-6-7 all deviating from healthy state. All 
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malfunctioning fuel-injectors needed cleaning to restore their functionality. 

Additionally, a newly installed fuel-injector8 was added for testing. 

 

Fig. 3. Data acquisition setup for sounds emitted from malfunctioning fuel-injectors. The 

Bearing checker (by SPM Instrument) is shown on the left.  

2.3   Signal processing and feature determination acquisition 

To inspect raw vibration or sound signals, a wide variety of techniques have been 

introduced that may be categorized into two main groups: classic signal processing 

and intelligent systems. To make mention of a few, FFT, Wigner–Ville distribution, 

wavelets, blind source separation, statistical signal analysis, and their combinations 

are classic signal processing methods. Neural network based, genetic algorithm 

based, fuzzy logic based, various similar classifiers, expert systems, and hybrid 

algorithms can be classified as intelligent systems. Feature extraction was performed 

using seven features. The first six features were introduced in (Lei et al., 2009): 

Kurtosis, Skewness, Crest, Clearance, Shape and Impulse Indicators. A newly 

proposed feature consisting of the line integral of the acceleration or the sound signal 

is introduced in this work. All the used features provide statistical information about 

the nature of data, and were found to be reasonably good features for bearing fault 

detection. The Kurtosis is the fourth moment about the mean normalized with 

variance and for N points is given by Eq. 1. All other features are given by Eqs. 2-6. 
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In Eqs. 1-6 X  and X!  refer to mean value and standard deviation. The new 

line integral feature for N sampling points is given by Eq. 7: 
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Where N is the number of sample points (equal to 500) in the window used to 

calculate Kurtosis and the other features and the newly proposed line integral feature 
and Ts is the sampling period. The presented features were used for both the case of 

vibration signals from the gearbox test rig and the sounds collected from the fuel-

injectors. 

2.4   Self Organizing Map  

The Self-Organizing Map also called SOM (Kohonen, 2001) is a neural network that 

maps signals from a high-dimensional space to a one- or two-dimensional discrete 
lattice (M) of neuron units. Each neuron stores a weight. The map preserves 

topological relationships between inputs in a way that neighbouring inputs in the 

input space are mapped to neighbouring neurons in the map space. SOM mimics the 
clustering behavior observed in biological neural networks, by grouping units that 

respond to similar stimuli together. Nerve cells, neurons, in the cortex of the brain 

seem to be clustered by their function. For example brain cells responsible for vision, 
form the visual cortex and those responsible for hearing form the auditory cortex. 
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The learning rule of the SOM consists of two distinct phases: when an input x  is 

presented, search for the best matching unit or bmu through competition, and the 
update of the codebook patterns of the bmu and its neighbours. In the basic SOM the 

activations of the units are inversely proportional to their Euclidean distances from 

the input pattern hence the bmu can therefore be defined as: 
 

( ) arg min i
i M

b
0

" #x x m (8)

 

where ( )b x  is the index of the bmu, im  is the codebook vector of unit i and x

is the input pattern vector. The update part of the rule moves the bmu and its 
neighbours toward x to slightly enforce maps response to the pattern. The update 

rule can be written as follows: 

 

( ( ), )( )i ih b i12 " 3 #m x x m (9)

 

where 1 is a learning rate parameter and ( ( ), )h b ix captures the neighborhood 

interaction between the bmu ( )b x and the unit i being updated. We can also write 

equation (9) as: 
 

( , )( )i iH i12 " 3 #m x x m (10)

 

where ( , )H ix  is a shorthand notation for ( ( ), )h b ix . Equations (8) and (10) 

define a Hebbian learning rule, where the strength of the training step is determined 

not only by the learning rate parameter 0<1  1, but also by the relationship of the 

updated unit i with the bmu ( )b x on the map. 

The inter-unit relationships are captured by the neighborhood ( , )h i j which 

defines how strongly units are attracted to each other. In essence the learning rule of 

the SOM defines the model as a collection of competitive units that are related 

through the neighborhood function. In practice, the units are placed on a regular low 
dimensional grid and the neighborhood is defined as a monotonically decreasing 

function on the distance of the units on the map lattice, thus creating a latent space, 

which has the dimension of the map grid and flexibility determined by the 
neighborhood function. The SOM can produce a flawless, in the sense that the map 

follows the manifold, embedding when the dimension of the map grid matches the 

dimension of the input data manifold. A typical choice for the neighborhood function 
is a Gaussian: 
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where ( , )Md i j is a distance measure in the map space (M), 
2!  is the variance 

of the Gaussian. The radius of the neighborhood is usually but not necessarily 

decreased during training. Likewise, the learning rate parameter 1 is normally 

decreased in accordance to a predetermined cooling schedule, aiming to allow the 
map sufficient time and freedom to organize before fine tuning the codebook.  

2.5   One Class SOM 

In most cases of fault development in machinery there is no unique description of the 
faults but there are available a number of components that are either new or in 

different stages of malfunctioning behavior, which can not be quantified exactly. 

This is a common situation since the possible faults are either too many to reproduce 
or it is too costly to reproduce them. In some cases it is even impossible if the 

components that might experience a fault are involved in safety critical 

infrastructure. In safety critical applications, it is important to detect the occurrence 
of abnormal events as quickly as possible before significant performance degradation 

results. 

Therefore, contrary to the approach followed for the cases where there are specific 
faults clearly defined, in usual cases only the healthy components can be used as 

target classification class and subsequently one-class classification methods are 

preferred. One-class classification has the following characteristics: 
• Only information of target class (not outlier class) is available;  

• Boundary between the two classes has to be estimated from data of only 
genuine class;  

• Task: to define a boundary around the target class (to accept as much of the 

target objects as possible, to minimize the chance of accepting outlier objects). 
As shown if Fig. 4, given a target domain XT there are two errors that can be 

defined EI related to false rejected target objects and EII related to false accepted 

outlier objects. The circular area corresponds to the rough description of the target 
domain by the selected one class classifier.  

Using a uniform outlier distribution also means that when EII is minimized, the 

data description with minimal volume is obtained. So instead of minimizing both EI 
and EII, a combination of EI and the volume of the description can be minimized to 

obtain a good data description. 

 

Fig. 4. Domains of target dataset and one-class classifier.  
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At first, an one class SOM (OCSOM) is trained with normal operation data. Then 

the feature vector corresponding to the unidentified measurement is compared with 
the weight vectors of all map units, and if the smallest difference exceeds a 

predetermined threshold, the process is probably in a fault situation. This conclusion 

is based on the assumption that a large quantization error corresponding to the 
operation point belonging to the space not covered by the training data. Therefore, 

the situation is new and something is possibly going abnormal. Depending on how 

far away the current process is deviating from the normal operation state, a 
quantitative degradation index can be calculated. 

In the condition monitoring application, the one-class SOM (OCSOM) builds a 

model from training on healthy bearing and fuel-injector data and then classifies test 
data as either normal or outlier based on its geometrical deviation from the healthy 

training data. During novelty recognition, the unseen exemplar from a bearing or 

fuel-injector of unknown health state forms the input to the network and the SOM 
algorithm determines the best matching unit. In Saunders & Gero (Saunders and 

Gero, 2001) and Vesanto (Vesanto et al., 1998), if the vector distance or quantisation 

error between the best matching unit (bmu) and new exemplar data (xNEW) exceeds 
some pre-specified threshold (d) then the exemplar is classified as novel. Eq. 12 

gives the minimum vector distance for the bmu and compares this to the threshold.  

 
1

2

0

min( ( ) ) ,
n

NEW

j i

j

d i M
#

"

# : 0$ x m   
 

(12) 

 
Where M represents the SOM grid of neurons as in equation (8). 

There are many different heuristics to define a threshold depending on the utility 
of the threshold and the particular structure of the data set. A simple way to 

determine a threshold (d) relies on the distances between codebook vectors and target 
vectors in the training set that have selected them as bmu which is a measure of the 

quantization error. These distances have to be calculated first according to Eq. 13: 
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The threshold is determined according to the Matlab code given here which is 
further explained below: 

 
distances_sorted=sort(distances);
frac=round(fraction_targets*length(target_set));
threshold=(distances_sorted(frac)+distances_sorted(frac+1))/2;

 
By selecting the threshold to represent a fraction of the distances for the whole 

training set we can get distance values representing the most proximal to the 
codebooks data vectors when the distances are sorted. In this case the quantisation 

errors might be due to outliers so the fraction error would represent the distances that 

were calculated for a distribution of the distances including outlier values. By taking 

328



the 99% fraction of the distances between data and codebooks as belonging to the 

dataset we define a description hypersphere that has a radius including the 99% of 
the data. This leaves a 1% outliers that will be classified as such since they exceed 

the target set description radius. Corresponding to Fig. 4 this would be the 

contributing factor to EI while we have minimized the target data description by 
thresholding according to a fraction of the data. In plain terms it means that by 

tightening the target data description we can afford to a number of false rejects in 

order to obtain a more accurate novelty detection which would be impossible with a 
very wide region of acceptance due to a very high threshold. In an explanatory 

schematic (Fig. 5) one can see the different areas defined by the threshold to the best 

matching units and the Voronoi polygons defining the domains of the OCSOM 
neurons. It can be seen that some data points that would be classified as belonging to 

a neuron now fall outside the threshold-defined polygon that delimits the target data 

from the novel data belonging to vibration and acoustic signatures from damaged 
components (this is just an illustration, the actual data are high dimensional and can 

not be visualized directly). 

 

 

Fig. 5. Domains of target dataset and associated Voronoi polygons and threshold based 

classifier for OCSOM. The threshold defined target data fall inside the grey border line.  

3   Results and discussion 

For the bearing fault recognition an OCSOM was used. A validation set was used to 

test the generalisation performance of the OCSOM. To test the effectiveness of 
OCSOM, the 75% of the target set containing only healthy bearing instances have 

been used for training while the 25% have been used in order to test the 

generalisation of the OCSOM. These were results for an OCSOM of 64 neurons 
(arranged in a 8x8 grid) which gave the best results by testing different sizes between 

5 and 25. The implementation used the simulation software Matlab 2010b 

(Mathworks). Seven features of the same type from each accelerometer were used. 
The same order has been used for the horizontal accelerometer in order to build the 
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fusion vector. The fusion (by direct concatenation) of 14 vibration features from both 

the vertical and the horizontal accelerometer, due to their complementary nature, 
results in more accurate separation of classes regarding fault position as one can 

deduce from the results presented in Table 1. The correct novelty detection 

percentage for fusion reaches 94.31% which is higher than the results for both 
horizontal (67.65%) and vertical (90.02%) which means one accelerometer alone 

cannot detect fault presence accurately. The complementarity of features was 

expected because the vibration modes were measured in two orthogonal directions 
(vertical and horizontal) which carry projections of the vibration shapes on these 

independent axes. When using 25 neurons (5x5 grid) the false rejects decrease and a 

97.35% correct healthy bearing recognition is achieved. At the same time the correct 
novelty detection percentage falls to 90.39%. So, overall, the 64-neuron architecture 

is better for novelty detection. This could be due to the complexity of the damaged 

bearing data due to incorporating two different damage types (inner and outer race 
fault). The added value of the newly introduced feature of line integral is proven 

from training and testing with and without the line integral features. In the case the 

line integrals of the vertical and horizontal accelerometer signals are omitted (12 out 
of 14 features kept), the result is 92.94% for healthy and 81.37% for novelty 

detection which is much less than when they are included (see Table 1, the result for 

fusion). When omitting only the line integral of the vertical accelerometer signal (13 
out of 14 fusion features kept) the result is 94.51% for healthy and 84.31% for 

novelty detection. When omitting only the line integral of the horizontal 
accelerometer signal the result is 94.90% for healthy and 90.20% for novelty 

detection. So, the inclusion of the line integral feature enhances the results. 

Table 1.  Results of OCSOM with 64 neurons predicting bearing health condition.  

Actual 

health state 

Healthy bearing according to 

OCSOM 

Extended fault according to 

OCSOM 

Healthy 

bearing 

96.08% (fusion) 
96.86% (vertical) 

94.90% (horizontal) 

3.92% (fusion) 

Extended 

fault 
5.69% (fusion) 

94.31% (fusion) 
90.02% (vertical) 

67.65% (horizontal) 

 

The OCSOM was used to classify the fuel-injectors to a target class corresponding 

to healthy fuel-injectors and detect outliers indicating fuel-injectors that are 
malfunctioning. As target class, features belonging to fuel-injector1 have been used. 

All other fuel-injectors have been used for testing the performance of the OCSOM. 

The OCSOM was calibrated by splitting the data to 75% training of the target set 
containing only healthy bearing instances and 25% testing sets has resulted in 100% 

correct classification for the target class of fuel-injector1 and 99.65% (97.89% 

without using the feature of the line integral) when using fuel-injector7 as outlier 
class for testing. These were results for a OCSOM of 100 neurons (arranged in a 

10x10 grid) which gave the best results by testing different sizes between 5 and 25. 
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Further testing of the obtained OCSOM classifier was performed using all available 

fuel-injectors. Results are shown in Table 2. It is evident that all fuel-injectors have 
been identified correctly based on their respective condition. The slightly damaged 

second fuel-injector has also been identified as midway to damage which is accurate 

according to the expert opinion based on the sound emission from that fuel-injector. 

Table 2.  Results of OCSOM based classification of fuel-injector health condition.  

Fuel-injector no. # Actual 

condition 

OCSOM classifies as 

healthy (percentage) 

OCSOM classifies 

as outlier (damaged) 

1 Healthy 99.21 0.79 

2 Slight damage 27.02 72.98 

3 Damaged 1.75 98.25 

4 Damaged 6.49 93.51 

5 Damaged 9.65 90.35 

6 Damaged 2.81 97.19 

7 Damaged 1.32 98.68 

8 Healthy 95.44 4.56 

 

In safety critical applications of novelty fault detection it is important to establish 
what degree of change is significant. Normal system behaviour may shift, for 

example, due to aging, system modifications, seasonal changes and change in 

operating conditions. An important issue concerns obtaining robust novelty 
thresholds that lead to reliable novelty detection. Novelty detection algorithms based 

on one-class neural networks have to be trained with data which adequately span the 

operating envelope so that false positives would not occur during normal operation.  

4   Conclusions 

It has been shown that the OCSOM can perform data fusion from accelerometer 
sensors through combining vibration features. These features can be used to detect 

faults in roller bearings and can therefore prove to be a powerful tool for bearing 

health monitoring. Different bearing faults can be detected against healthy bearings 
with high accuracy by using the collective response of several features and the fusion 

of different sensors, which may not be obvious by just looking at the data using other 

diagnostic techniques. The use of several features and a newly introduced feature, the 
line integral of the acceleration signal has given promising results in detecting the 

position of bearing faults. The feature based fusion of the vertical and horizontal 

accelerometer signals has increased the accuracy of bearing fault detection to more 
than 95% (more than 96% for healthy and 94% for faulty bearings). In the case of 

fuel-injector malfunctioning detection, the same type of features has been used. Due 
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to the nature of the problem, relying only on acoustic signatures from healthy fuel-

injectors, one-class classification has been used. A one-class SOM has been used and 
has given very promising results. Further it was possible to detect correctly the 

condition of all the fuel-injectors that were presented to the one-class SOM. This 

result indicates that OCSOM is a robust classifier and can be used for detecting fuel-
injector malfunction with high confidence. It is planned that this work be extended to 

include more real data, different features and fault types for bearings and gear boxes 

and also different types of fuel-injectors. A further improvement of OCSOM could 
result from defining context sensitive thresholds and also activation profiles that 

could be implemented as a kernel map indicating novelty through neuron activity 

bursts. The presented OCSOM technique for novelty detection can be extended to 
other fields where activity monitoring and novelty detection are needed, like process 

control, network security and sensor networks for various applications. 
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