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Abstract. In this paper, a novel distributed agent-based dynamical sys-
tem estimation strategy is proposed. Each agent has a local observation
space and is interested in a specific set of system state elements. The
agents have the ability of two-way communication with its neighbors
(i.e., agents who share at least one state element). At a particular time
instant, each agent predicts its state and makes intermediate correction
based on its local measurements. Information about the corrected state
elements are then exchanged among the neighboring agents. Based on the
final processing of these exchanged information, an agent-based Kalman
consensus Filter (AKCF) and uniform weighting based diffusion Kalman
filter (ADKF) are proposed in the light of well-established theory of dis-
tributed Kalman filtering. Two different systems are simulated using the
proposed filters. The effect of communication is also investigated by in-
troducing random failures in the communication link among neighboring
agents. It is observed that the mean square deviation (MSD) of AKCF
is lower than that of ADKF for the scenarios considered. Additionally,
the results also demonstrate that the AKCF is more robust to commu-
nication link failures than the ADKF.

Keywords: Kalman consensus filter, diffusion Kalman filter, random
link failure.

1 Introduction

Kalman filtering has been an effective tool for real-time estimation and tracking
of dynamical processes since its first formulation by R. E. Kalman [5]. Tracking
of a massive physical system (e.g. electric power system) is possible now-a-days
by deploying a distributed network of communicable sensors over the occupied
geographical region [4], [7]. In conventional Kalman filter, the sensors communi-
cate with a single fusion center either directly or hierarchically to send updated
measurement information in timely manner. Based on the knowledge of previous
state values and overall system dynamics, the fusion center makes a minimum
mean squared error (MMSE) prediction of the states. Necessary corrections are
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made to the predicted states based on sensor measurements. However, the un-
derlying communication and computational burden is considerably high with a
centralized Kalman filter. This issue is resolved through distributed implemen-
tation of Kalman filters across the sensor network. In this scenario, the sensors
have additional responsibility of implementing local Kalman filter and inter-
sensor communication in the neighborhood. The objective of each sensor is to
have updated status of the overall system through local prediction and necessary
correction based on the type of information (measurement and / or predicted
state values) exchanged among the neighbors. Although, the fundamental con-
cept is unchanged, the distributed Kalman filter has evolved through numerous
algorithms. Among those, Kalman consensus filter (KCF) [10], [11] and diffusion
Kalman filter (DKF) [1] are worth mentioning. We refer to [8] to have a glimpse
of the research carried out in this regard. It should be noted that, beside the sys-
tem dynamics and local observation space, the topology of active sensor network
as well as the inter-sensor communication reliability play vital role in successful
implementation of the distributed Kalman filters. For KCF, the effect of lossy
sensor network is investigated in [12] by incorporating a Bernoulli random vari-
able in the consensus step. In [2], the study is further extended through random
addition of nonlinear dynamics as well as the quantization effect in the sensor
communication. On the other hand, the effect of communication link failures and
delays on the diffusion Kalman filtering still needs to be investigated. Authors
in [13] propose relative variance and adaptive combination rule for a single sta-
tionary parameter estimation. These rules are used to diffuse the neighborhood
information received over noisy communication links.

Dynamic state estimation in a large cyber-physical system (CPS) presents
some unique challenges. A typical example is the smart electric power distribu-
tion system with thousands of end-users. For such a system, the dimension of
corresponding state vector is quite large presenting high computational as well
as communication burden for the sensors. As mentioned earlier, in a conven-
tional distributed Kalman filtering setup, each sensor has to regularly store and
update the global state vector and estimation error covariance matrix. Thus,
it may be impractical to track the high dimensional state vector in its entirety
at each communicable sensor. This constraint can be overcome specifically for
sparse large-scale linear system [6]. In this case, the corresponding transition of
states can be reflected on (approximately) banded matrix to spatially decom-
pose the overall dynamics among sensors even when local measurement space
projects onto global states. This idea is further extended for system specific re-
duced order particle filtering [9] and distributed observer design for large-scale
system partitioned into disjoint areas [3]. On the contrary, a particular sensor
may be interested only on the state elements, which are directly coupled to its
local observation space. Some state elements may even be coupled to two or
more sensors’ observation space. Under these circumstances, each sensor may be
relieved to track only the pertinent state elements, thus reducing the size of error
covariance matrices and subsequent reduction in computational requirements. In



3

this way, the sensors are acting as agents and the corresponding local Kalman
filters are referred to as agent-based Kalman filters.

In this paper, an agent-based general formulation of KCF and DKF is pro-
posed. One is called agent-based KCF (AKCF) and the other one is agent-based
DKF (ADKF). Each agent has access to a distinct set of measurements, that
are coupled to a subset of global state elements. A set of binary projection ma-
trices are defined based on the distribution of system state elements over the
observation space of the agents. These matrices map the overall system dynam-
ics to agent-specific state-space model and also define the set of neighbors of a
particular agent. AKCF and ADKF are developed by proper inclusion of these
projection matrices in the basic filtering steps. The application of proposed fil-
ters are illustrated with two custom built 3-agent systems to make a comparative
performance analysis. The effect of losses in the inter-agent information exchange
is also investigated by allowing random and independent failure of the existing
communication links.

1.1 Contributions

We summarize the contributions of our work as follows:

– Introduce binary projection matrices to form agent-wise local state-space
model.

– Define Agent neighborhood based on the sharing of state elements.
– Develop AKCF and ADKF where the observation space of each agent is

(generally) underdetermined.
– Investigate the effect of communication over the performance of agent-based

tracking of the dynamical system.

The rest of the paper is organized as follows. In section 2, general system
model is given and projection matrices are defined accordingly. Detailed descrip-
tion of the proposed AKCF and ADKF are given in section 3 and compared with
typical distributed Kalman filter in terms of computation and communication
requirements. The modeling of communication effect is discussed in section 4.
In the next section the proposed filters are compared for perfect and lossy com-
munications over two multi-agent systems.

2 System Model

We consider a system whose dynamics can be modeled in discrete time as 1st

order Gauss-Markov Process, i.e.,

xt = Fxt−1 + wt−1; t = 0, 1, 2, ... (1)

where, the overall system state is represented by the n-dimensional state vector
xt at time instant t. The initial values of the state vector elements at t = −1
follow Gaussian distribution with mean µ and covariance Σ. Unlike [6], the state
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transition matrix F ∈ Rn×n is a general square matrix with spectral radius less
than unity. The process noise wt ∼ N (0,Q). The underlying physical system is
observed by N agents. The linear observation model for the kth agent is,

yt,k = Hkxt,k + vt,k; k = 1, 2, ..., N (2)

where, the nk-dimensional vector xt,k is Agent k’s local state vector − a subset
of xt. The observation matrix Hk ∈ Rmk×nk , (mk ≤ nk) and the measurement
noise vt,k ∼ N (0,Rk). Unlike conventional distributed Kalman filtering, a par-
ticular agent k attempts to estimate only the local state vector xt,k instead of
xt. To incorporate this scenario, we introduce a binary projection matrix Tk

such that,
xt,k = Tkxt; k = 1, 2, ..., N. (3)

It should be noted that, Tk is an nk × n matrix (nk < n). The static set of
physical neighbors for the kth agent is defined based on the overlap/sharing of
state elements. Mathematically,

Sk = {i : Pi,kxt,i projects onto Li,kxt,k,∀t} (4)

where, Pi,k and Li,k are nk×ni and nk×nk binary projection matrices, respec-
tively. By default, Pk,k = Lk,k = Ink

.
Using the projection matrix Tk, the system dynamics of equation (1) can be

written as,
xt,k = TkFxt−1 + wt−1,k, (5)

where, wt−1,k = Tkwt−1. Therefore, wt−1,k ∈ N (0,Qk). It should be noted
that, Qk = TkQT>k . The desired dynamical model for kth agent corresponds to,

xt,k = Fkxt−1,k + wt−1,k, (6)

where, FkTk = TkF. Following equation (35) of [6], Fk = TkFT†k. Here, (·)†
refers to the pseudo-inverse of a full row-rank matrix.

3 Proposed Method

The agent-based dynamic state estimation procedure is developed with minimum
mean square error (MSE) as the metric of interest. The state vector estimated
by the kth agent at discrete time instant i is defined as,

x̂i,k|j = E [xi,k|y0,k,y1,k, ...,yj,k] . (7)

The corresponding error covariance matrix is,

Mi,k|j = E
[
(xi,k − x̂i,k|j)(xi,k − x̂i,k|j)

>] . (8)

The first five steps of estimation are performed according to traditional Kalman
filtering, which are represented according to the definitions given in equations
(7) and (8). For the kth agent,
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– Initialization:
x̂−1,k|−1 = µk,M−1,k|−1 = Σk; (9)

where µk = Tkµ and Σk = TkΣT>k .
– Prediction:

x̂t,k|t−1 = Fkx̂t−1,k|t−1 (10)

– Minimum Prediction MSE:

Mt,k|t−1 = FkMt−1,k|t−1F
>
k + Qk (11)

For this process to be stable the spectral radius of Fk has to be less than 1.
The next two steps are based on kth agent’s observation model.

– Minimum MSE:

Mt,k|t =
(
M−1

t,k|t−1 + H>k R−1k Hk

)−1
(12)

– Intermediate Correction:

b̂t,k = x̂t,k|t−1 + Mt,k|tH
T
k R−1k

(
yt,k −Hkx̂t,k|t−1

)
(13)

The steps described so far constitute the “computation phase” of agent-based
Kalman filtering with a complexity of O(n3k) (including matrix inversion). This
phase does not require any neighborhood communication. At the last step of es-
timation, b̂t,k is used along with the exchanged information from the neighbors
to arrive at the final estimate of individual agents’ local state values. And this
step constitute the single “communication phase” in the agent-based formula-
tion. Once the neighborhood information is exchanged, the final correction in
local state estimates can be performed using either consensus [11] or uniformly
diffusing the exchanged information [1]. These approaches are called agent-based
Kalman consensus filter (AKCF) and Diffusion Kalman filter (ADKF), respec-
tively. The mathematical representation of this final correction step is given
below,

– Final Correction: AKCF

x̂t,k|t = b̂t,k + εMt,k|t
∑
i∈Sk

(
Pi,kx̂t,i|t−1 − Li,kx̂t,k|t−1

)
(14)

where, 0 < ε ≤ 1. Larger value of ε allows greater contribution of consensus
and vice versa.

– Final Correction: ADKF

x̂t,k|t = Dk

∑
i∈Sk∪{k}

Pi,kb̂t,i (15)

where, Dk = diag (dk[1], dk[2], · · · , dk[nk]). For uniform weighting,

dk[j] =
1

Number of Agents that share the state xk[j]
(16)

Here, xk[j] represents the jth element of agent k’s local state vector.
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The above equation mathematically interpret the uniform diffusion when there
is no loss or failure in the communication network. Certainly, each agent is not
required to know the number of agents sharing its local state elements rather the
awareness about its neighborhood. Intuitively, each agent counts the number of
neighborhood information it receives for a particular state element and decides
the uniform weighting accordingly.

It should be noted that in conventional distributed Kalman filters, each local
sensor monitors the whole dynamical process with a computational complex-
ity O(n3). Also, the calculations in equations (12) and (13) require two addi-
tional communication phases. The first phase is required to fuse the weighted
Grammian (H>i R−1i Hi) from all the neighbors. Fusion of weighted measure-
ment (H>i R−1i yt,i) from all the neighbors necessitates the second communica-
tion phase. The proposed method curtails these fusions, reduces the dependency
over the neighborhood measurement information exchange and computational
complexity is drastically reduced.

4 Effect of Communication

In the proposed method of agent-based filtering, it is evident that only the in-
formation about relevant state elements are being exchanged among neighbors.
This is illustrated in Fig. 1. In AKCF, the kth agent exchanges information
about the predicted state elements obtained in equation (10) with its neighbors.
Whereas, in ADKF, the intermediate correction vector obtained in equation (13)
is exchanged. Therefore, the inter-agent two way information exchange plays an
important role in agent-based Kalman filtering and can be hampered if the
underlying communication link fails. These circumstances can be simulated by

AKCF ADKFi k i k

P
i, k xt, i|t-1

^

P
k, i xt, k|t-1

^

P
i, k bt, i

^

P
k, i bt, k

^

Fig. 1. Inter-agent information exchange

introducing random link failures (RLF). Mathematically, effect of RLF can be
analyzed by inserting Bernoulli random variables γi,k(t) in equations (14) and
(15). These random variables have the following probability mass functions,
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γi,k(t) =

{
0 with Prob. ρi,k
1 with Prob. 1− ρi,k

;∀i, k, i 6= k (17)

Therefore, the final correction step of AKCF with RLF is,

x̂t,k|t = b̂t,k + εMt,k|t
∑
i∈Sk

γi,k(t)
(
Pi,kx̂t,i|t−1 − Li,kx̂t,k|t−1

)
(18)

It is evident that only the consensus part of equation (18) is affected by com-
munication. On the contrary, the final correction step of ADKF is modified as
follows,

x̂t,k|t = Dt,k

∑
i∈Sk∪{k}

Pi,kb̂t,i (19)

where, Dt,k = diag (dt,k[1], dt,k[2], · · · , dt,k[nk]). And for uniform weighting,

dt,k[j] =
1

ct,k[j]
(20)

where, ct,k[j] represents the number of Successfully Received estimates for xk[j]
at discrete time instant t.

5 Simulation and Results

We investigate the performance of the proposed filters for two 3-agent systems.
The set of global state elements for the 1st system SYS1 is {a, b, c, d, e, f} and that
for the 2nd system SYS2 is {a, b, c, d, e, f, g, h, i, j, k, l,m}. The Venn diagrams in
Fig. 2 show the agent-wise distribution of the state elements for the two systems.
It should be noted that in SYS2, there exist some state elements strictly local to
the agents, whereas, each of the state elements is shared between two agents in
SYS1. The rest of the parameters of SYS1 and SYS2 are given in Appendix A and
B, respectively. The proposed filters are applied to these systems as illustrative
examples.

5.1 Figure of Merit

To investigate the performance of AKCF and ADKF, an estimation error vector
associated with each agent is calculated. The estimation error of kth agent at
discrete time instant t is,
ηt,k = x̂t,k|t − xt,k.

A global estimation error vector is formed by stacking ηt,k from all agents,

ηt =
[
η>t,1 · · · η>t,N

]>
.
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Agent 3

d

Agent 3

d

g

h

SYS1 SYS2
Fig. 2. Venn diagrams for SYS1 and SYS2

This vector is used to define the mean square deviation (MSD) as follows,

MSDt = trace
(
E
[
ηtη

>
t

])
(21)

MSD is used as the figure of merit to compare the performance of AKCF and
ADKF. The lower the MSD is, the better. In the upcoming subsections we
present the performance of the proposed filters in terms of MSD obtained from
simulations.

5.2 Case Study: Perfect Communication

In this scenario, all the inter-agent communication links are assumed to be work-
ing perfectly. The proposed ADKF is applied to SYS1 with uniform weighting
rule (equation (16)). AKCF is applied to SYS1 with different values of ε. MSD
is calculated from 1000 independent Monte Carlo trials at each time step. The
comparative performance of ADKF and AKCF for SYS1 is shown in Fig. 3. In
the same way, AKCF and ADKF is applied to SYS2 and the performance is sum-
marized in Fig. 4. The MSD values from Fig. 3 and Fig. 4 differ from the classical
distributed filtering approach [1] by showing better performance of AKCF, irre-
spective of the selection of ε within the prescribed range. In particular, the best
performance of AKCF is obtained when ε is selected to be 0.1 and 0.01 for SYS1
and SYS2, respectively. The optimum values of ε thus obtained is used in AKCF
for the following case study.
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5.3 Case Study: Random Link Failure

The effect of inter-agent communication is investigated for SYS1 and SYS2 by
using equations (18-20) at the final correction steps of the proposed filters. For
simplicity, the probability of link failure, ρi,k = ρ;∀i, k, i 6= k. The MSD is ob-
tained at different link failure rates, which is illustrated in Fig. 5 for SYS1. Based
on the previous case study, the value of ε in AKCF is 0.1. The whole procedure
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Fig. 5. Effect of communication for SYS1

is repeated for SYS2 with the corresponding value of ε in AKCF being 0.01. Fig.
6 shows the relative performance for SYS2 affected by imperfect communication.
The effect of faulty inter-agent communication link is insignificant for AKCF as
evident from Fig. 5 and Fig. 6. This is because of relatively small values of ε
chosen for the two systems. On the other hand, a high link failure rate results in
less contribution from neighboring agents in the final correction step of ADKF.
It is interesting to see that ADKF performs better when the communication
link is highly unreliable. While this may appear counter intuitive, it is in fact a
direct consequence of the system parameter choice. These observations suggest
that, for the two systems considered in our simulations, the underlying system
states are more dependent upon the agent-wise observation space as compared
to the system dynamics itself. Nevertheless, the steady-state MSD values are
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smaller for AKCF, irrespective of the choice of ε value as well as the condition of
inter-agent communication link and is more robust than ADKF. However, If the
number of agents are increased for a particular dynamical process, the sharing of
state elements and size of neighborhood will also increase. As a consequence, the
proposed AKCF and ADKF are expected to perform better and exhibit more
robustness under faulty communication network.

6 Conclusions and Future Work

An agent-based Kalman consensus and diffusion Kalman filter is proposed. Each
agent is interested in a distinct subset of state elements and is able to communi-
cate to its neighbors who share at least one state element. The proposed filtering
procedures are applied to two multi-agent systems to compare their performance.
The effect of communication is also observed for the agent-based Kalman filters.
It is observed that AKCF performs better than ADKF for both systems even
under random failure of inter-agent communication link. In the future work, it
would be worthwhile to investigate the effect of coupling strength of observation
space and system dynamics over the performance of AKCF and ADKF under
both perfect and faulty communication link.
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Appendix A: SYS1 Parameters

– State initialization: µ =
[
10 5 20 2.5 40 1.25

]>
; Σ = diag(.8, .2, .5, 1.3, .1, .3);

– Global state transition matrix: F =
0.3153 0.0090 0.0541 0.2342 0.1712 0.2162
0.0270 0.2883 0.0631 0.1892 0.2072 0.2252
0.2793 0.0811 0.0180 0.1982 0.2432 0.1802
0.0721 0.2523 0.2973 0.1532 0.0901 0.1351
0.2703 0.0450 0.3063 0.1081 0.1261 0.1441
0.0360 0.3243 0.2613 0.1171 0.1622 0.0991

;

– Process noise: Q = diag(1.8, .9, 2.7, 3.6, 1.0, .5);

– Agent-wise observation model:

H1 =

13.3758 3.2277 5.2820 18.3034
6.7976 0.3931 4.9316 4.1200
8.1333 6.3871 13.2687 13.6812

;

R1 = diag(0.9217, 0.3057, 0.7316);

H2 =

[
41.4826 10.9732 27.7157
22.6780 28.1071 39.7014

]
;

R2 = diag(0.0019, 0.2653);

H3 =


41.6863 49.7289 39.0787 26.8042 4.2471
13.5406 48.6878 63.23 7.3416 14.5855
15.2408 46.3493 2.1896 73.8971 73.7868
68.2435 38.4299 46.5694 43.9841 10.4298

; R3 = diag(0.3703, 0.3765, 0.2747, 0.3410).
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Appendix B: SYS2 Parameters

– Dynamics of SYS2:

µ =
[

10 5 20 2.5 40 1.25 4 3.7 25.8 21.4 76 51.6 88.9
]>

;

Σ = diag(.8, .2, .5, 1.3, .1, .3, .4, 1, .7, 1.2, .9, 3.9, 5.7);

Q = diag(1.8, 0.9, 2.7, 3.6, 1, 0.5, 0.1, 4.5, 2, 8, 5, 1.5, 0.3);

F =



0.0842 0.0977 0.1113 0.1249 0.1385 0.1520 0.0009 0.0145 0.0281 0.0416 0.0552 0.0688 0.0824
0.0968 0.1104 0.1240 0.1376 0.1511 0.0118 0.0136 0.0271 0.0407 0.0543 0.0679 0.0814 0.0833
0.1095 0.1231 0.1367 0.1502 0.0109 0.0127 0.0262 0.0398 0.0534 0.0670 0.0805 0.0941 0.0959
0.1222 0.1357 0.1493 0.0100 0.0235 0.0253 0.0389 0.0525 0.0661 0.0796 0.0932 0.0950 0.1086
0.1348 0.1484 0.0090 0.0226 0.0244 0.0380 0.0516 0.0652 0.0787 0.0923 0.1059 0.1077 0.1213
0.1475 0.0081 0.0217 0.0353 0.0371 0.0507 0.0643 0.0778 0.0914 0.1050 0.1068 0.1204 0.1339
0.0072 0.0208 0.0344 0.0362 0.0498 0.0633 0.0769 0.0905 0.1041 0.1176 0.1195 0.1330 0.1466
0.0199 0.0335 0.0471 0.0489 0.0624 0.0760 0.0896 0.1032 0.1167 0.1186 0.1321 0.1457 0.0063
0.0326 0.0462 0.0480 0.0615 0.0751 0.0887 0.1023 0.1158 0.1294 0.1312 0.1448 0.0054 0.0190
0.0452 0.0588 0.0606 0.0742 0.0878 0.1014 0.1149 0.1285 0.1303 0.1439 0.0045 0.0181 0.0317
0.0579 0.0597 0.0733 0.0869 0.1005 0.1140 0.1276 0.1412 0.1430 0.0036 0.0172 0.0308 0.0443
0.0706 0.0724 0.0860 0.0995 0.1131 0.1267 0.1403 0.1421 0.0027 0.0163 0.0299 0.0434 0.0570
0.0715 0.0851 0.0986 0.1122 0.1258 0.1394 0.1529 0.0018 0.0154 0.0290 0.0425 0.0561 0.0697



;

– Agent-wise observation model:

H1 =


5.03 1.9 19.88 15.16 5.23 2.1 18.42
14.55 4.19 2.18 8.78 8.23 4.46 12.04
4.82 7.87 17.23 3.49 13.23 17.94 10.37
6.91 2.91 4.45 7.97 4.73 12.60 7.36

;

R1 = diag(0.84, 0.16, 0.29, 0.37);

H2 =


15.45 25.53 6.17 46.70 16.23 41.32 32.43
5.06 39.37 31.16 0.27 32.76 8.01 20.26
39.33 18.28 44.17 27.31 6.27 27.23 13.33
42.76 8.67 35.13 49.78 44.14 15.19 22.33
17.46 39.27 48.45 31.98 15.56 6.85 44.79
9.14 27.59 2.34 34.65 34.39 42.29 30.44

;

R2 = diag(0.47, 0.23, 0.82, 0.32, 0.58, 0.42);

H3 =

 8.19 75.38 68.21 77.34 13.89 58.98 73.77
15.3 38.88 68.12 45.0 56.2 65.84 17.77
18.96 20.23 66.23 61.85 51.02 18.76 58.98

; R3 = diag(0.45, 0.81, 0.53).


