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Abstract. The paper discusses the design of cyber-physical systems
software around intelligent physical worlds (IPW). An IPW is the embod-
iment of control software functions wrapped around the external world
processes. The IPW performs core domain-specific activities while adapt-
ing its behavior to the changing environment conditions and user inputs.
The IPW exhibits an intelligent behavior over a limited operating re-
gion of the system — in contrast with the traditional models where
the physical world is basically dumb. To work over a wider range of
operating conditions, the IPW interacts with an intelligent computa-
tional world (ICW) to patch itself with suitable control parameters and
rules/procedures relevant in those changed conditions. The modular de-
composition of a complex adaptive system into IPW and ICW lowers
the overall software complexity, simplifies the system verification, and
promotes an easier evolution of system features. As an intelligence func-
tionality, a network system in our approach employs redundant sensing
as a means to improve the quality of detection & aggregation of events
occurring in the environment. The paper illuminates our concept of IPW
with case study of vehicular traffic management network.

1 Introduction

A cyber-physical system (CPS) allows the computational processes to interact
with the physical world processes in a way to impact how the latter is structured
and designed, and vice versa. We elevate the definition of an embedded system
by eliminating the hardware-centric boundaries of physical processes. An appli-
cation B that is traditionally viewed as a non-embedded system because of its
heavy software leaning can now be brought into the fold of CPS with a notion of
intelligent physical world Ap. Here, Ap can be an embodiment of diverse software
functions, with the embedded hardware instantiating the raw physical processes
(RPP). The RPPs are dumb physical component ensembles through which a
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system interacts with its (hidden) external environment, such as: steering link-
ages to turn a car on the road, network link/router to transport data packets,
and conveyor belt to move assembled parts.

The sub-systemAp is more than a collection of physical components RPP, but
instead consists of a software wrapper that controls RPP in such a way to infuse
a self-contained and intelligent behavior1. From a programming standpoint, the
RPP is abstracted as a function g∗(I,O∗, s∗, E∗) that takes an input I and
responds with an output O∗, where s∗ is the current state of RPP and E∗ is
the uncontrollable external environment incident on RPP. Here, O∗ depicts the
observation of a transition in the state of physical processes s∗, with the time-
scale of response hidden as part of the abstraction. For e.g., g∗(· · ·) may represent
the end-to-end path in a data network, where I and O∗ denote the injection of
a packet flow and its delivery respectively, s∗ is the available bandwidth, and
E∗ depicts a packet-loss phenomenon impacting the flow. As another example,
g∗(· · ·) may be the motor in an industrial control system, where I and O∗ denote
the electrical signal and rotational speed respectively, s∗ is the residual motor
torque, and E∗ depicts an electrical and/or mechanical disturbance impacting
the motor speed. Our idea is to extend g∗(I,O∗, s∗, E∗) into a coherent intelligent
physical world Ap that is self-aware and can repair itself (in a limited way) from
the damages caused by environment conditions E∗. Ap is augmented by an
intelligent computational world Ac that manages the overall operations of Ap.
Their composition to yield an adaptive application system B is denoted as:

B ≡ Ap ⊕Ac,

where Ap is wrapped around g∗(I,O∗, s∗, E∗) and the operator ’⊕’ depicts the
inter-module flow of signals between Ap and Ac: which includes a management-
oriented feedback from Ap to Ac. The signal flow is at a meta-level, while the
Ac-Ap concrete interactions are determined by their programming boundaries.
We allude to a ’monitor-and-control’ interaction (M&C) initiated by Ac on Ap,
and vice versa.

An example of Ap is a smart home that sets the heating and cooling param-
eters based on the occupancy, ambient conditions, comfort level, and the like.
Here, Ac may be a Home Service Center outsourced with the task of manag-
ing the intelligent home remotely by setting the right parameters and operating
procedures (say, different procedures for winter and summer operations). In a
target tracking system as another example, the radar units reporting the images
of objects in a terrain to a data fusion center may also notify the terrain char-
acteristics to enable the choice of image processing algorithms: say, to meet the
target detection accuracy needs. Here, Ap is the group of radar units implanted
with parameter-adjustable image processing algorithms (say, track resolution)
and Ac is the fusion center deciding on the right set of algorithms suitable for
the terrain.

1 The physical world Ap in our CPS view includes software functions that were hitherto
a part of the control system software external to the RPP.
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We extend the functional boundary of physical world Ap to infuse the intel-
ligence for a limited repair capability. The remaining part of system, assigned
with a comprehensive repair capability, constitutes an intelligent computational
world Ac. The paper describes the software engineering issues in supporting a
harmonious co-existence of intelligent sub-systems: Ac and Ap. The off-loading
of domain-specific core adaptation functions into Ap enables the infusion of new
functionalities and features in applications with less software complexity. The
ease of verification and testing of such modularly structured systems lowers the
development cost of distributed control software for complex systems.

The paper is organized as follows. Section 2 rationalizes the structuring of
complex systems with intelligent physical worlds. Section 3 advocates the use
of redundant sensing as a means to improve the quality of event detection (and
hence the control actions therefrom). Section 4 provides a communication struc-
ture suitable for vehicular networks (say, in a city area). Section 5 discusses the
existing frameworks for CPS. Section 6 studies a vehicular traffic management
network using our CPS framework. Section 7 concludes the paper.

2 Our CPS view of complex systems

A traditional embedded system (TES) employs an asymmetric control relation-
ship with the RPP: i.e., only the computational processes initiate the M&C
interaction with RPP but not vice versa. The TES underscores an integrated
software structure where the core adaptation functionality is entwined with
high-level application features — which precludes rapid incremental software
changes/configurations. In contrast, the CPS employs a modular software struc-
ture where a self-aware physical world Ap that is wrapped around the RPP
communicates with a set of computational processes Ac to coordinate supervi-
sory control by Ac. Figure 1 illustrates the difference between CPS and TES.

2.1 Existing designs cast through CPS view

Computational intelligence in the physical world requires the components to be
self-aware, i.e., a component needs to be able react to its external environment
— and possibly repair itself. Such an ensemble of self-aware components in Ap

need to work together to provide a coherent interface to Ac. In this light, existing
works on embedded control systems [1, 2] use an integrated structure (i.e., TES)
that assigns intelligence for adaptation and reconfiguration only to the compu-
tational world, which exercises control on the physical world to cause effects in
the external environment.

Given an adaptive application system B, the TES-based design depicts a
composition:

B(tes) ≡ [A′p ⊕ g∗(I,O∗, s∗, E∗)],

where A′p refers to the computational processes (implemented in software) that
interface with the RPP function g∗(· · ·). The composition ⊕ depicts a M&C type
of interaction, where A′p invokes g∗(· · ·) with a computed actuator signal I and
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Fig. 1. TES versus CPS

observing the output response O∗. The TES structure assigns intelligence to A′p,
with the latter interfacing with g∗(· · ·) through signaling hooks to actuate the
trigger mechanisms, thereby moving the RPP move from one operating point to
another. Thus, CPS-based design depicts an alternate system composition:

B(cps) ≡ [Ac ⊕Ap] ⊇ B(tes),

where Ap ≡ [A′′p ⊕ g∗(I,O∗, s∗, E∗)] depicting the CPS software functions that
wrap local intelligence around the raw physical world process over a limited op-
erating region, such that A′′p ⊆ A′p. Ac is the computational process to infuse
a broader intelligence to the operations of B that are otherwise difficult in a
TES-based design. B(cps) can easily be infused with new features and/or have
its existing features augmented by algorithm plug-ins to modify the function-
ality of Ap, as orchestrated by policy-based mechanisms and adaptation logic
programmed in Ac. For example, the QoS feature for packet transport over a
network data path that hitherto allows controlling the mean packet delay can
be augmented with delay jitter control as well, by implanting a modified packet
scheduling algorithm along the path. The raw physical world g ∗ (· · ·) is itself
considered as dumb, providing only the basic functional components. An invoca-
tion of these components comes from the upper layer processes: A′′p in the CPS
approach and A′p in the TES approach.

Due to the underlying state-machine complexity of the system as a whole,
the TES-based integrated approach does not lend itself well for a seamless ad-
dition/removal of automated system features, entails difficulty in incremental
software changes, and makes the testing/maintenance of system software a labor-
intensive activity.
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2.2 CPS-based structure of complex systems

We employ the principles of piece-wise linearity and separability of functions
describing the system model [3], to determine the operating regions of Ap where
the system-level computations of future trajectories (in a control-theoretic sense)
are simpler and fall within the ambit of local intelligence. When the system
behavioral changes satisfy linearity/separability, Ap can repair itself. The self-
repair can be via a local built-in mapping function that is instantiated with the
parameters supplied by Ac for that operating region. An example is the adjusting
of TCP flow control window size based on small changes in packet round-trip
delay (RTT) over the transport network. On the other hand, if the behavioral
changes are larger taking the system into non-linear regions, Ap may report the
changes to Ac for the latter to adjust the parameters for the new region of system
operations: say, by using domain-specific policy functions. In the TCP example,
the protocol itself may be changed to aggressively adjust the window size when
the RTT swings are large. Ac is wired with domain-specific policies and rules
to evaluate the linearity and separability conditions, and then patch Ap with
appropriate parameters and procedures2.

Ap operates over a much faster time-scale than Ac. This is because the control
loop in Ap is self-contained to react to the smaller changes that typically occur
frequently in the external environment. Whereas, Ac steps in only when larger
changes occur in the external environment — which are less frequent (e.g., a
network suffering a DOS attack, a car tire losing air due to a puncture). Ap

embodies the core domain-specific functionality, and Ac is delegated with an
external management role using parameterized procedures and rules specific to
the domain. See Figure 2 for an illustration of the functional blocks to realize the
hierarchical control relationship between Ac and Ap. Our software engineering
approaches orchestrate such a delineation of Ap and Ac.

The true model of RPP may not be known to Ap, i.e., it is difficult to express
g∗(I,O∗, s∗, E∗) in a closed-form. So, the determination of I is governed by a
computational model of RPP, denoted as g(I,O∗, s, E), that is programmed
into the controller module of Ap. This localized incremental adaptation strategy
employed in Ap allows determining the final input I needed to attain a stable
output P ′ — where P ′ = O∗(L) with L depicting the control round when Ap

reaches convergence. Any mismatch between P ′ and Pref is then notified to Ac

for appropriate recovery. The intelligent behavior of Ap is however feasible only
over a limited operating region, as determined by Ac.

The system output O∗, which is of interest to the controller modules in Ap

and Ac, is often easier to measure (e.g., packet transfer latency on a network
path). The uncontrolled external environment E∗, which impacts the system
output in complex ways, is however hard to measure (e.g., bandwidth depletion
along the path). Our partitioning of observation space into O∗ and E∗ arises
from these considerations. We assume a finite world where the parameter values

2 The update of controller sub-systems in Ap during run-time is known as patching
[4]. It enables a hierarchical control with simple controllers programmable at lower
levels (such as automotive ECUs supplied by OEM vendors).
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of E∗ and O∗ are bounded. A system designer may reduce output observation er-
rors by exactly measuring M∗(O∗) with suitable tools. Environment observation
however is error-prone i.e. the observable environment space is: E ⊂ E∗.

2.3 Situational assessment feedback

Our approach is distinct from the well-known supervisory control methods [5].
The incorporation of a management-oriented feedback from Ap to a situational
assessment module (SAM) housed in Ac allows the latter to adjust the con-
trol laws employed by Ap. The feedback is a notification about how successful
Ap is in realizing the control delegated by Ac. Ap obtains a control reference
parameter Pref from Ac, along with domain-specific operating parameters and
computational mapping functions (e.g., a rule to change the packet transmission
window size for delay-adaptive flow control in TCP). Ap then generates appro-
priate inputs I to the RPP over multiple act-and-observe steps until the output
O∗ becomes stable: possibly, with a close match to Pref .

That a final control error is stable but is not at the minimum depicts a con-
troller with limited repair capability. When it is determined Ap has exceeded
its repair capability at the current operating point, Ap seeks the services of Ac

for a comprehensive repair, i.e., to bring down the error to a minimum. The
comprehensive repair may involve, say, changing the plant and/or the controller
parameters — and even the controller algorithm itself. Thus, a repair is collec-
tively realized by Ap and Ac, with the invocations from Ap occurring infrequently
on Ac in comparison to that on the RPP.

We focus on action errors in the controller of Ap, i.e., the deviations in actual
RPP output from expected output |O∗−O|, arising from the inexact knowledge
of controller about the computational model g∗(I,O∗, s∗, E∗) of RPP. Regardless
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of an error-prone or error-free output observation, action errors do occur, i.e.,
the output of RPP O∗ as a result of executing an action I may deviate from the
controllers belief about the effect of I, as captured by the model g(I,O, s, E).
An3 error-free output observation, which we assume in this paper, yields an
exact measurement of action errors — thereby allowing Ac to precisely evaluate
the efficacy of controller rules/policies implanted in Ap, and install any changes
therein.

2.4 Advantages of our approach

The observe-adapt cycle executed by Ap is at the machine-level time-scales per-
tinent to the RPP. The operations of Ac occur at much slower time-scales. The
separation of time-scales in the operations of Ac and Ap makes it easier to as-
sert the correctness of application behavior with a high degree of confidence.
In TES-based design, the time-scale separation is not easily extractable from
a trace-analysis of the state-transitions in application software, which lowers
the designer confidence in making correctness assertions. In this light, our CPS-
based modular techniques purport to reduce the overall system development cost
during the evolutionary and operational stages of system designs, in the face of
increasing complexity of system operations (both hardware and software) to
meet the enhanced demands for new and better functionalities.

The patching of Ap from Ac enables the autonomic switching of control
algorithms (at run-time) as the system operating points change. Ap can be sup-
plied by designers with domain-knowledge (such as OEM vendors for in-vehicle
electronic systems and network platform developers for inter-vehicle communi-
cations). Ap is designed to be programmable, with appropriate signaling hooks,
while meeting the inter-operability requirements. Whereas, the designers of Ac

are software engineers with more expertise on the management functions (in-
stead of the domain itself). Some of the computational intelligence in Ap are
enabled by new applications. Ap may also realize some of the functions hitherto
in the TES-based computational world. The migration is possible due to the
availability of data processing and storage capabilities in the physical compo-
nents.

3 Management of distributed intelligent systems

From a service specification standpoint, the system performance, fault-tolerance,
and timeliness goals can be unified into a single set of application-level QoS
objectives. How well the application-level QoS specs are met in the presence of
hostile external conditions depicts the dependability of the system.

3 Action errors in a complex system arise as an artifact of system modeling inaccuracy,
which are different from the ones caused by software-induced bugs and failures [6].
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3.1 Failure impact of system components

Given an ensemble of K devices in the infrastructure, Ac chooses N devices
to participate in the algorithm execution of Ap for a collaborative task, where
2 ≤ N � K. An example is the reaching of consensus about an event occurrence.
The choice of N is tied to an assumption made by Ac that at most fm devices
can fail at run-time and an attacked device exhibits a fault severity of r — where
1 ≤ fm < N and 0 < r ≤ 1.0. A failure may be benign or malicious, which may
be (partly) captured in the fault severity parameters.

An intruder potentially targets fa of the K devices for attacks to disrupt
the system-level output, where 0 ≤ fa � K. Furthermore, an attacked device
exhibits a fault severity of r′′, which depicts the probability of misbehavior by an
attacked device when an input trigger occurs (r′′ may be quantified in terms of
how many operations the attacked device performs correctly before responding
maliciously to an input trigger). The intruder does not have knowledge of system-
level algorithm parameters [N, r, fm] (i.e., this information is protected in Ac):
where N is the number devices participating in algorithm (2 ≤ N ≤ K), fm is
the assumed number of faulty devices (1 ≤ fm < dN2 e), and r is the assumed
aggressiveness of a faulty device (0 < r ≤ 1). So, the intruder randomly targets
the attacks on fa devices and infuses a fault severity-level of r′′ on an attacked
device, in the hope of damaging the system output. The choice of [fa, r

′′] is
based on the computational and other assets available at the intruder’s disposal
to orchestrate attacks and his/her empirical knowledge about the anticipated
system-level damage caused by attacks.

Since [r′′, fa] is not known to Ac, the algorithm designer needs to model
the intruder’s capability and profile to get a probabilistic estimate of [fa, r

′′].
In general, the designer’s decision about [N, r, fm] is based on his (domain-
specific) knowledge about the overall system: namely, the operating environment
of infrastructure and the control loops implemented by Ap.

3.2 Managing sensor redundancy and heterogeneity

Resorting to sensor heterogeneity in system measurements interplays with the
control functions that rely on the accuracy and timely detection of events. A de-
vice D may run different algorithms oa = g(D)a(M), ob = g(D)b(M), · · · on a raw
input data M (sequentially or concurrently), and then extract an accurate infor-
mation oa, ob, · · · about an event occurrence therefrom: say, by voting or outlier
analysis on oa, ob, · · ·. Furthermore,D may survive against software errors and/or
targeted attacks on a specific algorithm, say, g(D)a(.), because the other functions
g(D)b(.), · · · may continue running [20]. To survive against severe device-level fail-
ures (such as machine crashes and multiple attacks), a spatial replication of the
device-functions is employed: such as oa = g(D1)a(.), ob = g(D2)b(.), · · ·. Figure 3-
(A) illustrates the temporal and spatial redundancy to infuse survivability of the
sensing process. If H is the number of heterogeneous devices, the system-level
design complexity is O(H2). Figure 3-(B) shows the cost of device replication
from a system designer perspective.
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Voting among N -replicated sensor devices provides an overall confidence
level Γ that is higher than the per-device confidence level in the system, i.e.,
max({pi)}i=1,2,···,N ) < Γ < 1.0, where pi is the confusion probability of Di in
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Fig. 3. Redundancy of sensor functions (temporal and spatial), and its cost

reporting an event. In an example of collision avoidance system for automobiles, a
combination of sensors may be employed to detect the presence of road obstacles
and fuse their results by voting (for improved vehicle safety) [19]. Likewise, mul-
tiple measurement tools enhance the accuracy of available bandwidth estimation
on an end-to-end network path for a better video transport QoS. A voting-based
improvement in the quality of event sensing is expressed mathematically as:

(1−
(

N−1
l1

)
[1− pi(e)]l1+1−l2) > Γ, (1)

where l1/l2 are the number of consents/dissents about an event occurrence o ∈ O
generated by Di — assuming that all sensors have the same capability for event
detection. For instance, pi = 0.85 and N = 10 can achieve a confidence level of
98% with replica voting. In the absence of exact knowledge about the ground
truth on system measurements, the confidence measured in the above manner
can be used as an indicator of sensing accuracy. More generally, the operating
point of Ap determines the weights assigned to the various replicated sensors for
accurate determination of event o.

Ac embodies computational intelligence methods [1] to implant the desired
control algorithms in Ap that handle sensing errors as well: such as learning
from past behaviors, sensor classification and calibration, and optimal control
allocation to system components. The management of sensor heterogeneity is
also handled by Ac.
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4 Data aggregation in on-tree nodes

In this section, we describe the high level aggregation operations carried out by
the on-tree nodes4. There are two reasons for the on-tree aggregation of events
as they surface, instead of aggregating all the events at the root node. First, it
enhances the scalability of event reporting system when large amounts of data
are collected. Second, it entails a faster reaction to the events by overlay nodes as
soon as a composite situation emerges that warrants an action (e.g., responding
to traffic congestion events).

See Figure 4 for an illustration of the communication structure event noti-
fication. The overlay node at leaf point of the event aggregation tree maintains
information about the capability of devices serviced by that node (such as encod-
ing format, CPU speed, and display size). The node may, for instance, transcode
the multimedia data describing an event for device-level rendering. The on-tree
aggregation capabilities of overlay nodes is quite useful for vehicular networks
(instead of doing only at end-point nodes).

4.1 Aggregation using syntactic rules

Let Θ1 and Θ2 be the confidence intervals of the data delivered at an overlay
node O from its two downstream segments. With only a syntactic processing of
the two distinct events, a confidence measure associated with the combined data
sent by O to its upstream node is: min({Θ1, Θ2}).

Similarly, other types aggregation operators can be implemented in O such as
addition, maximum, average, median, set union & intersection, selection, and the
like. For instance, the congestion reports from two segments along the planned
route of a car with projected delays d1 and d2 will simply lead to an estimate of
the combined delay as d1 +d2 in traversing this route. Scalability considerations
require that the syntactic composition operators satisfy the commutativity and
associativity properties [17]. These properties allow an efficient examination of
the events arriving asynchronously from various downstream nodes (by reducing
inter-event synchronization delays).

An aggregation of events at various nodes in the tree typically affects the
time-scale of changes in the resulting macro-level data. An example is to deter-
mine if there is a sustained packet loss in a multi-hop network (with k hops),
based on the spatially separated per-hop measurements. The end-to-end loss is:

[1−
k∏

i=1

(1− li)],

where li is the measured packet loss in ith hop. Since the ’loss composition’
operator combines a set of fluctuating per-hop loss rates with independent modes

4 The data aggregation functions in on-tree overlay nodes and the communication
functions between overlay nodes can be structured independent of that in the ad-
hoc network segments at leaf nodes.
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at any given time, the end-to-end loss rate varies with a time-scale as determined
by the highest mode in the per-hop loss rates. A spatial scale of changes may also
be associated with event aggregations — such as the vehicular traffic congestion
on a given route being the combination of the reported congestion levels in
various stretches of roads along that route.

A domain-specific interpretation of the events in different regions cannot be
adequately captured with the standard mathematical operators of aggregation
— as argued in [2]. For example, the effect of a vehicle accident in one region
on traffic congestions in the adjoining regions cannot be expressed through sim-
ple syntactic connectives. This motivates the need for a semantic knowledge in
interpreting events.

4.2 Aggregation using semantic knowledge

Vehicular network applications often require abstracted measurements of the
diverse environment phenomena (or events) in various geographic regions. These
measurements need to be interpreted using a semantic relationship between the
events (which may take into account the weak consistency and the temporal
correlation among events [18]). Typically, the confidence level in the reporting of
a combined event can be increased with a semantic knowledge that interconnects
the two independently reported events.

As an example, consider the detection of a plane (in terms of speed and
location) by the devices in region 1 followed by the detection of a plane by the
devices in an adjacent region 2 after a certain time interval T . If the geographic
distance between regions 1 and 2 depicts a flight time close to T at the given
speed, then it is highly likely that the object detected in regions 1 and 2 refers
to the same plane. So, when the detection reports from regions 1 and 2 arrive
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at the overlay node O, the latter may aggregate them into a single report with
a confidence measure higher than max({Θ1, Θ2}). The timing correlation in the
two reports increases the confidence level of the combined report to higher than
that of the individual reports.

Where semantic knowledge is used, the aggregation operations on two events
may have to be carried out in a certain sequence (i.e., the operations may not sat-
isfy the commutativity and/or associativity properties). Typically, each overlay
node may implement the required synchronization between the arrival of vari-
ous data items from its downstream nodes, based on the sequencing relationship
between the data items — such as the causal relationship between events.

In a way, replica voting on fuzzy data (where the device-level confusion prob-
ability pi satisfies the condition: 0.5� pi < 1.0) may be viewed as a knowledge-
based ’data aggregation’ procedure executed at a leaf node. Here, the goal is
to generate a single event notification with a base confidence measure that is
higher than pi. The semantic knowledge is that when two devices report the
same datum with confidence levels of pi1 and pi2 , the leaf node can accept the
datum with a confidence level higher than min({pi1 , pi2}).

Latency measurements for voting-based data collection can provide the base-
line timing information to enforce the synchronization of data, while meeting the
overall timeliness constraints ∆. This however requires knowledge of the overlay
tree topology and the data delays incurred in the various path segments.

5 Existing paradigms for CPS

At an abstraction level meaningful for applications, today’s embedded systems
embody both adaptation behaviors and functional behaviors. The former deals
with adjusting the system operations according to the environment conditions
(e.g., reducing the video send rate to deal with bandwidth congestion in the
network). Whereas, the latter deals with requirements such as fault-tolerance,
security, and timing. For system specification and analysis purposes, We treat
the adaptation and functional behaviors separately. In this light, we categorize
the existing works as dealing with:

– Systems engineering for the control-theoretic aspects of adaptation (such as
stability, convergence) [7, 8];

– Software engineering for the verification of application requirements (includ-
ing para-functional ones) [9, 10].

There have also been system-level tools developed to aid these studies: such
as probabilistic monitoring and analysis [11], controlled fault-injection [12], and
plug-in based model-solvers (e.g., SYSWeaver) [13].

Our work falls in a distinct category of model-based engineering of complex
embedded systems. Our CPS model treats the adaptation processes in a target
system as a black-box: Ap. The I/O mapping is procedurally realized by a se-
quence of sense-and-act steps executed by Ap on the RPP. Ac then incorporates
the enhanced management functionality needed for complex systems (such as
QoS assurance).
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6 Case study: Vehicular traffic management

Vehicular networks often consist of computational devices, i.e., ECUs, that col-
lect data representing the road traffic conditions and then generate traffic alerts
for use by drivers. The data may include road traffic volume, terrain scenarios
(e.g., hill tracks, slippery road), weather conditions, and vehicle motion tracking
(e.g., car speed, inter-car spacing). These data, some of which constitute the
external environment parameters E, are collected by various sensors mounted
on the cars and the roadside, and then processed to generate corrective actions:
say, traffic alerts and traffic re-routing.

6.1 IPW in vehicular traffic-flow system

The physical world is the road infrastructure itself, through which vehicular traf-
fic flows. The topological parameters of infrastructure describe the interconnec-
tion of various road segments: such as the number of lanes along a road segment,
posted speed limits, and traffic signal intersections, and the merge/branch points
of different road segments. Such a road infrastructure is augmented with traffic
monitoring and alert functions to enable an intelligent behavior:

1. Drivers may be notified of prevailing or anticipated congestion levels (via
roadside displays, radio broadcasts, and SMS to phone subscribers);

2. Road crew may reduce congestion by opening and/or closing selected road
segments and lanes (with a quick setup of dividers and road-blocks)5.

Infusing a capability for congestion notification and (limited) relief is based on
computational models of the traffic-flow system, as executed by the local trans-
portation hubs of crews that collectively manage the road infrastructure.

Given the above delineation of IPW functions, supervisory control functions
can then be assigned to other units in the traffic-flow system higher in the man-
agement hierarchy: such as regional transportation centers. The latter, which
constitutes the ICW, enforces policy decisions on traffic flows such as road clo-
sures and traffic prioritization. The ICW takes cognizance of the effectiveness
of current infrastructure in adapting to various congestion levels, and takes re-
covery actions therein (e.g., authorizing the conversion of a two-way lane to
a one-way lane). Such computational intelligence functions of ICW supply the
configuration inputs to the IPW functions that invoke the traffic-flow system.

The traffic data collected is prone to errors for two reasons: First, the pro-
cessing algorithms in sensor devices may often have only limited capabilities,
and also exhibit diversity due to vendor-specific implementations. The traffic
reports generated therein may be fuzzy, providing an imprecise representation
of the ground truth: namely, the congestion state. Second, some of the devices
may be maliciously faulty mis-reporting the traffic flow. In such a setting, repli-
cation of devices and voting on the traffic data collected by them enhances the
trust-worthiness of congestion reports generated.

5 Closing a road or lane may sometime reduce congestion if the traffic merge from the
offending road/lane onto a main road creates local vortex effects at the intersection.
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In terms of our CPS-based design approach, the voting/fusion component is
a part of the observer module M(O) which maps the traffic reports from various
sources onto composite descriptors of congestion events. These event notifications
are annotated with quantifiers that depict the quality of congestion reports q as
a percentile scale: i.e., q ∈ (0, 1). Figure 5-(a) illustrates how the event-report
accuracy q impacts the decision-making process of controller module C.

6.2 Improving the accuracy of traffic reports

We employ k-out-of-N consensus voting [14] to decide on an accurate congestion
report, where N is the number of replicas reporting traffic data and k is the
level of consensus needed among replicas. A higher k yields a better accuracy
of the congestion report, with the parameter N set to meet the condition: 1 <
k ≤ N . This is a case of reaching approximate agreement in sensor data fusion
applications [15].

Consider a case of traffic monitoring on roads with the sensing devices mounted
on police vehicles. One device may report a 80% traffic congestion on the road,
whereas, another device may report a 75% congestion. The difference may arise
in their traffic sampling rates and observation intervals. Besides, a malicious in-
truder device that poses as a police vehicle may report a traffic congestion when
there is none. In the presence of such error-prone traffic reports, a central moni-
toring station should be able to take adequate measures to relieve the congestion
— such as controlling the traffic inflow into the congested area by diverting the
traffic in the upstream feeder roads. Here, a control measure taken based on
incorrect reports can lead to traffic chaos — such as admitting more traffic on
the feeder roads when a mis-reported congestion is acted upon by the monitor-
ing station. Figure 5-(b) illustrates the role of replica voting in improving the
accuracy of traffic reports.

With replica voting as the building-block, a data fusion mechanism based on
semantic composition of the traffic reports from different regions may be em-
ployed to further improve the quality of inference about congestion. The data
fusion may be based on tree-structured overlays set up over a vehicular network
[16]. In a tree overlay, the root node is attached to a data dissemination station
and the leaf nodes are attached to the data collection devices in different ge-
ographic regions (similar to [17]). The fusion architecture allows incorporating
two complementary functionalities: i) sanitization of data collection by voting
among replicated devices at the leaf nodes, and ii) secure propagation of the
sanitized data upstream towards the root node for control actions. An interme-
diate node, often attached to a stable station (e.g., a police control vehicle, an
airborne platform), may also carry out aggregation functions on the data arriv-
ing from its downstream tree segments and then forwarding the aggregated data
upstream. Where necessary, the intermediate nodes may also be equipped with
functions to initiate (limited) control actions in the local regions.

Event quality q is a parametric input to the computational model executed
by the controller C. Thereupon, C assimilates the parameter q as part of its
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decision-making on the traffic management actions6. Typically, the degree of
sensor replication N and the consensus level k for voting on traffic data are con-
trollable parameters, with 1 < k ≤ N . While improving the accuracy of traffic
reports, a higher k lowers the time to generate a report due to the increased par-
allelism among sensor units but increases the network bandwidth consumption
B to exchange synchronization messages.

The choice of [N, k,B] is aided by a calibration of the sensors vis-a-vis their
event reporting quality and a computational model of the voting sub-system
therein. The calibration data is maintained by the ICW for dynamically loading
into the IPW. The parameter patching enables IPW to reconfigure its operations
under various environment conditions.

7 Conclusions

As embedded systems become complex, there is a need to explicitly incorporate
diverse physical computing systems (both hardware and software) in a coherent
abstraction. Removing the explicit hardware-centric boundaries as part of the
currently prevalent definitions of an embedded system, our paper introduced a
concrete notion of intelligent physical world (IPW), and an intelligent computa-
tional world (ICW) therein, as the modules of an embedded system.

6 In a multi-agent based realization of C, q is viewed as the belief probability of an
agent about the existence of a reported congestion. With epistemic reasoning about
the belief states of agents, a traffic control action over different geographic regions
can be realized by various agents with a certain confidence level. Study of how the
accuracy parameter q impacts traffic flow-related decisions of C, and the underlying
epistemic reasoning process, is deferred as a future work.
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The paper described the software engineering issues in orchestrating a har-
monious co-existence of the IPW and ICW. With the aid of a software structural
model of a CPS, the paper studied a complex network application: viz., vehicular
traffic congestion monitoring in a transportation network, through the prism of
ICW-IPW partitioning.

The advantages of our CPS-style structure of an application are that it re-
duces the development cost of distributed control software via software reuse
and modular programming. The CPS-style structure also enables easier system
evolutions in the form of adding and/or modifying the controller functionalities
in applications without weakening the software correctness goals.
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