
Rainbow: an Intelligent Platform for Large-Scale
Networked Cyber-Physical Systems

Andrea Giordano, Giandomenico Spezzano and Andrea Vinci

CNR – National Research Council of Italy
Istitute for High Performance Computing and Networking (ICAR)

Via P. Bucci 41C - 87036 Rende(CS), Italy
{giordano,spezzano,vinci}@icar.cnr.it

Abstract. Recent advancements in the fields of embedded systems,
communication technologies and computer science, have laid the foun-
dations for new kinds of applications in which a plethora of physical de-
vices are interconnected and immersed in an environment together with
human beings. These so-called Cyber-Physical Systems (CPS) issue a
design challenge for new architecture in order to cope with problems
such as the heterogeneity of devices, the intrinsically distributed nature
of these systems, the lack of reliability in communications, etc. In this
paper we introduce Rainbow, an architecture designed to address CPS
issues. Rainbow hides heterogeneity by providing a Virtual Object (VO)
concept, and addresses the distributed nature of CPS introducing a dis-
tributed multi-agent system on top of the physical part. Rainbow aims to
get the computation close to the sources of information (i.e., the physical
devices) and addresses the dynamic adaptivity requirements of CPS by
using Swarm Intelligence algorithms.

1 Introduction

The increasing use of smart devices and appliances opens up new ways to build
applications that integrate the physical and virtual world into consumer-oriented
context-sensitive Cyber-Physical Systems (CPS) [9, 12, 8] enabling novel forms
of interaction between people and computers. CPS are combinations of physi-
cal entities controlled by software systems to accomplish specified tasks under
stringent real-time and physical constraints.

The emerging cyber-physical world interconnects a vast variety of static and
mobile resources, including computing/medical/engineering devices, sensor/ac-
tuator networks, swarm of robots etcetera. Examples of CPS applications include
[14] traffic control, power grid, smart structures, environmental control, critical
infrastructure control, water resources and so on. These systems could be per-
vasively instrumented with sensors, actuators and computational elements to
monitor and control the whole system. Furthermore, these devices should be
interconnected so as to communicate and interact with each others and with
people.

70



This scenario is supported by recent technology advancement in the fields of
communication, embedded systems and computer science. On the communica-
tion side, new protocols like EPC TDS and IPv6 ensure unique addressability
for all the elements involved in a CPS, while connectivity technologies like IEEE
802.11, ZigBee, Umts and ZTE, could ensure light and fast connection between
the devices involved in the system and between the devices and the Internet. On
the embedded systems side, the miniaturization and the constant improvement
of energy efficiency of electronic components enables the environment to be easily
instrumented with sensors, actuators and computing devices, while the presence
on the market of cheap and general purpose single-board computers, like Rasp-
berry PI [15] and BeagleBoard enables new approaches different from currently
adopted ones. On the computer science side, the development of new techniques
to analyse a massive volume of data, together with the advances in the fields
of artificial and swarm intelligence, opens up new ways to exploit the data in
order to coordinate the operations of the large number of devices involved. The
networked cyber-physical world has a great potential for achieving tasks that are
far beyond the capabilities of existing systems. However, the problem of effec-
tively composing the services provided by cyber and physical entities to achieve
specific goals remains a challenge [9, 12, 1]. Advanced models and architectures,
autonomous resource management mechanisms, and intelligent techniques are
needed for just-in-time assembly of resources into desired capabilities.

The complexity of a CPS, and the large number of elements involved, makes
data analysis and operation planning a very difficult task. A currently used ap-
proach involves two layers: a physical layer and a remote (cloud) cyber layer.
The physical layer sends sensed data to a remote server, which processes them
and computes a suitable operation plan. Afterwards, the remote server sends
the sequence of operations it must execute to each device on the physical layer.
The reasoning is performed in the remote layer. This solution cannot be applied
when there are constraints on responsivity time, that is, when a system needs to
react fast to critical events that may overwhelm its integrity and functionality.
Communication lag and remote processing can cause delays that a system sim-
ply cannot bear. A wide variety of applications means a wide variety of devices.
Currently, there is a plethora of different devices, each with its own particular
functionalities and capabilities. There are simple devices without any compu-
tational unit as well as “smarter” devices with high computation power inside.
There are devices with no operating systems and devices with simple or com-
plex operating systems, such as tinyOS or Android. Our framework is designed to
cope with this inherent heterogeneity. To addressing the issues described above,
our proposal moves on these main lines:

– Hiding the heterogeneity of CPS by introducing a virtual object layer.
– Moving the computation as close as possible to the physical resources in

order to foster good performance and scalability.
– Introducing a distributed intelligence layer between the physical world and

remote servers (cloud), which can execute complex tasks and horizontal-
ly/vertically coordinate the devices.

71



– Switching from a cloud-based model to a cloud-assisted one, where the in-
telligent intermediate level carries out almost all the real-time control tasks,
whereas the remote cloud level remains in charge of non-real-time tasks such
as offline data analysis or presentation. The information provided by the
data analysis executed by the remote server are used by the intermediate
level to optimize its operations and behaviour.

In this paper we propose a three-tier architecture (Rainbow) that uses single-
board computers such as the Raspberry PI to connect massive-scale networks of
sensors to the Cloud. This architecture is composed by the Cloud layer, the In-
termediate layer and the Physical layer. Sensors are partitioned into groups, each
of which is managed by a single computing node. These computing nodes host
multi-agent applications designed to monitor multiple conditions or activities
within a specific environment. Furthermore, agents can be intelligently assisted
by cloud services, that support complex analytics, modeling, optimization and
visualization tools, to make better operation decisions.

We present a new integrated vision that allows the designing of a large-
scale networked CPS based on the decentralization of control functions and the
assistance of cloud services to optimize their behaviour. Decentralization will
be obtained using a distributed multi-agent system in which the execution of a
CPS application is carried out through agents’ cooperation [5, 10, 11, 2]. The dis-
tributed multi-agent system lays the foundations for properly exploiting swarm
intelligence concepts. Swarm intelligence [3, 7] systems are typically multi-agent
systems made up of a population of simple agents interacting locally with one
another and with their environment. The agents follow very simple rules, and
although there is no central control structure dictating how individual agents
should behave, local and to a certain degree random, interactions among such
agents lead to the emergence of ”intelligent” global behaviour, unknown to the
individual agents. Natural examples of swarm intelligence include ant colonies,
bird flocking, animal herding, bacterial growth, and digital infochemicals. Agents
interacting with cloud services can exploit the analysis, predicting, optimization
and mining scalable capabilities on historical data allowing applications to adjust
their behaviour to best optimize their performance.

The remainder of this paper is structured as follows: Section 2 is devoted
to a description of the proposed Rainbow Architecture; Section 3 describes two
example of use; finally, we draw conclusions and the future works.

2 Rainbow architecture

Rainbow is a three-layer architecture designed in order to bring the computation
(i.e the controlling part) as close as possible to the physical part. Since CPS fore-
sees that physical entities are spread across a large (even geographic) area, the
previous assumption implies the controlling part to be intrinsically distributed.

Our proposal foresees the use of a distributed agent-based layer in order to
address the aforementioned issues. The agent paradigm has several important
characteristics:

72



Autonomy. Each agent is self-aware and has a self-behaviour. It perceives the
environment, interacts with others and plans its execution autonomously.

Local views. No agent has a full global view of the whole environment but it
behaves solely on the basis of local information.

Decentralization. There is no “master” agent controlling the others, but the
system is made up of interacting “peer” agents.

Through these basic features, multi-agent systems make it possible to obtain
complex emergent behaviours based on the interactions among agents that have
a simple behaviour. Examples of emergent behaviour could refer to the properties
of adaptivity, fault tolerance, self-reconfiguration, etcetera. In general, we could
talk about swarm-intelligence when an “intelligent” behaviour emerges from in-
teractions among simple entities. There are many swarm intelligence algorithms
in the literature that could be properly adopted in the context of CPS. In 3.2
we show an example where Swarm Intelligence is used to map noise pollution
inside a city area.

Cloud

Physical

Distributed

Middleware

VOVO VO

A
A

AA

A

A

Gateway

Agent Server

Computing Node

Fig. 1. Rainbow architecture.

Rainbow architecture is shown in Figure 1. As it can be seen, the architec-
ture is structured into three layers. The bottom layer is the one that is devoted
to the physical part. It encloses sensors and actuators, together with their rel-
ative computational capabilities, which are directly immersed in the physical
environment.

In the Intermediate layer, sensors and actuators of the physical layer are
represented as virtual objects (VOs). VOs offer to the agents a transparent
and ubiquitous access to the physical part due to a well-established interface

73



exposed as API. VO allows agents to connect directly to devices without care
about proprietary drivers or addressing some kind of fine-grained technological
issues. Each VO comprises “functionalities” directly provided by the physical
part. Essentially, a VO exposes an abstract representation (i.e. machine-readable
description) of the features and capabilities of physical objects spread in the
environment. Functionalities exposed by different types of VOs can be combined
in a more sophisticated way on the basis of event-driven rules which affect high-
level applications and end-users.

In summary, as detailed in section 2.1, all the devices are properly wrapped in
VOs which, in turn, are enclosed in distributed gateway containers. The compu-
tational nodes that host the gateways represent the middle layer of the Rainbow
architecture. Each node also contains an agent server that permits agents to
be executed properly. Gateways and agent servers are co-located in the same
computing nodes in order to guarantee that agents exploit directly the physical
part through VO abstraction. Instead of transferring data to a central processing
unit, we actually transfer the process (i.e. fine-grain agent’s execution) toward
the data sources. As a consequence, less data needs to be transferred over a long
distance (i.e. toward remote hosts) and local access and computation will be
fostered in order to achieve good performance and scalability .

The upper layer of Rainbow architecture concerns the cloud part. This layer
addresses all the activities that cannot be properly executed in the middle layer
like, for instance, algorithms needing complete knowledge, tasks that require
high computational resources or when a historical data storage is mandatory.
On the contrary, all tasks where real time access to the physical part is required
could be suitably executed in the middle layer.

2.1 Virtual Objects

We address issues about heterogeneity in CPS by introducing the Virtual Object
(VO) concept. VO aims to hide heterogeneity by supplying a well-established
interface permitting the physical parts to be suitably integrated with the rest of
the system.

VO could be defined as a collection of physical entities like sensors and ac-
tuators, together with their computational abilities.

It can be composed of just a simple sensor or it can be a more complex object
that includes many sensors, many actuators, computational resources like CPU
or memory and so on.

In general, VO outputs can be represented by punctual values (e.g. the tem-
perature at a given point of a room) or aggregate values (e.g. the average of
moisture during the last 8 hours). Also, the values returned by VOs could be
just the measurement of sensors or could be the result of complex computations
(e.g. the temperature of a given point of space computed by means of interpo-
lation of the values given by sensors spread across the environment).

Furthermore, a VO could supply actuation functionality by changing the
environment on the basis of external triggers or internal calculus.

74



These different kinds of behaviour that VO can expose must be taken into
account. VO is therefore conceived as a complex object that can read and write
upon many simple physical resources. More in detail, we consider that each
VO exposes different functionalities. Each functionality can be either sensing or
actuating and can be refined by further parameters that dynamically configure
it.

The previous assumption leads to the definition of resource as the following
triplet :

[V OId, V OFunctionId, Params]

Where VOId uniquely identifies the VO, VOFunctionId identifies the specific
functionality and Params is an ordered set of parameter values that configure
the functionality.

For example let’s consider a Virtual Room made of sensors for measuring dif-
ferent physical quantities inside a room such as temperature, moisture, brightness
and so on. Suppose now you want to read from Smart Room the temperature in
a given spatial point of the room. In that case the triplet could be:

[V irtualRoom, temperature, [x, y, z]]

Where x, y and z are the cartesian coordinate of the point of interest.
Using object oriented terminology, a Resource could be seen as a particular

“instance” of a functionality of a given VO.
Besides read and write operations (i.e. sensing and actuation), it is pro-

vided for VOs to be able to manage events that occur in the physical part. To
that scope, our proposed middleware includes a publish/subscribe component for
managing events in each computing node. Each event is defined by a logical rule
where one or more VOs could be involved.

Each rule is a logical proposition in which the atomic predicates can be of
the following kinds:

- resource < threshold (e.g. temperature < 300)
- resource > threshold
- boolean resource (e.g. the door was unlocked)

Just an example of rule:

(temperature < 100 and brightness >500) or people > 3 or door unlocked

All the physical things linked to a computing node together with relative
VOs is enclosed in the Gateway container. The Gateway exposes an interface to
interact directly with the VOs.

Each gateway represents the “entry point” that agents can use to exploit
VOs of the relative computing node.

In the following is described the interface of Gateway that will be used by
the overlying layer:

75



interface GatewayInterface {

void resourceNaming(String name, VOId voId, VOFunctionId functionId,

VOFunctionParams params);

VOResult check(String name);

VOResult check(String name, VOFunctionParams params);

VOResult acting(String name);

VOResult acting(String name, VOFunctionParams params);

void setRule(Rule rule, String idRule);

void subscribe(String idRule, EventHandler handler);

}

The method resourceNaming assigns an identification name to a given re-
source supplied by a given VO. A resource is a specific instance of a function-
ality of a VO refined by some parameters. In other word, a resource is the
above-mentioned triplet: [V OId, V OFunctionId, Params]. The name assigned
to a resource via resourceNaming can be used in the other methods in order to
simply identify the resource. Furthermore, the identification name of a resource
is useful to compose the rules in a more human-readable fashion.

The method check reads the current value of the resource identified by name

whereas acting triggers the actuation operation upon the resource identified
by name. Both check and acting methods are of two kinds: the first take
only name as parameter and refers to the resource as it is previously defined
in resourceNaming; the second kind, instead, permits the parameters of the
referred resource to be refined dynamically.

The method setRule permits a complex rule to be published (e.g. (temper-
ature < 100 and brightness >500) or number of person > 3 or door unlocked)
and to assigns an id (i.e. idRule) useful for subscribing the rule afterwards.

The method subscribe permits a previously published rule (identified by
idRule) to be subscribed. The occurrence of the event identified by idRule will
be notified to the handler passed as a parameter to the method.

2.2 Rainbow Multi Agent system

The Multi Agent component of the Rainbow architecture is made up of the
following entities: Agents, Messages, the Agent Server and the Deployer. Figure
2 shows these entities and how they interact among themselves and with the
Gateway.

The Agent Server is the container for the execution of agents. It offers func-
tionalities concerning the life cycle of the agents as well as functionalities for
agents’ communication. Agent servers are arranged in a peer-to-peer fashion
where each agent server hosts a certain number of agents and permits them to
execute and interact among themselves in a transparent way. In other words,
when an agent requests the execution of a functionality, its host agent server is
in charge of redirecting transparently the request to the suitable agent server.
In the following are listed the main functionalities each agent server exposes:

76



Gateway
Agent

Server

Agent Deployer

Check

Acting

Set Rule

Subscribe

H
A

N
D

LE
_E

VEN
T

SEN
D

_M
ESSA

G
E

RECEIVE_M
ESSA

G
E

A
D

D
_A

CQ
U

A
IN

TA
N

CE

REM
O

VE_A
CQ

U
A

IN
TA

N
CE

ADD_AGENT

REMOVE_AGENT

Send acquaintance msgs

Fig. 2. Rainbow multi-agent entities.

SEND MSG. Through this functionality, the communication between agents is per-
formed. The Agent Server is responsible for correctly delivering messages
from the sender agent to the receiver one. If the sender and the receiver do
not belong to the same agent server, the message is forwarded to the suitable
“peer” agent server which is, in turn, engaged finally to deliver the message.
The latter mechanism is showed in figure 3(a).

ADD AGENT. It instances an agent to an agent server. Rainbow Multi Agent sys-
tem is designed to permit agents to be dynamically loaded to the agent server
they have to belong to. As in SEND MSG operation, agent servers are in
charge for exchanging information among themselves in order to guarantee
the ADD AGENT request to be delivered to the correct agent server. This
mechanism is shown in figure 3(b). The latter figure also shows how the code
is dynamically loaded exploiting class repository server. More in detail, when
an ADD AGENT request reaches the suitable agent server, if the agent code
is not already available, the agent server automatically downloads it from a
class repository.

REMOVE AGENT. It removes an instance of an agent hosted by an agent server.
This operation also exploits the “forwarding” mechanism described above.

Agent ServerAgent Server

B

Agent

Agent

Agent
Agent

Agent

Agent

SEND_MESSAGE

forwarding

A

SEND_MESSAGE

(a) SEND MSG

Agent ServerAgent Server

A

Class Repository

Agent

Agent

Agent
Agent

Agent

Agent

ADD_AGENT “A”

ADD_AGENT

forwarding

ADD_AGENT “A”

send class

request class

(b) ADD AGENT

Fig. 3. Forwarding mechanism

77



A Message is the atomic element of communication between agents. It carries
an application specific content together with informations about the sender agent
and the receiver one.

Our architecture provides for specific kinds of message, that are the acquain-
tance messages. Those messages are used for establishing an acquaintance re-
lationship among agents. The acquaintance message carries information about
the location of a given agent (i.e. location of hosting agent server). The agent
who receives the acquaintance message will use this information when it needs
to send messages toward that destination. This kind of mechanism ensures agent
behaviour to be completely independent w.r.t. the locations of agents it has to
collaborate with.

For instance, let’s consider that an agent is a computing node interconnected
with others by means of a ring network. Each agent, therefore, can only interact
with its previous agent nodes and its next one. Whenever further nodes must be
connected to the ring network, only the acquaintance relationships have to be
updated. In other words, a third entity can establish dynamically those acquain-
tance relationships without resorting to modifying, re-building or restarting any
agent.

In Rainbow architecture the entity which is in charge of sending acquaintance
messages in order to establish the acquaintance network is called Deployer. De-
ployer could be an external process as well as an agent, it can run during the
configuration phase as well as during application execution. The Deployer con-
cept will be described in details in section 2.2.

An Agent is an autonomous entity which executes its own behaviour inter-
acting with other agents via Agent Server. In addition, each agent can interact
with the physical part exploiting functionalities exposed by the Gateway (i.e.
using the Virtual Object abstraction).

The functionalities of an agent are exposed to its own Agent Server and
Gateway. As said before, Agent Servers are in charge of the “forwarding” mech-
anism that eventually ends with the calling of these functionalities, while the
Gateway is in charge of notifying the events that occur in the physical part. In
the following are listed the main functionalities of an agent:

RECEIVE MESSAGE. It is called when there is a Message to be delivered for the
agent.

HANDLE EVENT. It is called by the Gateway to notify that an event is occurred
in the physical part.

ADD ACQUAINTANCE. It is called when there is an acquaintance message to be
delivered to the agent. The implementation of this functionality concerns
the store of the acquaintance relationship between the agent itself and the
agent identified inside the message.

REMOVE ACQUAINTANCE. It is called for removing a previously stored acquain-
tance relationship.

The specific behaviour of an Agent is realized through the implementation
of RECEIVE MESSAGE and HANDLE EVENT functionalities.

78



Dynamic Deployment and Roles The deployment of the agents as well as
the configuration of the acquaintance relationships and the start-up of the appli-
cation are all actions performed by the so-called Deployer. An external process
or even an agent can act as a Deployer. The deployment phase is typically exe-
cuted just before the application can start properly; however, it is possible to act
as Deployer even during application execution in order to update the configura-
tion dynamically for hosting new features or adapting to foreseen and unforeseen
changes in the environment. Deployer can be implemented centrally or in a dis-
tributed way. Basically, who acts as a Deployer operates using the ADD AGENT

functionality for deploying a new instance of an agent into an agent server,
REMOVE AGENT for removing a running agent from an agent server. Furthermore,
Deployer is responsible for sending acquaintance messages that eventually end
with calls to ADD ACQUAINTANCE or REMOVE ACQUAINTANCE on the specific agents.
Finally, Deployer is also in charge of sending suitable “start” messages using
SEND MSG in order to start the application properly.

The acquaintance relationship is formally defined by a triplet: [A, B, R] where
A and B are the agents involved in the relationship and R is a Role label. The
triplet above means that agent A knows agent B and that B has the role R
as acquaintance of A. During the execution, an agent exploits the Roles of its
acquaintances to discriminate about how to interact with them.

As an instance, let’s consider that each agent represents a physical person in
a town. The relationship between two agents could have roles of neighbourhood
and/or friendship. A deployer is in charge of configuring those relationships
during the initial phase. In addition, as soon as a person changes home or starts a
new friendship, the deployer has to re-arrange relationships dynamically among
agents through sending acquaintance messages. During the execution of that
system, each agent will use roles of neighbourhood and friendship to discriminate
how to interact with other agents. For instance he/it can exchange information
about its district with its neighbours while it invites its friends to a party.

3 Application Examples

In this section we introduced two examples of using the Rainbow architecture.
The first one aims to show our architecture from a practical perspective in order
to understand and better figure out all the system details. The second example is
useful to understand how Rainbow can host suitable swarm intelligence strategies
in order to realize CPS applications owning properties such as adaptivity, fault
tolerance, self-reconfiguration, etcetera.

3.1 Floor control example

In this example we show an application for monitoring and controlling a floor of
a building hosting offices. Each floor contains a certain number of room.

Figure 4(a) shows how a generic floor could be. In general, each room con-
tains: doors, desks, chairs and adjustable brightness lights.

Each room is instrumented by some sensors and actuators listed below.

79



(a) (b) (c)

Fig. 4. (a) Floor topology (b) Rooms assignment to computational node. Each different
color identify a different node. (c) Logical distribution of agents in the floor.

Sensors:

– sensors that detect the opening and closing of doors;
– sensors that detect when a person enters or leaves a room;
– proximity sensors detecting presence of the people in each zone of a room;
– a weight sensor for each chair in order to detect if the chair is currently used.

Actuators:

– adjustable brightness lights for all zones of a room;
– a display on each desk.

The use of the above described devices, for example, permits adjusting lights
on the basis of people movements, writing informational messages on displays
and so on.

Integration in Rainbow using Virtual Objects In order to develop the
controlling part in a object-oriented fashion, it is required to integrate the above
described physical things with Rainbow middleware defining the suitable Virtual
Object(VO). Each VO abstracts and wraps a certain number of sensors as well
as actuators. For the sake of simplicity, in this example we chose to design VOs
in a human-readable fashion: virtual desk, virtual chair, virtual door and virtual
wall.

The functionalities exposed by these VOs are listed in table 1, 2, 3, 4. It is
worth to note that each functionality of the virtual wall is parametric: the zone
parameter specifies which area of the room is referred.

Each VO is located on the same computing node where the sensors and
actuators that VO encloses are connected to. A computational node can generally
host VOs that may refer to more than one room. Assuming than we have only
three computational nodes available to monitor and control the whole floor, we
can assign rooms to nodes as in figure 4(b).

80



Functionality Type Description

lock Sensing Boolean, true if the door is closed

unlock Sensing Boolean, true if the door is open

entry Sensing Boolean, true when a person enter the room through
the door

exit Sensing Boolean, true when a person exit the room through the
door

Table 1. Virtual Door.

Functionality Type Description

proximity Sensing detects people near the chair

sitting Sensing Boolean: true when someone sits on the chair

Table 2. Virtual Chair.

Functionality Type Description

near people Sensing number of people in the zone (supplied by parameter)

add light Acting increase light brightness in the zone (supplied by
parameter)

less light Acting decrease light brightness in the zone (supplied by
parameter)

light off Acting set off light in the zone (supplied by parameter)

Table 3. Virtual Wall.

Functionality Type Description

proximity Sensing detects people near the desk

display Acting show a message supplied by parameter on the display

Table 4. Virtual Desk.

81



Multi-agent floor application The application is designed for managing the
floor and its rooms. For each room a energy-saving light-management is devel-
oped which considers people presence for suitably adjusting the brightness of the
various zones of a room. This control management will also consider if the chairs
are utilized or not in order to better adjust the lights. In addition, it permits a
message to be displayed on a certain desk when needed. All those features are
implemented in the RoomAgent. The code inside the RoomAgent is a typical
object-oriented code where VOs are exploited as simple objects. The code is
omitted in this paper for sake of brevity.

Besides this room-wise features, the application is also designed for address-
ing issues concerning the entire floor (i.e. where more than one room is involved).
For instance, it could be useful to know how many people are in the floor at a
given time in order to properly manage the locking of the main door of the floor
as well as to shut down all the lights where the floor is empty. In this example,
instead, the knowledge of the number of people is used to notify a person when
he is alone in the floor writing a message on the display of his desk.

The FloorAgent is designed for addressing the above mentioned issues. Sum-
marizing, there is a RoomAgent per room and a unique FloorAgent as it is shown
in figure 4(c).

Deployment of the application As mentioned before the Deployer is in
charge to load the agents upon the agent servers, to establish acquaintance re-
lationships among them and to start the application.

In our application, each RoomAgent must be located in the computing node
where the VOs of the relative room belong to.

Conversely, the FloorAgent can be located everywhere in the system (it has
not connection with any physical part), even in a remote cloud node. The process
made by the Deployer is summarized in figure 5.

Fig. 5. Deployment of the agents and their physical distribution on the computing
nodes.

82



Agent interaction and acquaintance relationships After loading each
agent in the proper location, the Deployer sends acquaintance messages to each
RoomAgent in order to let them know the FloorAgent. Afterwards, each agent
sends an acquaintance message to the FloorAgent in order to be known by it.
This is an example of an agent that acts as Deployer. Once the deployment phase
is completed, the application execution can start. When a person leaves a room,
RoomAgent will be notified by the gateway and, consequently, will send a mes-
sage carrying the number of people currently inside the room to the FloorAgent.
The latter will update its people counter on receiving such a message. When it
verifies that there is only one person in the floor, it will send a message to the
relative RoomAgent that, in turn, will write a message on the desk display.

3.2 Noise pollution mapping

Many environments, such as airports, road works, factories, construction sites,
and other environments producing loud noises, require effective noise pollution
monitoring systems. Noise pollution is a common environmental problem that
affects people’s health by increasing the risk of hypertension, ischemic heart dis-
ease, hearing loss, and sleep disorders, which also influence human productivity
and behavior [13]. For this reason the European Community passed the direc-
tive 2002/49/EC [4], which declares noise protection as one necessary objective
to achieve a high level of health and environmental conservation. The directive
imposes several actions to be made upon member states, including the mapping
of noise in larger cities via noise maps. On the basis of these maps, the countries
can formulate plans to counter the threat that is noise pollution.

Noise maps are mostly based on numerical calculations that have shown to
give good estimates of long term averaged noise levels. However, such maps does
not take into account the real-time variation of the noise levels.

Using the Rainbow platform we designed an agent-based, self-organizing sys-
tem for the real-time construction of noise maps and identification of the sources
of noise.

Noise sensors are spread into the environment, linked to the computational
nodes, and suitably wrapped inside the VOs. Each agent is directly associated
with a VO representing a noise sensor. During the deployment phase, each agent
is supplied by the knowledge of its neighbours (i.e. agent associated with a
spatially near sensor).

We use a simple self-organizing algorithm, proposed by [16], to let sensor
network to self-organize itself in a region partitioning based on similar sensing
patterns (noise levels). Regions can grow or shrink according to the dynamic
variation of noise levels. Organization in regions occurs by creating an overlay
network made by agents connected by virtual weighted links. Agents belonging
to the same region will have strong links, while agents belonging to different
regions will have weak (or null) links.

In the following the details of the algorithm. Let si and sj be two neighbour
sensor agents. Let n(si) and n(sj) the values of noise sensed by si and sj , re-
spectively. Let us assume that a distance function D can be defined for couples

83



of v values. Region formation is then based on iteratively computing the value
of a logical link l(si, sj) for each and every agent of the system as in following
update link procedure:

Update link:

if(D(n(si), n(sj)) < T{
l(si, sj) = min(l(si, sj) +∆, 1)

}else{
l(si, sj) = max(l(si, sj)−∆, 0)

}

Where: T is a threshold that determines whether the measured values are
close enough for l(si, sj) to be re-enforced or, otherwise, weakened; and ∆ is a
value affecting the reactivity of the algorithm in updating link. Based on the
above algorithm, it is rather clear that if D(n(si), n(sj)) is lower than thresh-
old T , l(si, sj) will rapidly converge to 1. Otherwise it will move towards 0.
Transitively, two nodes sh and sk are defined in the same region if and only
if there is a chain of agents such that each pair of neighbours in the chain are
in the same region. From the Rainbow perspective, region information is stored
adding/removing new acquaintance relationships among agents.

In order to properly map the noise pollution, it is necessary that each and
every agent within a region is locally provided with information related to the
overall status of the region. To this end, it is possible to integrate forms of
diffusive gossip-based aggregation [6] within the described general scheme. The
algorithm requires that the agents periodically exchange information with their
neighbors about some local value, locally aggregate the value according to some
aggregation function (e.g., maximum, minimum, average, etc.), and further ex-
change in the subsequent step the aggregated value.

4 Conclusions

In this paper we introduced Rainbow, an architecture that permits an easy
development of large-scale cyber-physical applications. The novelty of Rainbow
is that it relies on the adoption of a distributed multi-agent layer on top of the
physical part that is, in turn, wrapped in suitable Virtual Objects. Rainbow
aims to hide heterogeneity, cope with complexity and real-time issues. In the
future, new intelligent, adaptive and decentralized algorithms will be explored
for developing large-scale cyber-physical applications using Rainbow, such as
those related to smart cities, power grid, water networks and so on. Furthermore,
a well-established interface for the cloud part of the architecture will be defined.

84



5 Acknowledgments

This work has been partially supported by RES-NOVAE - “Buildings, roads,
networks, new virtuous targets for the Environment and Energy” project, funded
by the Italian Government (PON 04a2 E)

References

1. Abdelzaher T., Towards an architecture for distributed cyber-physical systems,
Proceedings of NSF Workshop on Cyber-Physical Systems, Austin, TX, 2006.

2. Bicocchi N., Mamei M., Zambonelli F., Self-organizing virtual macro sensors, ACM
Transactions on Autonomous and Adaptive Systems (TAAS), Volume 7 Issue 1,
April 2012.

3. Bonabeau E., Dorigo M., Theraulaz G., Swarm Intelligence: From Natural to
Artificial Systems, New York, NY: Oxford University Press, Santa Fe Institute
Studies in the Sciences of Complexity, Paper: ISBN 0-19-513159-2,1999.

4. European Directive. The Environmental Noise Directive (2002/49/EG). Official
Journal of the European Communities, 2002.

5. Fortino G., Guerrieri A., Lacopo M., Lucia M., Russo W.: An Agent-based Mid-
dleware for Cooperating Smart Objects, in Highlights on Practical Applications of
Agents and Multi-Agent Systems, Communications in Comp. and Inform. Science
(CCIS), Vol. 365, pp. 387-398, Springer, 2013.

6. Jelasity M., Montresor A., Babaoglu O., Gossip-based aggregation in large dy-
namic networks, ACM Transactions on Computer Systems 23, 3, 219 - 252, 2005.

7. Kennedy J., Eberhart R.C., Swarm Intelligence, Morgan Kaufmann publishers,
2001.

8. Koubaa A., Andersson B., A vision of cyber-physical internet, in proc. Of the
Workshop of Real-Time Networks (RTN 2009), Satellite Workshop to (ECRTS
2009).

9. Lee A., Cyber Physical Systems: Design Challenges, Proceedings of the 2008 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing, IEEE
Computer Society Washington, DC, USA, 2008.

10. Leito P., Towards Self-organized Service-Oriented Multi-agent Systems, in Studies
in Computational Intelligence Volume 472 2013, Springer.

11. Lin J., Sedigh S., Miller A., Modeling Cyber-Physical Systems with Semantic
Agents, in Computer Software and Application Conference Workshops (COMP-
SACW), IEEE 2010.

12. Sanislav T., Miclea L., Cyber-physical systems - Concept, Challenges and Research
Areas, in Control Engineering and Applied Informatics, Vol.14, No.2, pp. 28-33,
2012.

13. Schweizer I., Brtl R. , Schulz A., Probst F., and Mhlhuser M., NoiseMap - Real-
time participatory noise maps, in ACM SenSys 2011 Second International Work-
shop on Sensing Applications on Mobile Phones (Eds.), 2011

14. Shi J., Wan J., Yun H., Suo H., A Survey of Cyber-Physical Systems. In proc.
Of the Int. Conf. On Wireless Communications and signal Processing, Nanjing,
China, November 9-11, 2011.

15. RaspBerry online, http://www.raspberrypi.org/.
16. Bicocchi N., Mamei M., Zambonelli F., Self-Organizing Virtual Macro Sensors,

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 1, 2012.

85


