
95

Self-learning assessment of communication in

distributed embedded systems – a feasibility study

Falk Langer, Erik Oswlad

Fraunhofer ESK, Hansastrasse 32, Munich, Germany

{falk.langer, erik.oswald}@esk.fraunhofer.de

Abstract. This paper addresses the problem of evaluating the communication

behavior of cyber physical systems. An important problem for the validation of

the interaction in the distributed system is missing, wrong or incomplete

specification. In this paper, the application of a new approach for assessing the

communication behavior based on reference traces is presented and evaluated.

The benefit of the approach is that it works automatically, with low additional

effort and without using any specification. This paper provides a use case in

conjunction with a feasibility study to investigate the applicability of a self-

learning anomaly detection methodology. The data of the feasibility study are

created by applying the described anomaly detection within a real vehicle

network.

Keywords: embedded system validation, testing procedures, network trace

analysis, self-learning test methods

1 INTRODUCTION

This paper focuses on test and validation of the communication behavior in cyber

physical systems (CPS). On such systems with highly distributed functionality like it

can be found in modern car’s electronics, the communication behavior is an important

aspect on system validation. At field operational test it is important to analyze the

network traffic in a fully assembled car. Even if all single electronic control units are

tested exhaustively, a significant portion of remaining bugs resulting in errors or

malfunction is lately found at real driving or field operational test.

The most important problem of ensuring the correct interaction of functions in CPS

at system-level is missing, wrong or incomplete specification (compare [11] and [4]).

There are many works of research in progress that tries to improve the process of

creating system specification, with the goal of building better test cases for validating

the communication on system level. Nevertheless it is still an extensive process to get

sufficient test models.

Because network traffic represents the internal behavior of a distributed system, its

analysis can help to detect possible bugs earlier and faster. But especially on system

level test it is not easy to rate about the correctness of communication at the network.

In [10], a new approach for building observer models to evaluate communication

behavior automatically, with low additional effort and without using any specification

96

was introduced. There it was shown that is possible to infer meaningful automata

from a network-reference trace. To check the applicability of the proposed approach

this paper provides a feasibility study that shows the integration of the methodology

proposed in [10] in an existing test scenario and examines the quality of the automata

for detecting bugs within the communication behavior.

The paper is structured as follows. In chapter 2 the use case for the proposed

methodology and its integration in the test process explained. Chapter 3 provides the

previous work and basically describes the new self-learning methodology. In chapter

4 the quality measurements for proofing the feasibility are defined and calculated. The

paper closes with chapter 5 conclusion and future work.

2 INTEGRATION TO FIELD TEST

The new approach presented in this paper shall help to find bugs in field

operational tests faster. For this reason an important aspect of the proposed solution is

the integration in the established testing and validation process for the car’s electronic

infrastructure. To get an overview about the testing process of this distributed but

even closed system in the following the basic testing steps for such a distributed

system are described.

As in every software development cycle the first test stage are unit tests and

basically the second stage are integration tests. On integration tests, the different

applications belonging to an electronic control unit (ECU) are integrated and the basic

functionality required from this ECU is tested. The next test level in testing can be

characterized as system validation, often it is called system test. This is a test on

system level, where the interaction of different ECUs is tested.

Because of the strong interaction of the embedded applications of a car with its

environment, field operational tests are commonly finalizes the validation. For

software realized functions this kind of test became important at least with the

introduction of advanced driver assistant systems which need to be evaluated in real

driving tests (compare [5]). Within this background it is a well-established practice

that even for the cars electronic infrastructure an endurance test as final acceptance

test is executed. This endurance test is performed within real driving field operational

tests.

Since the distributed network of ECUs inside the car is a closed system, in most

cases it is not possible to control the endurance test on network level. In case of field

operational test, mostly normal driving tasks are executed by the test drivers. At this

testing level the test driver is only able to detect software bugs that lead to a

noticeable malfunction of the car and its components to the driver. Because this is a

very limited perspective to the executed software system, in most cases the network

traffic from inside the car is recorded at test drives. The recorded network traffic

provides information about the internal behavior of the cars electronic infrastructure

at test drives. These traces are beside the voting of the test driver, the only source of

information for validating the behavior of the cars electronic.

Only when these test drives are executed without a detected malfunction over a

dedicated distance of kilometers the electronic system of the tested car passed the

final acceptance test. There are still a lot of remaining bugs that are lately found

97

within these tests with fully assembled car. It did not surprise that there could be

easily summate a few million kilometers until all remaining bugs are found, fixed and

a test period can be successful completed.

There are two ways to shorten this expensive and time consuming procedure to get

a fault free tests drive period within the endurance test. The first one is to reduce the

number of remaining bugs that can cause malfunction at test drives. This require

better testing methodologies at earlier development phases. Or secondly try to identify

possible bugs faster and more efficient within the test drives.

The first one is questionless methodically the clean way. But one of the basic

problems in praxis is missing, wrong or incomplete specification of system

requirements. This problem becomes commonly relevant with a high number of

interacting functions like it can be found highly distributed functionality. To solve this

problems there are many research in progress (e.g. [2],[3])

This paper provides a new solution for the second way, the faster identification of

potential bugs within test drives. This solution basically tries to identify changes in

the system behavior by comparing it with a reference trace. Thereby the probability

that this new behavior which is not represented within the reference trace is caused by

a bug seems to be high. For this reason a self-learning methodology for an automatic

evaluation of the recorded network traffic from field operational tests is presented and

evaluated in this paper.

3 PREVIOUS WORK

This chapter provides an overview of the author’s previous work that motivates

this new approach and provides the foundation and experiments for the proposed self-

learning method.

In [9], the idea of extracting dependency models from qualified communication

behavior to rate the communication of further test cases, was motivated. With this

idea a new methodology for assessing the communication behavior in regions with

incomplete or missing specification should be better testable.

Therefore the goal is the construction of a method that allows a qualitative

comparison between communication that is presented within a reference trace and

newly recorded traces. The essential outcome of the proposed procedure is the

awareness, that the newly recorded network trace represents a new system behavior,

which was not represented within the reference trace. If such a behavior is recognized,

the method outputs a trigger or some equivalent information to the tester. At this point

two potential expectations about the tested network behavior can be made: 1) A newly

implemented or just jet not observed behavior was found, or 2) A bug in in

communication behavior is detected. Just at this point a system expert has to decide if

the proposed method detects case 1) or 2). Surely it is not possible to detect bugs,

which are already within the reference trace included, but if no other tests detect these

bugs and these bugs did not lead to malfunction, it is not sure if it is a bug or just

unspecified behavior.

In conjunction to this idea, starting with [8], the learning problem of extracting

behavior models from traces was considered. In [8] it was pointed out that basically

within a recorded network trace no sequences boundaries are visible. Instead a trace is

98

one single but very long sequence, which is a challenge for most learning algorithms.

With a first simple system hypothesis, where a trace is a stream of events that can be

generated from a finite state automaton, the applicability of an artificial neural

network was examined within [8].

Because of the unsatisfactory false alarm rate and the high performance utilization

of the neural networks, other learning algorithms were looked for. The Angluin L*

algorithm which is able to generate finite state automata (compare [1] and [13]) seems

to be a good candidate for inferring reliable dependency models. In [7] the adaption of

the Angluin L* learning algorithm to learning automata from network streams was

shown. The result of the learning process from L* are acceptance automata. It can be

shown that these automata describe very accurate the behavior of a given reference

sequence of events, without false alarms and with a maximum on inferable

dependencies. But at the evaluation with a real car network trace even the L*

Algorithm fails to infer reasonable automata. The finding has to be made, that the

learning problem is too much complex for the algorithm.

A solution for this problem was provided in [10]. There a methodology is provided

that reduces the complexity of the learning task, by separating sub-traces which

describe independent execution graphs. With this solution it is possible to infer an

acceptance automaton for each sub-trace that describes the behavior of the events in

this sub-trace satisfactory.

The identification of independent execution graphs within the network trace was

undertaken in [10] with a new clustering approach based on a spectral analysis. It

could be shown that there is a high probability that events with similar behavior in

time belonging to the same execution graph. In [10] the evaluation of the clustering

methodology was done by the application to a real car network trace taken from a

controller area network (CAN) that connects the powertrain ECUs. At the result

approximately 70% of the behavior of the CAN trace is covered by the inferred

acceptance automata. This research results show that it is possible to set up an

unsupervised self-learning methodology that infers behavior models from a network

trace without the usage of a specification.

If the reference trace represents the normal behavior of a system the inferred

automata should accept this normal behavior. If a newly recoded trace holds even a

normal behavior of the system, the automata should accept this trace. If this trace

holds another behavior it should be rejected by the automata. If the inferred automata

do not accept a newly recorded trace, this trace potentially holds a behavior that is out

of the norm. This can be called an out of norm (OoN) behavior (comp. [12]) of the

trace. If an OoN-behavior is detected the tester will be informed by a OoN-trigger.

The above explained methodology for inferring acceptance automata to use them to

evaluate newly recorded traces will be called OoN-detection in the following.

4 QUALITY MEASUREMENTS

Even though it is now possible to extract acceptance automata that describe the

behavior of the reference trace satisfactory, the usage of these automata for evaluating

other traces is still not proofed. For applying this methodology to the introduced use

case of finding bugs within network traces from field operational test, it is necessary

99

to proof the quality of the inferred automata in conjunction to that use case. That

means, that a more detailed analysis of the expectable rate of false alarms and the

percentage of bugs that are detectable needs to be done.

In the following the basic characteristics for determining the quality and usability

of the OoN-detection are explained, defined and estimated. With the usage of real

CAN-traces the feasibility of the proposed OoN-detection in an automotive test

scenario is examined.

4.1 The coverage criteria

The first criterion for a test mechanism is the test coverage. In the case of the

proposed self-learning approach the definition of coverage needs to be adopted to the

visible system behavior. The visible system behavior in this case is completely

included within the reference trace. The coverage needs to be calculated in relation to

the reference trace. A trace basically consists of a set of events . A sequence of

events is defined by . In case of a network trace a

sequence defines the complete recorded amount of events in the given period, which

can be easily more than 106 events.

In [10] it was shown that is not possible to infer for all events acceptance

automata. That leads to the effect that only a sub set of the elements of are

mentioned by the OoN-detection. That subset of leads also to a subset of the trace

and of sequence , because some single events of are missing
 . This results in two different coverage measurements. These are

the relation the event coverage and the trace coverage with:

event coverage (1)

trace coverage ⁄ (2)

4.2 The classification criteria

The essential criterion for classification is the rating if the classified belongs to a

specific class of object or not. In case of the OoN-detection the trace needs to be

classified in the two decision classes: (1) the trace has the same behavior as the

reference trace (2) the trace has a different behavior as the reference trace. To rate if

the decision of the OoN-detector is correct there are for different results possible:

1. True positive (tp) :The trace was classified to has the same behavior as the

reference trace and this was correct

2. False positive ():The trace was classified to has the same behavior as the

reference trace, but this was not correct

3. True negative ():The trace was classified to has a different behavior as the

reference trace and this was correct

4. False negative ():The trace was classified to has a different behavior as the

reference trace, but this was not correct

100

With this attributes the two important relational criteria, the false alarm rate

 and the rate of detectable anomalies , can be calculated.

false alarm rate

 (3)

rate of detectable

anomalies

 (4)

Estimating the rate of detectable anomalies.
The rate of detectable anomalies determines the percentage the method find real

OoN deviations in a trace. The optimal way to calculate this rate would be to have

traces that holds known bugs, that can be presented to the OoN-detection. But for this

kind of bug detection no public data sets are available.

A practicable method for estimating the rate of detectable anomalies is the

instrumentation of a trace which has no bugs inside and is completely accepted by the

inferred automata. In the proposed use case this needs to be the reference trace that

was used to learn the acceptance automata. For estimating the rate of detectable

anomalies the reference trace was instrumented in three different ways: (1) a

randomly selected event is deleted from the trace (2) a randomly selected event is

duplicated and (3) a randomly selected event is replaced by another randomly selected

event.

Estimating the false alarm rate.

The estimation of the false alarm rate turns out to be more complicated. Since the

reference trace describes not all possible behavior, the OoN-detection will find

necessarily new behavior within the test traces. But without a deeper knowledge of

the system, it is not possible to decide if the OoN-detection did in fact identify new

behavior or not.

Because a false alarm is not directly identifiable it would be helpful to have a look

at the causes of false alarms. If it is clear what circumstances can cause a false alarm,

it should be possible to estimate the count of false alarm otherwise.

The inferred acceptance automata of the OoN-detection mechanism are not based

on probabilistic decisions like neural networks or Markov chains. Therefore it can be

shown that the inferred acceptance automata do always evaluate the reference trace

correct and in the same way. But these acceptance automata can be overfitted that

they only accept the behavior of the reference trace. An overfitting in that case means

that an acceptance automaton evaluates events that are not correlated to each other.

Only if the events are correlated, they can have a dedicated behavior that is

reproducible and can therefore declared as normal. If an inferred acceptance

automaton is overfitted it accepts only the reference trace but no other traces. It can be

pointed out that the most significant part of false alarms will be caused by overfitted

automata. Therefore the ascertainment of the number of overfitted automata will give

a first impression of the false alarm rate.

It is a strong indication of overfitting, if an inferred acceptance automaton rejects

all the tested traces except the reference trace. To estimate the false alarm rate, one

test trace is evaluated by the inferred acceptance automata. All automata that reject

101

this trace are taken in the next step to evaluate the other test traces. If an automata

reject all test traces it is very likely overfitted.

5 Results of feasibility study

The best way to examine the feasibly of the described OoN-detection mechanism

would be the evaluation with real network data that have known anomalies. But for

the proposed use case, for the evaluation of network data from a cars network, there

are no such data sets available.

The evaluation results presented in this chapter are generated by using real network

data that are taken from a powertrain CAN of a car in series production. Because of

the usage of a proven in use product, it is expected that these network data do not

have any faults or anomalies.

The evaluation data set.
The starting point for the evaluation is the reference trace that was used in [10] to

infer acceptance automata. This reference trace has a length of 12.80 minutes with a

sequence length of 2,5 *106 events that is described by a set of 7172 different events.

Since this reference trace is recorded at a car in series production it is estimated that it

has no bugs inside. From this reference trace 2,848 different acceptance automata was

inferred with the methodology explained in [10].

For the quality measurement four test traces on the same car at different driving

scenarios are recorded. The recording time of these traces is in the range of 14.60 min

to 2.85 min and has in total approximately 26 min (see Table 1).

Table 1. Length of reference and test traces

Reference Trace 1 Trace 2 Trace 3 Trace 4

12.80 min 14.67 min 6.38 min 2.85 min 3.07 min

False alarm rate.
For estimating the false alarm rate Trace 1 is evaluated by the 2,848 acceptance

automata. This trace is rejected by 1,943 automata as shown in the first column of

Fig. 1. When these automata are checked for overfitting with trace 2 a number

approximately seems to be overfitted because they reject trace 1 and

2. If these overfitted automata are excluded 181 remaining automata generate an

OoN-trigger. If these remaining automata are additionally checked with trace 3 and 4

a number of 114 automata are left that seems to be not overfitted. That means with the

additionally plausibility check with only 2 trace a remaining false alarm rate of

 can be achieved (compare Fig. 1).

102

Fig. 1. Number of automata that reject the test traces

Rate of detectable anomalies.
The experiments for estimating the rate of detectable anomalies are executed by

instrumenting the reference trace. The results are shown in Table 2. In the experiment

approximately 0.1 % of the trace was modified, that leads to about 2.500 injected

anomalies.

Table 2. Experimental results for rate of detectable anomalies

Instrumentation (1) deleted (2) duplicated (3) replaced

Rate of detectable anomalies

94 % 95 % 91 %

Coverage.
The 2.848 initial inferred automata cover approximately 80 % of the trace (see

Fig. 2 with). When the overfitted automata are excluded a

number of 770 acceptance automata are usable for OoN-detection. These do have still

a coverage of approximately 45 % (compare Fig. 2 right column).

Coverage OoN-detection – normal and not normal behavior.

After the overfitting analysis a number of 770 automata are usable for OoN-

detection. If the OoN-detection mechanism is applied to these automata for the given

reference traces 621 of these automata do accept all four test traces. A number of 149

automata rejects at least one test traces. In Fig. 3 the resulting coverage of the

detected normal behavior and the detected not normal behavior is shown.

1943

181 114

0
200
400
600
800

1000
1200
1400
1600
1800
2000

number of
automata that
reject trace 1

automata that
reject trace 1 and

not trace 2

automata that
reject trace 1 and

not trace 2,3,4

n
u

m
b

e
r

o
f

au
to

m
at

a
th

at
 r

e
je

ct
 a

tr

ac
e

90%

40%

103

Fig. 2. Coverage criteria calculated for the reference trace

Fig. 3. Coverage criteria calculated for the reference trace

5.1 Discussion of results

The results provide a first impression of the applicability of the proposed self-

learning OoN-detection. The evaluation based on real CAN-communication is a first

step for approving the proposed OoN-detection. The most critical point is of course

the false alarm rate. Although the estimation of this rate tends to be difficult task, the

results provide an evidence that the false alarm rate tends to be in the range of 40 %.

In comparison to automatic test methods like code checker this seems to be acceptable

100%

77%

45%

88%

44%

100%

52%

14%

0%

20%

40%

60%

80%

100%

number of cluster inferrable automata non overfitted
automata

C
o

ve
ra

ge
 o

f
in

fe
rr

e
d

 a
u

to
m

at
a

an
d

p

e
rc

an
ta

ge
 o

f
u

sa
b

le
 a

u
to

m
at

a

trace coverage

event coverage

usable automata (%)

45%

26%
19%

35%

9%
14% 11%

3%

0%

20%

40%

60%

80%

100%

non overfitted
automata

normal behavior positive OoN-
Trigger

C
o

ve
ra

ge
 o

f
n

o
rm

al
 b

e
h

av
io

r
an

d
 O

o
N

-
Tr

ig
ge

r trace coverage

event coverage

usable automata (%)

104

(comp. [6]). A very good result was reached by the detection of anomalies with a

range of about 90 %. A comparison of the coverage is difficult, but for an

unsupervised self-learning approach a system coverage of about 45 % seems to be an

excellent result.

6 CONCLUSION AND FUTURE WORK

This paper explains and evaluates an application use case for an self-learning OoN-

detection that was established in prior work. Since the proposed OoN-detection is a

new approach in the area of system validation, this paper provides a basic quality

measurement for this automatic self-learning approach.

It could be shown that the proposed self-learning OoN-detection is potentially

usable to detect anomalies in the communication behavior in comparison to a

reference trace. Essentially for the critical false alarm rate the usage in a testing

environment with approximately 40 % seems to be acceptable.

The provided evaluation results are recorded from a car in series production that

has potentially no bugs inside. For this reason a further investigation within a real

testing environment needs to done to learn more about the expected outcome and

usability of the proposed self-learning OoN-detection for CPS.

7 REFERENCES

[1] Angluin, D. 1987. Learning regular sets from queries and counterexamples. Information

and computation 75, 87–106.

[2] Bollig, B., Katoen, J.-P., Kern, C., and Leucker, M. 2007. Replaying Play in and Play out:

Synthesis of Design Models from Scenarios by Learning. In Proceedings of the 13th

International Conference on Tools and Algorithms for Construction and Analysis of

Systems. Lecture Notes in Computer Science. Springer, Braga, Portugal, 435–450.

[3] Drabek, C., Pramsohler, T., Zeller, M., and Weiss, G. 2013. Interface Verification Using

Executable Reference Models: An Application in the Automotive Infotainment. In

Proceedings of the 6th International Workshop on Model Based Architecting and

Construction of Embedded Systems, Miami, Florida, USA, 7:1–10.

[4] Ebert, C. and Jones, C. 2009. Embedded Software: Facts, Figures, and Future. IEEE

Computer 42, 4, 42–52.

[5] Goralczyk, M., Schaeufele, B., and Radusch, I. 2011. Logging Design for Vehicle

Communication Field Operational Tests. In FAST-Zero'11 Proceedings, 1–6.

[6] Kremenek, T., Ashcraft, K., Yang, J., and Engler, D. 2004. Correlation exploitation in

error ranking. SIGSOFT Softw. Eng. Notes 29, 6, 83–93.

[7] Langer, F., Bertulies, K., and Hoffmann, F. 2011. Self Learning Anomaly Detection for

Embedded Safety Critical Systems. In Schriftenreihe des Instituts für Angewandte

Informatik, Automatisierungstechnik am Karlsruher Institut für Technologie. KIT

Scientific Publishing, 31–45.

[8] Langer, F., Eilers, D., and Knorr, R. 2009. Fault detection in discrete event based

distributed systems by forecasting message sequences with neural networks. In KI 2009:

Advances in Artificial Intelligence. Springer, 411-418.

105

[9] Langer, F. and Prehofer, C. 2011. Anomaly detection in embedded safety critical software.

In International Workshop on Principles of Diagnosis (DX) , 163–166.

[10] Langer, F. and Oswald, E. 2014. Using Reference Traces for Validation of

Communication in Embedded Systems. In ICONS 2014, The Ninth International

Conference on Systems, 203–208.

[11] Lutz, R. R. 1993. Analyzing Software Requirements Errors in Safety-Critical, Embedded

Systems. In Proceedings of the IEEE International Symposium on Requirements

Engineering, 126‐133.

[12] Peti, P., Obermaisser, R., and Kopetz, H. 2005. Out-of-norm assertions [diagnostic

mechanism]. In Real Time and Embedded Technology and Applications Symposium,

2005. RTAS 2005. 11th IEEE. IEEE, 280–291.

[13] Berg, T., Jonsson, B., Leucker, M., and Saksena, M. 2005. Insights to Angluin s Learning.

Electronic Notes in Theoretical Computer Science 118, 3–18.

