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Abstract. This paper addresses the problem of evaluating the communication 

behavior of cyber physical systems. An important problem for the validation of 

the interaction in the distributed system is missing, wrong or incomplete 

specification. In this paper, the application of a new approach for assessing the 

communication behavior based on reference traces is presented and evaluated. 

The benefit of the approach is that it works automatically, with low additional 

effort and without using any specification. This paper provides a use case in 

conjunction with a feasibility study to investigate the applicability of a self-

learning anomaly detection methodology. The data of the feasibility study are 

created by applying the described anomaly detection within a real vehicle 

network. 
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1 INTRODUCTION 

This paper focuses on test and validation of the communication behavior in cyber 

physical systems (CPS). On such systems with highly distributed functionality like it 

can be found in modern car’s electronics, the communication behavior is an important 

aspect on system validation. At field operational test it is important to analyze the 

network traffic in a fully assembled car. Even if all single electronic control units are 

tested exhaustively, a significant portion of remaining bugs resulting in errors or 

malfunction is lately found at real driving or field operational test.  

The most important problem of ensuring the correct interaction of functions in CPS 

at system-level is missing, wrong or incomplete specification (compare [11] and [4]). 

There are many works of research in progress that tries to improve the process of 

creating system specification, with the goal of building better test cases for validating 

the communication on system level. Nevertheless it is still an extensive process to get 

sufficient test models.  

Because network traffic represents the internal behavior of a distributed system, its 

analysis can help to detect possible bugs earlier and faster. But especially on system 

level test it is not easy to rate about the correctness of communication at the network. 

In [10], a new approach for building observer models to evaluate communication 

behavior automatically, with low additional effort and without using any specification 
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was introduced. There it was shown that is possible to infer meaningful automata 

from a network-reference trace. To check the applicability of the proposed approach 

this paper provides a feasibility study that shows the integration of the methodology 

proposed in [10] in an existing test scenario and examines the quality of the automata 

for detecting bugs within the communication behavior. 

The paper is structured as follows. In chapter 2 the use case for the proposed 

methodology and its integration in the test process explained. Chapter 3 provides the 

previous work and basically describes the new self-learning methodology. In chapter 

4 the quality measurements for proofing the feasibility are defined and calculated. The 

paper closes with chapter 5 conclusion and future work.  

2 INTEGRATION TO FIELD TEST 

The new approach presented in this paper shall help to find bugs in field 

operational tests faster. For this reason an important aspect of the proposed solution is 

the integration in the established testing and validation process for the car’s electronic 

infrastructure. To get an overview about the testing process of this distributed but 

even closed system in the following the basic testing steps for such a distributed 

system are described.  

As in every software development cycle the first test stage are unit tests and 

basically the second stage are integration tests. On integration tests, the different 

applications belonging to an electronic control unit (ECU) are integrated and the basic 

functionality required from this ECU is tested. The next test level in testing can be 

characterized as system validation, often it is called system test. This is a test on 

system level, where the interaction of different ECUs is tested.  

Because of the strong interaction of the embedded applications of a car with its 

environment, field operational tests are commonly finalizes the validation. For 

software realized functions this kind of test became important at least with the 

introduction of advanced driver assistant systems which need to be evaluated in real 

driving tests (compare [5]). Within this background it is a well-established practice 

that even for the cars electronic infrastructure an endurance test as final acceptance 

test is executed. This endurance test is performed within real driving field operational 

tests.  

Since the distributed network of ECUs inside the car is a closed system, in most 

cases it is not possible to control the endurance test on network level. In case of field 

operational test, mostly normal driving tasks are executed by the test drivers. At this 

testing level the test driver is only able to detect software bugs that lead to a 

noticeable malfunction of the car and its components to the driver. Because this is a 

very limited perspective to the executed software system, in most cases the network 

traffic from inside the car is recorded at test drives. The recorded network traffic 

provides information about the internal behavior of the cars electronic infrastructure 

at test drives. These traces are beside the voting of the test driver, the only source of 

information for validating the behavior of the cars electronic.  

Only when these test drives are executed without a detected malfunction over a 

dedicated distance of kilometers the electronic system of the tested car passed the 

final acceptance test. There are still a lot of remaining bugs that are lately found 
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within these tests with fully assembled car. It did not surprise that there could be 

easily summate a few million kilometers until all remaining bugs are found, fixed and 

a test period can be successful completed.  

There are two ways to shorten this expensive and time consuming procedure to get 

a fault free tests drive period within the endurance test. The first one is to reduce the 

number of remaining bugs that can cause malfunction at test drives. This require 

better testing methodologies at earlier development phases. Or secondly try to identify 

possible bugs faster and more efficient within the test drives.  

The first one is questionless methodically the clean way. But one of the basic 

problems in praxis is missing, wrong or incomplete specification of system 

requirements. This problem becomes commonly relevant with a high number of 

interacting functions like it can be found highly distributed functionality. To solve this 

problems there are many research in progress (e.g. [2],[3]) 

This paper provides a new solution for the second way, the faster identification of 

potential bugs within test drives. This solution basically tries to identify changes in 

the system behavior by comparing it with a reference trace. Thereby the probability 

that this new behavior which is not represented within the reference trace is caused by 

a bug seems to be high. For this reason a self-learning methodology for an automatic 

evaluation of the recorded network traffic from field operational tests is presented and 

evaluated in this paper.  

3 PREVIOUS WORK 

This chapter provides an overview of the author’s previous work that motivates 

this new approach and provides the foundation and experiments for the proposed self-

learning method.  

In [9], the idea of extracting dependency models from qualified communication 

behavior to rate the communication of further test cases, was motivated. With this 

idea a new methodology for assessing the communication behavior in regions with 

incomplete or missing specification should be better testable.  

Therefore the goal is the construction of a method that allows a qualitative 

comparison between communication that is presented within a reference trace and 

newly recorded traces. The essential outcome of the proposed procedure is the 

awareness, that the newly recorded network trace represents a new system behavior, 

which was not represented within the reference trace. If such a behavior is recognized, 

the method outputs a trigger or some equivalent information to the tester. At this point 

two potential expectations about the tested network behavior can be made: 1) A newly 

implemented or just jet not observed behavior was found, or 2) A bug in in 

communication behavior is detected. Just at this point a system expert has to decide if 

the proposed method detects case 1) or 2). Surely it is not possible to detect bugs, 

which are already within the reference trace included, but if no other tests detect these 

bugs and these bugs did not lead to malfunction, it is not sure if it is a bug or just 

unspecified behavior. 

In conjunction to this idea, starting with [8], the learning problem of extracting 

behavior models from traces was considered. In [8] it was pointed out that basically 

within a recorded network trace no sequences boundaries are visible. Instead a trace is 
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one single but very long sequence, which is a challenge for most learning algorithms. 

With a first simple system hypothesis, where a trace is a stream of events that can be 

generated from a finite state automaton, the applicability of an artificial neural 

network was examined within [8].  

Because of the unsatisfactory false alarm rate and the high performance utilization 

of the neural networks, other learning algorithms were looked for. The Angluin L* 

algorithm which is able to generate finite state automata (compare [1] and [13]) seems 

to be a good candidate for inferring reliable dependency models. In [7] the adaption of 

the Angluin L* learning algorithm to learning automata from network streams was 

shown. The result of the learning process from L* are acceptance automata. It can be 

shown that these automata describe very accurate the behavior of a given reference 

sequence of events, without false alarms and with a maximum on inferable 

dependencies. But at the evaluation with a real car network trace even the L* 

Algorithm fails to infer reasonable automata. The finding has to be made, that the 

learning problem is too much complex for the algorithm.  

A solution for this problem was provided in [10]. There a methodology is provided 

that reduces the complexity of the learning task, by separating sub-traces which 

describe independent execution graphs. With this solution it is possible to infer an 

acceptance automaton for each sub-trace that describes the behavior of the events in 

this sub-trace satisfactory.  

The identification of independent execution graphs within the network trace was 

undertaken in [10] with a new clustering approach based on a spectral analysis. It 

could be shown that there is a high probability that events with similar behavior in 

time belonging to the same execution graph. In [10] the evaluation of the clustering 

methodology was done by the application to a real car network trace taken from a 

controller area network (CAN) that connects the powertrain ECUs. At the result 

approximately 70% of the behavior of the CAN trace is covered by the inferred 

acceptance automata. This research results show that it is possible to set up an 

unsupervised self-learning methodology that infers behavior models from a network 

trace without the usage of a specification.  

If the reference trace represents the normal behavior of a system the inferred 

automata should accept this normal behavior. If a newly recoded trace holds even a 

normal behavior of the system, the automata should accept this trace. If this trace 

holds another behavior it should be rejected by the automata. If the inferred automata 

do not accept a newly recorded trace, this trace potentially holds a behavior that is out 

of the norm. This can be called an out of norm (OoN) behavior (comp. [12]) of the 

trace. If an OoN-behavior is detected the tester will be informed by a OoN-trigger. 

The above explained methodology for inferring acceptance automata to use them to 

evaluate newly recorded traces will be called OoN-detection in the following.  

4 QUALITY MEASUREMENTS 

Even though it is now possible to extract acceptance automata that describe the 

behavior of the reference trace satisfactory, the usage of these automata for evaluating 

other traces is still not proofed. For applying this methodology to the introduced use 

case of finding bugs within network traces from field operational test, it is necessary 
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to proof the quality of the inferred automata in conjunction to that use case. That 

means, that a more detailed analysis of the expectable rate of false alarms and the 

percentage of bugs that are detectable needs to be done.  

In the following the basic characteristics for determining the quality and usability 

of the OoN-detection are explained, defined and estimated. With the usage of real 

CAN-traces the feasibility of the proposed OoN-detection in an automotive test 

scenario is examined.  

4.1 The coverage criteria 

The first criterion for a test mechanism is the test coverage. In the case of the 

proposed self-learning approach the definition of coverage needs to be adopted to the 

visible system behavior. The visible system behavior in this case is completely 

included within the reference trace. The coverage needs to be calculated in relation to 

the reference trace. A trace basically consists of a set of events     . A sequence of 

events is defined by                      . In case of a network trace a 

sequence defines the complete recorded amount of events in the given period, which 

can be easily more than 106 events.  

In [10] it was shown that is not possible to infer for all events   acceptance 

automata. That leads to the effect that only a sub set of the elements of   are 

mentioned by the OoN-detection. That subset of   leads also to a subset of the trace 

and of sequence  , because some single events of   are missing          
             . This results in two different coverage measurements. These are 

the relation the event coverage    and the trace coverage    with:  

 

event coverage         (1) 

trace coverage                     ⁄  (2) 

4.2 The classification criteria 

The essential criterion for classification is the rating if the classified belongs to a 

specific class of object or not. In case of the OoN-detection the trace needs to be 

classified in the two decision classes: (1) the trace has the same behavior as the 

reference trace (2) the trace has a different behavior as the reference trace. To rate if 

the decision of the OoN-detector is correct there are for different results possible: 

1. True positive (tp) :The trace was classified to has the same behavior as the 

reference trace and this was correct 

2. False positive (  ):The trace was classified to has the same behavior as the 

reference trace, but this was not correct 

3. True negative (  ):The trace was classified to has a different behavior as the 

reference trace and this was correct 

4. False negative (  ):The trace was classified to has a different behavior as the 

reference trace, but this was not correct 
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With this attributes the two important relational criteria, the false alarm rate 

         and the rate of detectable anomalies         , can be calculated.  

false alarm rate          
  

     
 (3) 

rate of detectable 

anomalies 
         

  

     
 (4) 

Estimating the rate of detectable anomalies. 
The rate of detectable anomalies determines the percentage the method find real 

OoN deviations in a trace. The optimal way to calculate this rate would be to have 

traces that holds known bugs, that can be presented to the OoN-detection. But for this 

kind of bug detection no public data sets are available.  

A practicable method for estimating the rate of detectable anomalies is the 

instrumentation of a trace which has no bugs inside and is completely accepted by the 

inferred automata. In the proposed use case this needs to be the reference trace that 

was used to learn the acceptance automata. For estimating the rate of detectable 

anomalies the reference trace was instrumented in three different ways: (1) a 

randomly selected event is deleted from the trace (2) a randomly selected event is 

duplicated and (3) a randomly selected event is replaced by another randomly selected 

event.  

Estimating the false alarm rate. 

The estimation of the false alarm rate turns out to be more complicated. Since the 

reference trace describes not all possible behavior, the OoN-detection will find 

necessarily new behavior within the test traces. But without a deeper knowledge of 

the system, it is not possible to decide if the OoN-detection did in fact identify new 

behavior or not.  

Because a false alarm is not directly identifiable it would be helpful to have a look 

at the causes of false alarms. If it is clear what circumstances can cause a false alarm, 

it should be possible to estimate the count of false alarm otherwise. 

The inferred acceptance automata of the OoN-detection mechanism are not based 

on probabilistic decisions like neural networks or Markov chains. Therefore it can be 

shown that the inferred acceptance automata do always evaluate the reference trace 

correct and in the same way. But these acceptance automata can be overfitted that 

they only accept the behavior of the reference trace. An overfitting in that case means 

that an acceptance automaton evaluates events that are not correlated to each other. 

Only if the events are correlated, they can have a dedicated behavior that is 

reproducible and can therefore declared as normal. If an inferred acceptance 

automaton is overfitted it accepts only the reference trace but no other traces. It can be 

pointed out that the most significant part of false alarms will be caused by overfitted 

automata. Therefore the ascertainment of the number of overfitted automata will give 

a first impression of the false alarm rate.  

It is a strong indication of overfitting, if an inferred acceptance automaton rejects 

all the tested traces except the reference trace. To estimate the false alarm rate, one 

test trace is evaluated by the inferred acceptance automata. All automata that reject 
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this trace are taken in the next step to evaluate the other test traces. If an automata 

reject all test traces it is very likely overfitted.  

5 Results of feasibility study 

The best way to examine the feasibly of the described OoN-detection mechanism 

would be the evaluation with real network data that have known anomalies. But for 

the proposed use case, for the evaluation of network data from a cars network, there 

are no such data sets available.  

The evaluation results presented in this chapter are generated by using real network 

data that are taken from a powertrain CAN of a car in series production. Because of 

the usage of a proven in use product, it is expected that these network data do not 

have any faults or anomalies.  

The evaluation data set. 
The starting point for the evaluation is the reference trace that was used in [10] to 

infer acceptance automata. This reference trace has a length of 12.80 minutes with a 

sequence length of 2,5 *106 events that is described by a set of 7172 different events. 

Since this reference trace is recorded at a car in series production it is estimated that it 

has no bugs inside. From this reference trace 2,848 different acceptance automata was 

inferred with the methodology explained in [10].  

For the quality measurement four test traces on the same car at different driving 

scenarios are recorded. The recording time of these traces is in the range of 14.60 min 

to 2.85 min and has in total approximately 26 min (see Table 1).  

Table 1. Length of reference and test traces 

Reference Trace 1 Trace 2 Trace 3 Trace 4 

12.80 min 14.67 min 6.38 min 2.85 min 3.07 min 

False alarm rate. 
For estimating the false alarm rate Trace 1 is evaluated by the 2,848 acceptance 

automata. This trace is rejected by 1,943 automata as shown in the first column of 

Fig. 1. When these automata are checked for overfitting with trace 2 a number 

approximately               seems to be overfitted because they reject trace 1 and 

2. If these overfitted automata are excluded 181 remaining automata generate an 

OoN-trigger. If these remaining automata are additionally checked with trace 3 and 4 

a number of 114 automata are left that seems to be not overfitted. That means with the 

additionally plausibility check with only 2 trace a remaining false alarm rate of 

              can be achieved (compare Fig. 1). 
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Fig. 1. Number of automata that reject the test traces 

Rate of detectable anomalies. 
The experiments for estimating the rate of detectable anomalies are executed by 

instrumenting the reference trace. The results are shown in Table 2. In the experiment 

approximately 0.1 % of the trace was modified, that leads to about 2.500 injected 

anomalies. 

Table 2. Experimental results for rate of detectable anomalies 

Instrumentation (1) deleted (2) duplicated (3) replaced 

Rate of detectable anomalies 

         
94 % 95 % 91 % 

Coverage. 
The 2.848 initial inferred automata cover approximately 80 % of the trace (see 

Fig. 2 with                ). When the overfitted automata are excluded a 

number of 770 acceptance automata are usable for OoN-detection. These do have still 

a coverage of approximately 45 % (compare Fig. 2 right column). 

Coverage OoN-detection – normal and not normal behavior. 

After the overfitting analysis a number of 770 automata are usable for OoN-

detection. If the OoN-detection mechanism is applied to these automata for the given 

reference traces 621 of these automata do accept all four test traces. A number of 149 

automata rejects at least one test traces. In Fig. 3 the resulting coverage of the 

detected normal behavior and the detected not normal behavior is shown.  
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Fig. 2.  Coverage criteria calculated for the reference trace 

 

Fig. 3. Coverage criteria calculated for the reference trace 

5.1 Discussion of results 

The results provide a first impression of the applicability of the proposed self-

learning OoN-detection. The evaluation based on real CAN-communication is a first 

step for approving the proposed OoN-detection. The most critical point is of course 

the false alarm rate. Although the estimation of this rate tends to be difficult task, the 

results provide an evidence that the false alarm rate tends to be in the range of 40 %. 

In comparison to automatic test methods like code checker this seems to be acceptable 
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(comp. [6]). A very good result was reached by the detection of anomalies with a 

range of about 90 %. A comparison of the coverage is difficult, but for an 

unsupervised self-learning approach a system coverage of about 45 % seems to be an 

excellent result.  

6 CONCLUSION AND FUTURE WORK 

This paper explains and evaluates an application use case for an self-learning OoN-

detection that was established in prior work. Since the proposed OoN-detection is a 

new approach in the area of system validation, this paper provides a basic quality 

measurement for this automatic self-learning approach.  

It could be shown that the proposed self-learning OoN-detection is potentially 

usable to detect anomalies in the communication behavior in comparison to a 

reference trace. Essentially for the critical false alarm rate the usage in a testing 

environment with approximately 40 % seems to be acceptable.  

The provided evaluation results are recorded from a car in series production that 

has potentially no bugs inside. For this reason a further investigation within a real 

testing environment needs to done to learn more about the expected outcome and 

usability of the proposed self-learning OoN-detection for CPS.  
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