Analysing the Style of Textual Labels in #*
Models

Arian Storch!, Ralf Laue?, and Volker Gruhn?®

1 it factum GmbH
arian.storch@it-factum.de
2 University of Applied Sciences of Zwickau, Department of Information Science
ralf.laue@fh-zwickau.de
3 Paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen
volker.gruhn@paluno.uni-due.de

Abstract. An important quality aspect for conceptual models (such
as " models) is the quality of textual labels. Naming conventions are
aimed to make sure that labels are used in a consistent manner. We
present a tool that checks automatically whether a textual label in an ¢*
model adheres to a set of naming conventions. This does not only help
to enforce the use of a consistent labelling style, it also helps to detect
modelling errors such as goals in ¢* models that should be softgoals (or
vice versa).

1 Introduction

i* is a frequently used visual language for modelling the social relationships be-
tween actors. The language contains graphical symbols for various concepts (such
as goal or task) which have to be used correctly if the model should be useful.
In [1], Horkoff et al. analysed 30 i* models from student works and academic
papers in order to discover model elements that use a convention contrary to
the generally accepted guidelines published in the i* Wiki . They found a large
number of problems in these models that result from the fact that the wrong
type of model element was used. In the 30 models, Horkoff et al. identified 10
problems of the type “softgoal should be goal”, 15 problems “goal should be
softgoal”, 8 problems “task should be softgoal” and 7 problems “softgoal should
be task”.

We believe that a way to reduce such problems can be to use a consistent
labelling style throughout the model. By forcing the modeler to think whether
an element should be named “reduce waste” or “waste to be reduced”, he or
she is also forced to think whether the concept should be represented as a task
or as a goal. Furthermore, the usage of common labelling styles can reduce the
difficulty to understand a model.

"http://istar.rwth-aachen.de/tiki-index.php?page=i*4-Guide

2 Labelling Styles for ¢* Models

We are aware of three papers that suggest conventions for the style of i* element
labels. In [2], the authors recommend the style

Element type Syntax Example
Goal object + “be” + verb in passive| Information is published
voice
Softgoal quality attribute (4 object or Secure access
task)
Task verb in infinitve + object Confirm agreement
Resource name of the object User access

[3] suggests a similar style:

Element type Syntax Example
Goal subject + “be” + verb Result be correct
Softgoal softgoal [topic] Improve [IT skills]
Task verb + object Fill out application form
Resource Noun Confirmation

[4] suggests the labelling style:

Element type Syntax Example
Goal object + passive verb Information collected
Softgoal goal syntax + complement Information checked quickly
(object) complement Timely [Virus List]

([Dependum)])
Task verb (+ object) (+ complement)| Answer doubts by e-mail
Resource (adjective +) object Updated Virus List

In the above tables, parentheses are used to denote optional elements; brack-
ets are part of the label. To our best knowledge, current i* modelling tools are
not able to validate labels with respect to such conventions. However, there is a
great amount of work on checking the labels in business process models. When
developing our approach for style checks of i* labels, we made use of the experi-
ences with tools developed in this context (see [5-7]; the last reference contains
an overview on more papers on the topic).

Although the styles shown in the above tables seem to be quite similar, a
closer look shows that there are subtle differences. Let’s assume that a Resource
label should be a “name of the object”. This is more restrictive than saying it
should be a noun, because nouns can be accompanied by articles, attributive and
adjectives. In that case “mail” would be valid, but “sent mail” won’t. Similarly, if
we would require that a Softgoal should rather be labeled with a quality attribute
than with a Goal syntax, “usable” would be valid, but not “User interface is
usable”. For this reason, we decided to regard a label as having the correct style
if it adheres to the following superset of style rules:

Element type Syntax Example
Goal object + passive verb Trip advice is provided
Softgoal | quality attribute (+ object) (+ Precise information
complement,)
goal syntax (4 complement) Document is sent securely
Task verb (in present form) + object | Use back-end user interface
(+ complement)
Resource object Route card

3 Label-Checking Algorithm and Patterns

3.1 Third-Party Frameworks for Natural Language Processing

To analyse, process and validate a label, we first need to know what kinds of
words it contains. This process is called part-of-speech (POS) tagging. POS-
taggers typically combine lexical databases with statistical algorithms to deter-
mine the kind of a word, a part-of-speech or even a phrase within a sentencel§].
One of the most popular POS tagger is the Stanford Parser? which is contained
in a toolset developed by the Stanford Natural Language Processing Group?.
Another frequently used tool is WordNet[9]%, a lexical database which provides
information about semantic and lexical relations between words. A combined
API for both frameworks is provided by a tool called gap (quality assurance
project) which is currently developed by the bflow* Toolbox team®. The API
provides an easy access to the Stanford Parser and WordNet. Using that API,
we could focus on the implementation of the labelling style checks which will be
discussed in the following subsections.

3.2 Owur Approach

Our goal is to compare the label of an i* model element to the style rules for this
element type. For this purpose, we make use of the Stanford Parser, a statistical
parser that works out the grammatical structure of sentences. It can recognize
which groups of words go together as phrases and which words are the subject
or object of a verb?.

The parser provides viable results when the input is a complete sentence.
However, this is unfortunately often not the case for a label in an ¢* model.
Assume that a Resource is labeled with “log message”. This phrase is ambiguous,
because “log” can be either a verb or a subject. To determine the correctness, the
parser needs more context information, which we can derive from the element
type. By analysing “log message” only, the parser will find that “log” is a verb
and “message” is a noun. In that case, it cannot recognize that this phrase is

http://nlp.stanford.edu/software/lex-parser.shtml
3http://www-nlp.stanford.edu/
“http://wordnet.princeton.edu/
http://www.bflow.org/

an object which is valid for a Resource label. Similar problems exist with other
element types. To deal with such problems, we have decided to add additional
words to the labels, thus trying to create complete sentences.

Our general approach can be summarized as follows: First, we complement
the label with a prefix that depends on the element type such that for correctly
named labels, we get a complete sentence. For the label to be valid, the re-
sulting sentence has to be syntactically correct. In the next step, the Stanford
Parser processes the sentence and creates the so-called phrase structure tree of
the sentence. It assigns to each word a part-of-speech (POS) tag such as CC
(coordinating conjunction), DT (determiner), EX (existential there), IN (prepo-
sition), JJ (adjective), NN (noun), VB (verb), VBN (Verb, past participle) and
VBZ (verb, 3rd person singular present)[10].

We define a pattern of valid sequences of POS tags for each type of mod-
elling element. The label is regarded as valid if its POS tags match this pattern,
allowing that the label may contain additional words after the pattern (this way
both “Test database” as “Test database for consistency” would be regarded as
a task).

We describe the style rules by a pattern in the Extended Backus-Naur Form.
At first, we describe the POS tags of an Object. Examples of valid objects and
the corresponding sequences of POS tags are:

Label Sequence of POS tags
bank NN

test run NN NN

list of credit cards NN IN NN NN

list of valid credit cards |NN IN JJ NN NN
summarized balance sheet|JJ NN NN

This is expressed by the following rules:
NNSEQ := NN, {NN}; (examples: “bank”, “test run”)
JNS := [JJ, {JJ}], NNSEQ; (examples: “cheque”, “valid cheque”)
OBJECT := [DT], JNS, [IN, JNS]; (ezample: “a complete list of valid credit
cards”)

Resource style check Given a label L, we complement it with the prefix
“There is a” and the suffix “.” (period), i.e. the parser analyses the (potential)
sentence “There is a L.” . We conclude that the label is correct, if L matches
the pattern of an object.

We use “There is” as prefix in order to increase the probability of identifying
“is” as the only verb of the sentence. For instance, if we have to validate the
label “summarized balance sheet”, “summarized” (without this prefix) would be

wrongly tagged as verb.

Task style check Given a label L, the parser analyses the (potential) sentence
LLI L.”

4 4 - Strategic dependencies in the Grid-.ced 52 =g
* | 5% Palette b
NEEIETE
Predict flooding O Actor
©) Agent
& Position
Prediction O Role
=eaesy < Hardgoal
el Environ = O Softgoal
warning —_ ment O Task
system Energy agenc
STrewmar gency [Resource
0 Dependency

—+ Decomposi...

—» Means-ends

Fault tolerance
+ | = Contributi...
—# Make S2

< [

2 Tasks [Properties [Attribute View | Bl Console 52 |[£i Problems ® QE‘ ot Com v T (=
Add-on Console

Error] Lab

[g hould be OBIECT + BE + VERB (in passive voice)' Type: 'goal’ Id: '_cdPIBHFREeC4h8rleQG4KA'
[Error] Lab Prediction accuracy’ Message: 'Should be at least a QUALITY ATTRIBUTE or an OBJECT + BE + VERB (in passive voice)' Type
[Error] Lab Energy efficiency’ Message: 'Should be at least a QUALITY ATTRIBUTE or an OBJECT + BE + VERE (in passive veice)' Type:

[Error] Label: 'Fault tolerance' Message: 'Should be at least a QUALITY ATTRIBUTE or an OBJECT + BE + VERB (in passive veice)' Type: 'si|

Fig. 1. Result of a Style Check in openOME

L is required to match the pattern of a Task:
TASK := VB, [IN], OBJECT; (exzamples: “Test database”, “Add to score”)

Goal style check A Goal label is required to match the pattern:

GOAL := OBJECT, (“is” | “are”), VBN; (ezample: “Results are corrected”)

Softgoal style check Because there are two competing rules, the validation is
done in two steps. First, the label is validated by the “quality attribute” rule.
For this purpose, the parser analyses the (potential) sentence “It is L.”. Second,
it is checked whether the label is a goal, followed by an arbitrary complement.

L is required to match the pattern of a Softgoal (possibly followed by an
arbitrary complement):
SG := QA | GOAL; (quality attribute or goal)
QA :=JJ, {11}, [OBJECT]; (example: “inexpensive delivery”)

Fig.1 shows the validation result of a model from our tool within the *
modelling tool open OMES.

Shttp://www.cs.toronto.edu/km/openome/

4 Conclusion

In this paper, we presented a set of POS tag patterns that can be used to vali-
date the adherence of i* labels to a set of style recommendations. We derive the
correctness of a label from its element type and the related style recommenda-
tion. We achieved reliable results by complementing the given (normally short)
labels to (potentially) whole sentences.

These patterns have been implemented using the tool gap that provides an
API to WordNet and the Stanford Parser. Our tool prototype is both extensi-
ble as configurable. It is easy to change our patterns, remove or add new ones.
Though we tested our patterns within openOME, there is no technical depen-
dency between openOME and our prototype. gap and our style checks can be
used with any other tool as well.

A drawback we observed quite often is an incorrect spelling which flaws the
reliability of the checks. For instance, “relevant advices” will lead to another
result than “relevant advises” because the POS tagger cannot identify the word
correctly.

In future, we plan to add additional linguistic analysis functionality to our
tool in order to make more sophisticated analysis possible.

References

1. Horkoff, J., Elahi, G., Abdulhadi, S., Yu, E.: Reflective analysis of the syntax and
semantics of the i* framework. In: Advances in Conceptual Modeling, Challenges
and Opportunities. Volume 5232 of LNCS. Springer (2008) 249-260

2. de Padua Albuquerque Oliveira, A., do Prado Leite, J.C.S., Cysneiros, L.M.: Using
i* meta modeling for verifying i* models. In: 4th International i* Workshop4. (2010)
76-80

3. de Padua Albuquerque Oliveira, A., Cysneiros, L.M.: Defining strategic depen-
dency situations in requirements elicitation. In: Workshop em Engenharia de Reg-
uisitos. (2006) 12-23

4. Martinez, C.P.A.: Systematic Construction Of Goal-Oriented COTS Taxonomies.
PhD thesis, Universitat Politecnica de Catalunya (2008)

5. Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Formalizing linguistic
conventions for conceptual models. (2009) 70-83

6. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Inf. Syst. 37 (2012) 443-459

7. Leopold, H., Eid-Sabbagh, R.H., Mendling, J., Azevedo, L.G., Baido, F.A.: De-
tection of naming convention violations in process models for different languages.
Decision Support Systems 56 (2013) 310-325

8. Megyesi, B.: Shallow parsing with pos taggers and linguistic features. The Journal
of Machine Learning Research 2 (2002) 639-668

9. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press (1998)

10. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated
corpus of English: The Penn Treebank. Comp. linguistics 19 (1993) 313-330

