
Formal Enforcement of Security Policies on

Choreographed Services

Mahjoub Langar and Karim Dahmani

LIP2 Research Laboratory, Facult◆e des Sciences de Tunis, Tunisia

Abstract. Web services are software systems that support distributed
applications composed of independent processes which communicate by
message passing. To realize the full potential of web services, we need
to compose existent web services in order to get more functionalities.
However the composition of web services should be secure. In this paper
we propose an automatic formal approach to monitor the execution of a
choreography of web services and we prove its correctness. We introduce
the syntax and semantic rules of a new operator which takes as input
a choreography and a security policy and produces as output a secure
version of this choreography which behaves like the original one and does
not violate the security policy.

Keywords: Choreographed services, web service security, formal veri�cation,
runtime veri�cation

1 Introduction

With the explosive growth of the Internet, intranet and electronic commerce,
the concept of web services has emerged in the world to be exploited by most
cross-organizational boundaries. In fact, web services provide a suitable techni-
cal foundation for making business processes accessible within and across en-
terprises. Moreover web services are software systems that support distributed
applications composed of independent processes which communicate by message
passing. But for an appropriate exploitation of web services, we need to com-
pose them. Indeed, individual web services often o↵er limited capabilities. In
some situations, a client's request cannot be satis�ed by a single web service.
However, when composed with other web services, they can satisfy the client
demand. To realize the full potential of web services, we need to compose exis-
tent web services in order to get more functionalities. Web service composition
rules deal with how di↵erent services are composed into a coherent global ser-
vice. In particular, they specify the order in which services are invoked, and the
conditions under which a certain service may or may not be invoked. Among
the approaches investigated in service composition, we distinguish orchestra-
tion and choreography. The orchestration composes available services and adds
a central coordinator (the orchestrater) which is responsible for invoking and
composing the single sub-activities. However the second one, referred to as web

service choreography, does not assume the exploitation of a central coordinator
but it de�nes complex tasks via the de�nition of the conversation that should be
undertaken by each participant. While several proposals exist for orchestration
languages (e.g. Business Process Execution Language (BPEL)[1], Web Services
Flow Language (WSFL)[2]), choreography languages are still in a preliminary
stage of de�nition. A proposal, Web Service Choreography Description Language
(WS-CDL)[3], was issued by the World Wide Web Consortium (W3C) in De-
cember 2004.

The need of secure web service composition has led to a great interest from
researchers of the last decade. However most of the works focus on how to guar-
antee desired properties such as correctness, deadlock avoidance, etc. In our
work, in addition to these properties, we introduce an automatic approach to
monitor a choreography by specifying and enforcing security policies on web ser-
vices and we prove its correctness using formal methods. Some works such as
[4,5] have enforced security policies on concurrent systems using process alge-
bra. Formal methods are mathematical techniques that are well-suited to address
the aforementioned issues. A variety of proposals to formally describe, compose
and verify web service compositions using the formal methods exists. In [6], a
Petri-net based design and veri�cation framework for web service composition
is proposed. In [7], the authors introduce a Petri-net based algebra to compose
web services based on control �ows. In [8], authors use Milner's process algebra
CCS to specify and compose web services as processes, and the Concurrency
Workbench to validate properties such as correct web service composition. In
[9], the authors provide an encoding of BPEL processes into web service timed
state transition systems, a formalism that is closely related to timed automata
and discuss a framework in which timed assumptions can be model checked.

In this paper, we propose an enforcement of security policies over web ser-
vices using formal methods. We present an automated approach for monitoring
the behavior of a service in a choreography. More precisely, we de�ne an operator
⌦ that takes as input a process P and a security policy P

�

and generates a new
process P 0 = P ⌦ P

�

which respects the following conditions :

✏ P 0 js P
�

; i.e. P 0 satis�es the security policy P
�

:
✏ P 0 v P; i.e. behaviors of P 0 are also behaviors of P:
✏ 8Q : ((Q js P

�

) and (Q v P)) =) Q v P 0, i.e. all good behaviors of P
are also behaviors of P 0:

P P�

⌦

P 0 = P ⌦ P�

The rest of the paper is structured as follows. In section 2, we brie�y describe
the global calculus. Section 3 presents the formalism used to specify security poli-
cies. Section 4 illustrates the formalism used to specify choreographed services.
In section 5, we present our security framework for monitoring a choreography.
In section 6, we discuss some related works while conclusions are in section 7.

2 Global Calculus

The global calculus [10] is distilled from WS-CDL. It describes the global �ow of
interactions between the participants. The syntax of the global calculus is given
by the standard BNF.

2.1 Syntax of the Global Calculus

I ::= A ! B : ch(⌫~s):I (Init)
j A ! B : shop; e; yi:I (Comm)
j x@A := e:I (Assign)
j if e@A then I1 else I2 (IfThenElse)
j I1 + I2 (Sum)
j I1jI2 (Par)
j (⌫s)I (New)
j XA (recV ar)
j rec XA:I (Rec)
j 0 (Inaction)

The �rst rule (Init) says that the participant A invokes a service ch located
at B and initiates new freshly generated session channels ~s: The second rule
(Comm) expresses the sending action by A whose message consists of a selected
operator op and an expression e to the participant B which will store the value
of e at the variable y: (Assign) is a local construct which updates the variable x
located at A with e: (Par) and (Sum) are respectively the parallel composition
and the non-deterministic choice of interactions. (IfThenElse) is the standard
conditional operation, while (recV ar) and (Rec) are used to express recursive
behavior of interactions. 0 is the inactive interaction.

2.2 Semantics of the Global Calculus

The formal semantics of the global calculus is de�ned in terms of con�gurations
(�; I): The notation (�; I) ! (�0; I 0) says that the global description I at a state
� (which is the collection of all local states of the participants) will reduce to I 0

at a new state �0: Samples of reduction rules are presented here while the overall
operational semantic is detailed in [10].

(Init)
�

(�;A ! B : ch(⌫~s):I) ! (�; (⌫~s)I)

(Comm)
� ` e@A + v

(�;A ! B : shop; e; xi:I) ! (�[x@B 7! v]; I)

(Assign)
� ` e@A + v

(�; x@A := e:I) ! (�[x@A 7! v]; I)
(Par)

(�; I1) ! (�0; I 01)

(�; I1jI2) ! (�0; I 01jI2)

(Sum)
(�; I1) ! (�0; I 01)

(�; I1 + I2) ! (�0; I 01)
(Rec)

(�; I[rec XA:I=XA]) ! (�0; I 0)

(�; rec XA:I) ! (�0; I 0)

The �rst rule is for initiation : A invokes a service located at B and initiates
session channels ~s which will be shared locally by A and B: The second rule is for
communication. The notation � ` e + v is an evaluation judgment : � evaluates
the expression e to the value v: �[x@B 7! v] is the resulting state of updating
the local variable x at B by v: The evaluation judgment is also used in the
assignment rule. The fourth rule is for parallelism. The (Sum) rule describes the
behavior of a non-deterministic choice. The (Rec) rule says that if the unfolding
of rec XA:I under � reduces to I 0 then rec XA:I under � will reach (�0; I 0):

Example 1. This example shows a communication between a buyer and a seller.
These participants share new freshly generated session channels B2Sch and
S2Bch: Through S2Bch; the seller o↵ers a quote to the buyer. Through B2Sch;
the buyer selects one of the two options o↵ered by the seller, QuoteAccept and
QuoteReject. If the �rst option is selected, the buyer sends the quote "100"
which will be stored in x by Seller and continues with the interaction I1: In the
other case, the seller sends the abort number stored in the variable x

AbortNo

which will be stored in y by the Seller and terminates.

Buyer ! Seller : ch(⌫B2Sch; S2Bch):
Seller ! Buyer : S2Bchhquote; 100; yi:
if y@Buyer  1000 then
f Buyer ! Seller : B2SchhquoteAccept; 100; xi:I1 g

else
f Buyer ! Seller : B2SchhquoteReject; x

abortNo

; xi:0 g

3 Security Policy Speci�cation

The language that we will use for the speci�cation of security policies is EPC�

which is a subset of EPC (End-point calculus). The End-Point Calculus pre-
cisely identi�es a local behavior of each participant in a web service. End-Point

Calculus is inspired from the ⇡-calculus. It is an applied variant of ⇡-calculus
augmented with the notion of participants and their local states. In [10], au-
thors have established a projection from the global calculus into the end-point
calculus. So descriptions of participants behaviors in end-point calculus are not
extracted directly from the choreography, but projected from the global calculus.
Details of this theory of end-point projection are presented in [10]. Since in the
proposed enforcement approach we transform the security policy to a monitor,
we reach immediately this goal by choosing EPC� since it is a subset of EPC:

3.1 Syntax of EPC�

We show the syntax of EPC�; where s denote session channels, e an expression
which can be an atomic value (such as a natural number or a boolean value) or
a function (such as arithmetic functions and boolean operators) or a variable.
op1; op2; ::: range over operations. x is a variable. The �rst construct is a receiving
action, it is the invocation of one of the operators op

i

and reception of an expres-
sion which will be evaluated and stored in x

i

: The second construct is a sending
action, it is the invocation of operator op with expression e: Furthermore, the
operator "�" represents the alternative composition. Finally, recursion is used
for representing unbounded repetition. For representing recursive behaviors, we
use term variables X;Y; : : : The operator used for recursion is rec X:P: Each
occurrence of X in P denotes a recurring point. rec X:P behaves as P until an
occurrence of X is found in the execution of P; then it will return to rec X:P:

sB⌃
i

op
i

(x
i

):P
i

; sC ophei:P; P1 � P2; X; rec X:P; 0

3.2 Semantics of EPC�

Note that processes do not evolve alone. A process is located in a participant
which synchronize with another one to evolve. A participant A with its behavior
P at a local state � is called a network and denoted by A[P]

�

: Syntax of networks
is given by the following grammar :

N ::= A[P]
�

(Participant)
j N jM (Parallel-NW)
j (⌫s)N (Res-NW)
j ✏ (Inaction-NW)

where A[P]
�

is a participant with its behavior as shown in the �rst construct.
Two communicating participants are represented by two networks combined by
parallel composition. When two participants initiate a session channel for com-
munication, this session channel must be restricted to these two participants,
this is given by (Res-NW): ✏ denote the lack of networks. Reduction rules of
networks are given by :

M ⌘ M 0 M 0 ! N 0 N 0 ⌘ N

M ! N
Struct-NW

M ! M 0

M jN ! M 0jN Par-NW
M ! M 0

(⌫s)M ! (⌫s)M 0Res-NW

Semantics of EPC� is then given by :

�2 ` e + v

A[sC op
j

hei:P]
�1 jB[sB⌃

i

op
i

(x
i

):Q
i

]
�2 ! A[P]

�1 jB[Q
j

]
�2[xj 7!v]

A[P1]� ! A[P 0
1]�0

A[P1 � P2]� ! A[P 0
1]�0

A[P [rec X:P=X]]
�

! A[P 0]
�

0

A[rec X:P]
�

! A[P 0]
�

0

Security policies are usually speci�ed in logic-based languages. Such languages
employ mainly three operators to compose properties : and, or and not: The
or operator is given here by �: The not operator is de�ned here as follows :
assume we have two participants A and B communicating and we want to apply
the property "A should not send op1 to participant B", then we write it using
EPC� as follows :

P = rec X:(s
B

C �
i 6=1

op
i

he
i

i:X � s
B

B⌃
i

op
i

(x
i

):X)

Example 2. Assume we have a client wanting to check its account details within
a bank. The bank should not send him back his account details if he is not
yet authenticated. A client is said to be authenticated if he has received from
the bank an acceptance for his authentication's attempt using the operation
accept: The bank answers the client for his account request through the operation
resAccount: The security property will then be written as follows :

P
�

= rec X:(sB⌃
i

op
i

(x
i

):X �

sC �
opi =2faccept;resAccountg

op
i

hei:X �

sC accept:rec Y:(sC�
i

op
i

he
i

i:Y � sB⌃
i

op
i

(x
i

):Y))

The security property is expressed using the recursion operator. In the recursion
block, we have 3 behaviors combined with the internal choice � which we denote
by P

�1 ; P
�2 and P

�3 where

P
�1 = sB⌃

i

op
i

(x
i

):X

P
�2 = sC �

opi =2faccept;resAccountg
op

i

hei:X

P
�3 = sC accept:rec Y:(sC�

i

op
i

he
i

i:Y � sB⌃
i

op
i

(x
i

):Y)

The block P
�1 expresses the fact that the property allows all receiving actions.

The block P
�2 inhibits sending accept or resAccount to the client. The block P

�3

intercepts the accept sending action and then no more restrictions are imposed
since the authentication of the client is accepted.
So, an intruder who wants to check an account's details without authentication
cannot achieve its goal since the resAccount is only permitted in the block
following the accept sending action.

4 Choreography Speci�cation

The technique used in this paper for describing the composition of web services
is the choreography. The WS-CDL is based on two engineering principles :

Service Channel Principle corresponds to the repeated availability of service
channels.

Session Principle is a basic principle in many communication-centred programs
which says a sequence of conversations belonging to a protocol should not be
confused with other concurrent runs of this or other protocols by the participants.

As a speci�cation of the choreography description language WS-CDL, we
introduce a modi�ed version of the end-point calculus which is a formalism
presented in [10]. The end-point calculus describes the behavior of a participant
in a choreography from its end-point view.

4.1 Secured End-Point Calculus

The secured end-point calculus EPC�

S

is a variant of EPC (End-Point Calculus)[10].

EPC�

S

has the particularity of explicitly handling the monitoring concept through
its operator @

P� : For instance, the process @P�(P) can execute only actions that
could be executed by both the controller P

�

and the process P: We describe
hereafter the formal syntax and dynamic semantics of the secured end-point
calculus.

Syntax of EPC�
S Since EPC� is a subset of EPC and EPC�

S

is an extension

of EPC; a part of the syntax of EPC�

S

is presented in the last section. So in

this section we will present the overall syntax of EPC�

S

but we will describe only
constructs that have not been described before.

P ::= !ch(~s):P
j ch(⌫~s):Q
j sB⌃

i

op
i

(x
i

):P
i

j sC ophei:Q
j x := e:P
j if e then P else Q
j P �Q
j P j Q
j (⌫s)P
j X
j rec X:P
j 0

j @
P�(P)

The two �rst constructs represent session initiation. !ch(~s):P is used for input
and ch(⌫~s):Q for output. !ch(~s) says that the service channel ch; which is avail-
able to public, is ready to receive an unbounded number of invocations, o↵ering
a communication via its freshly generated session channels s 2 ~s: ch(⌫~s) is an
invocation of a service located at the service channel ch and an initiation of a
communication session which will occur through session channels ~s: After a ses-
sion has been initiated between two participants and freshly generated session
channels have been shared between them, they can communicate using the com-
munication constructs. The assignment operator is x := e:P . if e then P else Q
is a choice based on the evaluation of the expression e: The parallel composi-
tion is given by P jQ: The restriction construct (⌫s)P indicates that the session
channel s is local to P: 0 denotes the lack of actions. Finally, @

P�(P) is the en-
forcement operator which controls the execution of P by allowing it to evolve if
P
�

is satis�ed.

Semantics of EPC�
S

Initiation/Communication simulation Let P be a process stipulating the local
behavior of a participant A in a web service. We observe in the end-point cal-
culus reduction rules that processes always evolve without an external factor
unless in initiation and communication. In fact, a participant initiating a com-
munication or communicating with an another participant needs to synchronize
with him to realize the interaction . Therefore, for enforcing security policies
on a participant's behavior, we need to have a totally local description of its
interactions. So we need to de�ne a simulation relation for the initiation and the
communication of processes so that we can simulate the evolution of a process
locally, i.e. without synchronizing with an another participant . We will de�ne
the normal form of a process then introduce the simulation relation.

De�nition 1 (Normal form of a process). Every process representing the

local behavior of a participant in a web service can be written as an internal sum

of processes, which we call the normal form of a process :

8P 2 P; P = �
i

a
i

P
i

where P denotes the set of processes, a
i

range over atomic actions and P
i

range

over processes in P:

De�nition 2 (Simulation Relation). We de�ne a simulation relation over

networks, denoted by A[P]
�

a A[P 0]
�

0 ; which says that process P in A at the

state � is able to execute the action a and reduce to P 0
with a new local state �0:

The simulation relation is de�ned following this rule

P = �
i

a
i

P
i

9i 2 f1; : : : ; ng : a = a
i

A[P]
�

a A[P
i

]
�

This rule says that when P is written in its normal form and one of the

constituting processes is able to do an action a then A[P]
�

is also able to do it.

Semantics of EPC�

S

:

Init
�

A[!ch(~s):P j P 0]
�A j B[ch(⌫~s):Q j Q0]

�B ! (⌫~s)(A[!ch(~s):P jP jP 0]
�A j B[QjQ0]

�B)

�
A

` e + v

A[x := e:P jP 0]
�A ! A[P jP 0]

�A[x 7!v]
Assign

�
A

` e + tt

A[if e then P1 else P2jP 0]
�A ! A[P1jP 0]

�A

IfTrue

�
A

` e + ff

A[if e then P1 else P2jP 0]
�A ! A[P2jP 0]

�A

IfFalse

A[P1jR]
�A ! A[P 0

1jR]
�

0
A

A[P1jP2jR]
�A ! A[P 0

1jP2jR]
�

0
A

Par
A[P]

�A ! A[P 0]
�

0
A

A[(⌫s)P]
�A ! A[(⌫s)P 0]

�

0
A

Res

Init-In-Sec
�

A[@
P�(!ch(~s):P)]

�A jB[ch(⌫~s):QjR]
�B ! (⌫~s)(A[@

P�(P)j@
P�(!ch(~s):P)]

�A jB[QjR])

Init-Out-Sec
�

A[@
P�(ch(⌫~s):P)]

�A jB[!ch(~s):QjR]
�B ! (⌫~s)(A[@

P�(P)]
�A jB[!ch(~s):QjQjR]

�B)

A[P]
�A

sBop(x) A[P 0]
�A A[P

�

]
�A

sBop(x) A[P 0
�

]
�A �

A

` e + v

A[@
P�(P)]

�A jB[sC ophei:QjR]
�B ! A[@

P

0
�
(P 0)]

�A[x 7!v]jB[QjR]
�B

Comm-In-Sec

Comm-Out-Sec

A[P]
�A

sCopjhei A[P 0]
�A A[P

�

]
�A

sCopjhei A[P 0
�

]
�A �

B

` e + v

A[@
P�(P)]

�A jB[sB⌃
i

op
i

(x
i

):Q
i

jR]
�B ! A[@

P

0
�
(P 0)]

�A jB[Q
j

jR]
�B [xj 7!v]

�
A

` e + v

A[@
P�(x := e:P)]

�A ! A[@
P�(P)]

�A[x 7!v]
Assign-Sec

A[@
P�(P1)]� ! A[@

P

0
�
(P 0

1)]�0

A[@
P�(P1jP2)]� ! A[@

P

0
�
(P 0

1jP2)]�0
Par-Sec

� ` e + tt

A[@
P�(P jif e then P1 else P2)]� ! A[@

P�(P jP1)]�
IfTrue-Sec

� ` e + ff

A[@
P�(P jif e then P1 else P2)]� ! A[@

P�(P jP2)]�
IfFalse-Sec

A[@
P�(P)]

�

! A[@
P

0
�
(P 0)]

�

0

A[(⌫~s)(@
P�(P))]

�

! A[(⌫~s)(@
P

0
�
(P 0)]

�

0)
Res-Sec

The Init-rule shows how two participants initiate a session by sharing new
freshly generated session channels ~s: These session channels are restricted to par-
ticipants A and B by the binding operator (⌫): Assignment is a local construct.
Assign-rule evaluates an expression e and assigns the result of this evaluation
to the variable x in A; then A behaves as P: The Res-rule restricts the use of
session channels ~s to the process P in A: Init-In-Sec and Init-Out-Sec are the
rules for communication initiation. We do not control session initiations but we
control communication messages between the participants. Communication rules
say if P

�

and P are able to send or receive through the same session channel
the same operation and become respectively P 0

�

and P 0 then @
P�(P) do this ac-

tion and becomes @
P

0
�
(P 0): Secured assignment rule says that assignment is not

considered by enforcement. The secured parallel composition rule says that the
security operator applied to P1jP2 can evolve into (@

P

0
�
(P 0

1jP2)) if P1 can evolve

simultaneously with the policy security P
�

into respectively P 0
1 and P 0

�

: For the
restriction rule, binding session channels does not a↵ect the enforcement. Finally,
the conditional rules say that enforcement is not a↵ected by conditionals.

5 Choreography Monitoring

The goal of this research is to enforce security policies over a choreography.
Some of the important features of the enforcement operator is that it allows us
to enforce only concerned participants by the security policies. In this in-lined
monitoring framework, we do not modify the original behaviors of participants
in a choreography. But if the security policy is not veri�ed the evolution of the
choreography will stop. In this section, we prove the correctness of our theory
by de�ning �rst some notions such as the partial order over processes and satis-
faction notions.

De�nition 3 (Partial Order over Processes). Let A[P1]�; A[P2]� be two

networks. We say A[P1]� v A[P2]� if the following condition hold :

A[P1]�
a A[P 0

1]� =) A[P2]�
a A[P 0

2]� and A[P 0
1]� v A[P 0

2]�:

De�nition 4 (Satisfaction Notions). Let P
�

be a security policy and ⇠ a

trace. Symbols ✏ and js are de�ned as follows :

{ We say that ⇠ satis�es P
�

; denoted by ⇠ ✏ P
�

; if ⇠ 2 JP
�

K where JP
�

K denotes
the set of traces of P

�

:
{ We say that ⇠ could satisfy P

�

; denoted by ⇠ js P
�

; if it exists a trace ⇠0

such that ⇠:⇠0 ✏ P
�

:

Theorem 1. Let P be a process and P
�

a policy security. The following prop-

erties hold :

1. @
P�(P) js P

�

;
2. A[@

P�(P)]
�

v A[P]
�

;
3. 8P 0 : ((P 0 js P

�

) and (A[P 0]
�

v A[P]
�

)) =) A[P 0]
�

v A[@
P�(P)]

�

:

Proof. 1. The process @
P�(P) is de�ned so that it can evolve into another pro-

cess only if the security policy P
�

is satis�ed.
2. As well as the �rst property, the proof is obtained directly from the reduction

rules of the security operator and the de�nition of the partial order.
3. Consider a process P 0 2 P such that P 0 js P

�

and A[P 0]
�

v A[P]
�

: Suppose

A[P 0]
�

a A[P 0
1]�0 : Since A[P 0]

�

v A[P]
�

0 ; we conclude directly from the

de�nition of v that A[P]
�

a A[P1]�0 : Since P 0 js P
�

; we can also conclude

from the de�nition of js; that a js P
�

: Finally, as A[P]
�

a A[P1]�0 and

a js P
�

so A[@
P�(P)]

�

a A[@
P

0
�
(P1)]�0 and then A[P 0]

�

v A[@
P�(P)]

�

:

Example 3 (Buyer-Seller Protocol). The buyer initiates a communication with
the seller and requests for a quote. The seller sends back the quote. If the buyer
rejects it then the protocol terminates. Otherwise, the seller sends to the buyer
an order con�rmation and the buyer con�rms his command. In this case, the
seller contacts the shipper and asks for delivery details which he transfer to the
buyer and the protocol terminates. The security property that we want to ap-
ply in this protocol is : "the seller should communicate with the shipper only if
the buyer con�rms his command". As a consequence, the seller won't send to
buyer the delivery details if he has not con�rmed his command. The protocol is
depicted in Fig.1. Critical actions that we have to supervise are in dark grey in
Fig.1.

The choreography's description in global calculus is the following :

Buyer ! Seller : B2SCh(s):
Seller ! Buyer : shackSessioni:
Buyer ! Seller : shreqQuotei:
Seller ! Buyer : shrespQuote; v

quote

; x
quote

i:
if resonable(x

quote

)@Buyer then
Buyer ! Seller : shquoteAccepti:
Seller ! Buyer : shorderConfirmi:
Buyer ! Seller : shackConfirmi:
Seller ! Shipper : B2SHCh(s0):
Shipper ! Seller : s0hackSessioni:
Seller ! Shipper : s0hreqDelivDeti:
Shipper ! Seller : s0hdelivDet; v

delivDet

; x
delivDet

i:
Seller ! Buyer : shdelivDet; x

delivDet

; x
delivDet

i:0
else
Buyer ! Seller : shquoteRejecti:0

The end-point projection gives the end-point behaviors. The buyer's behavior is
the following :

Buyer[B2SCh(⌫s):sB ackSession:sC reqQuote:sB respQuote(x
quote

)

Buyer Seller

Shipper

ackSession

reqQuote

respQuote

quoteAcc

quoteRej

orderCon�rm

ackCon�rm

delivDet

ac
kS
es
sio
n

re
qD
eli
vD
et

de
liv
D
et

Fig. 1. Buyer Seller Protocol

:if reasonable(v
quote

) then sC quoteAcc:sB orderConfirm:sC ackConfirm

:sB delivDet(x
delivDet

):0 else sC quoteRej:0]

The seller's behavior is the following :

Seller[B2SCh(s):sC ackSession:sB reqQuote:sC respQuotehe
quote

i:

(sB quoteAcc:sC orderConfirm:sB ackConfirm:

B2SHCh(⌫s0):s0BackSession:s0CreqDelivDethe
buyer

i:s0BdelivDet(x
delivDet

)

:sC delivDet(x
delivDet

):0) + (sB quoteRej:0)]

The shipper's behavior is the following :

Shipper[B2SHCh(s0):s0 C ackSession:s0 B reqDelivDet(x
buyer

)

:s0 C delivDethe
delivDet

i:0]

The security property has the following behavior :

P
�

= rec X:(sC �
op 6=delivDet

op
i

hei:X �

sB ⌃
op 6=ackConfirm

op
i

(x
i

):X �

sB ackConfirm:rec Y:(s0 C�
i

op
i

hei:Y � s0 B⌃
i

op
i

(x
i

):Y

�sC�
i

op
i

hei:Y)

)

The security property P
�

is written using the recursion operator. In the recursion
block, there are 3 processes combined with the internal choice. The �rst process
is : sC �

op 6=delivDet

op
i

hei:X which says that, through the session channel s (shared

between the buyer and the seller), the buyer can execute any sending action un-
less delivery details which should be done after the seller has received a con�r-
mation from the buyer. The second process is : sB ⌃

op 6=ackConfirm

op
i

(x
i

):X which

says that the seller can receive any operation other than ackConfirm. This ac-
tion is intercepted in the third process sB ackConfirm:rec Y:(s0C�

i

op
i

hei:Y �
s0 B⌃

i

op
i

(x
i

):Y � sC�
i

op
i

hei:Y): In this process, after the seller has received a

con�rmation from the buyer, he can communicate with the shipper through the
session channel s0 without any restriction and he has also no restriction on his
sending actions to the buyer, so he can send him the delivery details.

6 Related Works

Web services veri�cation have been a subject of interest of several research ef-
forts. Some of the relevant contributions in this domain are cited in this section.
Most of formal approaches introduced a monitor which does not stop the pro-
gram when a violation is detected. Moreover, these contributions implement a
monitor as a web service in addition to other web services. The originality of our
work is the introduction of the monitor within concerned participants processes.
In [11], a run-time event-based approach to deal with the problem of monitoring
conformance of interaction sequences is presented. When a violation is detected,
the program shows errors in dashboards. In [12], authors introduce an approach
to verify the conformance of a web service implementation against a behavioral
speci�cation, through the application of testing. The Stream X-machines are
used as an intuitive modeling formalism for constructing the behavioral speci�-
cation of a stateful web service and a method for deriving test cases from that
speci�cation in an automated way. The test generation method produces com-
plete sets of test cases that, under certain assumptions, are guaranteed to reveal
all non-conformance faults in a service implementation under test. However, this
approach only returns non-conformance faults and does not react dynamically
against these errors. While, in [13], authors propose a monitoring framework of
a choreographed service which supports the early detection of faults and decide

whether it is still possible to continue the service. Authors in [?] have proposed
service automata as a framework for enforcing security policies in distributed
systems. They encapsulate the program in a service automaton composed of
the monitored program, an interceptor, an enforcer, a coordinator and a local
policy. The interceptor intercepts critical actions and passes them to the coor-
dinator that determines whether the action complies the security policy or not
and decides upon possible countermeasures then the enforcer implements these
decisions. However the authors do not precise how to detect critical actions.

7 Conclusion

In this paper, we have introduced a formal approach allowing to automatically
enforce a security policy on choreographed services. Indeed, we introduced a
new calculus with an enforcement operator @

P� : The semantics of the proposed
calculus insure that choreographed services can evolve only if it does not violate
the enforced security policy. The originality of our work consists on the fact that
we do not add a new web service as a monitor but rather we wrap the security
policy inside the choreographed services.

Future work will focus on the de�nition of a complete mapping between WS-
CDL and global calculus. Moreover, we will seek means to optimize the enforced
choreographed services so that we reduce as much as we can the overhead due
to the enforcement operator.

References

1. Corporation, I.: Business process execution language for web services bpel-4ws.
http://www.ibm.com/developerworks/library/ws-bpel/ (2002)

2. F.Leymann: Web services �ow language (ws�) version 1.0. Technical Report,
International Business Machines Corporation (IBM) (May 2001)

3. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services
choreography description language version 1.0. W3C Working Draft (December
2004)

4. Langar, M., Mejri, M., Adi, K.: Formal enforcement of security policies on con-
current systems. J. Symb. Comput. 46(9) (2011) 997{1016

5. Khoury, R., Tawbi, N.: Corrective enforcement: A new paradigm of security policy
enforcement by monitors. ACM Trans. Inf. Syst. Secur. 15(2) (2012) 10

6. Yi, X., Kochut, K.: A cp-nets-based design and veri�cation framework for web
services composition. In: ICWS. (2004) 756{760

7. Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: ADC. (2003) 191{200

8. Sala�un, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services
using process algebra. In: ICWS. (2004) 43{

9. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Timed modelling and analysis in web
service compositions. In: ARES. (2006) 840{846

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred pro-
gramming for web services. In: ESOP. (2007) 2{17

11. Baouab, A., Perrin, O., Godart, C.: An optimized derivation of event queries to
monitor choreography violations. In: ICSOC. (2012) 222{236

12. Dranidis, D., Ramollari, E., Kourtesis, D.: Run-time veri�cation of behavioural
conformance for conversational web services. In: ECOWS. (2009) 139{147

13. Ardissono, L., Furnari, R., Goy, A., Petrone, G., Segnan, M.: Monitoring chore-
ographed services. In: Innovations and Advanced Techniques in Computer and
Information Sciences and Engineering. (2007) 283{288

14. Fu, X., Bultan, T., Su, J.: Analysis of interacting bpel web services. In: WWW.
(2004) 621{630

