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Abstract. Digital timestamping is a cryptographic technique allowing
affixing a reliable date to a digital document. The security of most ex-
isting timestamping systems is based on the security of the used cryp-
tographic techniques as hash functions. However, a hash function has a
limited lifetime. In this context, we provide a non-interactive timestamp-
ing scheme in the bounded storage model (BSM) whose security is not
related to the life of any cryptographic technique. We prove, in fact, that
our timestamping scheme is eternally secure even against an adversary
with unlimited computing power.
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1 Introduction

In the last years, digital documents are beginning to replace paper documents
in several areas. For this reason, it is important to locate a digital document in
time to prove its existence and integrity since a given date. This task is achieved
through a timestamping system that operates in two phases: a timestamping
phase allowing one or more Timestamping Authority (TSA) to affix a reliable
date to a document and generate the associated timestamp and a verification
phase allowing any potential verifier to verify the correctness of the produced
timestamp.

The security of most existing timestamping systems [2-10] is based on the
security of the used cryptographic techniques as hash functions. These tech-
niques are secure under the assumption saying that the users’ computing power



is limited. However, nowadays, the computing power of computers grows expo-
nentially. Therefore, the used hash functions are not secure all the time [17].
So, the existing timestamping systems cannot be considered secure forever. To
propose timestamping systems producing timestamps with eternal validity, we
are placed in the Bounded Storage Model (BSM) [13, 14]. In this model, Maurer
assumes that users’ storage capacity is limited, while their computing power can
be unlimited. In this model, the ciphers are eternally secure [1]. The principle is
that a very long random string is transmitted in every round t (the interval be-
tween the time t and the time t+1). At the time of the transmission of this string,
no participant has sufficient storage capacity to store it fully.Even if later, his
storage capacity becomes sufficient to fully store the string transmitted in t, the
user has already lost he access to this string. Thus, the performed encryptions
are valid forever. Moran proposed in [15] a non-interactive timestamping scheme
in the bounded storage model. Indeed, in the scheme of Moran, each stamper
or document owner can timestamp his document locally without communicat-
ing with any third party [15], unlike conventional timestamping systems that
involve at least one TSA. Thus, the non-interactive timestamping ensures to-
tal confidentiality and hides even the fact that a timestamping occurred. These
characteristics have made the proposition of Moran very interesting, but the
timestamping system he proposed suffers from a lack of precision and practical
details. In this context, we present a non-interactive timestamping scheme in the
BSM. This paper is organized as follows: After introducing the BSM in section
2, we present firstly Moran’s timestamping system, and then our non-interactive
timestamping scheme in the BSM in section 3. Then, we detail more formally
our timestamping scheme. Finally, we formally prove the eternal security of our
timestamping solution.

2 The Bounded Storage Model

Generally, in cryptography, the proposed systems and the used functions are
secure under the assumption that there is a limit of the computational power of
any user or adversary. In the bounded storage model, the proposed systems must
be secure even against an adversary with an unlimited computational power. The
BSM was proposed by Maurer in 1992 [13] for the development of encryption
keys. It aims to generate, from a short secret key K, a key with a large size X
[14] that can be used as encryption key. The system operates as follows: In this
model, it is assumed that the storage capacity is unlimited, no assumptions about
the computing power was made. Let s be the assumed limit on a user’s storage
capacity. Ciphers in the BSM use a very long string R called randomizer. The
latter may for example be a random sequence of bits transmitted by a satellite.
If R is a random string of r bits, the space of R is {0, 1}r. Notice that r � s is
required to ensure that no user can fully store R. Having a secret key K of size k
in the space {0, 1}k, we can use a known function f : {0, 1}r×{0, 1}k, x→ {0, 1}
to generate the derived key X = f(R,K) of size x bits. The function f must use
only a small part of R so that we do not need to fully read R. Maurer’s system



has been the subject of intensive studies. Indeed, many key generation systems
have been proposed in the BSM [11]. The BSM was used for timestamping by
Moran in [15]. In [3], we proposed an improvement of Moran’s timestamping
system. In the following section, we present the timestamping system of Moran
and then our proposition is presented.

3 Timestamping Solutions in the BSM

In the BSM, we assume that a long random string R of r bits is transmitted
during the round t (between t and t+ 1). If s is the maximum storage capacity
of any entity in t, then s � r. Notice the space of R is {0, 1}r where r is the
size of the string R. Similarly, we consider that a document D of size d has a
value in {0, 1}d. In the timestamping scheme proposed by Moran, to timestamp
a document D, its content is used to select a few blocks from R whose values will
be inserted in the timestamp T . Any verifier must save randomly some blocks
of R (using a function named Sketch(R)) in order to verify, later, the validity of
any timestamp made during the round t. Verifying the validity of a timestamp
associated to a document D is performed at a later date by a verifier who has
simply to verify that there are no conflicts between his sketch and the timestamp
of D. However, in this solution, a timestamp includes some additional values of
R. If the verifier cannot store during the round t more than s bits of R, he may
at the verification time store s′ with s′ > s. Each verification of a timestamp
generated in the round t can lead him to discover new blocks of R. After a
number of verification processes, he can reconstruct partially, if not entirely R
and backdate any document.

To remedy this problem, we propose a timestamping protocol allowing veri-
fying the timestamp of a document D without learning additional values of R.
To this aim, instead of inserting the blocks of R in the timestamp, these blocks
will be the secret of the stamper. The verifier must then prove that he has the
value of a given block in his sketch and the stamper has to prove that he has used
this value to create the timestamp. In the verification process of this scheme,
a verifier may accept or reject a timestamp without discovering any additional
information about the string R transmitted during the round t. The idea is to
timestamp the document D locally using the secret sharing scheme of Shamir
[18] in order to divide D into n shares Di. Assuming that the blocks of R are
indexed by a number beginning from 1 till the number of blocks, the values RDi ,
indexed by the shares Di for 1 ≤ i ≤ n are recovered. The polynomial that
passes through the points Pi(RDi , Di) for 1 ≤ i ≤ n represents the timestamp of
D. Note Share(D) the set of shares Di. Any user of the system saves a random
subset of R named Sketch(R) formed by a number of couples of values (index of
block, value of the block). To verify the validity of the timestamp T of D for a
random string R the verifier who stored Sketch(R) proceeds as follows: For each
index in both Share(D) and Sketch(R) he recovers the associated block Ri of
R, computes its associated index by the polynomial given in the timestamp and
verifies that the associated value in Sketch(R) is Ri. In the following sections,



we provide a formal representation of our timestamping system and we prove its
eternal security. To this aim, we will show that once the string R is transmitted,
the probability of forging a fake timestamp for a document D is close to zero.

4 Definitions and Notations

In this section, we introduce some notations that we will use later in this paper.
- Randomizer: We call ”randomizer” and we denote R the random string

transmitted during a round t. This string is divided into n blocks of size b bits
indexed from 1 to n and denoted R1, . . . , Rn. Knowing that the length of R is
r bits and the size of a block is b bits, r = n.b. For each subset S ⊆ I(R) where
I(R) is the set of indexes of blocks Ri (1 ≤ i ≤ n), we denote R|S the set of
blocks of R ∀ i ∈ S.

- Hamming Distance: A vector being a set of blocks, we define the Ham-
ming Distance between two vectors c1 and c2 denoted DH as the number of
blocks for which the two vectors differ.

- Threshold secret sharing: The threshold secret sharing is a technique
for dividing a secret S into l shares such that the coalition of at least λ shares is
necessary to reconstruct the secret while the coalition of at most λ−1 shares do
not reveal even partially the secret (λ < l). A λ-out of-l threshold secret sharing
scheme is denoted SSS(λ, l).

- Shamir secret sharing scheme: The secret sharing scheme based on
Shamir’s polynomial interpolation scheme is a SSS(λ, l). We denote it SSSS
(λ, l). The principle is to fix a polynomial P of degree λ − 1 and X a set of
values (X = X1, . . . , Xl). The secret sharing function denoted Share takes as
input the secret S and generates the set of shares Share(S) = (S1, . . . , Sl) such
that ∀i, 1 ≤ i ≤ l, Si = P (Xi). The Reconstruction function denoted Share−1

take as input a subset of X denoted XS = [XS1 , . . . , XSλ ] such that |XS | =
λ and the λ associated shares: Share−1(XS , SXS1 , . . . , SXSλ ) = P , with P a
polynomial such that ∀ Xi ∈ XS and Si ∈ [SXS1 , . . . , SXSλ ], P (Xi) = Si. The
secret S is computed as follows: S = P (0).

5 Presentation of our Timestamping Scheme

5.1 Timestamping Phase

A stamper is represented by the two following functions:
- Store(D,R) that uses Shamir’s secret sharing process to compute

Share(D) for a given document D. Then, It computes the vector R|Share(D) and
stores it. More formally, Store(D,R) consists in computing Share(D) = (D1,
. . . ,Dl), where Di is the ithindexspecifiedbyD.T othevector(RD1

, . . . , RDl) is as-
sociated the vector Share(D) where RDi is the block of R indexed by Di. We
denote this vector R|Share(D), where the notation R|I means the values of blocks
of R indexed by I1, . . . , In, with I = I1, . . . , In.



Definition 1. Store(D,R) = R|Share(D).

- Stamp(D,Store(D,R)) uses Shamir’s reconstruction process to find
the unique polynomial passing through the points Pi(x, y) where x is a block of
the vector R|Share(D) and y the associated blocks in Share(D). This polynomial
is the timestamp T .

Definition 2. T = Share−1(R|Share(D), Share(D)).

5.2 Verification Phase

A verifier is represented by the two following functions:
- Sketch(R) allows choosing, randomly, a set of indexes denoted H with

H ⊂ I(R), computing R|H and storing this vector.

Definition 3. Sketch(R) = (H,R|H).

- V erify(Sketch(R), D, T ) allows verifying that there are no conflicts
between Sketch(R) and T .

Definition 4. V erify(Sketch(R), D, T ) allows verifying the following equality
: T (R|H∩Share(D)) = H ∩ Share(D)

In other words:

Definition 5. V erify(Sketch(R), D,T ) allows verifying that DH(T (R|H ∩
Share(D)), H ∩ Share(D)) = 0 for a timestamp T . If this equality is veri-
fied, the timestamp T is accepted by the verifier and is said ”valid”.

5.3 The behavior of an adversary

An adversary consists in the two following functions:
- Store∗(R) which saves a subset of R called C. The difference be-

tween Sketch(R) and Store∗(R) is that Sketch(R) is computed ”online” while
Store∗(R) function may not be.

- Stamp∗(D,C) that given a document D and a string C tries to produce
a timestamp T ∗ of D.

Definition 6. Stamp∗(D,C) = R∗|Share(D).

Definition 7. T ∗ = Share−1(R∗|Share(D), Share(D)).

Where R∗|Share(D) is the vector of blocks associated to Share(D) according
to T ∗. If an adversary A produces for a document D and a randomizer R, a times-
tamp T ∗ that is equal to the timestamp T produced by Stamp(D,Store(D,R)),
we say that he backdates ”correctly” the document. More formally:

Definition 8. An adversary backdates a document D with a success probability
γ for a given randomizer R if : Pr[V erify(Sketch(R), D, Stamp∗(D,Store∗(R)))]
≥ γ



Definition 9. An adversary backdates correctly a document D for a given
randomizer R if DH(V1, V2) = 0 with V1 = R∗|Share(D) and V2 = R|Share(D).

Definition 10. An adversary backdates correctly a document D for a given
randomizer R with at most err errors, if DH(V1, V2) ≤ err, with V1 = R∗|Share(D)

and V2 = R|Share(D).

6 Security Proofs of our Timestamping Scheme

Given the following parameters:
- s : the storage capacity of the most powerful adversary.
- r : the size of the random string R transmitted during a round t.
- b: the size of a block of the random string R transmitted during a

round t.
- l: the number of indexes specified by a given document.
- n: the number of blocks of the random string R transmitted during a

round t.
We assume that:

(1) r � s : The size of the random string R transmitted during a round
t is greater than the storage capacity of the most powerful user of the system.

(2) 1 <n/|H| � l: The first inequality means that the number of the
blocks of R transmitted during a round t is greater than the number of blocks in
a sketch saved by a potential user. The second inequality means that there exists
an integer u > 1 such that n = u. |H| with u much smaller than the number of
indexes specified by a document.

(3) 2b� r/b: The number of possible values for a block of size b bits is
greater than the number of blocks of the string R transmitted during a round t.

(4) r/b > l: The number of blocks of the string R transmitted during a
round t is greater than the number of shares used in the adopted Shamir’s secret
sharing scheme.

(5) b� 1: The size of a block of R is much greater than 1 bit.
In our security study we demonstrate mainly two important characteristics

of our non-interactive timestamping scheme. First, we prove that backdating
documents in our timestamping scheme has a negligible probability. Second, we
prove that the timestamps provided by our timestamping scheme have an eternal
validity.

6.1 Negligible Probability of backdating documents

In our timestamping scheme, the probability that an adversary backdates a
document D for a string R already transmitted using his stored blocks of R is
negligible. This proof is established in two steps. In the first step, we show that
if an adversary A wants to backdate successfully a document D for a random
string R, then he must backdate it ”correctly” for this string R with an error
err negligible. In the second step, we show that the probability of backdating
correctly a document D for a random string R is negligible.



First step If the adversary produces a timestamp of D such that the vector of
blocks associated to Share(D) according to this timestamp is far in Hamming
distance from the vector of blocks associated to the timestamp produced by
Stamp(D,Store(D,R)) then the verifier may with a high probability reject the
timestamp of the adversary because the values indexed by Share(D) according
to the timestamp do not match the values indexed by Share(D) according to his
sketch. Given a correct timestamp T and a timestamp produced by an adversary
A for the document D and the random string R denoted T ∗, the adversary
backdates the document D for R successfully, if he produces a timestamp T ∗

such that the vector of blocks associated to Share(D) according to T ∗ denoted
R∗|Share(D) is close in Hamming distance to R|Share(D). In this case, we say that
the adversary backdates “correctly”the document D for the random string R
with err errors. Where err is an integer very close to zero. More formally, let
A be an adversary. Denote Rsuccessful(D) = Rγsuccessful(D) the set of strings R
for which A has the necessary storage to try to backdate the document D with
a probability of success greater than γ.

Lemma 1. If an adversary backdates a document D for a random string R
with a probability of success γ then he backdates it “correctly”with at most
(n/|H|)ln(1/γ) errors. [16]

Proof. Let us suppose that the adversary provides a timestamp for the document
D for the string R such that the timestamp is made with err∗ > err incorrect
indices. Denote INCORRECT (D,R) the set of incorrect indices for D and R.
If H ∩ INCORRECT (D,R) 6= ∅ the verifier will reject the timestamp of the
adversary.

Let i be an indice of H, the probability that i be in INCORRECT (D,R)
is : Pr[i ∈ INCORRECT (D,R)] = err∗/n.

The probability that i does not belong to INCORRECT (D,R) is 1−Pr[i ∈
INCORRECT (D,R)] = 1− err∗/n.

The probability that all the elements of |H| do not belong to INCORRECT (D,R)
is:

Pr[∀i ∈ H, i /∈ INCORRECT (D,R)] = |H|.(1− err∗/n) ≤ e−(err
∗|H|)/n.

If an adversary backdates a document D for a random string R with a prob-
ability of success γ ≤ e−(err

∗|H|)/n ≤ e−(err|H|)/n then he backdates it correctly
with at most err ≤ n/|H|.ln(1/γ).

Denote Rcorrect(D) the set of strings R for which A can “correctly”backdate
D with at most (n/|H|)ln(1/γ) errors.

Theorem 1. If err ≤ n/|H|.ln(1/γ) then, Rsuccessful(D) is a subset of Rcorrect(D).
[16]

Proof. According to the lemma 1, if an adversary backdates a document D for
a random string R with a probability of success γ then he backdates it cor-
rectly with at most err ≤ n/|H|.ln(1/γ). So, if a random string R belongs to
Rsuccessful(D) then it belongs to Rcorrect(D). Thus, Rsuccessful(D) subseteq



Rcorrect(D). In addition, more the probability of success γ become close to 1,
more this error become close to 0. So, successfully backdating means correctly
backdating with a “negligible”error. We prove, in the second step, that the prob-
ability that the random string R chosen by the adversary to backdate a document
D be in Rcorrect(D) is negligible.

Second step We now prove that for an adversary A a document D and a string
R: Pr[R ∈ Rcorrect(D)] is negligible.

Theorem 2. If l � 1 and b� 1 then Pr[R ∈ Rcorrect(D)] is negligible, with b
the size of a block of R.

Proof. We proved in the first step, that if an adversary backdates a document
“successfully”, he backdated it “correctly”with at most a negligible error. Then
we proved in the second stage that the probability that the string R for which
the adversary tries to backdate the document D be in Rcorrect(D) is negligible.

In fact, knowing that the size of blocks of a random string R is b and the
number of these blocks is n, the number of possible random strings is (2b)

n
.

Moreover, to backdate a document D, the adversary has to create a times-
tamp T ∗ for D such that at least l − err blocks of R indexed by D are used to
generate T ∗.

In other words, he can try to backdate D only for random strings for which
he knows the values of at least l − err blocks from the l blocks indexed by D.
Thus, since the adversary tries to correctly backdate D with at most err errors,

the number of random strings he can use is at most (2b)
n−l

.

So, the probability that a random string R belongs to Rcorrect(D) is:

Pr[R ∈ Rcorrect(D)] ≤ (2b)
n−l

/(2b)n ≤ 1/2lb. Since l � 1 and b � 1, this
probability is negligible.

6.2 The Eternal Security of our Timestamping Scheme

In [16], Moran proves that in his non-interactive timestamping scheme, an ad-
versary with a storage M can easily backdate δ = M/T documents by running
the timestamping process on some k documents and storing the generated times-
tamps (each of which has length at most T ). However, the probability that an
adversary backdates more than k documents is negligible. We show here that, in
our timestamping scheme, after the transmission of R, it is very difficult to forge
a fake timestamp for a given document. Moreover, we show that an adversary
having a document D and δ correct timestamps can forge a fake timestamp for
D only with a negligible probability. Thus, we prove the following theorem:

Theorem 3. If 2b � r/b and r/b > l then the probability to forge a fake times-
tamp for a document D and a string R using δ correct timestamps related to R
is negligible.



Proof. The inequality 2b � r/b means that the number of values for a block
of size b bits is greater than the number of blocks of the string R transmitted
during a round t.

l is the number of indices specified by a given document, this number must
always be less than the number of blocks of R. So, r/b > l.

It follows that the 2b � l, which means that the number of possible values
for a block of R is much greater than the number of indices specified by the
document D.

For each timestamp Tj (1 ≤ j ≤ δ), if the adversary gives any value v from
the 2b possible values of a block of R, it will recover a given index i.

However, the fact that i = Tj(v) does not mean that Ri = v. This means
that i is the value associated to v by the polynomial Tj but the couple (i, v)
does not necessarily belong to the string R. In other words, the string R may
not associate the value v to the block indexed by i. Moreover, it may exist i
such that Ri′ = v and there is no way to verify if i = i′. The only points of
Tj for which the adversary knows that they belong to R are the points whose
indices are specified by the document associated to Tj . The probability that the
adversary chooses one of these points is l/2b � 1.

To obtain the k points required to forge a fake timestamp, the probability
is negligible since it is the product of the probabilities of selecting each of the
points belonging to a valid timestamp.

Thus, the adversary can obtain the k points needed to forge a fake timestamp
for a document D for a random string R with a negligible probability.

7 Conclusion

In this paper, we have presented a non-interactive timestamping solution in the
bounded storage model. Our solution is not interactive and hides even the fact
that a timestamping occurred. It also ensures total confidentiality of the provided
timestamps. In addition, our solution provides eternal security for the provided
timestamps. In fact, neither increasing the storage capacity of an adversary or
the evolution of his computing power will compromise a provided timestamp.
Thus, our solution is more secure than existing systems whose timestamps can
be challenged when the computing power or storage capacity of users increase.
In this context, we studied the security of our solution and formally proved that
the possibility of cheating is negligible. In our future work, we plan to adopt new
secret sharing schemes for timestamping.
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