
Visual Language Plans - Formalization of a Pedagogical
Learnflow Modeling Language

Kerstin Irgang1 and Thomas Irgang2

1 Human-Centered Information Systems, Clausthal University of Technology,
kerstin.pfahler@tu-clausthal.de

2 Department of Software Engineering and Theory of Programming, Fernuniversität Hagen,
thomas.irgang@fernuni-hagen.de

Abstract. In this paper we present an approach to support selfregulated learn-
flows in the collaborative environment Metafora. In this environment students
construct Visual Language Plans. Those plans model workflows of learning ac-
tivities, which the students execute to solve complex learning scenarios across
different tools.
Visual Language plans were already used in the context of different pedagogical
studies but have no formal syntax or semantics, yet. In this paper, we present the
syntax of Visual Language Plans and develop a mapping from Visual Language
Plans to Petri net defining semantics. With the help of this semantics, the envi-
ronment can support the students executing their learnflows. If students execute
activities given in a Visual Language Plan which are not enabled in the corre-
sponding Petri net, feedback messages occur guiding the students. Students can
refine their Visual Language Plan during execution. If a plan changes the corre-
sponding Petri net model also changes. Analyzing the newly generated Petri net
model can help to uncover faulty states of the learnflow model.

1 Introduction

On the one hand, most schools and universities use traditional eLearning systems like
Moodle or Ilias. These eLearning systems, which work like Groupware systems in in-
dustry, support workflows and offer a lot of evaluation tools, but miss most of the Web
2.0 features and collaboration. On the other hand the students use interactive and col-
laborative Web 2.0 systems like Facebook or Twitter. New pedagogical approaches try
to close this gap and benefit from supporting collaboration between students.

The Metafora project [1] developed a Computer Supported Collaborative Learn-
ing (CSCL) system [2], which takes up the advantages of social networking technolo-
gies. The project was co-funded by the European Union under the 7th Framework Pro-
gram for R&D, with several partners on the technological and pedagogical side. In the
Metafora system, students between 12 to 16 years learn math and science in an enjoy-
able and selfregulated way, working collaboratively in groups of 3 to 6 members on
a complex challenge they have to solve. One aspect of the project was to developed a
so-called Visual Language [3] for planning and executing of learning activities. One of
the main goals of this language is to serve the Learning to learn together (L2L2) [4]
approach (see e.g. [5]). The publications [6,7] describe the L2L2 approach in detail.

In the Metafora system a group of students gets a challenge which they solve collab-
oratively. Therefore the students build a Visual Language Plan, consisting of different
cards and arcs. This plan describes and documents their approach to the challenge.
Teachers can create new challenges. A step of creating a challenge is to select the set
of available cards [8]. The Metafora system supports the students in modeling and ex-
ecuting their Visual Language Plan. When the students execute their plan they use it
to join collaborative instances of the used tools and document the current state of their
execution. When the students finished their plan they reflecting about their process with
the help of the plan. Figure 1 shows an example of a Visual Language Plan.

Fig. 1. An example of a Visual Language Plan.

The Visual Language Plans have a graphical representation and consists of nodes
and arcs. This nodes are cards. Different types of arcs connecting these cards. A card
represents a learning activity. Cards are in one of the three states idle, started or finished.
The Visual Language Plan depicted in Figure 1 was developed by students solving the
challenge The bouncing cannon ball [9]. The students see the bouncing of a cannon ball
and simulate how changing variables like angle and speed change the trace of the ball.
Students explore the phenomenon with the integrated, game-based domain tool PiKI
(Pirates of the Kinematics Island). In PiKI students fire cannon balls from a pirate ship
to an island trying to hit treasures. To solve the challenge the students create a plan and
follow it step by step. In case of the plan depicted in Figure 1 they start with exploring
the challenge by gathering for information on bouncing effects and brainstorming ideas.
Afterwards the students build a model with their ideas in the domain-tool PiKI. In the
next step, the students test their model with simulating and experimenting on it. De-
pending on the results of their test, the students rather go ahead directly to refining their
model, or looking for a new hypothesis on the effect of changing variables of the ball if
the test failed. Nevertheless, the students discuss their findings afterwards, by reflecting

182 PNSE’14 – Petri Nets and Software Engineering

on the previous results in PiKI. The students use the integrated, graphical discussion en-
vironment LASAD [10] for their discussion and make notes about the findings. Finally,
the students create a presentation and present their results to other groups.

Although the Visual Language is very intuitive, it does not have a formal syntax
or semantics. Both are essential requirements to support the students by modeling a
Visual Language Plan. The papers [5] and [11] introduce the core elements of the Visual
Language, but they give no construction rules. First syntactic rules were already defined
in [12]. Now, we fine grain and formalize the syntax of the Visual Language and develop
semantics rules. To define the semantics of a Visual Language Plan we give a mapping
to a Petri net and exploit the occurrence rule of Petri nets. There are other approaches
using Petri nets to model learnflows. The paper [13] considering the teacher as the
expert who models a learnflow which students execute. This approach already had the
advantage of an executable model, which allowed simulation and usage of a workflow
engine, but teachers did not accept it and the students did not understand the model. To
overcome this, the Metafora project developed Visual Language Plans as an intuitive
graphical representation for learnflows and examined it in classrooms with teachers and
students.

We organized the paper as follows. In Section 2, we give the required definitions
of Petri nets and in Section 3 we develop a mathematical founded syntax for Visual
Language Plans. Section 4 describes the mapping of Visual Language Plans to Petri
nets and Section 5 shows our use cases for the new semantics of Visual Language Plans.
In Section 6 we sum up our work.

2 Petri nets and their occurence rule

In this paper we use the following notations. With N
0

we denote the non-negative inte-
gers, i.e. N

0

= 0, 1, 2, . . . and with |S| we denote the cardinality for a finite set S. Petri
nets [14] are bipartite graphs of places and transitions which are a good tool to model
concurrent systems:

Definition 1 (Petri net). A Petri net is a 4-tuple N = (T, P, F,m
0

), where T is a finite
set of transitions, P is a finite set of places, F ✓ (T ⇥ P) [(P ⇥ T) is a finite set of
edges and m

0

: P ! N
0

is a marking . The sets T and P are disjoint, i.e. T \ P = ;.

In graphical representations, we draw the transitions as squares and the places as
circles. If an edge between a place and a transition exists, we draw an arrow. We show
the marking for a place with small dots drawn in that place. To define the semantics of
a Petri net, we use the preset and postset of a transition.

Definition 2 (Pre- and Postset). Given a Petri net N = (T, P, F,m
0

). The preset of a
node n 2 (T [P) is the set •n := {n0 2 (T [P) | (n0, n) 2 F}. The postset of a node
n 2 (T [P) is the set n• := {n0 2 (T [P) | (n, n0) 2 F}.

In a Petri net, enabled transition has only marked places in its preset. Only enabled
Transitions can occur. If a transition occurs the marking of the Petri net changes. The
transition consumes marks from its preset and produces new marks in its postset.

K. Irgang, Th. Irgang: Visual Language Plans 183

Definition 3 (Occurrence Rule for Petri nets). Given a Petri net N = (T, P, F,m). A
transition t 2 T is enabled, iff for all places p 2 •t : m(p) > 0 holds. The occurrence
of t yields the new marking m0 : P ! N

0

. This marking is:

m0(p) :=

8

<

:

m(p)� 1 , if p 2 •t and p 62 t•
m(p) + 1 , if p 62 •t and p 2 t•
m(p) , else

3 Visual Language Plans

In this section we will introduce and explain the elements of Visual Language Plans.
During the Metafora project pedagogues and psychologists of the University of Exeter
developed this Visual Language Plans and pedagogues and teachers of the Hebrew Uni-
versity of Jerusalem and the National and Kapodistrian University of Athens evaluated
it. There are several pedagogical studies [15,16,17,18,19,20,21,22] using Visual Lan-
guage Plans, but none of these studies defines a consistent syntax for it. [5] presents an
overview of the used definitions of Visual Language Plans during the Metafora project.
The unpublished Guideline for the Visual Language [23] gives an informal description
of the syntax and we will formally define it in this section.

To solve Metafora challenges students build their own Visual Language Plan which
describes their approach to the problem. Such a Visual Language Plan consist of nodes
and different types of arcs. Nodes of a Visual Language Plan are cards. The meaning
of a card depends on their label and this label belongs to the Visual Language. At the
moment, the Visual Language has about 60 labels and it allows teachers to add further
labels. The Visual Language divides those labels into 7 disjoint categories and this
categories belong to different detail levels. We use the categories to define the syntax
and semantics of the Visual Language. The 7 categories of the Visual Language are
Activity Stage, Gate, Activity Process, Resource, Role, Attitude and Other.

Activity Stage Cards labeled with an Activity Stage model main steps. Some available
Activity Stage labels are explore, define questions and find hypothesis.

Gate Cards labeled with a Gate direct the control flow between cards labeled with an
Activity Stage. The Visual Language contains gates for and and xor.

Activity Process Cards labeled with an Activity Process model the actions which stu-
dents do. Some available Activity Process labels are simulate, discuss and make
notes. This cards model the activities required for solving a card labeled with an
Activity Stage.

Resource Cards labeled with a Resource label are links to persistent instances of mi-
croworlds and tools integrated in Metafora. For example, there are labels for the
physics pirate game PiKI, the algebraic pattern tool eXpresser and for the graphical
discussion environment LASAD [10].

Role Cards labeled with a Role annotate required roles for other cards. Some available
Role labels are note taker, evaluator and manager.

Attitude Cards labeled with an Attitude annotate required mind-sets. Some available
Attitude labels are rational, critical and creative.

184 PNSE’14 – Petri Nets and Software Engineering

Other Cards labeled with Other labels annotate domain specific information. At the
moment the only available Other labels are the generic labels text card and blank
card.

Fig. 2. Examples for cards labeled with labels of the different categories. From the left to the right
a card labeled with an Activity Stage label, a card labeled with a Gate label, a card labeled with
an Activity Process label, a card labeled with a Resource label, a card labeled with a Role label
and a card labeled with an Attitude label.

Figure 2 shows example cards. The category of a cards label is visible through the
size, style and coloring of the cards icon. The icons of cards labeled with an Activity
Stage are larger than other labels to visualize the higher granularity and importance
of these cards. To puzzle out the model, the students create labeled card instances and
connect it with each other. The students can use 4 different arcs to connect the cards.
These arcs are:

is next to The directed is next to relation, shown as red arc, models a time sequence
of cards. It connects cards labeled with an Activity Stage or a Gate to model the
abstract learnflow of a Visual Language Plan. It also orders cards within the set
of cards labeled with an Activity Process, within the set of cards labeled with a
Resource, within the set of cards labeled with a Role and within the set of cards
labeled with an Attitude.

is needed for The directed is needed for relation, shown as blue arc, models a time
sequence with propagation of resources. It connects cards labeled with an Activ-
ity Process, a Role, an Attitude or a Resource with cards labeled with an Activity
Process or an Activity Stage. If this relation ends with a card labeled with an Activ-
ity Stage the students must finish the other card before they finish the card labeled
with an Activity Stage. It also connects cards labeled with a Role or an Attitude
with cards labeled with a Role, an Attitude or a Resource and within the set of
cards labeled with a Resource.

is input for The directed is input for relation, shown as dashed green arc, combines
the meaning of the is next to and is needed for relations. It models propagation of
resources to later cards, e.g. for reflection. This relation connects cards labeled with
an Activity Process, a Role, an Attitude or a Resource.

is linked to The symmetric is linked to relation, shown as black line, models an undi-
rected relation between cards. It associates cards labeled with an Attitude or a Role

K. Irgang, Th. Irgang: Visual Language Plans 185

to cards modeling activities. This relation connects cards labeled with an Activity
Process, a Role, an Attitude or a Resource with each other or with cards labeled
with an Activity Stage. If it connects a card with a card label with an Activity
Stage the students must finish this card before they finish the card labeled with the
Activity Stage.

The collaborative web application Planning Tool implements the Visual Language
and is part of the Metafora system [2]. To solve a challenge students use the Planning
Tool and create a Visual Language Plan to model their approach. With the help of their
Visual Language Plan the students document their work and access persistent instances
of the used mircoworlds and tools. At the moment, we develop a tool which aims to
support the students in creating and executing their Visual Language Plan. Therefore,
we need a mathematical syntax for Visual Language Plans, based on the given descrip-
tion. To define this syntax, we first define a mathematical structure for Visual Language
Plans.

Definition 4 (Visual Language Plan Structure). A Visual Language Plan consists of
a finite set C of labeled cards and 4 relations.

The set C is the union of the pairwise disjoint sets CAS , CG, CAP , CRe, CRo, CAt

and CO, where CAS is a set of cards labeled with an Activity Stage, CG is a set of cards
labeled with a Gate, CAP is a set of cards labeled with an Activity Process, CRe is a
set of cards labeled with a Resource, CRo is a set of cards labeled with a Role, CAt is
a set of cards labeled with an Attitude and CO is a set of cards labeled with an Other
label. Further, the set CG is the union of the finite disjoint sets CGand�split , CGand�join ,
CGxor�split and CGxor�join .

The 4 relations are a directed is next to relation Rnext ✓ ((CAS [CG)⇥ (CAS [
CG)) [(CAP ⇥ CAP) [(CRe ⇥ CRe) [(CRo ⇥ CRo) [(CAt ⇥ CAt), a directed
is needed for relation Rneed ✓ ((CAP [CRo [CAt [CRe) ⇥ (CAS [CAP)) [
((CRo [CAt)⇥ (CRo [CAt [CRe)) [(CRe ⇥ CRe), a directed is input for relation
Rin ✓ ((CAP [CRo [CAt [CRe)⇥ (CAP [CRo [CAt [CRe)) and a symmetric is
linked to relation Rlink ✓ (((C \ CG)⇥ (C \ CG)) \ (CAS ⇥ CAS)).

A 4-tuple (C,Rnext, Rneed, Rin, Rlink) is called Visual Language Plan Structure.

This definition for the syntax of Visual Language Plans is incomplete. It allows
modeling splits and joins without using cards labeled with Gates and it does not enforce
that a Visual Language Plan is weakly connected. We extend this definition to get a
unique behavior of the model, avoid error-prone plans and enable validity checking.
Therefore, we need the preset and postset of cards.

Definition 5 (Pre- and Postset, Information Preset). Given a Visual Language Plan
Structure P = (C,Rnext, Rneed, Rin, Rlink). The preset of a card c 2 C is the set of
cards •c := {c0 2 C | (c0, c) 2 (Rnext [Rneed)}. The postset of a card c 2 C is the
set of cards c• := {c0 2 C | (c, c0) 2 (Rnext [Rneed)}

The information preset �c := {c0 2 C | (c0, c) 2 Rin} of a card c 2 C is the preset
only considering the is input for relation.

We call a card labeled with an Activity Stage c 2 CAS with no other card labeled
with an Activity Stage in its preset an initial card and a card labeled with an Activity

186 PNSE’14 – Petri Nets and Software Engineering

Stage c0 2 CAS with no other card labeled with an Activity Stage in its postset an
end card. To ensure a unique meaning, we demand that a Visual Language Plan fulfills
following properties:

Definition 6 (valid Visual Language Plan Structure). Given a Visual Language Plan
Structure P = (C,Rnext, Rneed, Rin, Rlink). We call P valid if it fulfills all the follow-
ing properties:

(I) A visual language plan has one initial card ci 2 CAS , i.e. •ci \ CAS = ;, and
one end card ce 2 CAS , i.e. ce • \CAS = ;. All other cards c 2 CAS have one
incoming is next to arc and one outgoing is next to arc, i.e. for all other cards
c 2 CAS \ {ci, ce} exist two unique cards c0, c00 2 CAS such that (c0, c) 2 Rnext

and (c, c00) 2 Rnext hold.
(II) All cards c 2 CGand�split [CGxor�split have one incoming is next to arc and

two outgoing is next to arcs, i.e. for all c 2 CGand�split [CGxor�split exist 3
unique cards c

1

, c
2

, c
3

2 CAS [CG, c
2

6= c
3

, such that (c
1

, c) 2 Rnext and
{(c, c

2

), (c, c
3

)} ⇢ Rnext hold.
(III) All cards c 2 CGand�join [CGxor�join have two incoming is next to arcs and one

outgoing is next to arc, i.e. for all c 2 CGand�join[CGxor�join exist 3 unique cards
c
1

, c
2

, c
3

2 CAS [CG, c
1

6= c
2

, such that {(c
1

, c), (c
2

, c)} ⇢ Rnext and (c, c
3

) 2
Rnext hold.

(IV) The number of and splits is equal to the number of and joins, i.e. |CGand�split | =
|CGand�join |. The number of xor splits is equal to the number of xor joins, i.e.
|CGxor�split | = |CGxor�join |.

Property (I) ensures that a Visual Language Plan has a unique card labeled with an
Activity Stage as start for the execution and all properties together define a very strict
structure for the abstract learnflow model. They are implicit contained in the Guideline
for the Visual Language [23]. This restrictive structure for the low detail cards of a
Visual Language Plan supports the students while building their abstract model. The
students refine their abstract model with high detail cards afterwards. Property (IV)
ensures, together with the other properties, that every and-split is joined with an and-
join and every xor-split is joined with an xor-join. This is also a requirement given in
[23]. Because of the idea of refinement, we have to find for each card with high detail,
i.e. each card not labeled with an Activity Stage or Gate, a card labeled with an Activity
Stage. Therefore we need paths in a Visual Language Plan.

Definition 7 (Path in a Visual Language Plan). Given a Visual Language Plan Struc-
ture P = (C,Rnext, Rneed, Rin, Rlink) and a set of arcs A ✓ Rnext [Rneed [Rin [
Rlink. A directed path in P within A from a card c

1

2 C to a card cm 2 C is a se-
quence � = c

1

, . . . , cm of cards ci 2 C such that for 1 i m � 1 : (ci, ci+1

) 2 A
holds. A undirected path in P within A from a card c

1

2 C to a node cm 2 C is a
sequence � = c

1

, . . . , cm of cards ci 2 C such that for 1 i m� 1 : (ci, ci+1

) 2 A
or (ci+1

, ci) 2 A holds.

In a Visual Language Plan, a card c 2 CAS labeled with an Activity Stage is usually
refined with the help of other cards. Those other cards are direct or indirect connected to

K. Irgang, Th. Irgang: Visual Language Plans 187

c with is needed for or is linked to arcs. We call a card which refines a card labeled with
an Activity Stage a subordinated card. From the idea of refinement of cards follows that
a card can only be subordinate to one card labeled with an Activity Stage.

Definition 8 (Subordination). Given a valid Visual Language Plan Structure P =
(C,Rnext, Rneed, Rin, Rlink) and a card labeled with an Activity Stage c 2 CAS . We
call the set of nodes S

1,c := (•c \ CAS) [{c⇤ 2 C | (c⇤, c) 2 Rlink} the set of first
order subordinated cards to c. A card c0 2 C is subordinated to c if a card c00 2 S

1,a

and a undirected path � within Rnext [Rneed [Rlink from c0 to c00 exist such that �
does not contain the card c. Sc is the set of all subordinated nodes of c.

While executing a plan, students often need achievements from earlier stages to
solve later stages. They can use the is input for relation to propagate a resource to a
later card. This requires that they finished the earlier task before they can start the later
task. Further, we demand that the connected cards refine different cards labeled with an
Activity Stage.

Definition 9 (Visual Language Plan). Given a valid Visual Language Plan Structure
P = (C,Rnext, Rneed, Rin, Rlink). We call P a Visual Language Plan, if it fulfills all
the following properties:

(V) P is weakly connected, i.e. for each two cards c, c0 2 C exist an undirected path
within Rnext [Rneed [Rin [Rlink from c to c00.

(VI) Each card not labeled with an Activity Stage or a Gate is subordinated to precisely
one card labeled with an Activity Stage, i.e. for all cards c 2 C \ (CAS [CG) a
unique card c0 2 CAS exist such that c 2 Sc0 holds.

(VII) Each is input for arc connects cards which are subordinated to different cards la-
beled with an Activity Stage, i.e. for all (c

1

, c
2

) 2 Rin, c
1

, c
2

2 C, unique different
cards c0, c00 2 CAS exist such that c

1

2 Sc0 and c
2

2 Sc00 holds.
(VIII) The is next to, is needed for and is linked to relations only connect cards not labeled

with an Activity Stage which are subordinated to the same card labeled with an
Activity Stage, i.e. for each pair of cards c

1

, c
2

2 C \ (CAS [G) with (c
1

, c
2

) 2
Rnext [Rneed [Rlink exist a card c 2 CAS such that c

1

2 Sc and c
2

2 Sc holds.

4 Semantics of the visual language

In this section we will define the semantics of a Visual Language Plan with the help of
Petri nets. A card is in one of 3 states idle, started or done. A card shows its state with
its coloring. The coloring of an idle card is grey, the coloring of a started card is yellow
and the coloring of a finished card is green. Through this coloring, the students are able
to see what they did and what is next. This is important because most of the Metafora
challenges need more than 4 school lessons and include homework sessions. The set of
the state of all cards is the state of the plan. This state function maps the set of cards C
to {1, 2, 3}. With this notation 1 means idle, 2 means started and 3 means finished.

Definition 10 (State of a Visual Language Plan). Given a Visual Language Plan
P = (C, Rnext, Rneed, Rin, Rlink). The state of P is a function s : C ! {1, 2, 3}.

188 PNSE’14 – Petri Nets and Software Engineering

We call a card c 2 C idle iff s(c) = 1, started iff s(c) = 2 and finished iff s(c) = 3. We
call a Visual Language Plan finished, if its end card is finished.

In the Planning Tool, a card change its coloring if a student select this card as
started or finished. If a student select a card labeled with a Resource as started the
linked tool opens in a new Metafora tab. Still, Metafora does not clearly define the
semantics of a Visual Language Plan. The Planning Tool allows students to mark cards
as started or finished without checking any rules. At the moment, the semantics for
Visual Language Plans is only given as informal description [23]. To develop a Metafora
workflow engine, we need to analyze state changes of cards. Therefore, we require the
formal semantics of Visual Language Plans. We extracted the following execution rules
from the informal descriptions:

(a) Students must start a card before they can finish it.
(b) Students only can start a card if they have started all cards before that card.
(c) Students can finish a card if all they have finished all cards before that card.
(d) Students can only choose one path after a xor-gate.
(e) Students must solve both paths after an and-gate before they can finish the joining

and-gate.
(g) Students must start a card labeled with an Activity Stage before they start their

refining cards.
(h) Students must finish all refining cards of a card labeled with an Activity Stage

before they can finish the card labeled with an Activity Stage.
(i) For cards connected with the is input for relation, students can only start the succes-

sor if they finished the predecessor before.

These rules overlap and interfere. For example there is a clash of rule (b) and (d) for
the joining card of an xor-split. The meaning of before in rule (b) and (c) is different.
Through the different detail level of cards it depends on their neighborhood if they can
change their state. The occurrence rule for cards of a Visual Language Plan is a compli-
cated logical formula which is expensive to test. To avoid this, we decided to define the
semantics of a Visual Language Plan with the help of a Petri net. For our mapping, we
consider the starting and finishing of cards as events. In the Petri net to a Visual Lan-
guage Plan transitions represent this events. If we only consider the starting of cards,
the Petri net roughly looks like the Visual Language Plan. If we only consider the fin-
ishing of cards, the Petri net roughly looks like the Visual Language Plan, too. Places
and arcs which control the learnflow connect these parts. In the following we will give
step by step a mapping for a Visual Language Plan P = (C,Rnext, Rneed, Rin, Rlink)
to a Petri net N = (S, T, F,m

0

). The Petri net N defines the semantics of the plan P .
The following steps lead to the corresponding Petri net N :

Step 1: Choose a fixed enumeration for all cards c 2 C, i.e. a bijection M : C !
N

0

, and add for each card c 2 C two transitions tM(c),s and tM(c),f to the net N . For a
card c 2 C, the transition tM(c),s represents the starting of c and the transition tM(c),f

represents the finishing of c. To make sure that the finishing event of a card can only
occur after the starting event, add for each card c 2 C a place pM(c) between tM(c),s and
tM(c),f , i.e. add a place pM(c) and the two edges (tM(c),s, pM(c)) and (pM(c), tM(c),f)
to N . All places pM(c) are not marked, i.e. 8pM(c) 2 P : m

0

(pM(c)) = 0.

K. Irgang, Th. Irgang: Visual Language Plans 189

Figure 4 shows our enumeration for the example and Figure 3 shows the mapping
of a card c 2 C to their event transitions.

7!

Fig. 3. Step 1: We map the card c with M(c) = 11 on two transitions t11,s and t11,f representing
their start and finish events and add a places p11.

Fig. 4. This figure shows the bijection M : C ! N0 which we use for our example. For each
card c 2 C we wrote the value M(c) on that card.

Step 2: To transfer the is next to relation, add for each arc (c, c0) 2 Rnext a new
place pnext,M(c),M(c0),s between tM(c),s and tM(c0),s, i.e. add pnext,M(c),M(c0),s and
the edges (tM(c),s, pnext,M(c),M(c0),s) and (pnext,M(c),M(c0),s, tM(c0),s) to N . This en-
sures that the students can only start the succeeding card c0 if they started the preceding
card c before. Further, add for each arc (c, c0) 2 Rnext a place pnext,M(c),M(c0),f be-
tween tM(c),f and tM(c0),f to the net, i.e. add pnext,M(c),M(c0),f and the edges (tM(c),f ,
pnext,M(c),M(c0),f) and (pnext,M(c),M(c0),f , tM(c0),f) to N . This ensures that the finish
event of the succeeding card can only occur if the finish event of the preceding card
already occurred.

Figure 5 shows the mapping of the is next to relation between cards labeled with an
Activity Stage.

190 PNSE’14 – Petri Nets and Software Engineering

7!

Fig. 5. Step 2: This figure shows how we map the is next to relation between the card c labeled
with exlpore, M(c) = 1, and the card c0 labeled with build model, M(c0) = 2, to the Petri net.
The place p

next,1,2,s make sure that c starts before c0. The place p
next,1,2,f make sure that c

finish before c0.

Step 3: If students use the is next to relation with an XOR split, they can only
start one successor card because of rule (d). To fulfill this rule we add for each card
c 2 CGxor�join a place pxor,M(c),s between the tM(c),s and the starting event transi-
tions for all cards labeled with an Activity Stage or a Gate in the postset of c, i.e. add
pxor,M(c),s, (tM(c),s, pxor,M(c),s) and for each card c0 2 c • \(CAS [CG) an edge
(pxor,M(c),s, tM(c0),s) to N . Through pxor,M(c),s the places {pnext,M(c),M(c0),s | c0 2
c • \(CAS [CG)} are superfluous and we removed it. If we would only want to ful-
fill rule (d) we could stop now but we want to keep the symmetry of the Petri net and
avoid useless marked places. Add pxor,M(c),f , (tM(c),s, pxor,M(c),f) and for each card
c0 2 c • \ (CAS [CG) an edge (pxor,M(c),f , tM(c0),s) to N .

Figure 6 shows the result of this mapping of an xor-split.

7!

Fig. 6. Step 3: This figure shows the result of the mapping of an xor-split between the cards c
labeled with logic gate, M(c) = 9, the card c0 labeled with refine model, M(c0) = 4, and the
card c00 labeled with find hypothesis, M(c00) = 5, to the Petri net.

K. Irgang, Th. Irgang: Visual Language Plans 191

Step 4: If students use the is next to relation with a XOR join, they can choose
only one path. Due to property (III) there are two preceding cards before this XOR join.
Because of those two preceding cards, we added two places to N in Step 1. The students
can only execute one path before this XOR join. This cause a deadlock. To solve this
problem melt those two places into one place. For each card c 2 CGxor�join remove all
places {pnext,M(c0),M(c),s | c0 2 •c\ (CAS [CG)} and add a place pxor,M(c),s, an arc
(pxor,M(c),s, tM(c),s) and arcs {(tM(c0),s, pxor,M(c),s | c0 2 •c \ (CAS [CG)}. We
also do this for the finish event part of our net. For each card c 2 CGxor�join remove
all places {pnext,M(c0),M(c),f | c0 2 •c\ (CAS [CG)} and add a place pxor,M(c),f , an
arc (pxor,M(c),f , tM(c),f) and arcs {(tM(c0),f , pxor,M(c),f | c0 2 •c \ (CAS [CG)}.

Figure 7 shows the result of this mapping of an xor-join.

7!

Fig. 7. Step 4: This figure shows the result of the mapping of an xor-join between the cards c
labeled with convergence, M(c) = 10, and the cards c0 labeled with refine model, M(c0) = 4,
and c00 labeled with refine model, M(c00) = 6.

Step 5: To transfer the is needed for relation, add for each arc (c, c0) 2 Rneed a
new place pneed,M(c),M(c0),s between tM(c),s and tM(c0),s, i.e. add pneed,M(c),M(c0),s

and the edges (tM(c),s, pneed,M(c),M(c0),s) and (pneed,M(c),M(c0),s, tM(c0),s) to N . This
ensures that students can only start the succeeding card c0 after they started the pre-
ceding card c. Further, add for each arc (c, c0) 2 Rneed a place pneed,M(c),M(c0),f be-
tween tM(c),f and tM(c0),f to the net, i.e. add pneed,M(c),M(c0),f and the edges (tM(c),f ,
pneed,M(c),M(c0),f) and (pneed,M(c),M(c0),f , tM(c0),f) to N . This ensures that the fin-
ish event of the succeeding card can only occur if the finish event of the preceding card
already occurred.

This mapping is similar to the mapping of the is next to relation in Step 1.
Step 6: If students use the is needed for relation to model subordination, the places

added with the last step enforce that the starting events of the subordinated cards oc-
cur before the starting event of the card labeled with an Activity Stage can occur. This
is wrong and we remove those places, i.e. for each card c 2 CAS remove all places
{pneed,M(c0),M(c),s | c0 2 Sc}. For each card c 2 CAS , all to c subordinated cards are
only allowed to start after c. We enforce this by adding places between c and all to c sub-
ordinated cards, i.e. for each c 2 CAS and each c0 2 Sc add a place psub,M(c),M(c0),s

192 PNSE’14 – Petri Nets and Software Engineering

and edges (tM(c),s, psub,M(c),M(c0),s) and (psub,M(c),M(c0),s, tM(c0),s). Rule (h) raise
the requirement that for each card c 2 CAS all subordinated cards finish before the fin-
ish event of c can occur. We make this sure by adding places between the to c subordi-
nated cards and c, i.e. for each c 2 CAS and each c0 2 Sc add a place psub,M(c),M(c0),f

and edges (psub,M(c),M(c0),f , tM(c),f) and (tM(c0),f , psub,M(c),M(c0),f).
Figure 8 shows the result of this step.

7!

Fig. 8. Step 6: This figure shows the mapping of subordination of the cards c0 labeled with gather
information, M(c) = 11, and c00 labeled with brainstorm, M(c00) = 12, to the card c labeled
with explore, M(c) = 1.

Step 7: To transfer the is input for relation, add for each arc (c, c0) 2 Rin a new
place pin,M(c),M(c0) between tM(c),f and tM(c0),s, i.e. add pin,M(c),M(c0) and the edges
(tM(c),f , pin,M(c),M(c0)) and (pin,M(c),M(c0), tM(c0),s) to N . This ensures that the suc-
ceeding card c0 can only start after finishing the preceding card c.

Figure 9 shows the mapping of the is input for relation.

7!

Fig. 9. Step 7: This figure shows how we map the is input for relation between the card c labeled
with PiKI, M(c) = 23, and the card c0 labeled with reflect, M(c0) = 21, to the Petri net. The
place p

in,23,21 make sure that the students finished c before they can start c0.

Step 8: Finally, two convenience places pinitial and pend are added. For the unique
initial card ci add a place pinitial and an edge (pinitial, tM(ci),s) with m

0

(pinitial) = 1.

K. Irgang, Th. Irgang: Visual Language Plans 193

The marking of the initial place pinitial is 1 if the students did not start executing the
Visual Language Plan P . For the unique end card ce add a place pend and an edge
(tM(ce),f , pend,) with m

0

(pinitial) = 0. The marking of this place is 1 if the students
finished the Visual Language Plan P .

The is linked to relation does not restrict starting or finishing of cards and we do not
need to translate it. The language L of this Petri net N is the language of P , i.e. for each
transition sequence � 2 L starting and finishing of cards according to this sequence is
valid for P with respect to the rules given above.

For our example Visual Language Plan we have chosen the mapping shown in Fig-
ure 4. Figure 10 shows the Petri net corresponding to this Visual Language Plan which
results from the mapping described above. The upper part of the net consists of the tran-
sitions which control the starting sequence of the cards labeled with an Activity Stage
and has a similar structure as the cards labeled with an Activity Stage in our example.
The starting of a card labeled with an Activity Stage enables the start event transitions
of their subordinated cards. The Petri net has more places than required and an algo-
rithm for deletion of implicit places could remove psub,3,14,s. It is difficult to decide if
a place is an implicit place and we need a fast mapping from the visual language plan
to the Petri net so we keep those places. The middle part of the Petri net models the
grey, yellow and green sequence. The place pin,23,21 for the is input for relation from
the PiKI card to the reflect card is also in the middle part. This is the only connection
form the lower part of the Petri net to its upper part. The finishing event of the refined
cards can only occur after the finishing event of all their refining cards.

194 PNSE’14 – Petri Nets and Software Engineering

Fig. 10. Petri net for our example. The upper and lower section contain the transitions for the yel-
low and green occurrence of the activity stage cards. The middle section comprises the transitions
for the refining cards.

K. Irgang, Th. Irgang: Visual Language Plans 195

5 Applications of the Visual Language

With the help of the formal syntax, shown in Section 3, we can automatically check if
a Visual Language Plan is valid while students are modeling it. The Metafora learnflow
engine we develop will listen to the logs of the Planning Tool, analyze the events done
by the students and send feedback messages to the students. It will send affirmative
feedback messages if the students fulfill desired properties, like refining cards labeled
with an Activity Stage. If the students violate syntactic rules it will send corrective
feedback messages. For example, this is the case if students connect cards labeled with
an Activity Stage with an is linked to relation. The feedback messages help the students
to create a meaningful and selfregulated learnflow model. Besides all this, we need the
formal definition of a syntax for Visual Language Plans to define a formal semantics.

The Petri net mapping for a Visual Language Plan, shown in Section 4, defines a
formal semantics for Visual Language Plans. The Metafora learnflow engine will cre-
ate the Petri net for each Visual Language Plan and use it to analyze the starting and
finishing events, done by students to generate helpful feedback messages. The feed-
back messages are affirmative, corrective or informative. The learnflow engine send an
affirmative feedback message if students respect the execution rules, e.g. if a student fin-
ished the card labeled with the Activity Stage explore. If students violate the execution
order of the Visual Language Plan it sends corrective feedback messages. For example,
if students start the card labeled with the Activity Stage test model before they start
the card labeled with the Activity Stage build model all students will get a corrective
feedback message telling them to build the model first. We use informative feedback
messages to tell students working on the same Visual Language Plan about meaning-
ful actions. If Bob and Alice work on the same Visual Language Plan the learnflow
engine will send Alice the informative feedback message ‘Bob finished build model.’
when Bob changes the state of the card labeled with the Activity Stage build model
to finished. With these feedback messages we intend to help the students planning and
executing their learnflow. We want to shorten the training phase and help the students
to concentrate on their learnflow instead of think about occurrence rules for cards. With
the help of informative feedback messages we try to help the students keeping track of
current state of their learnflow while they use microworlds.

In Metafora, our learnflow engine is not able to enforce the syntax or semantics
of a Visual Language Plan. Furthermore, the pedagogical case studies of the Metafora
project showed that the students often use their Visual Language Plan for reflecting
about their actions and rearrange specific elements to document how the learning ac-
tually took place. Reflection is one of the L2L2 behaviors which we support to grant
more flexibility on the students side and enable a tight engagement in the planning and
execution phases. To do this, we have to change a learnflow during the execution and
transfer a state from a Visual Language Plan to its Petri net. The changing of the learn-
flow or faulty starting and finishing of cards can cause an invalid state of the Visual
Language Plan. In case of a faulty state of the Visual Language Plan, a direct mapping
would cause a not reachable marking of the Petri net and result in unwanted behavior.

In the following we will describe an approach to transfer a state from a Visual Lan-
guage Plan to a marking of the corresponding Petri net which can handle faulty states
and calculates valuable information to generate useful feedback. In case of a faulty state

196 PNSE’14 – Petri Nets and Software Engineering

change of a card or a change of the learnflow model, we collect the state change events
which caused the current state of the Visual Language Plan. This means for a Visual
Language Plan P = (C,Rnext, Rneed, Rin, Rlink) with its state s : C ! {1, 2, 3} and
the corresponding Petri net N = (S, T, F,m

0

) we calculate a set E of transitions which
occurred to reach this state. We do this by checking the state of each card c 2 C and
get the transition set E = {tM(c),s 2 T | c 2 C ^ s(c) � 1} [{tM(c),f 2 T | c 2
C ^ s(c) = 2}. Next, we calculate for the net N a valid sequence � of the transitions
contained in E by occurring all enabled transitions, adding them to � and removing
them from E. We do this iterative until E is empty or has no more enabled transitions.
For Visual Language Plans, we can do this because we have the state information for
joining and splitting cards no conflicts can happen. Now, we have a maximal valid se-
quence � of transitions of E, a subset E0 ✓ E of faulty transitions and can easily get a
set A ✓ T of enabled transitions. With this information we can tell the students about
the cards with faulty states by analyzing E0. We can recommend possible cards to the
students by analyzing A. Moreover, we can calculate a minimal sequence �0, with pre-
fix �, which enable all transitions t 2 E0 and recommend steps leading to a valid state
of the Visual Language Plan with the help of �0.

Figure 11 shows our example plan with annotations for the current state of the plan
and Figure 12 shows the corresponding Petri net to this plan with a marking correspond-
ing to the current state.

Fig. 11. This figure shows our example Visual Language Plan. For each card c 2 C we wrote
value M(c) on that card. The cards’ states are visible trough the coloring of the cards and we
annotated the card with their color for print versions.

K. Irgang, Th. Irgang: Visual Language Plans 197

Fig. 12. This figure shows the Petri net for our example shown in Figure 11 with the marking for
the state of the plan.

198 PNSE’14 – Petri Nets and Software Engineering

If a student starts the card c labeled with present (M(c) = 22) the Metafora learn-
flow engine evaluates this event as occurrence of the not enabled transition t

22,s. Be-
cause of this faulty state change, it calculates the sequence � of transitions which cause
the marking of Figure 12, the set E = {t

22,s} and the set A = {t
21,f , t20,f , t19,f , t24,f ,

t
8,s}. Now, it unfolds the Petri net with this marking and find the minimal sequence
�0 = �, t

8,s. �0 enable all transitions in E = {t
22,s}. Finally, the learnflow engine

sends a feedback message recommending to start the card labeled with prepare presen-
tation.

6 Conclusion

The Metafora project developed the Visual Language Plans for learnflow modelling. Vi-
sual Language Plans support the pedagogy of L2L2. Metaora is a web-based computer
supported collaborative learning platform implementing this Visual Language Plans and
using Web 2.0 features. The Metafora project did not develop a formal syntax or seman-
tics for this Visual Language Plans.

We develop a Metafora learnflow engine for automatic support of students using
the Metafora system. In this paper we give an overview of Visual Language Plans for
modeling learnflows. Further, we extracted consistent rules for the syntax and seman-
tics of Visual Language Plans from the available publications and developed a formal
syntax and semantics for this plans. To define the semantics of Visual Language Plan
we presented a mapping to a Petri net.

The Metafora learnflow engine will analyze events done by students and support
them while planning and executing Visual Language Plans. With the syntax for Visual
Language Plans the Metafora learnflow engine can generate feedback messages sup-
porting the students in modeling their Visual Language Plan and with the semantics it
can generate feedback messages supporting the students while editing and executing
their plan. This feedback messages are affirmative, corrective or informative [12]. Fur-
thermore, the corresponding Petri net for a Visual Language Plan enables the Metafora
learnflow engine to recommend steps to the students for reaching a valid state.

References

1. Metafora: Project website. http://www.metafora-project.org/
2. Metafora: Demo System. https://www.metafora-project.de/
3. Metafora Glossary: Visual Language. http://static.metafora-project.de/

VisualLanguage.html
4. Metafora Glossary: Learning To Learn Together. http://static.

metafora-project.de/L2L2.html
5. Yang, Y., Wegerif, R., Dragon, T., Mavrikis, M., McLaren, B.M.: Learning how to learn to-

gether (L2L2): Developing tools to support an essential complex competence for the internet
age. In Rummel, N., Kapur, M., Nathan, M., Puntambekar, S., eds.: CSCL 2013 Conference
Proceedings. Volume 2., Madison, International Society of the Learning Sciences (2013)
193–196

6. Dragon, T., Mavrikis, M., McLaren, B.M., Harrer, A., Kynigos, C., Wegerif, R., Yang, Y.:
Metafora: A web-based platform for learning to learn together in science and mathematics.
Learning Technologies, IEEE Transactions on 6(3) (2013) 197–207

K. Irgang, Th. Irgang: Visual Language Plans 199

7. Mavrikis, M., Dragon, T., Yiannoutsou, N., McLaren, B.M.: Towards Supporting ‘Learn-
ing To Learn Together’ in the Metafora platform. Presented at the Intelligent Support for
Learning in Groups workshop at the 16th International Conference on Artificial Intelligence
in Education (AIED 2013) (2013)

8. Abdu, R., Schwarz, B.: “Metafora” and the fostering of collaborative mathematical prob-
lem solving. http://www.academia.edu/1784715/_Metafora_and_the_
fostering_of_collaborative_mathematical_problem_solving

9. Metafora: Challenge: The Bouncing Cannon Ball. http://static.
metafora-project.de/BouncingCannonBall.html

10. Humboldt Universität Berlin: LASAD. http://cses.informatik.hu-berlin.
de/research/details/lasad/

11. Metafora: Report D 2.1 - Visual Language for Learning Processes. http://data.
metafora-project.de/reportD2_1.pdf

12. Harrer, A., Pfahler, K., Lingnau, A.: Planning for Life-Educate Students to Plan: Syntactic
and Semantic Support of Planning Activities with a Visual Language. In Chen, N.S., Huang,
R., Kinshuk, Li, Y., Sampson, D.G., eds.: Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, Washington, IEEE, CPS (2013) 309–313

13. Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Learnflow mining. In Seehusen, S., Lucke,
U., Fischer, S., eds.: DeLFI 2008. Volume P-132 of LNI., Bonn, Geselschaft für Informatik
(2008) 269–280

14. Petri, C.A.: Kommunikation mit Automaten. Dissertation, Technische Hochschule Darm-
stadt (1962)

15. Smyrnaiou, Z., Moustaki, F., Yiannoutsou, N., Kynigos, C.: Interweaving meaning gener-
ation in science with learning to learn together processes using Web 2.0 tools. Themes in
Science and Technology Education 5(1-2) (2013) 27–44

16. Kynigos, C., Moustaki, F.: Designing tools to support group work skills for construction-
ist mathematical meaning generation. http://data.metafora-project.de/P12_
kynigos_moustaki.pdf (2013)

17. Daskolia, M., Yiannoutsou, N., Xenos, M., Kynigos, C.: Exploring Learning-to-learn-
together Processes within the Context of an Environmental Education Activity. In: Pro-
ceedings of The Ireland International Conference on Education - IICE-2012. (2012)

18. Abdu, R., DeGroot, R., Drachman, R.: Teacher’s Role in Computer Supported Collaborative
Learning. In: CHAIS conference. (2012) 1–6

19. Smyrnaiou, Z., Varypari, E., Tsouma, E.: Dialogical interactions concerning the scientific
content through face to face and distance communication using web 2 tools. In Pintó, R.,
López, V., Simarro, C., eds.: Computer Based Learning in Science Conference Proceedings
2012, Barcelona, CRECIM (2012) 117–125

20. Pifarré, M., Wegerif, R., Guiral, A., del Barrio, M.: Developing Technological and Pedagog-
ical Affordances to Support Collaborative Inquiry Science Processes. In Demetrios, S.G.,
Spector, M.J., Ifenthaler, D., Isaias, P., eds.: IADIS International Conference on Cognition
and Exploratory Learning in Digital Age, Lisbon, IADIS Press (2012) 139–147

21. Moustaki, F., Kynigos, C.: Meanings for 3d mathematics shaped by online group discussion.
In Kynigos, C., Clayson, J.E., Yiannoutsou, N., eds.: Constructionism 2012 Conference -
Theory, Practice and Impact, Athens, The Educational Technology Lab (2012) 174–183

22. Yiannoutsou, N., Kynigos, C.: Boundary Objects in Educational Design Research: designing
an intervention for learning how to learn in collectives with technologies that support collab-
oration and exploratory learning. In: Educational design research - Part B: Illustrative cases.
SLO, Enschede (2013) 357–381

23. Pfahler, K.: Guideline for the Visual Language. http://data.metafora-project.
de/VisualLanguageGuideline.pdf

200 PNSE’14 – Petri Nets and Software Engineering

