
Generating CA-Plans from Multisets of Services

Łukasz Mikulski1, Artur Niewiadomski2, Marcin Piątkowski1, Sebastian Smyczyński3

1 Nicolaus Copernicus University,
{lukasz.mikulski, marcin.piatkowski}@mat.umk.pl
2 Siedlce University, artur.niewiadomski@uph.edu.pl

3 Simplito Computer Science Lab, s.smyczynski@simplito.com

The main idea of solving WSCP utilised by Planics(see [3]) is to divide the
composition process into several stages. The first phase, called abstract planning,
deals with an ontology which contains a hierarchy of classes describing sets of
real-world services and processed object types. Our abstract planners find multi-
sets of service types that potentially satisfy a user query. Still, each equivalence
class defined by a multiset can be viewed as the union of finer equivalence classes
defined by partial orders, in which the plans differ only in the ordering of context
independent services. Finding all of such classes is the task of Multiset Explorer
- a module of Planics presented here.



























































The realizations of web service composition is a transformation sequence of
services together with sets of affected objects (the arguments of those services).
In contrast to concrete plan, we abstract from objects attributes. We also ab-
stract from concrete object names (defining an equivalence relation ⇠=). We treat
two sequences as indistinguishable if they differ only in types of arguments which
are in inheritance relation (we build a partial order 4 based on inheritance rela-
tion and utilize the filters over 4) or are equivalent in Mazurkiewicz sense (see
[2]), which we denote by ⌘Maz. However, we distinguish between two sequences
that match produced objects with the expected ones (specified by user query)
differently.

The diagram presented below shows relationships between classes of trans-
formation sequences obtained by dividing the set of all potential ones that starts
with the set of initial objects specified in the user query. We denote this set by
~S. At the bottom of this diagram individual transformation sequences (~S/I), can
be seen. Looking at the top this diagram, we define three equivalence relations
based on Parikh equivalence of services utilized in the transformation sequence.
Namely, they are ⌘sPar which looks only on names of services (as in abstract
plan), ⌘Par which takes into account names of the attributes and lying in be-



tween ⌘iPar which abstracts from the names and types of objects in favor of the
inheritance relation. In our solution we cut classes of ⌘sPar into classes of ⌘iPar

using the notion of relational structures (see [5]) and based on them equivalence
relation ⌘topology.

~S/⌘sPar

~S/
topology

~S/⌘iPar

Filters of
⇣
~S/⌘iPar ,�Par

⌘

Filters of
⇣
~S/(⇠=�⌘Maz),4

⌘
~S/⌘Par

~S/⌘Maz

Filters of
⇣
~S/⇠=,4

⌘

The main goal of the presented procedure is to browse all transformation
sequences satisfying a given user query with the same Parikh vector of service
specifications without duplicating indistinguishable ones. As an input we take
the ontology, the user query in the form of two sets of objects, and an arbitrary
multiset of service names that identifies single equivalence class ⌘sPar. We start
from fixing the names of objects originating form the user query initial world
or produced by the considered services. After that, we distribute them between
inputs of the services to obtain all possible topologies and compute maximal (in
the sense of 4) possible types of utilized objects. In the next step, we match the
obtained possibilities with the user query expected world, considering all valid
matchings. The last step is browsing all traces (in Mazurkiewicz sense) based
on the multisets of context services from ~S/⌘iPar . This phase of the algorithm is
based on the approach presented in [4] adapted to the specification in the form
of a relational structure.

The preliminary experimental results are very promising. We used Z3 SMT-
solver together with Abstract Planner (AP). We browse all solutions equivalent
in the sense of ⌘sPar with the one reported by AP. In the case of the shortest
plans we are able to validate their uniqueness significantly faster than the pro-
cedure of their generation. For longer plans, we are as fast as Z3+AP reporting
from 1.5 to 5 times more plans.

Acknowledgements This research was supported by the National Science Cen-
ter under the grants No.2011/01/B/ST6/01477 and No.2013/09/D/ST6/03928.

References
1. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. LNCS 4963:337-340, Springer, 2008.
2. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
3. D. Doliwa et al. PlanICS - a web service composition toolset. Fund. Inf., 112(1):47-71, 2011.
4. Ł. Mikulski et al. Algorithmics of posets generated by words over partially commutative alphabets

(extended). Scientific Annals of Comp. Sci., 23(2):229-249, 2013.
5. R. Janicki et al. Causal structures for general concurrent behaviours. In CS&P’13, pp. 193-205.

348 PNSE’14 – Petri Nets and Software Engineering


