
Kleene Theorems for Labelled Free Choice Nets

Ramchandra Phawade and Kamal Lodaya

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Abstract. In earlier work [LMP11], we showed that a graph-theoretic
condition called “structural cyclicity” enables us to extract syntax from a
conflict-equivalent product system of automata. In this paper we have a
“pairing” property in our syntax which allows us to connect to a broader
class of product systems, where the conflict-equivalence is not statically
fixed. These systems have been related to labelled free choice nets.

1 Introduction

Petri nets are an excellent visual representation of concurrency. But like any
graphical notation they are less amenable to syntax. For finite automata, Kleene’s
regular expressions provide us with a formalism where we can switch between the
graphical and the textual. For 1-bounded Petri nets, equivalent syntax has been
provided by Grabowski [Gra81], Garg and Ragunath [GR92] and other authors.
Here we place restrictions on this syntax in an effort to match the 1-bounded
labelled free choice nets, a very well-studied subclass [Hac72] with more effi-
cient analysis and algorithms [DE95]. It has been claimed that free choice nets
can be useful in business process modelling [SH96], but our motivation is more
conceptual than dictated by business concerns.

As is usual when dealing with subclasses, this turns out to be challenging.
We also follow the example of finite automata and work directly with labelled
nets, not relying on a renaming operator in the syntax. As in our earlier paper
[LMP11], we rely on an intermediate formalism, “direct” products of automata,
which are known to be weaker than 1-bounded nets [Zie87,Muk11]. There we
identified a subclass called FC-products, and a graph-theoretic property called
“structural cyclicity”, for which we presented an equivalent syntax which was
restricted to being without nested Kleene star operators.

The improvement in this paper is that on the system side we have an en-
larged subclass called FC-matching products. On the syntax side we drop
the structural cyclicity condition and do not place any restriction on the Kleene
stars, thus (unlike in our earlier paper) including all regular expressions. We do
have global restrictions. A “pairing” condition identifies synchronizations which
will take place at run-time. Assuming a communication alphabet {a, b, c}, the
expression (a + a + b)(a + c + c) the a’s in the two groups of parentheses will
be paired into different synchronizations. Correspondingly we have a “matching”
condition in the product systems. The matching condition produces free choice
nets (and the converse also holds). Our proofs go through a subclass where
communications are labelled with the place from which they are issued.

2 Preliminaries

Let ⌃ be a finite alphabet and ⌃⇤ be the set of all words over alphabet ⌃,
including the empty word ". A language over an alphabet ⌃ is a subset L ✓ ⌃⇤.
The projection of a word w 2 ⌃⇤ to a set � ✓ ⌃, denoted as w#�, is defined by:

"#� = " and (a�)#� =

(

a(�#�) if a 2 �,

�#� if a /2 �.

Definition 1. Let Loc denote the set {1, 2, . . . , k}. A distribution of ⌃ over Loc
is a tuple of nonempty sets (⌃

1

,⌃
2

, . . . ,⌃k) with ⌃ =
S

1ik ⌃i. For each
action a 2 ⌃, its locations are the set loc(a) = {i | a 2 ⌃i}. Actions a 2 ⌃ such
that |loc(a)| = 1 are called local, otherwise they are called global.

A regular expression over alphabet ⌃i defining a nonempty language is given by:

s ::= a 2 ⌃i|s1 · s2|s1 + s
2

|s⇤
1

As a measure of the size of an expression we will use wd(s) for its alphabetic

width—the total number of occurrences of letters of ⌃ in s. We will use syntactic
entities associated with regular expressions which are known since the time of
Brzozowski [Brz64], Mirkin [Mir66] and Antimirov [Ant96].

For each regular expression s over ⌃i, its initial actions form the set Init(s) =
{a | av 2 Lang(s) and v 2 ⌃⇤

i } which can be defined syntactically. Similarly, we
can syntactically check whether the empty word " 2 Lang(s). Next we syntacti-
cally define derivatives [Ant96].

Definition 2. Given regular expression s and symbol a, the partial derivatives

of s wrt a, written Dera(s) are defined as follows.
Dera(b) = ; if a 6= b
Dera(a) = {"}

Dera(s1 + s
2

) = Dera(s1) [Dera(s2)
Dera(s⇤

1

) = Dera(s1) · s⇤
1

Dera(s1 · s2) =
⇢

Dera(s1) · s2 [Dera(s2) if " 2 Lang(s
1

)
Dera(s1) · s2 otherwise

Inductively Deraw(s) = Derw(Dera(s)).
The set of all derivatives Der(s) =

[

w2⌃⇤
i

Derw(s).

We have the Antimirov derivatives Dera(ab+ ac) = {b, c} and Dera(a(b+ c)) =
{b + c}, whereas the Brzozowski a-derivative [Brz64] (which is used for con-
structing deterministic automata, but which we do not use in this paper) for
both expressions would be {b+ c}.

A derivative d of s with global a 2 Init(d) is called an a-site of s. An
expression is said to have equal choice if for all a, its a-sites have the same
set of initial actions. For a set D of derivatives, we collect all initial actions to
form Init(D). We syntactically partition the a-sites of s, each set of the partition
containing those coming from a common source derivative, as follows.

76 PNSE’14 – Petri Nets and Software Engineering

Definition 3. For partitions X
1

, X
2

with blocks D
1

, D
2

containing elements
d
1

, d
2

respectively, we use the notation (X
1

[X
2

)[d/d
1

, d
2

] for the modified par-
tition ((X

1

[X
2

) \ {D
1

, D
2

}) [{(D
1

[D
2

[{d}) \ {d
1

, d
2

}}.
Parta(b) = ; if a 6= b
Parta(a) = {{a}}

Parta(s1+s
2

) =

⇢

(Parta(s1) [Parta(s2))[s1+s
2

/s
1

, s
2

] if a 2 Init(s
1

+s
2

)
Parta(s1) [Parta(s2) otherwise

Parta(s⇤
1

) =

⇢

Parta(s1)[s⇤
1

/s
1

] if a 2 Init(s
1

)
Parta(s1) · s⇤

1

otherwise

Parta(s1 · s2) =
⇢

Parta(s1)[s1 · s2/s1] [Parta(s2) if " 2 Lang(s
1

)
Parta(s1) · s2 [Parta(s2) otherwise

The next definition and the following proposition identify the key property
of this partition of a-sites for this paper.

Definition 4. Given a set of derivatives D and an action a, define the pre-
fixes PrefD

a (L) = {x | xay 2 L, 9d 2 Derx(L) \ D, " 2 Deray(d)}, suf-
fixes SufD

a (L) = {y | xay 2 L, x 2 PrefD
a (L)}, and the relativized language

LD = {xay | xay 2 L, 9d 2 Derx(L)\D, " 2 Deray(d)}. We say that the deriva-
tives in set D a-bifurcate L if LD \ ⌃⇤a⌃⇤ = PrefD

a (L) a SufD
a (L). If D is

the set of all derivatives, we say L is a-bifurcated.

Proposition 1. Every block D of the partition Parta(s) a-bifurcates Lang(s).

Proof. By induction on the definition. ut

Consider a regular expression s in the context of a distribution (⌃
1

, . . . ,⌃k),
so that some of the actions are global. The following properties of expressions
will be important in this paper, where the derivatives are taken for regular
expressions and also for the connected expressions defined in the next section.

Definition 5. If for all global actions a occurring in s, the partition Parta(s)
consists of a single block, then we say s has unique sites. It has determin-

istic global actions if for every global action a and every a-site d 2 Der(s),
|Dera(d)| = 1. It has unique global actions if it has both these properties.

3 Connected Expressions over a Distribution

We have a simple syntax of connected expressions. The si can be any regular ex-
pressions (of any star-height), which is different from our earlier paper [LMP11].

e ::= 0|fsync(s
1

, s
2

, . . . , sk), si over ⌃i

When e = fsync(s
1

, s
2

, . . . , sk) and I ✓ ⌃, let the projection e#I = ⇧i2Isi.
For the connected expression 0, we have Lang(0) = ;. For the connected

expression e = fsync(s
1

, s
2

, . . . , sk), its language is given by

Lang(e) = Lang(s
1

)kLang(s
2

)k . . . kLang(sk),

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 77

where the synchronized shuffle L = L
1

k . . . kLk is defined by

w 2 L iff for all i 2 {1, . . . , k}, w#⌃i
2 Li.

The definitions of derivatives can be easily extended to connected expressions. 0
has no derivatives on any action. Given e = fsync(s

1

, s
2

, . . . , sk), its derivatives
are defined by induction using the derivatives of the si on action a:

Dera(e) = {fsync(r
1

, r
2

, . . . , rk) | 8i 2 loc(a), ri 2 Dera(si); otherwise rj = sj}.

We will use the word derivative for expressions such as d = fsync(r
1

, r
2

, . . . , rk)
above (essentially tuples of derivatives of regular expressions), and d[i] for ri.
The number of derivatives can be exponential in k. Define Init(d) to be those
actions a such that Dera(d) is nonempty. If a 2 Init(d) we call d an a-site.
The reachable derivatives are Der(e) = {d | d 2 Derx(e), x 2 ⌃⇤}. For example,
fsync(ab, ba) has derivatives other than the expression itself, but none of them
is reachable.

3.1 Properties of Connected Expressions

We now define some properties of connected expressions over a distribution.
These will ultimately lead us to construct free choice nets. All but the last
property are Ptime-checkable. The last property requires Pspace since it runs
over all reachable derivatives.

Definition 6. Let e = fsync(s
1

, s
2

, . . . , sk) be a connected expression over ⌃.
For a global action a, an a-pairing is a subset of tuples ⇧i2loc(a)Parta(si),
the projections of these tuples covering the a-sites in si, such that if a block
of Parta(sj), j 2 loc(a) appears in one tuple of the pairing, it does not ap-
pear in another tuple. (For convenience we also write pairing(a) as a subset of
⇧i2loc(a)Der(si) which respects the partition.) We call pairing(a) equal choice if
for every tuple in the pairing, the derivatives in the tuple have equal choice.
We extend the definition to connected expressions. A derivative fsync(r

1

, . . . , rk)
is in pairing(a) if there is a tuple D 2 pairing(a) such that ri 2 D[i] for all i 2
loc(a). For convenience we may write a derivative as an element of pairing(a).
Expression e is said to have (equal choice) pairing of actions if for all global
actions a, there exists an (equal choice) pairing(a). Expression e is said to be
consistent with a pairing of actions if every reachable a-site d 2 Der(e) is
in pairing(a).

Example 1. Let (⌃
1

= {a},⌃
2

= {a}). Expression fsync(aa, a) does not have a
pairing. The two a’s on the left are in different blocks of the partition and they
have to pair with one block on the right, which is not allowed.

Example 2. Let (⌃
1

= {a},⌃
2

= {a, b, c, d, f}). In expression e = fsync(aa, bad+
caf) we have two blocks on the left and two blocks on the right, so we can have
a pairing. But e cannot be consistent with any pairing.

78 PNSE’14 – Petri Nets and Software Engineering

Example 3. Let (⌃
1

= {a, c},⌃
2

= {b, c}),⌃
3

= {a, b, c}). Consider this ex-
pression fsync((ac)⇤, (bc)⇤, (a(b+ c))⇤). Individual regular expressions are r

1

=
(ac)⇤, r

2

= (bc)⇤ and r
3

= (a(b + c))⇤. Now we have r0
1

= Dera(r1) = c(ac)⇤

and Init(r0
1

) = {c}. For r
3

we have, r0
3

= Dera(r3) = (b + c)(a(b + c))⇤ and
Init(r0

3

) = {b, c}. r0
1

and r0
3

do not have equal choice.

Proposition 2. For a connected expression e checking existence of a pairing of
actions and checking whether it is equal choice can be done in polynomial time,
checking consistency with a pairing of actions is in Pspace.

Proof. We have to visit each derivative of all the regular expressions to construct
the a-partitions for every a. We can record their initial actions. Maximum num-
ber of Antimirov derivatives of any regular expression s is at most wd(s) + 1
[Ant96]. There are k regular expressions in e. If the number of blocks in two a-
partitions is not the same, there cannot be an a-pairing, otherwise there always
exists an a-pairing. For an equal choice pairing, we have to count blocks whose
sets of initial actions are the same, this can be done in cubic time.

On the other hand, to check consistency with a pairing of actions, we have
to visit each reachable derivative, this can be done in Pspace. ut

4 Product Systems over a Distribution

Fix a distribution (⌃
1

,⌃
2

, . . . ,⌃k) of ⌃. We define product systems over this.

Definition 7. A sequential system over a set of actions ⌃i is a tuple Ai =
hPi,!i, Gi, p0i i where Pi are called places, Gi ✓ Pi are final places, p0i 2 Pi is
the initial place, and !i✓ Pi ⇥⌃i ⇥ Pi is a set of local moves.

Let !i
a denote the set of all a-labelled moves in the sequential system Ai.

A run of the sequential system Ai on word w is a sequence p
0

a
1

p
1

a
2

, . . . , anpn,
from set (Pi⇥⌃i)⇤Pi, such that p

0

= p0i and for each j 2 {1, . . . , n}, pj�1

aj�! pj .
This run is said to be accepting if pn 2 Gi. The sequential system Ai accepts word
w, if there is at least one accepting run of Ai on w. The language L = Lang(Ai)
of sequential system Ai is defined as L = {w 2 ⌃i

⇤|w is accepted by Ai}.
Given a place p of Ai, we also define relativized languages and we will extend

this definition to product systems: Prefp
a (L) = {x | xay 2 L, p

0

x�! p
ay�! Gi},

similarly Sufp
a (L), Lp = {xay | xay 2 L, p

0

x�! p
ay�! Gi}. Say the place p

a-bifurcates L if Lp = Prefp
a (L) a Sufp

a (L).

Definition 8. Let Ai = hPi,!i, Gi, p0i i be a sequential system over alphabet ⌃i

for 1 i k. A product system A over the distribution ⌃ = (⌃
1

, . . . ,⌃k) is
a tuple hA

1

, . . . , Aki.

Let ⇧i2LocPi be the set of product states of A. We use R[i] for the projec-
tion of a product state R in Ai, and R#I for the projection to I ✓ Loc. The
relativizations LR of a language L ✓ ⌃⇤

i consider projections to place R[i] in Ai.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 79

The initial product state of A is R0 = (p0
1

, . . . , p0k), while G = ⇧i2LocGi

denotes the final states of A.
Let)a= ⇧i2loc(a) !i

a. The set of global moves of A is)=
S

a2⌃)a. Then
for a global move

g = hhpl
1

, a, p0l
1

i, hpl
2

, a, p0l
2

i, . . . hplm , a, p0lmii 2)a, loc(a) = {l
1

, l
2

, . . . , lm},

we write g[i] for hpi, a, p0ii, the projection to Ai, i 2 loc(a) and pre(a) for the
product states where such a move is enabled.

Please note that the set of product states as well as the global moves are not
explicitly provided when a product system is given as input to some algorithm.

4.1 Properties of Product Systems

The first property for a product system is modelled on the free choice property
of nets. It can be checked in Ptime by counting local moves with the same label.
We also define another stronger property.

Definition 9. For global a 2 ⌃, an a-matching is a subset of tuples ⇧i2loc(a)Pi,
such that if a place p 2 Pj , j 2 loc(a) appears in one tuple, it does not appear
in another tuple. We say a product state R is in an a-matching if its projection
R#loc(a) is in the matching.

A product system is said to have matching of labels if for all global a 2 ⌃,
there is an a-matching such that for i, j 2 loc(a), hp, a, qi 2!i, the pre-place p
is matched to a pre-place p0 such that hp0, a, q0i 2!j and such that all pre-places
with a-transitions are covered by the tuples of the matching. A product system A
is said to have separation of labels if for all i 2 Loc, if hp, a, p0i, hq, a, q0i 2!i

then p = q.

Proposition 3. Let A = hA
1

, . . . , Aki be a product system over distribution
⌃ = (⌃

1

, . . . ,⌃k). If A has separation of labels, then for every i and every global
action a, Li = Lang(Ai) is a-bifurcated. If A has matching of labels, then for
every i and every global action a,

Li \⌃⇤
i a⌃

⇤
i =

[

R#loc(a)2matching(a)

PrefR[i]
a (Li) a SufR[i]

a (Li).

Proof. Let A be a product system as above with separation of labels. Let L(q)
be the set of words accepted starting from any place q in Ai. If Prefa(L(q))
is nonempty then L(q) is a-bifurcated, because the words containing a have to
pass through a unique place. When A has a matching of labels, since the places
R[i] appear in unique tuples, one can separately consider the places a-bifurcating
L(q) and the required property follows. ut

The next property is necessary for product systems to represent free choice
in equivalent nets. In our earlier paper [LMP11] we used the definition of an
FC-product below. The definition of FC-matching product is a generalization
since conflict-equivalence is not required for all a-moves uniformly but refined
into smaller equivalence classes depending on the matching.

80 PNSE’14 – Petri Nets and Software Engineering

Definition 10. In a product system, we say the local move hp, a, q
1

i 2!i is
conflict-equivalent to the local move hp0, a, q0

1

i 2!j, if for every other local
move hp, b, q

2

i 2!i, there is a local move hp0, b, q0
2

i 2!j and, conversely, for
moves from p0 there are moves from p. If the product system has a matching of
labels and we require this whenever p, p0 are related by the matching, we call the
matching conflict-equivalent. A system having a conflict-equivalent matching
is a weaker condition than the system being conflict-equivalent.

We call A = hA
1

, . . . , Aki an FC-product if for every global action a 2 ⌃,
every a-labelled move in Ai is conflict-equivalent to every a-labelled move in Aj.
We call A an FC-matching product if it has a conflict-equivalent matching.

Checking that a system is an FC-product or an FC-matching product is in
Ptime because one makes a pass through all transitions with the same locations,
computing for each pre-place which partition it falls into.
Proposition 4. Let A be an FC-matching product system. For any i, if there
exist local moves hp, a, p0i, hp, b, p00i in !i, then loc(a) = loc(b).
Proof. Since p has an outgoing a-move, p belongs to some tuple of matching(a).
If j 2 loc(a), then in this tuple there exists a state q 2 Pj , which has an outgoing
a-move. Since A is an FC-matching product, matching(a) is conflict-equivalent.
And, as states p and q appear in a tuple of matching(a), these states are conflict-
equivalent. Therefore there exists a local move (q, b, q0) 2!j . This implies that
j 2 loc(b). ut

4.2 Language of a Product System
Now we describe runs of A over some word w by associating product states with
prefixes of w: the empty word is assigned initial product state R0, and for every
prefix va of w, if R is the product state reached after v and Q is reached after va
where, for all j 2 loc(a), hR[j], a,Q[j]i 2!j and for all j /2 loc(a), R[j] = Q[j].
Let pre(a) = {R | 9Q,R

a�! Q}.
A run is said to be accepting if the product state reached after w is in G. We

define the language Lang(A) of product system A, as the words on which the
product system has an accepting run.

We use the following characterization of direct product languages, which
appears in [MR02,Muk11].
Proposition 5. L = Lang(A) is the language of product system A = hA

1

, . . . ,
Aki over distribution ⌃ iff

L = {w 2 ⌃⇤ | 8i 2 {1, . . . , k}, 9ui 2 L such that w#⌃i
= ui#⌃i

}.

Further L = Lang(A
1

)k . . . kLang(Ak).
The next definition is semantic, new to this paper and not easy to check (in

Pspace). If a system has separation of labels, the property obviously holds.
Definition 11. A run of A is said to be consistent with a matching of

labels if for all global actions a and every prefix of the run R0

v)R
a)Q, the

pre-places R#loc(a) are in the matching.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 81

5 Connected Expressions and Product Systems

In this section we prove the main theorems of the paper. To place them in context
of our earlier paper [LMP11], there we used a “structural cyclicity” condition
which allowed a run to be split into finite parts from the initial product state to
itself, since it was guaranteed to be repeated. The new idea in this paper is that
runs are split up using matchings which correspond to synchronizations, what
happens in between is not relevant for the connections across sequential systems.
Hence extending our syntax to allow full regular expressions for the sequential
systems does not affect the synchronization properties which are the main issue
we are addressing. In Section 6 we outline the connections to labelled free choice
nets which are detailed in another paper [PL14].

5.1 Synthesis of Systems from Expressions

We begin by constructing product automata for our syntactic entities. For regular
expressions, this is well known. We follow the construction of Antimirov, which
in polynomial time gives us a finite automaton of size O(wd(s)), using partial
derivatives as states.

Now we come to connected expressions, for which we will construct a product
of automata.

Lemma 1. Let e be a connected expression with unique global action sites. Then
there exists a product system A with separation of labels accepting Lang(e) as
its language. If e had equal choice, then A is conflict-equivalent.

Proof. Let e = fsync(s
1

, s
2

, . . . , sk). Then for each si, which is a regular expres-
sion, defined over some alphabet ⌃i, we produce a sequential system Ai over ⌃i,
using Antimirov’s derivatives, such that Lang(si) = Lang(Ai), 8 i 2 {1, . . . , k}.
Next we trim it—remove places not reachable from the initial place p0i and places
from where a final state is not reachable. Now, for each global action a, we quo-
tient Ai by merging all derivatives d such that a 2 Init(d) into a single place.

Call the resulting automaton A0
i. Let p be the merged place in A0

i which is
now the source of all a-transitions. Clearly Lang(Ai) ✓ Lang(A0

i) since no paths
are removed, we show next that the inclusion in the other direction also holds,
using the unique global action sites condition.

Let a be a global action. Consider a word w = x
1

ax
2

. . . axn in Lang(A0
i),

where the factors x
1

, x
2

, . . . , xn do not contain the letter a. We wish to find
derivatives d

0

, d
1

, . . . , dn of Ai such that dn is a final place and for every j there
is a run dj

axj+1����! . . .
axn��! dn of Ai when j > 0, and d

0

x
1�! ax

2��! . . .
axn��! dn

when j = 0, which will show the desired inclusion.
We proceed from n downwards. For any place dn in G there is a run from dn

on " 2 Lang(dn) in Ai. Inductively assume we have dj such that there is a run
dj

axj+1����! . . .
axn��! dn of Ai, so xj+1

axj+2

. . . axn is in Sufa(Lang(si)) since dj
is reachable from the initial place. Since there is a run p

axj��! p in A0
i there are

derivatives dj�1

, cj of e, such that there is a run dj�1

axj��! cj in Ai (when j = 1

82 PNSE’14 – Petri Nets and Software Engineering

we get d
0

x
1�! c

1

by this argument). Since cj quotients to p, it has an a-derivative
c such that c is in Deraxja(dj�1

) (Derx
0

a(d0) when j = 1). Because dj�1

is reach-
able from the initial place by some v and because some final state is reachable
from c, vxj 2 Prefa(Lang(si)) which is nonempty. By the unique global ac-
tion sites condition and Proposition 1, since xj+1

. . . axn is in Sufa(Lang(si)),
vaxjaxj+1

. . . axn is in Lang(si) and so xjaxj+1

. . . axn is in Sufa(Lang(si)).
This means that there is a run from some dj�1

on axjaxj+1

. . . axn ending in a
final state dn of Ai. So we have the induction hypothesis restored. If j = 1 we
get d

0

which quotients to p
0

and has a run on w to dn in G.
So we get a product system A0 = hA0

1

, A0
2

, . . . , A0
ki defined over ⌃. If the

expression had equal choice, this system is conflict-equivalent. Because of the
quotienting A0 has separation of labels.

w 2 Lang(e) iff 8i, w#⌃i
2 Lang(si), by definition

iff 8i, w#⌃i
2 Lang(A0

i)

iff w 2 Lang(A0), by Proposition 5.

Theorem 1. Let e = fsync(s
1

, . . . , sk) be a connected expression over a distri-
bution ⌃ with a pairing of actions. Then there exists an FC-matching product
system A over ⌃, accepting Lang(e). If the expression had deterministic sites,
the constructed product will have deterministic global actions. If the pairing was
equal choice, the matching is conflict-equivalent. If the expression is consistent
with the pairing, all runs of A will be consistent with the matching.

Proof. We first rewrite e to another expression e0, construct an automaton A0

for Lang(e0), and then change it to recover an automaton for Lang(e).
Consider global action a and tuple of blocks D = ⇧i2loc(a)Di ✓ pairing(a).

By Proposition 1 Di a-bifurcates Lang(si). We rename for all i in loc(a), the
occurrences of a in si which correspond to an a in Init(Di), by the new letter
aD. This is done for all global actions to obtain from e a new expression e0 =
fsync(s0

1

, . . . , s0k) over a distribution ⌃0, where every s0i now has the unique sites
property. For any word w 2 Lang(e), there is a well-defined word w0 2 Lang(e0).

By Lemma 1 we obtain an FC-product A0 with separation of labels for
Lang(e0). Say p(aD) is the pre-place for action aD in A0

i. We change all the
hp(aD), aD, qi transitions to hp(aD), a, qi in all the A0

i to obtain an FC-product
A over the alphabet ⌃. As w0 2 Lang(e0) = Lang(A0) is well-defined from w and,
as the renaming of transition labels does not remove any paths, w is in Lang(A).
Conversely, for every run on w accepted by A, because of the separation of la-
bels property, there is a well-defined run on w0 with the label of a transition
appropriately renamed depending on the source state, which is accepted by A0,
hence w0 is in Lang(e0). So renaming w0 to w gives a word in Lang(e). This
construction preserves determinism.

Now we refer to the pairing of actions in e. This defines for each global action
a and tuple of blocks of a-sites D, a relation between pre-places of aD-moves in
different components in the product A0. By the separation of labels property of
A0, the tuples in the relation are disjoint, that is, the relation is functional. So

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 83

for pre-places of a-moves in the product A we have a matching. If the pairing
was equal choice, the matching is conflict-equivalent.

If the expression e is consistent with the pairing, all reachable a-sites are
in the pairing, so we can partition Lang(e) \ ⌃⇤a⌃⇤ using the partitions in
Parta(e). Letting D range over blocks of connected expressions, each block D
contributes a global action aD in the renaming, so we get an expression e0 such
that for every global action aD, we have the unique a-sites property. Applying
Lemma 1, we have the product system A0 with separation of labels. By Proposi-
tion 3, every Lang(A0

i) is aD-bifurcated, and using the characterization of Propo-
sition 5, Lang(A0) \ (⌃0)⇤aD(⌃0)⇤ = PrefaD (Lang(A0))aDSufaD (Lang(A0)).
Since several actions aD are renamed to a and the corresponding tuples of pre-
places are recorded in the matching, by Proposition 3 and Proposition 5:

[

R2matching(a)

PrefR
a (Lang(A)) a SufR

a (Lang(A)) ✓ Lang(A) \⌃⇤a⌃⇤.

But this means that all runs of A are consistent with the matching. ut

5.2 Analysis of Expressions from Systems

Lemma 2. Let A be a FC-product system with separation of labels. Then we
can compute a connected expression for the language of A, where every regular
expression has unique sites. If the FC-product had deterministic global actions,
then so do the regular expressions in the computed expression. If the FC-product
was conflict-equivalent, the constructed expression has equal choice.

Proof. Let A = hA
1

, . . . , Aki be an FC-product with separation of labels, where
Ai is a sequential system of A with places P , initial place p

0

and final places G.
Kleene’s theorem gives us an expression si for the language of Ai. We claim the
required connected expression is fsync(s

1

, . . . , sk).
Consider global action a. By separation of labels there is a single state p in

Ai enabling a. For simplicity let us assume there is only one global action a
enabled at p. Let Q = P \ {p}. Let T be the set of transitions excluding the
a-actions enabled at p. We wish to decompose the expression si that we started
with into paths which go through p and paths which do not. Depending on
whether we have a sequential transition p

a�! p, or transitions p
a�! pj , pj 6= p,

or a combination of these two types, we obtain an expression with the same
language as si:

ep =
X

f2G

eTp
0

,f + eTp
0

,pe
⇤
p,pe

Q
p,f ,

where the expression ep,p is given by one of the following refinements, for the
three cases considered above respectively:

(a+ eTp,p), or ((
X

j

aeTpj ,p) + eTp,p), or (a+ (
X

j

aeTpj ,p) + eTp,p).

84 PNSE’14 – Petri Nets and Software Engineering

The superscripts T,Q indicates that these expressions are derived, as in the
McNaughton-Yamada construction [MY60], for runs which only use the states Q
or transitions T . Whichever be the case, we note that we have an expression with
Da(ep) = {e⇤p,pe

Q
p,f} as its singleton set of a-sites. If the system had deterministic

global actions, the a-site would have only had one a-derivative. This idea can be
easily extended to considering several global actions enabled at the same place,
by considering a different refinement of si taking into account the combined
possibilities. If the product system was conflict-equivalent, the a-sites are all
equal choice.

But the expression si could have been obtained by considering the place p
at an arbitrary point in the McNaughton-Yamada construction. Consider ep as
refining some intermediate expression s0i for the place p. The expression ep may
make copies of parts of s0i. This does not affect the deterministic global actions
property. For c 6= a the c-sites Dc(ep) are obtained as:

Dc(ep) =
[

f2G

Dc(eTp
0

,f) [Dc(eTp
0

,p) [Dc(ep,p) · e⇤p,p · e
Q
p,f [Dc(eQp,f).

That is, Partc(ep) is preserved as a single block if it formed a single block in the
earlier expressions. Thus the expression si has the unique sites property. ut

Theorem 2. Let A be a FC-matching product system. Then we can compute a
connected expression for the language of A, where every regular expression has a
pairing of actions. If the FC-product had deterministic global actions, then so do
the regular expressions in the computed expression. If the matching was conflict-
equivalent the pairing is equal choice. If all runs of A were consistent with the
matching, the expression constructed will be consistent with the pairing.

Proof. Let A be a product system with a conflict-equivalent matching. Enumer-
ate the global actions a, b, Say the a-matching has n tuples.

We construct a new product system A0 where, for the places in the j’th
tuple of the a-matching, we change the label of the outgoing a-transitions to
aj ; similarly for the places in tuples of the b-matching; and so on. We now have
a new product system where the letter a of the alphabet has been replaced by
the set {a1, . . . , an}; the letter b has been replaced by another set; and so on,
obtaining a new distribution ⌃0. By definition of a matching, the various labels
do not interfere with each other, so we have a matching with the new alphabet,
conflict-equivalent if the previous one was. Runs which were consistent with
the matching continue to be consistent with the new matching. Again by the
definition of matching, the new system A0 has separation of labels. Hence we
can apply Lemma 2.

From the lemma we get a connected expression e0 = fsync(s
1

, . . . , sk) for the
language of A0 over ⌃0 where every regular expression has unique global action
sites. From the proof of the lemma we get for every sequential system A0

i in the
product, for the global actions a1, . . . , an, tuples D0(aj) = ⇧i2loc(a)D

0
i(a

j) which
are sites for aj in the expression si, for every j. Now substitute a for every letter
a1, . . . , an in the expression, each tuple D0 is isomorphic to a tuple D of sites

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 85

for a in e and the sites are disjoint from one another. We let pairing(a) be the
partition formed by these tuples. Do the same for b obtaining pairing(b). Repeat
this process until all the global actions have been dealt with. The result is an
expression e with pairing of actions. If the matching was conflict-equivalent, the
pairing has equal choice.

The runs of A have to use product states in pre(a) for global action a, define

L = Lang(A) \⌃⇤a⌃⇤ =
[

R2pre(a)

PrefR
a (Lang(A)) a SufR

a (Lang(A)).

The renaming of transitions depends on the source state, so L is isomorphic to

L0 = Lang(A0)\(
X

j

(⌃0)⇤aj(⌃0)⇤) =
[

j=1,n

Prefaj (Lang(A0))ajSufaj (Lang(A0)).

Keeping Proposition 5 in our hands, the lemma ensures that Lang(A0) = Lang(e0)
and the expression e0 has unique aj-sites forming a block D0(j). Then L0 can
be written as

[

j=1,n

PrefD0
(j)

aj (Lang(e0))ajSufD0
(j)

aj (Lang(e0)). When we rename

the aj back to a we have a partition of pairing(a) into sets D such that

L =
[

D✓pairing(a)

PrefD
a (Lang(e)) a SufD

a (Lang(e)).

If all runs of A were consistent with the matching, the product states in pre(a)
would all be in the matching, and we obtain that the expression e is consistent
with the pairing. ut

6 Nets

Definition 12. A labelled net N is a tuple (S, T, F,�), where S is a set of places,
T is a set of transitions labelled by the function � : T ! ⌃ and F ✓ (T ⇥ S) [
(S ⇥ T) is the flow relation. It will be convenient to define loc(t) = loc(�(t)).

Elements of S [T are called nodes of N . Given a node z of net N , set •z = {x |
(x, z) 2 F} is called pre-set of z and z • = {x | (z, x) 2 F} is called post-set of
z. Given a set Z of nodes of N , let •Z =

S

z2Z
•z and Z • =

S

z2Z z •. We only
consider nets in which every transition has nonempty pre- and post-set.

Definition 13. Let N 0 = (S \ X,T \ X,F \ (X ⇥ X)) be a subnet of net
N = (S, T, F), generated by a nonempty set X of nodes of N . N 0 is called a
component of N if,

– For each place s of X, •s, s • ✓ X (the pre- and post-sets are taken in N),
– For all transitions t 2 T , we have |•t| = 1 = |t •| (N 0 is an S-net [DE95]),
– Under the flow relation, N 0 is connected.

86 PNSE’14 – Petri Nets and Software Engineering

A set C of components of net N is called S-cover for N , if every place of the
net belongs to some component of C. A net is covered by components if it has an
S-cover.

Note that our notion of component does not require strong connectedness
and so it is different from notion of S-component in [DE95], and therefore our
notion of S-cover also differs from theirs.

Fix a distribution (⌃
1

,⌃
2

, . . . ,⌃k) of ⌃. The next definition appears in sev-
eral places for unlabelled nets, starting with [Hac72].

Definition 14. A labelled net N = (S, T, F,�) is called S-decomposable if,
there exists an S-cover C for N , such that for each Ti = {��1(a) | a 2 ⌃i}, there
exists Si such that the induced component (Si, Ti, Fi) is in C.

Now from S-decomposability we get an S-cover for net N , since there exist
subsets S

1

, S
2

, . . . , Sk of places S, such that S = S
1

[S
2

[. . . Sk and •Si[S•
i = Ti,

such that the subnet (Si, Ti, Fi) generated by Si and Ti is an S-net, where Fi is
the induced flow relation from Si and Ti.

6.1 Properties of Nets

Definition 15 ([DE95]). Let x be a node of a net N . The cluster of x, denoted
by [x], is the minimal set of nodes contaning x such that

– if a place s 2 [x] then s• is included in [x], and
– if a transition t 2 [x] then •t is included in [x].

A cluster C is called free choice (FC) if all transitions in C have the same pre-set.
A net is called free choice if all its clusters are free choice.

The next definitions will turn out to be the analogue to the separation of
labels property of product systems. It is checkable in linear time.

Definition 16. A labelled net N = (S, T, F,�) is said to have the unique clus-

ter property (briefly, ucp) if 8a 2 ⌃ having |loc(a)| > 1, there exists at most
one cluster in which all transitions labelled a occur. It is deterministic for

synchronization if for every a, every cluster contains at most one a-labelled
transition.

6.2 Net Systems and their Languages

For our results we are only interested in 1-bounded (or condition/event) nets,
where a place is either marked or not marked. Hence we define a marking as a
function from the states of a net to {0, 1}.

A transition t is enabled in a marking M if all places in its pre-set are marked
by M . In such a case, t can be fired to yield the new marking M 0 = (M \•t)[t •.
We write this as M [tiM 0 or M [�(t)iM 0.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 87

A firing sequence (finite or infinite) �(t
1

)�(t
2

) . . . is defined by composition,
from M

0

[t
1

iM
1

[t
2

i . . . For every i j, we say that Mj is reachable from Mi. A
net system (N,M

0

) is live if, for every reachable marking M and every transition
t, there exists a marking M 0 reachable from M which enables t.

Definition 17. For a labelled net system (N,M
0

,G), its language is defined as
Lang(N,M

0

,G) = {�(�) 2 ⌃⇤ | � 2 T ⇤ and M
0

[�iM, for some M 2 G}.

If a net (S, T, F,�) is 1-bounded and S-decomposable then a marking can
be written as a k-tuple from its components S

1

⇥ S
2

⇥ . . . ⇥ Sk. It is known
[Zie87,Muk11] that if we do not enforce the “direct product” condition below we
get a larger subclass of languages.

Definition 18. An S-decomposable labelled net system (N,M
0

,G) is an
S-decomposable labelled net N = (S, T, F,�) along with an initial marking M

0

and a set of markings G ✓ }(S), which is a direct product: if hq
1

, q
2

, . . . qki 2 G
and hq0

1

, q0
2

, . . . q0ki 2 G then {q
1

, q0
1

}⇥ {q
2

, q0
2

}⇥ . . .⇥ {qk, q0k} ✓ G.

6.3 Product Systems to Nets

Given a product system A = hA
1

, A
2

, . . . , Aki over distribution ⌃, we can pro-
duce a net system (N = (S, T, F,�),M

0

,G) as follows using a standard construc-
tion. When we construct nets from product systems with a conflict-equivalent
matching of labels with respect to which all runs are consistent, we can refine
the construction above to choose T 0 ✓ T and get a free choice net.

Theorem 3 ([PL14]). Let (N,M
0

,G) be the net system constructed from prod-
uct system A above. Then N is an S-decomposable net with Lang(N,M

0

,G) =
Lang(A). Further, if A has deterministic global actions and all runs of A are
consistent with a conflict-equivalent matching of labels, we can choose T 0 ✓ T
such that the subnet N 0 generated by T 0 is a free choice net with deterministic
synchronization and (N 0,M

0

,G) accepts the same language.

6.4 Nets to Product Systems

Even if a net is 1-bounded and S-decomposable each component need not have
only one token in it, but when we say that a 1-bounded net is S-decomposable we
assume that each component has one token. For live and 1-bounded free choice
nets, such S-covers can be guaranteed [DE95]. Now we can prove:

Theorem 4 ([PL14]). Let (N,M
0

,G) be a live, 1-bounded, S-decomposable la-
belled free choice net system with deterministic synchronization. Then one can
construct a product system A with deterministic global actions, which has a
conflict-equivalent matching of labels that all its runs are consistent with. Further
Lang(N,M

0

,G) = Lang(A).

88 PNSE’14 – Petri Nets and Software Engineering

7 Conclusion

In earlier work [LMP11], we showed that a graph-theoretic condition called
“structural cyclicity” enables us to extract syntax from a conflict-equivalent prod-
uct system. In the present work we have generalized this condition so that we can
deal with a larger class of product systems with a conflict-equivalent matching.
In our paper [PL14] we show a connection between free choice nets with deter-
ministic synchronization and product systems which have these properties along
with deterministic global actions. Thus we obtain a Kleene characterization for
the class of labelled free choice nets with deterministic synchronization.

Acknowledgements. We would like to thank the referees of the PNSE workshop
for urging us to improve the presentation of the proofs of the main theorems.
This led us to invent Definition 3 and correct the site properties in Definition 5.

References

[Ant96] Valentin Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comp. Sci., 155(2):291–319, 1996.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–
494, 1964.

[DE95] Jörg Desel and Javier Esparza. Free choice Petri nets. Cambridge University
Press, New York, USA, 1995.

[GR92] Vijay K. Garg and M.T. Ragunath. Concurrent regular expressions and their
relationship to Petri nets. Theoret. Comp. Sci., 96(2):285–304, 1992.

[Gra81] Jan Grabowski. On partial languages. Fund. Inform., IV(2):427–498, 1981.
[Hac72] Michel Henri Théodore Hack. Analysis of production schemata by Petri nets.

Project Mac Report TR-94, MIT, 1972.
[LMP11] Kamal Lodaya, Madhavan Mukund, and Ramchandra Phawade. Kleene the-

orems for product systems. In Markus Holzer, Martin Kutrib, and Giovanni
Pighizzini, editors, Proc. 13th DCFS, Limburg, volume 6808 of LNCS, pages
235–247, 2011.

[Mir66] Boris G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engg. Cybern., 5:110–116, 1966.

[MR02] Swarup Mohalik and R. Ramanujam. Distributed automata in an assumption-
commitment framework. Sādhanā, 27, part 2:209–250, April 2002.

[Muk11] Madhavan Mukund. Automata on distributed alphabets. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, pages
257–288. World Scientific, 2011.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata. IEEE Trans. IRS, EC-9:39–47, 1960.

[PL14] Ramchandra Phawade and Kamal Lodaya. Direct product automaton repre-
sentation of labelled free choice nets. Submitted, 2014.

[SH96] Pablo A. Straub and L. Carlos Hurtado. Business process behaviour is (al-
most) free-choice. In Proc. CESA, Lille, pages 9–12. IEEE, 1996.

[Zie87] Wiesław Zielonka. Notes on finite asynchronous automata. Inform. Theor.
Appl., 21(2):99–135, 1987.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 89

