
A Petri Net Approach for Reusing and Adapting
Components with Atomic and non-atomic

Synchronisation

D. Dahmani1, M.C. Boukala1, and H. Montassir2

1 MOVEP, USTHB, Algiers.
dzaouche,mboukala@usthb.dz,

2 LIFC, Comp. Sci. Dept, Franche-Comté University
hmountassir@lifc.univ-fcomte.fr

Abstract. Composition of heterogeneous software components is re-
quired in many domains to build complex systems. However, such compo-
sitions raise mismatches between components. Software adaptation aims
at generating adaptors to correct mismatches between components to be
composed. In this paper, we propose a formal approach based on Petri
nets which relies on mapping rules to generate automatically adaptors
and check compatibilities of components. Our solution addresses both
signature and behaviour level and covers both asynchronous and syn-
chronous communication between components. State space of the Petri
model is used to localise mismatches.

Keywords: Interface automata, components reuse, components adaptation
Petri nets, synchronous and asynchronous communication.

1 Introduction

Component-based development aims at facilitating the construction of very com-
plex and huge applications by supporting the composition of simple building
existing modules, called components. The assembly of components offers a great
potential for reducing cost and time to build complex software systems and im-
proving system maintainability and flexibility. The reuse of a component and
substitution of an old component by a new one are very promising solution [8,
9].
A component is a software unit characterised by an interface which describes
the services offered or required by the component, without showing its imple-
mentation. In other terms, only information given by a component interface are
visible for the other components. Moreover, interfaces may describe component
information at signature level (method names and their types), behaviour or
protocol (scheduling of method calls) and method semantics.

A software component is generally developed independently and is subject to as-
sembly with other components, which have been designed separately, to create a
system. Normally ‘glue code’ is written to realise such assembly. Unfortunately,
components can be incompatible and cannot work together. Two components are
incompatible if some services requested by one component cannot be provided
by the other [1, 3]. The pessimistic approach considers two components compat-
ible if they can always work together. Whereas, in the optimistic approach two
components are compatible if they can be used together in at least one design [1].

Incompatibilities are identified: (i) at signature level coming from different
names of methods, types or parameters, (ii) at behaviour or protocol level as in-
compatible orderings of messages, and (iii) at semantic aspect concerning senses
of operations as the use of synonyms for messages or methods [3].

There exist some works aiming at working out mismatches of components
which remain incompatible, even in the optimistic approach. These works gener-
ally use adaptors, which are components that can be plugged between the mis-
matched components to convert the exchanged information causing mismatches.
For example, the approach proposed in [11] operates at the implementation level
by introducing data conversion services. Similarly, in [2, 7] smart data conversion
tools are deployed to resolve data format compatibility issues during workflow
composition.
Other works are based on formal methods such as interface automata, logic
formula and Petri nets which give formal description to software interface and
behaviour [3, 5].
In [4], an algorithm for adaptor construction based on interface automata is
proposed. Such adaptors operate at signature level and rely on mapping rules.
The adaptors are represented by interface automata which aim at converting
data between components according to mapping rules. However, the proposed
approach allows not atomic action synchronization, but doesn’t cover all possible
behaviours. In [3], manual adaptation contracts are used cutting off some incor-
rect behaviours. They propose two approaches based on interface automata and
Petri nets, respectively. However, unlike our approach, these works allow only
asynchronous communications. In [6] the behaviour of interacting components
is modelled by labelled Petri nets where labels represent requested and provided
services. The component models are composed in such a way that incompatibil-
ities are manifested as deadlocks in the composed model. In [13], OR-transition
Colored Petri Net is used to formalize and model components where transitions
can effectively represent the operations of the software component. Both [6]
and [13] focus more on component composition than on adaptation.
In our approach, we propose Petri net construction to check compatibilities of
components according to a set of matching rules without any behaviour restric-
tion. Contrary to [3], we deal with both synchronous and asynchronous commu-
nications. We use state graph of the Petri net model to localise mismatches.
This paper contains five sections. Section 2 is consecrated to describe interface
automata. The concept of mapping rules is given in section 3. In section 4, we

130 PNSE’14 – Petri Nets and Software Engineering

describe our component adaptation approach. Finally, we conclude and present
some perspectives.

2 Interface automata

Interface automata are introduced by L.Alfaro and T.Henzinger [1], to model
component interfaces. Input actions of an automaton model offered services by
the component, that means methods that can be called or reception of messages.
Whereas output actions are used to model method calls and message transmis-
sions. Internal actions represent hidden actions of the component. Moreover,
interface automata interact through the synchronisation of input and output
actions, while internal actions of concurrent automata are interleaved asyn-
chronously.

Definition 1 (Interface automaton)
An interface automaton A = hSA, Sinit

A ,⌃A, ⌧Ai where :

– SA is a finite set of states,
– Sinit

A ✓ SA is a set of initial states. If Sinit
A = ; then A is empty,

– ⌃A = ⌃O
A [⌃I

A[⌃H
A a disjoint union of output, input and internal actions,

– ⌧A ✓ SA ⇥ ⌃A ⇥ SA.

The input or output actions of automaton A are called external actions de-
noted by ⌃ext

A = ⌃O
A [⌃I

A. A is closed if it has only internal actions, that is
⌃ext

A = ;; otherwise we say that A is open. Input, output and internal actions
are respectively labelled by the symbols ”?”, ”!” and ”; ”. An action a 2 ⌃A is
enabled at a state s 2 SA if there is a step (s, a, s0) 2 ⌧A for some s0 2 SA.

Example 1 Fig. 1 depicts a model of remote accesses to a data base. This
example will be used throughout this paper. The system contains two compo-
nents Client and Server which have been designed separately. On the one hand,
Client issues an authentication message structured into a password (!pwd) and a
username (!uid). If Client is not authenticated by Server (!nAck and !errN), it
exits. Otherwise, Client loops on sending read or update requests. A read request
(!req) is followed by its parameters (!arg), then Client waits the result (?data).
An update request is an atomic action (!update). At any moment, Client can
exit (!exit).
On the other hand, when Server receives a username (?uid) followed by a pass-
word (?pwd), it either accepts the client access request (!ok) or denies it (!nOk).
Afterwards, Server becomes ready to receive a read or update requests. If it re-
ceives a read request (?query), it performs a local action (; readDB) and sends
the appropriate data (!data). Server can execute an update request (?update).
Figure 1.a depicts interface automaton Server. It is composed of six states
(s

0

, . . . s
5

), with state s
0

being initial, and nine steps, for instance (s
0

, ?uid, s
1

).

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 131

Some arcs are dashed, they will be referred in section 4. The sets of input, output
and internal actions are given below:
- ⌃O

Server ={ok, nOk, data},
- ⌃I

Server = {uid, pwd, logout, query, update},
- ⌃H

Server= {readDB}.

s
0

s
1

s
2

s
3

s
4

s
5

?uid ?pwd
!ok ?query ; readDB

?uid ?pwd ?query ?update ?logout
!data !ok !nOk

!data

?update

?logout

!nOk

(a) Server

s0
0

s0
1

s0
2

s0
3

s0
4

s0
5

s0
6

s0
7

!pwd
!uid ?ack !req !arg

!

ex
it

?

nAck

?errN

?data
!update

!uid !pwd !req !arg
!exit ?data ?ack ?nAck ?errN

(b) Client

Fig. 1: Server and Client interface automata

2.1 Composition of interface automata

Let A
1

and A
2

two automata. An input action of one may coincide with a
corresponding output action of the other. Such an action is called a shared ac-
tion. We define the set shared(A

1

, A
2

) = (⌃I
A

1

\ ⌃O
A

2

) [(⌃O
A

1

\ ⌃I
A

2

), e.g. set
Shared(Client, Server) = {uid, pwd, update, data}.
The composition of two interface automata is defined only if their actions are dis-
joint, except shared input and output ones. The two automata will synchronize
on shared actions, and asynchronously interleave all other actions [1].

132 PNSE’14 – Petri Nets and Software Engineering

Definition 2 (Composable automata)
Two interface automata A

1

and A
2

are composable iff

(⌃H
A

1

\ ⌃A
2

= ;) ^ (⌃H
A

2

\ ⌃A
1

= ;) ^ (⌃I
A

1

\⌃I
A

2

= ;) ^ (⌃O
A

1

\ ⌃O
A

2

= ;)

Definition 3 (Synchronous product)
If A

1

and A
2

are composable interface automata, their product A
1

⌦ A
2

is the
interface automaton defined by:

1. SA
1

⌦A
2

= SA
1

⇥ SA
2

,
2. Sint

A
1

⌦A
2

= Sint
A

1

⇥ Sint
A

2

,
3. ⌃H

A
1

⌦A
2

=(⌃H
A

2

[⌃H
A

1

) [shared(A
1

, A
2

),
4. ⌃I

A
1

⌦A
2

=(⌃I
A

1

[⌃I
A

2

) \ shared(A
1

, A
2

),
5. ⌃O

A
1

⌦A
2

=(⌃O
A

1

[⌃O
A

2

) \ shared(A
1

, A
2

),
6. ⌧A

1

⌦A
2

={(v, u), a, (v0, u) | (v, a, v0) 2 ⌧A
1

^ a 62 shared(A
1

, A
2

) ^ u 2 SA
2

}
[{(v, u), a, (v, u0) | (u, a, u0) 2 ⌧A

2

^ a 62 shared(A
1

, A
2

) ^ v 2 SA
1

}
[{(v, u), a, (v0, u0) | (v, a, v0) 2 ⌧A

1

^ (u, a, u0) 2 ⌧A
2

^ a 2 shared(A
1

, A
2

)}.

An action of Shared(A
1

, A
2

) is internal for A
1

⌦ A
2

. Moreover, any internal
action of A

1

or A
2

is also internal for A
1

⌦ A
2

(3). The not shared input (resp.
output) actions of A

1

or A
2

are input (resp. output) ones for A
1

⌦ A
2

(4, 5).
Each state of the product consists of a state of A

1

together with a state of A
2

(1). Each step of the product is either a joint shared action step or a non shared
action step in A

1

or A
2

(6).
In the product A

1

⌦ A
2

, one of the automata may produce an output action
that is an input action of the other automaton, but is not accepted. A state of
A

1

⌦A
2

where this occurs is called an illegal state of the product. When A
1

⌦A
2

contains illegal states, A
1

and A
2

can’t be composed in the pessimistic approach.
In the optimistic approach A

1

and A
2

can be composed provided that there is
an adequate environment which avoids illegal states [1].
The automata associated with Client and Server are composable since defini-
tion 2 holds. However, their synchronous product is empty, in fact (s

0

, s0
0

) is an
illegal state: Client sends password (!pwd) while Server requires a username
(?uid), causing a deadlock situation. Thus, Client and Server are incompatible.
As mentioned in the introduction, two incompatible components can be com-
posed provided that there exits an adaptor to convert the exchanged information
causing mismatches. In particular, mapping rules are used to adapt exchanged
action names between the components. Such rules may be given by designer. For
more details, we refer reader to [11].

3 Mapping rules for incompatible components

A mapping rule establishes correspondence between some actions of A
1

and A
2

.
Each mapping rule of A

1

and A
2

associates an action of A
1

with more actions
of A

2

(one-for-more) or vice versa (more-for-one).

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 133

Definition 4 (Mapping rule)
A mapping rule of two composable interface automata A

1

and A
2

is a couple
(L

1

, L
2

) 2 (2⌃
ext
A

1 ⇥ 2⌃
ext
A

2) such that (L
1

[L
2

) \ shared(A
1

, A
2

) = ; and if
|L

1

| > 1 (resp. |L
2

| > 1) then |L
2

| = 1 (resp. |L
1

| = 1).

A mapping �(A
1

, A
2

) of two composable interface automata A
1

and A
2

is a
set of mapping rules associated with A

1

and A
2

.
We denote by ⌃�(A

1

,A
2

)

the set {a 2 ⌃ext
A

1

[⌃ext
A

2

|9↵ 2 �(A
1

, A
2

) s.t a 2
⇧

1

(↵)[⇧
2

(↵)}, with ⇧
1

(hL
1

, L
2

i) = L
1

and ⇧
2

(hL
1

, L
2

i) = L
2

are respectively
the projection on the first element and the second one of the couple hL

1

, L
2

i.
Observe that each action of ⌃�(A

1

,A
2

)

is a source of mismatch situation between
A

1

and A
2

.

Example 2 Consider again the components of example 1. In Client a read
request is structured into two parts (!req and !arg), whereas it is viewed as one
part (?query) in Server. A mapping rule is necessarily to map {!req, !arg} to
{?query}. The sets of mapping rules between Client and Server �

(Client,Server)

and ⌃�(Client,Server) are defined as follows:

– �(Client,Server) = {↵1,↵2,↵3,↵4} with :
↵1 = ({!req, !arg}, {?query}),
↵2 = ({?ack}, {!ok}),
↵3 = ({?nAck, ?errN}, {!nOk}),
↵4 = ({!exit}, {?logout})}

– ⌃
�(Client,Server) =

{req, arg, query, ack, ok, nAck, nOk, errN, exit, logout}

4 Towards Components Adaptation

In A
1

⌦ A
2

, the actions of ⌃�(A
1

,A
2

)

are interleaved asynchronously since they
are named differently in A

1

and A
2

. In fact, A
1

⌦ A
2

doesn’t deal with corre-
spondence between actions of ⌃�(A

1

,A
2

)

. Moreover, the product A
1

⌦A
2

doesn’t
accept shared actions which have incompatible ordering in A

1

and A
2

. For in-
stance Client sends a password followed by a user name, whereas Server accepts
the last message and then the former one. It is obvious that A

1

⌦A
2

cannot be
used to check the compatibility of A

1

and A
2

. In this context, an adaptor com-
ponent, must be defined. Such an adaptor is mainly based on the set �(A

1

, A
2

)
and is a mediator between A

1

and A
2

. It receives the output actions specified
in ⌃�(A

1

,A
2

)

from one automaton and sends the corresponding input actions to
the other. In case of incompatible ordering of shared actions, the adaptor works
out such situations by receiving, reordering and sending such actions to their
destination component.

134 PNSE’14 – Petri Nets and Software Engineering

Definition 5 (Adaptation of A
1

and A
2

)
The automata A

1

and A
2

are adaptable according to �(A
1

, A
2

) if (i) A
1

and
A

2

are composable, (ii) �(A
1

, A
2

) is not empty and (iii) there is a non empty
automaton adaptor.

4.1 Petri Net Construction for Components Adaptation

Contrary to interface automata formalism, the Petri net model is well suited to
validate interactions between components, especially whenever events reordering
is required. In fact, Petri nets allow to store resources (e.g. messages) before their
use. In this paper, we use a Petri net model to adapt two interface automata
according to a set of mapping rules given by the user of the components. The
approach we propose consists of building a Petri net which mimics the compo-
nent interfaces. Furthermore, the Petri net also contains a set of transitions, one
per matching rule, which represent the adaptor component. More details will be
given below.

First, we give the basic definitions of a Petri net model. For more details, we
refer reader to [12, 10].

Definition 6 (Labeled Petri Net) A Petri net N is a tuple hP, T,W,�i where
:

– P is a set of places,
– T is a set of transitions such that P \ T = ;,
– W is the arc weight function defined from P ⇥ T [T ⇥ P to N.
– � is a label mapping defined from T to an alphabet set ⌃ [{✏}.

A marking is a function M : P ! N where M(p) denotes the number of tokens
at place p. The firing of a transition depends on enabling conditions.

Definition 7 (Enabling) A transition t is enabled in a marking M iff 8 p 2
P , M(p) � W (p, t).

Definition 8 (Firing rule in a Marking) Let t be a transition enabled in a
marking M . Firing t yields a new marking M 0, 8p 2 P , M 0(p) = M(p) �
W (p, t) +W (t, p).

Definition 9 (State Space) A state space, denoted by S(N,M
0

), of a marked
labelled Petri net (N,M

0

) is an oriented graph of accessible markings starting
from M

0

. An arc M
t�! M 0 of S(N,M

0

) means that M 0 is obtained by firing t
from M .

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 135

s

s0

; a(s,s0)

(a)

s

s0a

!a(s,s0)

(b)

s

s0

a

?a
s,s

0

(c)

a1 a
n

...

a

↵

...

(d)

a

a1 ... a
n

↵

(e)

Fig. 2: Translation rules

The algorithm described below returns a marked labelled Petri net (N,M
0

)
composed of three parts dedicated for A

1

, A
2

and a set of matching rules.
These parts are glued by mean of places which model communication chan-
nels and are associated with external actions of A

1

and A
2

, i.e. the actions of
sets Shared(A

1

, A
2

) and ⌃�(A
1

,A
2

)

.
For each state s (resp. external action a) of A

1

and A
2

, the algorithm gener-
ates a corresponding place s (resp. a) in N . Furthermore, the places correspond-
ing to initial states of interface automata will be initially marked in N .

Fig. 2.a, 2.b and 2.c show how to translate steps of A
1

and A
2

. The gray full
circles represent communication places. An internal action s

;a�! s0 is represented
by a transition ; a

(s,s0) which has an input place s and an output place s0 (Fig
2.a). An output action s

!a�! s0 is represented by a transition !a
(s,s0) which has

an input place s and two output places s0 and a. A firing of !a
(s,s0) produces a

token in place a modelling an emission of a message a (see Fig 2.b). Fig 2.c gives
the translation of an input action s

?a�! s0, here each firing of ?a
(s,s0) models a

reception of a message a.
Fig. 2.d and 2.b show how to translate the mismatch rules. For each mis-

match rule ↵ = ({!a}, {?a
1

, . . . , ?an}) of �(A
1

, A
2

), a transition ↵ is added. The
input places of ↵ are a

1

. . . an and its output place is a. Each firing of ↵ models
the receptions of a

1

. . . an and the emission of a (see Fig 2.d). The same pattern
is applied for a rule ↵ = ({?a

1

, . . . , ?an}, {!a}). Fig 2.e shows the translation
of a rule ↵ = ({!a

1

, . . . , !an}, {?a}) or ↵ = ({?a}, {!a
1

, . . . , !an}). In this case,
each firing of ↵ models the reception of a and the emissions of a

1

. . . an. These
transitions simulate the adaptor.
For analysis requirement (next section), transitions associated with mismatch
rules are labelled by the rule names and the others by the corresponding action
names.

Algorithm 1 BuildPetriNet
—————————————————————————
Inputs A

1

= hS
1

, A
1

, I
1

, T
1

i, A
2

= hS
2

, A
2

, I
2

, T
2

i and �(A
1

, A
2

) a set
of rules
Output

136 PNSE’14 – Petri Nets and Software Engineering

A labelled Petri Net N =hP, T,W,�i and its initial marking M
0

Initialization P =;, T = ;
Begin
// Generation of places corresponding to the states of A

1

and A
2

for each state s 2 S
1

[S
2

do
add a place s to P
If s 2 Sinit

A
1

[Sinit
A

2

then M
0

(s) =1 else M
0

(s) =0
Endif

endfor
// Places simulating direct communication between A

1

and A
2

for each action a 2 Shared(A
1

, A
2

) do
add a place a to P

endfor
// Places simulating indirect communication between A

1

and A
2

for each action a 2 ⌃�(A
1

,A
2

)

do
add a place a to P

endfor
// Transitions simulating steps of A

1

and A
2

for each transition s
1

�a�! s
2

2 T
1

[T
2

, (with � 2 {!, ?, ; })
add a transition �as

1

,s
2

to T
�(�as

1

,s
2

) = �a
add the arcs s

1

! �as
1

,s
2

and �as
1

,s
2

! s
2

to W
case:

� =0!0 : add the arc !as
1

,s
2

! a to W
� =0?0 : add the arc a ! ?as

1

,s
2

to W
endcase

endfor
// Transitions simulating adaptor of A

1

and A
2

for each ↵ 2 �(A
1

, A
2

) do
add a transition ↵ to T
�(↵) = ↵
case:

↵ 2 {({!a}, {?a
1

, . . . , ?an}), ({{?a1, . . . , ?an}, {!a})} :
add the arcs ai ! ↵, i 2 1 . . . n, and ↵ ! a to W,

↵ 2 {({!a
1

, . . . , !an}, {?a}), ({?a}, {!a1, . . . , !an})}:
add the arcs a ! ↵ and ↵ ! ai, i 2 1 . . . n, to W

endcase
endfor
return (N,M

0

)
End

Fig. 3 gives a labelled and marked Petri net N associated with Client and
Server according to the set of rules �(Client, Server) (which are defined in
example 2). For sake of clarity, communication places are duplicated and tran-
sitions are represented by their labels. Moreover, transitions ?update, !update

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 137

s0
0

!pwd

s0
1

pwd

!uid

s0
2

?ack

s0
3

!req

uid
ack

req

s0
4

!arg

arg

data

s0
5

?data

!update

update

?nAck

s0
7

?errN

errN

nAck
!exit

s0
6

exit

s
0

uid

?uid

s
1

pwd

?pwd

s
2

!ok
ok

s
3

?query

query

s
4

; readDB

data

s
5

!data

?update

update

!nOk

nOk

!logout

logout

ok

ack

↵
1

req arg

query

↵
2

nOk

nAck errN

↵
3

exit

logout

↵
4

Fig. 3: A Petri net for adaptation of Server and Client

and place update are represented differently, a special attention will be accorded
to them in the next section. The left and right parts of the net are respec-
tively dedicated to Client and Server, they are glued by mean of communica-
tion places uid, pwd, update and data. These latter correspond to the actions
of Shared(Client, Server) and are used to simulate direct communications be-
tween Client and Server.
The lower part of the net represents the adaptor, it contains four transitions
↵
1

,↵
2

,↵
3

and ↵
4

, each one represents a rule of �(Client, Server). The commu-
nication places req, arg, query, ack, ok, nAck, nOk, errN , exit and logout are
used to link the three parts and correspond to the actions of ⌃�(Client,Server).
Places s

0

and s0
0

are initially marked in N , they translate the initial places of
Client and Server automata.

138 PNSE’14 – Petri Nets and Software Engineering

4.2 Synchronisation Semantics between Components

At this level, the Petri net construction models only asynchronous communica-
tion between two components. Such kind of communication may be source of
incoherence as illustrated by the following scenario:

– Client: Authentication,
– Server: Okay message,
– Client: update request,
– Client: read request,
– Server: response for the read request,
– Server: data base update.

It is worth noting that the result of the read request may be incorrect. This
occurs whenever the required information is concerned by the update operation.
To work out this problem, Client and Server must synchronise on update ac-
tion. Therefore, we propose to enrich the Petri net construction to strengthen
synchronisation between transitions which are related to critical shared actions
(e.g. update action): (1) such transitions must be fired by pair (w.r.t some critical
action, one for an output step and the other for an input step). (2) The com-
munication places of critical external actions are not useful since here messages
are not stored. (3) The set of critical actions, denoted by Synch, is an input of
the algorithm. The set of transitions related to Synch is denoted by TSynch. For
instance, to avoid the previous scenario, action update is considered as critical,
so transitions !update and ?update must be fired simultaneously. Place update
is omitted, Sync = {update} and TSync = {?update, !update}.

4.3 Building and analysing state space

In order to model synchronous communication between components, transitions
of TSynch are fired by pair. Further conditions are necessary to fire simultane-
ously a pair of transitions t and t0 belonging to TSynch from a state s :

- �(t) = �a and �(t0) = �a.
- Both t and t0 are enabled in s.

As mentioned in the introduction, the compatibility control of components
is made by using the state graph. In order to do this, we adapt the notion of
illegal state for our approach. We use the classical definition [1] where an illegal
state indicates that some service is required by one component but cannot be
offered by the other one.

Definition 10 (Illegal state)
Let s be a state of S(N,M

0

), s is an illegal state if:
- s has no successor and contains at least a marked communication place,
- or there is an enabled transition t of Tsynch, with �(t) = !a but no enabled
transition t0 with �(t0) = ?a in s.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 139

The state graph of the marked Petri net shown in Fig. 3 contains no illegal
state, therefore Client and Server can be composed according to the set of rules
�(Client, Server).

Example 3

Consider again the example of Fig. 2 and let us omit the dashed arcs. The cor-
responding state graph contains two illegal states. Fig. 4 exhibits a particular
sequence of the state graph, containing the two illegal states (gray states):

1. In (s
3

s0
3

), transition !update is enabled but cannot be fired since transition
?update is not enabled within the state. This means that Client issues an
update request which is not assumed by Server at this state.

2. State (s
3

s0
6

, exit) has no successor in the state graph and a marked com-
munication place (exit). Such a mark means that Client has sent an exit
request which will not be covered by Server.

s
0

s0
0

s
0

s0
1

, pwd s
0

s0
2

, pwd,uid s
1

s0
2

, pwd s
2

s0
2

s
3

s0
2

, ok

s
3

s0
6

, logout s
3

s0
6

, exit s
3

s0
3

s
3

s0
2

, ack

!pwd
!uid ?uid ?pwd

!ok

↵
1

?ack!exit↵
4

Fig. 4: A firing sequence

5 Conclusion

Software Adaptation is widely used for adapting incompatible components, viewed
as black boxes. In this paper, we have presented a Petri net construction for
software adaptation at signature and behavioural levels based on mapping rules.
These latter are used to express correspondence between actions of components.
The Petri net construction reflects the structure of component interface au-
tomata to assemble and their corresponding mapping rules. The proposed con-
struction is incremental, e.g. rules can be easily added or replaced. Our approach
allows both synchronous and asynchronous communications, unlike the other ap-
proaches referred in this paper. In our future work, we plane to extend our Petri
net construction to take into account adaptation of components with temporal
constraints.

140 PNSE’14 – Petri Nets and Software Engineering

References

1. L. Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages
109–120. Press, 2001.

2. S. Bowers and B. Ludascher. An ontology-driven framework for data transforma-
tion in scientific workflows. DATA INTEGRATION IN THE LIFE SCIENCES,
PROCEEDINGS, 2994:1–16, 2004.

3. C. Canal, P. Poizat, and G. Salaun. Model-based adaptation of behavioral mis-
matching components. IEEE Transactions on Software Engineering, 34(4):546–
563, 2008.

4. S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components behaviours
using interface automata. In SEAA’10, 36th Euromicro Conference on Software
Engineering and Advanced Applications, pages 119–122, Lille, France, September
2010. IEEE Computer Society Press.

5. S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components using interface
automata strengthened by action semantics. In FoVeoos 2010, int. conf. on Formal
Verification of Object-oriented software, pages 7–21, Paris, France, June 2010.

6. D. C. Craig and W. M. Zuberek. Petri nets in modeling component behavior and
verifying component compatibility. In Int. Workshop on Petri Nets and Software
Engineering, in conjunction with the 28-th Int. Conf. on Applications and Theory
of Petri Nets and Other Models of Concurrency, 2007.

7. W. Kongdenfha, H.R. Motahari Nezhad, B. Benatallah, F. Casati, and R. Saint-
Paul. Mismatch patterns and adaptation aspects: A foundation for rapid develop-
ment of web service adapters. IEEE Transactions on Services Computing, 2(2):94–
107, 2009.

8. C.W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June 1992.
9. L. Kung-Kiu and W. Zheng. Software component models. IEEE Transactions on

Software Engineering, 33(10):709–724, 2007.
10. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541–580, 1989.
11. H.R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.

Semi-automated adaptation of service interactions. In WWW, pages 993–1002,
2007.

12. W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, 31 July 2013. 230 pages; ISBN 978-3-642-33277-7.

13. Yong Yu, Tong Li, Qing Liu, and Fei Dai. Modeling software component based
on extended colored petri net. In Ran Chen, editor, Intelligent Computing and
Information Science, volume 135 of Communications in Computer and Information
Science, pages 429–434. Springer Berlin Heidelberg, 2011.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 141

