Editors: Daniel Moldt and
Heiko Rolke

Proceedings of the
International Workshop on

P etri

N ets and

S oftware

E ngineering

PNSE’14

University of Hamburg
Department of Informatics

These proceedings are published online by the editors as Volume 1160 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-1160

Copyright (©) 2014 for the individual papers is held by the papers’ authors. Copying
is permitted only for private and academic purposes. This volume is published and
copyrighted by its editors.

http://ceur-ws.org/Vol-1160

Preface

These are the proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’14) in Tunis, Tunisia, June 23-24, 2014. It is
a co-located event of Petri Nets 2014, the 35th international conference on
Applications and Theory of Petri Nets and Concurrency and ACSD 201/,
the 14th International Conference on Application of Concurrency to System
Design. More information about the workshop can be found at:

http://www.informatik.uni-hamburg.de/TGI/events/pnseld/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri Nets (P/T-Nets, Coloured Petri Nets and extensions) in
the formal process of software engineering, covering modelling, validation, and
verification, will be presented as well as their application and tools supporting
the disciplines mentioned above.

The program committee consists of:

Kamel Barkaoui (Conservatoire National des Arts et Métiers, France)
Robin Bergenthum (University of Hagen, Germany)

Didier Buchs (University of Geneva, Switzerland)

Lawrence Cabac (University of Hamburg, Germany)

Christine Choppy (Paris-North University (LIPN), France)

Piotr Chrzastowski-Wachtel (University of Warsaw, Poland)
José-Manuel Colom (University of Zaragoza, Spain)

Raymond Devillers (Université Libre de Bruxelles, Belgium)

Jorge C.A. de Figueiredo (Federal University of Campina Grande, Brazil)
Luis Gomes (Universidade Nova de Lisboa, Portugal)

Nicolas Guelfi (University of Luxembourg)

Stefan Haar (ENS Cachan, France)

Serge Haddad (ENS Cachan, France)

Xudong He (Florida International University, USA)

Thomas Hildebrandt (IT University of Copenhagen, Denmark)
Lom-Messan Hillah (University P. & M. Curie, LIP 6, France)
Kunihiko Hiraishi (Japan Advanced Institute of Science and Technology, Japan)
Vladimir Janousek (Brno University of Technology, Czech Republic)
Peter Kemper (College of William and Mary, USA)

Astrid Kiehn (IIIT Delhi, India)

Ekkart Kindler (Technical University of Denmark, Denmark)

4 PNSE’14 — Petri Nets and Software Engineering

Hanna Klaudel (Université d’Evry-Val d’Essonne, France)
Radek Ko¢i (Brno University of Technology, Czech Republic)
Lars Kristensen (Bergen University College, Norway)

Michael Kohler-Bufimeier (University of Applied Science Hamburg, Germany)
Niels Lohmann (University of Rostock, Germany)

Robert Lorenz (University of Augsburg, Germany)

Daniel Moldt (University of Hamburg, Germany) (Chair)
Berndt Miiller (University of South Wales, United Kingdom)
Chun Ouyang (Queensland University of Technology, Australia)
Wojciech Penczek (ICS PAS and Siedlce UPH, Poland)

Laure Petrucci (University Paris 13, France)

Lucia Pomello (Universita degli Studi di Milano-Bicocca, Italy)
Heiko Rélke (DIPF, Germany) (Chair)

Christophe Sibertin-Blanc (Université Toulouse 1, France)
Mark-Oliver Stehr (SRI International)

Harald Storrle (Technical University of Denmark, Denmark)
Eric Verbeek (Eindhoven University of Technology, Netherlands)
Jan Martijn van der Werf (Utrecht University, Netherlands)
Manuel Wimmer (Vienna University of Technology, Austria)
Karsten Wolf (University of Rostock, Germany)

There is one invited talk by Lars Kristensen from BERGEN UNIVERSITY COL-
LEGE, NORWAY. We received more than 28 high-quality contributions. For
each paper three to four reviews were made. The program committee has
accepted five of them for full presentation. Furthermore the committee ac-
cepted 13 papers as short presentations and one short paper. Several more
contributions were submitted and accepted as posters.

The international program committee was supported by the valued work of
following sub reviewers: Sofiane Bendoukha, Maximilien Colange, Tadeusz
Czachorski, Markus Huber, Yasir Khan, Gorkem Kiling, Luca Manzoni, Artur
Niewiadomski, and Jozef Winkowski. Their work is highly appreciated.

Furthermore, we would like to thank our colleagues in the local organization
in Tunis, Tunisia, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thank you,
Daniel Moldt and Heiko Rolke Hamburg, June 2014

Contents

PNSE’14 Proceedings

Contents

Part I PNSE’14: Invited Talk

An Approach for the Engineering of Protocol Software from
Coloured Petri Net Models:

A Case Study of the IETF WebSocket Protocol

Lars Michael KTiStENSEm .. .o vt ettt e

Part IT PNSE’14: Long Presentations

Verification of Logs - Revealing Faulty Processes of a Medical
Laboratory
Robin Bergenthum and Joachim Schick

On-The-Fly Model Checking of Times Properties on Time
Petri Nets
Kais Klai

SMT-based Abstract Temporal Planning
Artur Niewiadomski and Wojciech Penczek

Kleene Theorems for Labelled Free Choice Nets
Ramchandra Phawade and Kamal Lodaya

Using Symbolic Techniques and Algebraic Petri Nets to
Model Check Security Protocols for Ad-Hoc Networks
Mihai Lica Pura and Didier Buchs i i,

Part III PNSE’14: Short Presentations

Morphisms on Marked Graphs
Luca Bernardinello, Lucia Pomello and Stefano Scaccabarozzi 113

A Petri Net Approach for Reusing and Adapting Components
with Atomic and non-atomic Synchronisation
Djaouida Dahmani, Mohand Cherif Boukala and Hassan Mountassir ...129

Observable Liveness
Jorg Desel and Gorkem Kilingo 143

Real-Time Property Specific Reduction for Time Petri Net
Ning Ge and Marc Pantel 165

Visual Language Plans - Formalization of a Pedagogical
Learnflow Modeling Language
Kerstin Irgang and Thomas Irgang 181

Slicing High-level Petri Nets
Yasir Imtiaz Khan and Nicolas Guelfi 201

Performance Analysis of M/G/1 Retrial Queue with Finite
Source Population Using Markov Regenerative Stochastic

Petri Nets

Ikhlef Lyes, Lekadir Ouiza and Djamil Aissani....................... 221

Petri Nets Based Approach for Modular Verification of
SysML Requirements on Activity Diagrams
Messaoud Rahim, Malika Boukala-Ioualalen and Ahmed Hammad 233

Compatibility Analysis of Time Open Workflow Nets
Zohra Sbai, Kamel Barkaoui and Hanifa Boucheneb 249

Petra: A Tool for Analysing a Process Family
Dennis Schunselaar, Eric Verbeek, Wil van der Aalst and
Hajo A. ReiJerso e 269

An Evaluation of Automated Code Generation with the
PetriCode Approach
Kent Inge Fagerland STmonsencouiuiieininenao.. 289

Computing Minimal Siphons in Petri Net Models of Resource
Allocation Systems: An Evolutionary Approach
Fernando Tricas, José Manuel Colom and Juan Julidn Merelo 307

Part IV PNSE’14: Short Papers

Persistency and Nonviolence Decision Problems in P/T-Nets
with Step Semantics
Kamila Barylska e

Part V PNSE’14: Poster Abstracts

Construction of Data Streams Applications from Functional,
Non-Functional and Resource Requirements for Electric
Vehicle Aggregators. The COSMOS Vision

José Angel Bariares, Rafael Tolosana-Calasanz, Fernando Tricas, Unai
Arronategui, Javier Celaya and José Manuel Colom

Modular Modeling of SMIL Documents with Complex
Termination Events
Djaouida Dahmani, Samia Mazouz and Malika Boukala

D&A4AWSC as a Design and Analysis Framework of Web
Services Composition
Rawand Guerfel and Zohra Sbai.

Constructing Petri Net Transducers with PNT*
Markus Huber and Robert Lorenz

SLAPy: A Tool for Slicing Algebraic Petri Nets
Yasir Imtiaz Khan and Nicolas Guelfv

Generating CA-Plans from Multisets of Services
Lukasz Mikulski, Artur Niewiadomski, Marcin Pigtkowski and
Sebastian Smyczyniskio

LoLA as Abstract Planning Engine of PlanICS
Artur Niewiadomski and Karsten Wolf..

PlanICS 2.0 - A Tool for Composing Services
Artur Niewiadomski and Wojciech Penczek

Petri Net Simulation as a Service
Petr Polasek, Viadimir Janousek and Milan Ceska

Part I

PNSE’14: Invited Talk

An Approach for the Engineering of Protocol
Software from Coloured Petri Net Models:
A Case Study of the IETF WebSocket Protocol

Lars Michael Kristensen

Department of Computing, Bergen University College, Norway
Email: Imkr@hib.no

Invited Talk

The vast majority of software systems today can be characterised as con-
current and distributed systems as their operation inherently relies on protocols
executed between independently scheduled software components. The engineer-
ing of correct protocols can be a challenging task due to their complex behaviour
which may result in subtle errors if not carefully designed. Ensuring interoper-
ability between independently made implementations is also challenging due to
ambiguous protocol specifications. Model-based software engineering offers sev-
eral attractive benefits for the implementation of protocols, including automated
code generation for different platforms from design-level models. Furthermore,
the use of formal modelling in combination with model checking provides tech-
niques to support the development of reliable protocol implementations.

Coloured Petri Nets (CPNs) [3] is formal language combining Petri Nets
with a programming language to obtain a modelling language that scales to
large systems. In CPNs, Petri Nets provide the primitives for modelling con-
currency and synchronisation while the Standard ML programming language
provides the primitives for modelling data and data manipulation. CPNs have
been successfully applied for the modelling and verification of many protocols,
including Internet protocols such as the TCP, DCCP, and DYMO protocols [1,
4]. Formal modelling and verification have been useful in gaining insight into the
operation of the protocols considered and have resulted in improved protocol
specifications. However, earlier work has not fully leveraged the investment in
modelling by also taking the step to automated code generation as a way to
obtain an implementation of the protocol under consideration.

In earlier work [5], we have proposed the PetriCode approach and a support-
ing software tool [7] has been developed for automatically generating protocol
implementations based on CPN models. The basic idea of the approach is to
enforce particular modelling patterns and annotate the CPN models with code
generation pragmatics. The pragmatics are bound to code generation templates
and used to direct a template-based model-to-text transformation that generates
the protocol implementation. As part of earlier work, we have demonstrated the
use of the PetriCode approach on small protocols. In addition, it has been shown
that our approach supports code generation for multiple platforms, and that it
leads to code that is readable and also compatible with other software [6].

14 PNSE’14 — Petri Nets and Software Engineering

In the present work we consider the application of our code generation ap-
proach as implemented in the PetriCode tool to obtain protocol software im-
plementing the IETF WebSocket protocol [2] protocol for the Groovy language
and platform. This demonstrates that our approach and tool scales to industrial-
sized protocols. The WebSocket protocol is a relatively new protocol and makes
it possible to upgrade an HTTP connection to an efficient message-based full-
duplex connection. WebSocket has already become a popular protocol for several
web-based applications such as games and media streaming services where bi-
directional communication with low latency is needed.

The contributions of our work include showing how we have been able to
model the WebSocket protocol following the PetriCode modelling conventions.
Furthermore, we perform formal verification of the CPN model prior to code gen-
eration, and test the implementation for interoperability against the Autobahn
WebSocket test-suite [8] resulting in 97% and 99% success rate for the client and
server implementation, respectively. The tests show that the cause of test fail-
ures were mostly due to local and trivial errors in newly written code-generation
templates, and not related to the overall logical operation of the protocol as
specified by the CPN model. Finally, we demonstrate in this paper that the
generated code is interoperable with other WebSocket implementations.

Acknowledgement. The results presented in this invited talk is based on joint
work with Kent I.F. Simonsen, Bergen University College and the Technical Uni-
versity of Denmark, and Ekkart Kindler, the Technical University of Denmark.

References

1. J. Billington, G.E. Gallasch, and B. Han. A Coloured Petri Net Approach to Proto-
col Verification. In Lectures on Concurrency and Petri Nets, volume 3098 of Lecture
Notes in Computer Science, pages 210-290. Springer, 2004.

2. 1. Fette and A. Melnikov. The websocket protocol, 2011.
http://tools.ietf.org/html/rfc6455.

3. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213-254, 2007.

4. L.M. Kristensen and K.I.LF. Simonsen. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs. In Transactions on Petri Nets and Other
Models of Concurrency VII, volume 7480 of LNCS, pages 56—115. Springer, 2013.

5. K. I. F. Simonsen, L. M. Kristensen, and E. Kindler. Generating Protocol Software
from CPN Models Annotated with Pragmatics. In Formal Methods: Foundations
and Applications, volume 8195 of LNCS, pages 227-242. Springer, 2013.

6. K.I.LF. Simonsen. An Evaluation of Automated Code Generation with the PetriCode
Approach. In To appear in Proc. of PNSE’14, 2014.

7. K.ILF. Simonsen. PetriCode: A Tool for Template-based Code Generation from CPN
Models. In SEFM 2018 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok,
MoKMaSD, and OpenCert, volume 8368 of LNCS, pages 151-166. Springer, 2014.

8. Tavendo GmbH. Autobahn/Testsuite. http://autobahn.ws/testsuite/.

Part 11

PNSE’14: Long Presentations

Verification of Logs - Revealing Faulty
Processes of a Medical Laboratory

Robin Bergenthum and Joachim Schick

Department of Software Engineering and Theory of Programming
FernUniversitédt in Hagen
{robin.bergenthum, joachim.schick}@fernuni-hagen.de
http://wuw.fernuni-hagen.de/sttp

Abstract. If there is a suspicion of Lyme disease, a blood sample of
a patient is sent to a medical laboratory. The laboratory performs a
number of different blood examinations testing for antibodies against
the Lyme disease bacteria. The total number of different examinations
depends on the intermediate results of the blood count. The costs of each
examination is paid by the health insurance company of the patient. To
control and restrict the number of performed examinations the health
insurance companies provide a charges regulation document. If a health
insurance company disagrees with the charges of a laboratory it is the
job of the public prosecution service to validate the charges according to
the regulation document.

In this paper we present a case study showing a systematic approach
to reveal faulty processes of a medical laboratory. First, files produced
by the information system of the respective laboratory are analysed and
consolidated in a database. An excerpt from this database is translated
into an event log describing a sequential language of events performed
by the information system. With the help of the regulation document
this language can be split in two sets - the set of valid and the set of
faulty words. In a next step, we build a coloured Petri net model corre-
sponding to the set of valid words in a sense that only the valid words
are executable in the Petri net model. In a last step we translated the
coloured Petri net into a PL/SQL-program. This program can automat-
ically reveal all faulty processes stored in the database.

1 Introduction

A lot of information systems are used in the healthcare sector and each system
produces some kind of log-data. This is particularly true in the domain of med-
ical laboratories where all samples, materials and examination results have to
be stored. This "good laboratory practice" is an important method of quality
management and big medical laboratories own records about several millions of
processed orders.

Every examination performed by a medical laboratory is paid by a health
insurance company. The cost of each examination is rated by a fixed scale of
charges given in a so-called charges regulation document. Of course, the correct

18 PNSE’14 — Petri Nets and Software Engineering

application of the regulations have to be proven to the health insurance com-
panies. If a suspicion about irregular application of the regulations arises, it is
the job of the public prosecution service to validate the billed charges accord-
ing to the regulation document. Usually, the prosecution service orders a report
investigating the issue from an expert-office.

In this case study we describe an approach using coloured Petri nets which is
inspired by the methods of the area of process mining and process discovery to
reveal faulty processes given in log-files of a medical laboratory. The files contain
data recorded over a period of five years having 1500-2000 orders a day. Each
order consisting of 20-30 events, examinations and results. Altogether, we face
about 100 million lines of log that need to be analysed and verified. Each line
describes an event or a sub-process of the medical laboratory. Each event refers
to the occurrence of an action of the information systems and is annotated with
a time stamp, order-id, variables etc. Typical actions of the system are register
order, register requirements, register examination results, validate results, make
invoice, archive order In addition to these basic actions, a medical laboratory
is able to perform a huge number of different examinations. In this case study
the prosecution service ordered a report revealing all faulty processes concerned
with Lyme disease.

To reveal all faulty processes of a set of log-files we choose a four step ap-
proach. We call the first step consolidation step. The main goal is to develop a
schema to integrate all the recorded files into a relational database. Using the
same schema it is also easy to implement a view on top of the database tables.
The view abstracts from redundant or superfluous information and reduces the
data to events and results corresponding to processes considering Lyme disease.
With the help of this view we are able to produce an event log, i.e. a sequence
of events bearing only information about order-number, time-stamp and result.

The next step is called the formalization step. Each sequence of events cor-
responds to a sequence of actions. Each sequence of actions is called a word.
The set of words is called the language of the event log. The main task in the
formalization step is to split this language into two sublanguages, the set of valid
and the set of faulty words. This has to be done manually with the help of the
charges regulation document. Of course, this is a time consuming task, but we
believe that it is very easy and hardly error-prone to classify single words. We
could also try to directly build a model of regulations from the charges regula-
tion document to classify the set of words automatically, but often the regulation
document is given as plain text. Starting from such a description is error-prone
and easily yield a model that does not fit the recorded event log regarding names
of actions, values and level of abstraction. Remark, we only need to partition
the set of words, we do not classify the complete event log. In the formalization
step a set of valid sequences of actions is produced. We call this set the language
of regulations.

The third step is called integration step. The language of regulations is in-
tegrated into a coloured Petri net model. Such an integration can be supported
by synthesis or workflow mining algorithms. In our case study the language of

R. Bergenthum and J. Schick: Verification of Logs 19

regulations is already highly compressed and settled, such that we construct a
corresponding coloured Petri net model by hand using the editor CPN-Tools
[1]. The constructed coloured Petri net model is a formalization of the charges
regulation document using the language of the recorded files. Only valid process
instances of the Lyme disease diagnostic processes are executable in this Petri
net model. A big advantage of such a Petri net model is that it can be analysed,
simulated and verified.

The fourth step is called implementation step. Coloured Petri nets are well
readable and have an intuitive formal semantic. We will show how to translate
such a coloured Petri net model into a PL/SQL-program. We translate transi-
tions to functions, places to tables and arcs to delete or insert statements. With
the help of such a PL/SQL-program all sequences of events can be replayed in
the database. If the replay fails, the sequence corresponds to the occurrence of
a faulty process of the medical laboratory.

J J

o

o charges

) PL/SQL-program report regulation

c

document

i) recorded data

=]

©

-

c

=

5 iy { g

o >

= —— 8
=

database g-

o
=

a a

3 [1"]

7] ©

c

o

=

o

i_? language of regulations language of the log <:| event log

f=

formalization step

Fig. 1. Approach to reveal faulty processes

Figure 1 depicts an overview of the presented approach. A key feature is that
it is built on a chain of formal models. The initial models, i.e. the schema, the
view and the event log, consolidate the recorded data. Afterwards, the language
of regulations, the coloured Petri net and the PL/SQL-program are build. The
constructed models document of the whole inspection procedure, all results can
easily be reconstructed, the produced models can be reused when inspecting
other laboratories. Of course, stepping from one formal model to another highly
supports the validity of the investigation report produced. Each step can be

20 PNSE’14 — Petri Nets and Software Engineering

supported by algorithms and tools. Some steps can even run fully automated
using e.g. synthesis algorithms for the construction of the Petri net model or
automated generation of the PL/SQL-program.

The chosen approach is inspired by techniques well known in the area of
process mining where some recorded behaviour is merged into a formal model of
the underlying process [2—4]. Remark, that it is of great importance to choose an
appropriate process mining algorithm that does not introduce much additional
behaviour to the model. There are language base discovery algorithms [5-7] or
even synthesis algorithms [8-11] that meet this requirement. The approach is also
inspired by work done in the field of business process modelling and requirements
engineering were the starting point of the discovery phase is the construction of
a formal and valid specification [12-16]. Nevertheless, there are two major points
that are unusual to approaches known in both areas. We model the process of
the underlying system by coloured Petri nets since they highly depend on the
intermediate results of a chain of different blood examinations. In addition the
formal language of the event logs needs to be filtered by hand according to the
charges regulation document. This step can not be automated and is crucial for
the quality of the report produced.

The paper is organized as follows: Section 2 provides formal definitions. Sec-
tion 3 presents the approach and our case study. In Section 4, we sum up the
results to prove the applicability of the developed approach.

2 Preliminaries

In this section we briefly recall the basic notions of languages, event logs and
coloured Petri net.

An alphabet is a finite set A. The set of words over an alphabet A is denoted
by A*. The empty word is denoted by A. A subset L C A* is called language
over A.

Business processes describe the flow of work within an organisation [17]. Each
process consist of a set of activities that needs to be performed. We denote T
the set of all activities and call the execution of an activity an event. Events are
labelled with the name of the corresponding activity. Furthermore, events can
carry a time stamp showing the time of execution and values denoting results
of the execution. We denote V' the set of values. A set of events corresponding
to the occurrence of a processes is called a case. Recording the behaviour of a
system yields a set of interleaved cases we call an event log.

Definition 1. Given a finite set of activities T, a finite set of values V and a
finite set of cases C. An element o € (T x V x C)* is called an event log. Fiz a
case ¢ € C we define the function p.: (T XV x C) — (T x V) by

t,v) ,ifc=¢
pc(t7va6/) = {g\) eJ;se.

Given an event logo = ey ...e, € (T xV x C)* we define the language L(o)
of o by L(c) = {pc(e1)...pc(e:)|i <m,ce C} C (T x V)*.

R. Bergenthum and J. Schick: Verification of Logs 21

The language of an event log is finite and prefix closed. It reflects the control
flow between activities given by the events of the log. Each case adds a word to
the set of words called language.

In this paper we use coloured Petri nets to model valid behaviour of a med-
ical laboratory. The underlying Petri net models the control flow between ac-
tions while variables control the examination results. The following definition of
coloured Petri nets was given in [1].

Definition 2. A coloured Petri net is a tuple CPN = (P,T,F, X, V,D,G,E,I),
where:

s a finite set of places.

a finite set of transitions, such that PNT = 0 holds.

(P xT)U(T x P) is a set of directed arcs.

s a finite set of non-empty colour sets.

is a finite set of typed variables such that Type[v] € X for all variablesv € V.
: P — X assigns a colour set to each place.

: T — EXPy assigns a guard to each transition t such that Type[G(t)] =
Bool.

: F— EXPy assigns an arc expression to each arc f such that Type[E(f)] =
D(p) s, where p is the place connected to the arc f.

I : P — EXPg is an initialisation expression to each place p such that

Typell(p)l = D(p)ms-

In contrast to low-level Petri net a place of a coloured Petri net belongs to a
given type called colour. According to this colour each place carries values called
tokens. Arcs carry variables and if an arc is connected to a place, the tokens
of the place can bind to variables of the arc. A binding b of a transition maps
variables of related arcs into values of related places. A transition ¢ is executable
if there is a binding b such that the transition guard evaluates to true. When the
transition occurs, as for low-level Petri net, it removes the specified tokens from
the input places and produces tokens in the output places (see [1] for a formal
definition).

The initialisation function I assigns tokens to places yielding an initial mark-
ing. Given a coloured Petri net C PN a sequence of sequential enabled transitions
is called an occurrence sequence of C PN. In this paper we add the values of the
respective bindings to each transition of an occurrence sequence. The language
L(CPN) of CPN is defined as the set of all occurrence sequences. Given an
event log log € (T x V' x C)*, log is executable in CPN if L(log) C L(CPN)
holds.

N &

& QU <MmRY

3 Verification of Logs

In this section we present an approach to validate a set of given recorded files
with the help of a regulation document. In the following case study, on behalf
of the public prosecution service, recorded data of an information system of a

22 PNSE’14 — Petri Nets and Software Engineering

medical laboratory has to be reviewed. During a period of five years 1800 files
were produced and recorded. Each file contains about 1500 processed orders.
The regulation document is given by a charges regulation document provided by
health insurance companies. The goal is to identify faulty processes performed
by the medical laboratory considering all processes corresponding to Lyme dis-
ease diagnostic. An overview of our approach is sketched in Figure 1 given in
the introduction. The subsections of this section reflect the four steps of our
approach.

3.1 Consolidation Step

In a first step the recorded files need to be consolidated and formalized. The aim
of this step is to load the recorded files into a database to extract an event log
from it afterwards. For the storage and processing of data, the commercial Oracle
Database is used. This database system provides a procedural programming
language named PL/SQL for the implementation of the stored procedures. To
set up the database an entity-relationship diagram is produced. Of course, to
produce this diagram first the recorded files need to be reviewed. Afterwards,
we use the Oracle SQL Developer Data Modeler to construct the model.

An excerpt of a file recorded by the medical laboratory is depicted in Figure 2.
All files of the laboratory’s information system have a hierarchical structure with
a flexible record length up to 1024 characters. Each file is a sequence of different
types of blocks. Each block corresponds to a set of different actions of the system.
The first line of each block is the header of the block and all following lines are
indented.

The file depicted in Figure 2 starts with a block corresponding to the reg-
istration of a new order for a blood count. The header of this block reads as
follows: The first number corresponds to the registration-id 727980834 gener-
ated for this new order. This id perfectly fits the need to identify cases in the
given file. In our case study each registration-id corresponds to a case of the
system. The next two numbers refer to the time the registration occurred, i.e.
January 25th 2011, 11:49:54 in our example. The next two strings indicate that
this action was manually triggered. The last number of the header encodes the
name of the action occurred. In this particular information system the number
10 refers to the action order blood count. The inner lines of this first block carry
the values of this registration action. Possible values are the name, birthday and
address of the patient registered.

The next block corresponds to the scheduling of examinations. The header
refers to the same case as the first registration block since both ids match.
Remark, both recorded actions even occurred within the same second. The dif-
ference between both headers is only given by the number at the end of the
line. In this block 20 refers to the action schedule examination. This block con-
sists of two sub-blocks, both sub-blocks marked by the keyword BORR. BORR
stands for Lyme disease and indicates that the scheduled examinations are part
of Lyme disease diagnosis. Again, the inner lines carry values of the scheduling
where BORG and BORM are abbreviations of two different blood examinations.

727980834
MAME
GEBDAT

727980834
BORR

BORR

FO2E73748
MAME

FOZE73748
1B

FO2OB4 083
TSHL

727080834
BORER

BORER

727980834

727980834
BMR
R

R. Bergenthum and J. Schick: Verification of Logs

250111 114954
05.01.1970

250111 114954
BORG

RESTYPE W
ST_BA[1]
ST_BA[4]
MWALBER LA
UNTWERS 0000
BORM

RESTYPE W
ST_BA[1]
ST_Eal4]
MWVALBER LA
UNTWERS 0000
250111 115004

250111 164235
FT3

WERT 2.8
250111 174847
TSHL

WERT 0.6a3
270111 123344
BORG

WERT < 10.0
ST_RE= 1]
ST_BA[1]
ST_BA[4]
ST_MvalL]

BORM

WERT < 18.0
ST_RE= 1]
ST_BA[1]
ST_BA[4]
ST_MvalL 3

270111 195344

280111 071405
FEwl10128
(o],

SF

5F
Qooo

5F

ME

ME

U=
Qo000

AB

Hiwf

arftass

erfass

erfass

onlwal

onlwal

onlwal

ahschl

rechdr

10

20

10

21

21

21

13

11

Fig. 2. An excerpt of a recorded file of the medical laboratory.

23

24 PNSE’14 — Petri Nets and Software Engineering

In this example the block corresponds to the occurrence of two different actions.
A BORG-examination and a BORM-examination is scheduled.

The sixth block shown in Figure 2 corresponds to the recording of results
of the scheduled examinations. The number 21 refers to the action receive re-
sult. This block matches the schedule examination block besides two important
differences. First, the keyword ONLVAL indicates that this event was automat-
ically triggered by the information system when the results of examinations are
received. Second, the inner lines of the block carry the results of these examina-
tions. In this example the results of the BORG- and the BORM-examinations
are received. The value of the BORG-examination is smaller than 10.00 and the
value of the BORM-examination is smaller than 18.00. Both values show the ab-
sence of the corresponding antibodies, i.e. both examinations are negative and
no further examinations need to be scheduled.

After knowing the structure of the files an entity-relationship diagram is
built. With the help of this schema a PL/SQL-program is written to load all
files into the Oracle Database. If all the data is stored, the next step is to
extract a consolidated and formal event log from this database. The event log
only contains events and values corresponding to processes that need to fulfil
regulations given in the charges regulation document concerning Lyme disease
diagnostic. We omit a detailed description of the produced entity-relationship
diagram, but give a short impression in Figure 3.

SL_GLP_KOPF
SL_GLP_BFND P * SGK_ID NUMBER SL_GLP_LAB
PR * SGK_SYSID VARCHA - ==
. S6B. bLLL 5 * SGK_DATUM NUMBER| BSTiSGLIID NUM
F * SGB_SGK_ID NUMBE] . SGK UHRZET NUMBER F * SGL.SGK.D NUM
es Gl e " " SGK_BEARBEITER VARCHAkg— | * SGL ANFORDERUNG VAR
SGB_STATUS VARCHI . SGK_MODUL T SGL_UNTERSUCHUNG VAR
_ zg:,;;gﬂgf;:m xﬁ:g: - SGKFLAG LT SGL_VERSION NUM
* SGB_FORMAT VARCH = PK_SGK_ID (SGK_ID) @ P_SGLIDISGL_ID)
3= PK_SGB_ID (SGB_ID) ry [
N N
SL_GLP_AUF SL_GLP WERTE
P * SGA_ID NUMBER P * SGW_ID NUMBEH
F * SGA_SGK_ID NUMBER F * SGW_SGL ID NUMBER
* SGA FELDNAME VARCHA| * SGW_FELDNAME VARCHA
* SGA FELDINHALT VARCHA| * SGW_FELDINHALT VARCHA
&= PK_SGA_ID (SGA_ID) = PK_SGW_ID (SGW_ID)

Fig. 3. Entity-relationship diagram of our Oracle Database.

Given the entity-relationship diagram it is easy to implement a view on top of
the tables of the database to receive an appropriate event log. In our example, the
excerpt depicted in Figure 2 only contains four blocks corresponding to Lyme
disease diagnostic. In the first and in the third block two new orders arrived
and both patients are registered. In the second block a BORG- and a BORM-
examination for the first order is scheduled. The sixth block shows the results

R. Bergenthum and J. Schick: Verification of Logs 25

of both examinations. We are able to discard all other blocks shown in Figure
2. If we apply the constructed view to this excerpt we get the event log shown
in Table 1. This event log abstracts from additional events and values. It shows
the six events corresponding to the four blocks concerned with Lyme disease of
Figure 2.

id action value stamp
727980834 10 25.01.11, 11:49:54
727980834 20 BORG 25.01.11, 11:49:54
727980834 20 BORM 25.01.11, 11:49:54
702673748 10 25.01.11, 11:50:04
727980834 21 BORG < 10 27.01.11, 12:33:44
727980834 21 BORM <18 27.01.11, 12:33:44

Table 1. Event log of the file depicted in Figure 2.

With the help of the Oracle Database and the implemented view arbitrary
extracts of the recorded files can be shown as event logs. These logs are the
results of the consolidation step of our approach. In the next steps these logs are
filtered with the help of the regulation document and integrated to an executable
model.

3.2 Formalisation Step

In the second step of our approach first the event log is used to define the for-
mal language of the recorded behaviour. Then, in a next step, this behaviour is
filtered with the help of the charges regulation document yielding a language of
valid words. The aim of this formalisation step is to bring together the recorded
behaviour and the regulation document given as plain text. Remark, that it is
much easier to only evaluate the recorded language with the help of the regula-
tions and not to build an independent model of all regulations hoping it will fit
the language of the recorded behaviour.

To deduct a formal language from the event log, first the actions of the system
need to be identified. In our case study the list of significant actions reads as
follows:

T = {10,20BORG, 20BORM, 20BV LSEG, 20BP39G, 20 B P83, 20BIV 1,
20BIV2,20BIV3,20BIV4,20BOSPC,20BV LSEM, 20BP39M,
21BORG,21BORM, 21BV LSEG, 21BP39G, 21BP83,21BIV1,
21BIV?2,21BIV3,21BIV4,21BOSPC, 21BV LSEM, 21BP39M}

The numbers 10, 20 and 21 indicate if a blood count for a patient is registered,
an examination is scheduled or if a result is received. The attached letters are

26 PNSE’14 — Petri Nets and Software Engineering

the abbreviations of the corresponding examinations. There are 12 different tests
corresponding to Lyme disease diagnostic leading to 25 different actions in total.
Every action having a name starting with 21 carries a value of the type boolean
(i.e. either the examination is negative or positive). At this point we are able to
abstract from any other value given in the files such that any other action occurs
without additional data. As stated above all events having the same registration-
id belong to the same case. Events of the same case can be ordered by their time
stamp. If we apply this knowledge to our event log we get a set of words. The
following table shows three example words given by the event log of our case
study:

L(log) = {10 20BORG 20BORM (21BORG,false) (21BORM, false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,true)
(21BORM, true) (21BVLSEG, false) (21BP39G false) (21BP83 false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM, false) (21BP39M, false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,false)
(21BORM, false) (21BVLSEG,false) (21BP39Gfalse) (21BP83,false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM, false) (21BP39M, false),

Table 2. The language of the event log.

The language depicted in Table 2 was automatically processed from the given
event log. This language is a complete and formal description of the set of pro-
cesses occurred in the information system of the medical laboratory. Any new
sequence of actions and values given by the events of a case yields a new word in
the language of the log. Of course, the language of the log is much smaller than
the event log since cases corresponding to the same process are not distinguished.

Given the language of the log the next step is to distinguish valid and faulty
words. This is a major task in the presented approach which can not be auto-
mated. The charges regulation document is given as text. It is absolutely neces-
sary to understand the given regulations and apply them to the set of words. The
main advantage of the presented approach is that the set of words is given in a
very compact and formal style. There is no room for interpretations or ambigu-
ities. The rules of the charges regulation document do not need to be modelled
explicitly, they just need to be applied to the given language. As stated in [13, 16]
a single word is much easier to understand than a whole system. The evaluation
of single words can be performed by experts on the regulation document. There
is no need that these experts know how to model a system or even can read the
files or know how the information system works.

R. Bergenthum and J. Schick: Verification of Logs 27

In our example given in Table 2 the first two words are valid. The third
word is faulty since the set of examinations {BVLSEG, BP39G, BP83, BIV1,
BIV2, BIV3, BIV4, BOSPC, BVLSEM, BP39M } may only be preformed if one
of the BORG- and BORM-examination is positive. According to the regulation
document the blood count needs to be performed in two steps. First, the BORG-
and BORM-examination results need to be evaluated, if one of these is positive,
a more detailed set of examinations should be performed.

The result of the formalization step is the set of valid words. This set can
be seen as the relevant part of the language of the charges regulation document
given in the language of the information system. If this language is found, the
most challenging task of the investigation process has been completed. In the
next steps this set is integrated into an executable model.

3.3 Integration Step

The third step of our approach is called integration step. The aim is to build
an executable model having the language of the charges regulation document.
As suggested in [18] it would be possible to skip this integration step and just
filter the event log with the help of the set of valid words given by the language
constructed in the former step, but there are mainly two important reasons to
build an integrated model first. A model provides a more compact representation
of the set of words such that the model can more easily be simulated and anal-
ysed. For this purpose there exist a lot of well known Petri net algorithms in the
literature. Second, an executable model can easily be translated into executable
code in the last step of our approach.

The problem of integrating a set of words into a Petri net is a well known
problem. There exists a lot of work tackling the problem in the area of process
mining [2,19,20,7] and in the area of language based synthesis [8,21,11,9, 6].
Algorithms from both areas can by applied to support the integration step.
In the presented case study we built the corresponding model by hand. The
constructed language of the charges regulation document was already compressed
in such a way that there was no need for automated integration. At first, a
transition is constructed for every action of the given language. According to
the ordering of actions given in the language places are added to this set of
transitions such that only words of the language are executable in the resulting
net. In a second step the values carried by actions yield coloursets added to the
constructed Petri net. Variables are added to arcs connected with the respective
transitions corresponding to actions carrying a value. The coloured Petri net
is adjusted in such a way that each pair of an action and value given in the
language corresponds to a transition and a binding. In a last step, like it is
common for coloured Petri nets, it is possible to merge some transitions. Similar
parts of the Petri net are folded yielding additional coloured tokens representing
each part. For modelling we use CPN-Tools [22,23]. CPN-Tools is developed at
the AIS group of the Technische Universiteit Eindhoven and supports all editing
and simulation features for coloured Petri net.

28 PNSE’14 — Petri Nets and Software Engineering

In our case study our initial low-level Petri net contains 25 transitions cor-
responding to the 25 actions of our process identified in the formalization step.
The control flow is rather simple and we just add the corresponding places.
First, a blood count have to be registered, then an arbitrary number of the 12
examinations concerning Lyme disease can be scheduled. The execution of these
12 examinations must follow the simple rule, that first the BORG- and BORM-
examination need to be performed before the other examinations occur. Remark,
the control flow of the initial low-level net is independent form the values given
in the language. Rules and regulation concerning values are added in the next
step. All actions that corresponds to an examination result carry a value. For
this reason we introduced a boolean colourset called RES and allow each such
transition to be executed while binding to true or false. At this point we are
able to require that a BORG- or BORM-examination must be positive before
any other examination can be executed. In a last step we folded transitions if
possible. The resulting net is depicted in Figure 4.

INV

1" "BORG"++
1" "BORM"

UNIT

10
init @)

. “"BVLSEG"++
10 " "BP39G"++
“"BP83" 4+
BTV
TUBIV2" 4+
UBIV3" 4+
UBIVA" 4+
“'BOSPC++ ((Western
IBVLSEM" 4+ W _Dlot test
“"BP39M" NV

21

20

1 y++1"z (x, rand())
[fb(z)]

results

e e e e e

RES

Fig. 4. Coloured Petri net representing the charges regulation document.

In Figure 4 the transition named 10 is enabled in the initial marking. If
transition 10 fires, a BORG- and a BORM-token is produced in the place search
test and tokens corresponding to all other examinations are produced in the place
western blot test. In such a marking only the upper transition 20 is enabled. If
transition 20 fires a BORG- or a BORM- examination is scheduled. As soon
as an examination is scheduled transition 21 is enabled. If transition 21 fires,
it consumes a token from the place investigation and moves this token to the
place results. While the token is moved a random boolean value is attached.
The lower transition named 20 is enable if the western blot tests are scheduled
and if there are at least two tokens in the places results. The arc inscription
1’y + +1’z denotes a pair of tokens. One token is assigned to the variable y

R. Bergenthum and J. Schick: Verification of Logs 29

and another token is assigned to the variable z. The guard [fb(z)] ensures that
the token called z carries the value true. It follows that in the model shown in
Figure 4 the western blot tests can only be preformed if the results of the BORG-
and BORM-examination are present and at least one of these examinations was
evaluated with true.

The model shown in Figure 4 is only able to reproduce one single run of the
information system. In some sense it is a model of valid words, not a model of
the running information system. Our goal is to replay each case of the event
log in this model, there is no need to construct a model which is able to handle
multiple cases at once.

Besides the possibility to validate the produced model by simulation, CPN-
Tools provides some model checking algorithms (see [1] for details). Table 3
depicts a small part of the CPN-Tools state space report of the model shown in
Figure 4.

Liveness Properties
Dead Transition Instances: None
Live Transition Instances: None
Fairness Properties
No infinite occurrence sequences.

Table 3. CPN-Tools state space report of the model shown in Figure 4.

The integration step yields a sound and integrated model of the valid lan-
guage produced during the formalization step. Of course, if analysing this model
uncovers faults or additional requirements, the language produced in the formal-
ization step needs to be adopted according to the change made in the model.
If model and language match and describe the valid behaviour of the underly-
ing charges regulation document, in the last step of our approach, the model is
translated into executable PL/SQL-code.

3.4 Implementation Step

The fourth and last step of our approach is called the implementation step.
Although, the coloured Petri net model is executable we translate the produced
Petri net into PL/SQL-code. PL/SQL is a proprietary programming language
which is integrated in the Oracle Database. Since it can execute SQL statements
directly it is more suitable than Java or C++ in our approach. The aim is to
get an executable program directly running next to the recorded data. With the
help of this program faulty processes preformed by the medical laboratory can
automatically be revealed.

During the case study the coloured Petri net model depicted in Figure 4 is
transformed into PL/SQL mainly using the following ideas:

(i) Each place of the coloured Petri net yields a temporary table in the database.
The tables are able to store records representing tokens and their values.

30 PNSE’14 — Petri Nets and Software Engineering

(ii) Each transition of the coloured Petri net yields a parametrized function in
the database. A function returns true only if the corresponding transition
is executable. To check if a transition is executable arcs of the Petri net are
translated into SQL-statements. Roughly speaking, these statements check
if there exist appropriate values in the tables corresponding to places in the
preset of the transition.

(iii) Each arc of the coloured Petri net yields an SQL-statement in the database.
Arcs leading from a place to a transition correspond to DELETE-statements
consuming tokens from tables. Arcs leading from a transition to a place
correspond to INSERT-statements producing tokens in tables.

(iv) Each guard or function of the coloured Petri net yields a function in the
database. The SML-functions given in the coloured Petri net can easily be

translated.
CPN PL/SQL-program
COLOUR a list of attributes
PLACE a table having a COLOUR
TOKEN a record in PLACE
PT-Arc DELETE from PLACE return TOKEN
TP-Arc INSERT into PLACE values TOKEN
EXPRESSION a WHERE expression
TRANSITION a function using ARCS
GUARD a sub-function of TRANSITION

Table 4. Pattern of transformations form a CPN into a PL/SQL-program.

A table of transformation patterns is given in Table 4. With the help of
these transformation rules it is even possible to implement a fully automated
transformation procedure.

To actually verify the event log with the help of the PL/SQL-program the
set of cases of the event log is replayed. The registration-ids of the set of faulty
cases is stored in an additional table. With the help of this procedure faulty
processes can be revealed. The set of faulty processes is the basis of the report
produced for the prosecution service. The specific results produced in our case
study are presented in the next section.

4 Results and Conclusion

In the context of the presented case study, a set of files of a medical laboratory
has been verified. The files record all occurred actions of the information system
of the laboratory over a period of five years. In that given period, 22432 orders of
Lyme disease diagnostic have been performed by the laboratory. The PL/SQL-
program produced by our approach calculates the following results:

R. Bergenthum and J. Schick: Verification of Logs 31

recorded processes valid faulty runtime

22432 3311 19121 11 minutes

Table 5. Results of the presented case study.

As shown in Table 5 only 15% of the recorded behaviour is valid according to
the charges regulation document. It turned out, that the considered laboratory
in almost every case performed the complete set of 12 examinations in a first
step. The regulations require that the BORG- and BORM-examination precede
all other examinations. Only if one of the two examinations is positive, the set
of all examinations can be charged.

To get a more detailed view on the recorded data, in a second step, we ad-
justed our coloured Petri net model. We removed the transition guard requiring
a positive result from one of the BORG- or BORM-examination, assuming a
more sloppy interpretation of the regulation document. If we repeat the valida-
tion procedure we get that 50% of all recorded processes are valid concerning
this more liberal model. In other words, even if we allow that all 12 examina-
tions can be performed at once, 50% of all processes contain additional faults
like unnecessary actions or manual changing of examination values.

In the paper we presented an approach together with a case study to verify
logs revealing faulty processes of a medical laboratory. The produced PL/SQL-
program can directly be applied to any medical laboratory using the same infor-
mation system. The main advantage of the presented approach is that it is based
on a chain of formal models. With the help of these models it is easy to keep
track of the validity of the produced report. Most of the steps can be supported
using algorithms or tools well known in the area of Petri nets. Furthermore,
experts on the regulation document can support the formalisation step without
any knowledge about modelling techniques. If a model is produced it also can
be adopted and reused. This can help to generate different criteria regarding
only parts of the regulation document. Of course, all calculated results can be
reproduced at any time, if this is required by the public prosecution service.

From the experience we gained in the case study we feel that the approach
forces us to tackle the given task in a very structured way. The approach provides
good documented, traceable results. In the future, we will test the presented
approach on a larger regulation document yielding a larger regulation model
and try to automate each step of the approach further.

32 PNSE’14 — Petri Nets and Software Engineering
References
1. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of

10.

11.

12.

13.

14.

15.

16.

17.

18.

Concurrent Systems. Springer (2009)

van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182-192
Rozinat, A.: Process Mining: Conformance and Extension. PhD thesis, TU Eind-
hoven (2010)

van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building
Instance Graphs. In Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.:
ER. Volume 3288 of Lecture Notes in Computer Science., Springer (2004) 362-376
Bergenthum, R., Mauser, S.: Mining with User Interaction. In Desel, J., Yakovlev,
A., eds.: Proceedings of the Workshop Applications of Region Theory, Petri Nets
2011. Volume 725 of CEUR Workshop Proceedings. (2011) 79-84

Bergenthum, R., Mauser, S.: Folding Partially Ordered Runs. In Desel, J.,
Yakovlev, A.; eds.: Proceedings of the Workshop Applications of Region Theory,
Petri Nets 2011. Volume 725 of CEUR Workshop Proceedings. (2011) 52-62
Badouel, E., Darondeau, P.: Theory of Regions. In Reisig, W., Rozenberg, G., eds.:
Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1996)
529-586

Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models
from Example Runs. Petri Nets and Other Models of Concurrency 2 (2009) 243—
259

Darondeau, P.: Synthesis and Control of Asynchronous and Distributed Systems.
In Basten, T., Juhds, G., Shukla, S.K., eds.: ACSD, IEEE Computer Society (2007)
13-22

Bergenthum, R., Desel, J., Kolbl, C., Mauser, S.: Experimental Results on Process
Mining Based on Regions of Languages. In: Proceedings of the Workshop CHINA,
Petri Nets 2008, China (2008) 73-87

Glinz, M.: Improving the Quality of Requirements with Scenarios. In: Second
World Congress on Software Quality, Yokohama (2000) 55-60

Desel, J.: From Human Knowledge to Process Models. In Kaschek, R., Kop, C.,
Steinberger, C., Fliedl, G., eds.: UNISCON. Volume 5 of Lecture Notes in Business
Information Processing., Springer (2008) 84-95

Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd Edition. Springer (2012)

Mayr, H.C., Kop, C., Esberger, D.: Business Process Modeling and Requirements
Modeling. In: ICDS, IEEE Computer Society (2007) 8

Mauser, S., Bergenthum, R., Desel, J., Klett, A.: An Approach to Business Process
Modeling Emphasizing the Early Design Phases. In: Proceedings of the Workshop
Algorithmen und Werkzeuge fiir Petrinetze. Volume 501 of CEUR Workshop Pro-
ceedings. (2009) 41-56

van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series. MIT Press (2011)
Harel, D.: Come, Let’s Play - Scenario-based Programming using LSCs and the
play-engine. Springer (2003)

19.

20.

21.

22.

23.

R. Bergenthum and J. Schick: Verification of Logs 33

van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundam. Inform. 94(3-4) (2009)
387412

IEEE Task Force on Process Mining: Process Mining Manifest. In Daniel, F.,
Barkaoui, K., Dustdar, S., eds.: Business Process Management Workshop. Vol-
ume 99 of Lecture Notes in Business Information., Springer (2012) 169-194
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume
4714 of Lecture Notes in Computer Science., Springer (2007) 375-383

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In van der Aalst, W.M.P., Best, E., eds.:
ICATPN. Volume 2679 of Lecture Notes in Computer Science., Springer (2003)
450-462

Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In Colom, J.M.,
Desel, J., eds.: Petri Nets. Volume 7927 of Lecture Notes in Computer Science.,
Springer (2013) 400-409

34 PNSE’14 — Petri Nets and Software Engineering

On-The-Fly Model Checking of Timed Properties
on Time Petri Nets

Kais Klai

LIPN, CNRS UMR 7030
Université Paris 13, Sorbonne Paris Cité
99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France
kais.klai@lipn.univ-parisi3.fr

Abstract. This paper deals with model checking of timed systems mod-
eled by Time Petri nets (TPN). We propose a new finite graph, called
Timed Aggregate Graph (TAG), abstracting the behavior of bounded
TPNs with strong time semantics. The main feature of this abstract rep-
resentation compared to existing approaches is the encoding of the time
information. This is done in a pure way within each node of the TAG
allowing to compute the minimum and maximum elapsed time in every
path of the graph. The TAG preserves runs and reachable states of the
corresponding TPN and allows for on-the-fly verification of reachability
properties. We illustrate in this paper how the TAG can be used to check
some usual timed reachability properties and we supply an algorithm for
extracting an explicit timed trace (involving the elapsed time before each
fired transition) from an abstract run of the TAG. The TAG-based ap-
proach is implemented and compared to two well known TPNs analysis
approaches.

1 Introduction

Time Petri nets are one of the most used formal models for the specification
and the verification of systems involving explicit timing constraints, such as
communication protocols, circuits, or real-time systems. The main extensions of
Petri nets with time are time Petri nets [18] and timed Petri nets [22]. In the
former, a transition can fire within a time interval whereas, in the latter, time
durations can be assigned to the transitions; tokens are meant to spend that
time as reserved in the input places of the corresponding transitions. Several
variants of timed Petri nets exist: time is either associated with places (p-timed
Petri nets), with transitions (t-timed Petri nets) or with arcs (a-timed Petri
nets) [23]. The same holds for time Petri nets [7]. In [21], the authors prove that
p-timed Petri nets and t-timed Petri nets have the same expressive power and
are less expressive than time Petri nets. Several semantics have been proposed
for each variant of these models. Here we focus on t-time Petri nets, which we
simply call TPNs. There are two ways of letting the time elapse in a TPN [21].
The first way, known as the Strong Time Semantics (STS), is defined in such a

36 PNSE’14 — Petri Nets and Software Engineering

manner that time elapsing cannot disable a transition. Hence, when the upper
bound of a firing interval is reached, the transition must be fired. The other
semantics, called Weak Time Semantics (WTS), does not make any restriction
on the elapsing of time.

For real-time systems, dense time model (where time is considered in the
domain R>¢) is the unique possible option, raising the problem of handling
an infinite number of states. In fact, the set of reachable states of the TPN is
generally infinite due to the infinite number of time successors a given state could
have. Two main approaches are used to treat this state space: region graphs [1]
and the state class approach [3]. The other methods [2,24,4,10,5,17,6,11] are
either refinements, improvements or derived from these basic approaches. The
objective of these representations is to yield a state-space partition that groups
concrete states into sets of states presenting similar behavior with respect to the
properties to be verified. These sets of states must cover the entire state space
and must be finite in order to ensure the termination of the verification process.

In this work, we propose a new finite graph, called Timed Aggregate Graph
(TAG), abstracting the behavior of bounded TPNs with strong time semantics.
A preliminary version of this work has been published in [13,14], where a coarser
abstraction of TPNs’ state graph is proposed. The key idea behind the approach
presented in this paper is the fact that the time information associated with
each node is related to the current path leading to this node. In particular, given
a node of the TAG, for each couple of enabled transitions (¢,t¢'), the value of
the earliest and latest firing times of ¢ (reps. t') the last time, in the current
path, it "met" ¢’ (resp. t) is stored in the node. This information , represented
by a matrix, allows us (1) to maintain the relative differences between the firing
times of enabled transitions (diagonal constraints), (2) to determine the fireable
transitions at each node, and (3) to compute dynamically the earliest and the
latest firing time of each enabled transition for each node of the TAG. This
new version of the TAG allows to preserve the timed traces of the underlying
TPN while the abstraction proposed in [13,14] is an upper approximation of the
set of traces of the underlying TPN. Moreover, one can compute the minimum
and maximum elapsed time through every path of the graph which permits on-
the-fly verification of timed reachability properties (e.g., is some state reachable
between d and D time units).

This paper is organized as follows: In Section 2, some preliminaries about
TPNs and the corresponding semantics are recalled. In Section 3, we define the
Timed Aggregate Graph (TAG) associated with a TPN and we discuss the main
preservation results of the TAG-based approach. In Section 4, we show how the
verification of some usual reachability properties can be accomplished on-the-
fly by exploring the TAG. Section 5 relates our work to existing approaches. In
Section 6, we discuss the experimental results obtained with our implementation
compared to two well-known tools, namely Romeo [9] and TINA [5]. Finally, a
conclusion and some perspectives are given in Section 7.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 37

2 Preliminaries and Basic Notations

A TPN is a P/T Petri net [20] where a time interval [tmin; tmax] IS associated
with each transition ¢.

Definition 1. A TPN is a tuple N = (P, T, Pre, Post, I) where:

— (P, T, Pre, Post) is a P/T Petri net
—I:T — Nx (NU{+o00}) is the time interval function such that: I(t) =
(tmins tmax), With tmin < tmax, Where tmin (Tesp. tmax) is the earliest (resp.

latest) firing time of transition t.

A marking of a TPN is a function m : P — N where m(p), for a place p, denotes
the number of tokens in p. A marked TPN is a pair N’ = (N1, mg) where N7 is
a TPN and mg is a corresponding initial marking. A transition t is enabled by
a marking m iff m > Pre(t) and Enable(m) = {t € T : m > Pre(t)} denotes the
set of enabled transitions in m. If a transition ¢; is enabled by a marking m, then
1(m, t;) denotes the set of newly enabled transitions [2]. Formally, 1(m, ;) = {t €
T |t € Enable(m — Pre(t;) + Post(t;)) A (t & Enable(m — Pre(t;)) V (t = t;))}. If
a transition ¢ is in 1(m, t;), we say that ¢ is newly enabled by the successor of m
by firing ¢;. Dually, [(m, t;) = Fnable(m — Pre(t;) + Post(t;)) \ T(m, ;) is the set
of oldly enabled transitions. The possibly infinite set of reachable markings of A/
is denoted Reach(N). If the set Reach(N) is finite we say that A is bounded.
The semantics of TPNs can be given in terms of Timed Transition Systems
(TTS) [15] which are usual transition systems with two types of labels: discrete
labels for events (transitions) and positive real labels for time elapsing (delay).
States (configurations) of the TTS are pairs s = (m, V) where m is a marking
and V : T — R>oU{L} a time valuation. In the following, s.m and s.V denote
the marking and the time valuation respectively of a state s. If a transition ¢ is
enabled in m then V(¢) is the elapsed time since ¢ became enabled, otherwise
V(t) = L. Given a state s = (m, V) and a transition ¢, ¢ is said to be fireable in
s iff t € Enable(m) AV (t) £ L Atmin < V(t) < tmax-
Definition 2 (Semantics of a TPN). Let N' = (P, T, Pre, Post, I, mg) be a
marked TPN. The semantics of N is a TTS Sy = (Q, so, —) where:

1. Q is a (possibly infinite) set of states
2. s9 = (mo, Vo) is the initial state such that:

0 if t € Enable(myg)
1 otherwise

Ve T, Vo(t) = {

3. = CQx(TURxg) x Q is the discrete and continuous transition relations:

(a) the discrete transition relation:
VieT: (m, V)5 (m!, V') iff:

38 PNSE’14 — Petri Nets and Software Engineering

t € Enable(m) Am’ = m — Pre(t) + Post(t)
tmz’n < V(t) < tma;c

0 if ' € t(m,t)
V' eT:V'(#)=< V(I if t' € L(m,1)

1L otherwise

(b) the continuous transition relation: Vd € R>q, (m,V) 4 (m!, V') iff:

Yt € Enable(m), V() +d < tmax

m' =m

vteT:

Vi) = {V(t) +d ift € Enable(m);
V(t) otherwise.

The above definition requires some comments. First, a state change occurs
either by the firing of transitions or by time elapsing: The firing of a transition
may change the current marking while the time elapsing may make some new
transitions fireable. Second, the delay transitions respect the STS semantics: an
enabled transition must fire within its firing interval unless it is disabled by the
firing an other transition.

Given a TPN N and the corresponding TTS Sy , a path m = s9-21s51 22 ..,
where a; € (TTUR>y), is a run of Syr iff (84, a4, 8i41) €= for each ¢ =0,1,....
The length of a run 7 can be infinite and is denoted by | 7 |. The possibly
infinite set of runs of Sy is denoted [Syr]. Without loss of generality, we assume
that for each non empty run @ = s9-2%5, 2% ... of a STS corresponding to
a TPN, there do not exist two successive labels «; and «;;; belonging both
to R>g. Then, 7 can be written, involving the reachable markings of A, as

T = mo(ﬂ)ml(dz’_’tf) ... where d; is the time elapsed at marking m;_1 before

firing ¢;. In order to associate a run 7 of Sy with a run of N, denoted P(7),
we define the following projection function, where . denotes the concatenation
operator between paths and 7%, for i = 0,1..., denotes the suffix of 7 starting
at state s;.

So.m if |m]=0
Plr) = so.m %Y, P(rl) ifa; €T
So.m(al—’a)z) .'P(ﬂ'z) if a1 € RZO/\ | 7T |Z 2
Sg.mi) . P(T(l) if g € Rzo/\ | s |: 1

3 Abstraction of a TPN State Space

3.1 Timed Aggregate Graph

In this subsection, we propose to abstract the reachability state space of a TPN
using a new graph called Timed Aggregate Graph (TAG) where nodes are called

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 39

aggregates and are grouping sets of states of a T'TS. The key idea behind TAGs
is the way the time information is encoded inside aggregates. In addition to the
marking characterizing an aggregate, the time information is composed of two
parts:

— The first part of the time information characterizing an aggregate is a dy-
namically updated interval, namely (ay, 8;), associated with each enabled
transition ¢. This interval gives the earliest and the latest firing times of
any enabled transition starting from the corresponding aggregate. Either
the corresponding transition is fireable at the current aggregate and the sys-
tem must remain within the aggregate at least oy time units and at most S;
time units (as long as the other enabled transitions remain fireable) before
firing ¢, or t is not possible from the current aggregate (e.g. because of some
diagonal constraint), and the system must move to an other aggregate by
firing other transitions until ¢ becomes fireable. In the latter case, the system
must consume at least «;, and can consume at most 3; to make t fireable in
the future.

— The second part of the time information characterizing an aggregate is a ma-
trix, namely Meet, allowing to dynamically maintain the relative differences
between the firing times of enabled transitions (diagonal constraints). Given
two enabled transitions ¢ and to, Meet(t1,t2) is an interval representing the
earliest and the latest firing times of ¢; the last time both ¢; and ¢y were
enabled (through the paths leading to the aggregate).

Before we formally define the TAG and illustrate how the attributes of an ag-
gregate are computed dynamically, let us first formally define aggregates.

Definition 3 (Timed Aggregate). Let N' = (P, T, Pre, Post,I) be a TPN.
A timed aggregate associated with N is a tuple a = (m, E, Meet), where:

— m is a marking

— E={{t,o,) | t € Enable(m), on € NAB; € NU{+00}} is a set of enabled
transitions each asssociated with two time values.

— Meet is a matriz s.t. Vt,t' € Enable(m), Meet(t,t') = {(«, 8) where « (resp.
B) represents the earliest (resp. latest) firing time of t the last time t and t/
are both enabled before reaching the aggregate a.

As for the states of a TTS, the attributes of an aggregate a are denoted
by a.m, a.FE and a.Meet. Moreover, a.Meet(t,t').c (resp. a.Meet(t,t').53) is de-
noted by a.a?(t’t) (resp. aﬂtm(t’t)), or simply a;n(t’t) (resp. an(t’t)) when the
corresponding aggregate is clear from the context. We use also a™(*) (resp.
™)) to denote a;n(t’t) (resp. ﬁln(t’t)) when the involved transition ¢ is clear
from the context.

The FE attribute of an aggregate a allows to compute the minimum and the
maximum time the system can elapse when its current state is within a. The
following predicates (6 and A) compute these information for a given aggregate.

40 PNSE’14 — Petri Nets and Software Engineering

Definition 4 (Minimum and maximum stay times). Let a = (m, E) be an
aggregate, the minimum and maximum time the system can stay at a are denoted
by 6(a) and A(a) respectively, and are defined by the two following predicates:

— d(a) = min(o, g,)ep(v)
— A(a) = max q, 8,)ee (Bt

The minimum (resp. maximum) stay time d(a) (res. A(a)) of an aggregate a
allows to encapsulate the continuous transition relation within a.

Given an aggregate a = (m, F) and an enabled transition t (i.e., (¢, ay, B;) €
E), two primordial issues must be achieved to define the semantics of the TAG:
(1) is t fireable from a?, and (2) if it is the case, how do we obtain the successor
aggregate by firing ¢ from a. In the following, we answer these issues.

Definition 5. Let a = (m, E, Meet) be an aggregate and let (t,ay, ;) € E.
Then, t is fireable at a, denoted by a5, iff V(t', o, By) € E, a:n(t’t) < le(t -t

A transition t is fireable at an aggregate a iff there is no transition ', that is
enabled by a, whose latest firing time was strictly smaller than the earliest firing
time of ¢ the last time both transitions were enabled.

Now that the firability condition is formally defined, the following definition
computes the successor aggregate obtained by the firing of a given transition. In
this definition, the notion of newly (and oldly) enabled transitions is extended
to aggregates as follows: 1 (a,t) =1 (a.m,t) and | (a,t) =] (a.m,t) for each
transition ¢ enabled by a.m

Definition 6. Let a = (m, E, Meet) be an aggregate and let (t, oz, ft) € E.

Assume that t is fireable at a (following Definition 5). The aggregate a’ =
(m/,E', Meet') obtained by firing t from a, denoted by a--a’, is obtained as
follows:

1. m' = m — Pre(t) + Post(t)
2. E' = E{ U E}, where:
d Ei = Ut/eT(a,t){<t,7 tinin? t;nax>}
* By = Upeyan{lt' ai, Bi)} where:
— ap = ay — SCR(a,t'), where SCR(a,t') =
Ma(0, (Minyre guapie(a) (Min(870, 37 0) — (a1 — ay)

- /Bgl - Bt/ —]\4@1’(07 (O[;n(t’t/) — (/Bz,n(t/’t) o /Bt'))
o V(({t1, 1, B1), (t2,a2,B2)) € B/ x

[tlmin7t1max] Zf t1 €7 (a,t)
Meet' (t1,t2) =} [a1, 5] ifty €l (a,t) Atz €1 (a,t)
Meet(t1,t2) ift1 €] (a,t) Aty €] (a,t).

The computation of a successor a’ of an aggregate a by the firing of a transition
t is guided by the following intuition: If | (a,t) # (), then the more the system
can remain at a, the less it can remain at a’ and vice versa. Otherwise, the time
elapsed within @’ is independent from the time elapsed within a. Thus, given a

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 41

transition ¢’ enabled by a’, two cases are considered: if ¢’ is newly enabled, then
its earliest and latest ﬁrlng times are statically obtained by ¢/, and ¢ .. respec-
tively. Otherwise, the more one can remain at a, the less will be the necessary
wait time at o’ before firing ¢'. The function SCR (Still Can Remain) allows to
compute the maximum remaining time at a under the hypothesis that, since ¢’
became enabled, it remains the maximum time at each encountered aggregate
before reaching a (note that this is different from A(a)). Thus SCR(a,t’) is ob-
tained by the following reasoning: given a transition ¢ that is enabled by a, it
is clear that since the last time ¢’ and ¢’ became both enabled, the maximum
elapsed time can not be greater than Min(g™ "), gm(E)y (because of the
STS semantics which is used in this paper). The maximum time the system can
remain at a is then obtained by subtracting from this quantity the time that is
already spent during the path leading to a (i.e., (ozzl(t) ay)). By analyzing
all the transitions enabled by a the function SCR takes the minimum values in
order to not violate the STS semantics rule. Similarly, the latest firing time of
t' corresponds to the situation where, between the last time ¢ and ¢’ were both
enabled and the current aggregate a, each fired transition is fired as soon as pos-
sible. Each time a transition is fired, its earliest firing time is subtracted from
the latest firing time of the old transitions. However, if the quantity of time that
must be subtracted from the latest firing time of ¢’ has already been subtracted
in between, then the latest firing time of ¢’ at a’ is the same latest firing time of
t' at the aggregate a.

Concerning the Meet attribute, given two transitions ¢; and ¢y that are
enabled at o/, the value of Meet(t1,t2) is simply obtained by considering the
membership of these transitions to 1 (a,t) and to | (a,t). Finally, by considering
that co — co = 0, the previous definition allows to handle transitions having an
unbounded latest firing time.

[@@

tl[l 2 t2 1 1] tl 0 1] t2[2 3 tl[l;l] t2[2;2] tg[l;l]

[]

t[1;2] a2 oo]

Fig. 1. Four TPN Examples

42 PNSE’14 — Petri Nets and Software Engineering

Now, we are ready to formally define the TAG associated with a marked
TPN N. It is a labeled transition system where nodes are timed aggregates.
It has an initial aggregate, a set of actions (the set of transitions of A') and
a transition relation. The initial aggregate is easily computed by considering
static information of the TPN while the transition relation is directly obtained
by Definition 5 and Definition 6.

Definition 7 (Timed Aggregate Graph). Let N' = (P, T, Pre, Post, I, mg)
be a TPN. The TAG associated with N is a tuple G = (A, T, ag,d) where:

1. A is a set of timed aggregates;

2. ag = (mg, ho) is the initial timed aggregate s.t.:
(a) my is the initial marking of N.
(b) Eo = {(t,tmin,tmax) | t € Enable(my)}
(c) ¥t,t € Enable(a), Meet(t,t") = [tmin, tmax)

3. 0 CAXT x A is the transition relation such that:
Yae A, YteT, (a,t,a') €0 iff a-ta

Since each transition having an unbounded static latest firing time will al-
ways maintain the same latest firing time at each aggregate where it is enabled,
one can prove that the number of aggregates of a TAG is bounded when the cor-
responding TPN is bounded. Indeed, given a reachable marking m, the number
of different aggregates having m as marking can be bounded by the number of
possible values of its attributes. This number is finite because of the following
facts: (1) if the number of the transitions that are enabled by m is e, there are
2lel possible subsets of old transitions; (2) for a given subset of old transitions
o, the number of possible arrangements of the old transitions regarding the en-
abling time is at most equal to | o |! (the 2™ elements corresponding to the
orderings where two or more old transitions became enabled at the same time

are not considered); (3) given an arrangement t; <ty < --- < t|,, the number
of possible values of ax(tl’tz) is at most equel to Zﬁi’(‘)‘“ (t1,.., —¢+1). Similarly,
the possible values of alz(tz’ts) is equal to Zzi‘(‘;“ (t2,. — %+ 1), etc. Thus, the

number of the possible different values of the matrix Meet, for this particular
arrangement, is obtained by Hjl-ozlz Z?:?)lmi“ (tj—1,. —i+1); (4) for each enabled
transition ¢t (with ¢4, # 00), there are at most Zzi};‘(tmax — i+ 1) different
intervals that can represent the earliest and latest firing times associated with ¢
in a given aggregate (i.e., ay and B;). When t,,,4, = 00, the number of possible
time intervals associated with ¢ is ,,,5, + 1.

Figure 2 illustrates the TAGs corresponding to the TPNs of Figure 1. In
the three first TAGs, the marking associated with each aggregate is omitted
(it is the same as the initial one). The second column of the tables gives the
dynamic earliest and latest firing times of the enabled transitions (i.e., t1, to
and t3 respectively). For sake of readability of the figures, the Meet attribute is
omitted.

Although the four models of Figure 1 are quite simple, they are representative
enough to explain the TAG construction. Indeed, in the first one the transitions

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 43

intervals overlap, while the case of disjoint intervals is considered through the
second and the third models. Finally, the fourth model illustrates the case of
an unbounded latest firing time. More significant examples are considered in
Section 6.

t @
t
ts t ta
t
aggregate B b
ao (1,2), (1,1) .
ay (1,2),(0,0) aggregate E 1
as (0,1), (1, 1) t2 ao (0,1), 2,3) .
as [{(1,2),(0,1) a [{(0,1),(1,3) 1
ar [1(0,2), (I, 1) ax [{(0,0), (2,3)
a5 [1(0,0), (I, 1) as_ [{(0,1),(0,3)
SR
aggregate|marking| E f
e —— R BN
T a [0 [{00 |.og——"~—"—""
o [{0,0(L1. (LI} - o T (=)
as (L1} (11),(11 as (LD [{{1,2), (0,000}
as_ [{{0,0), (0,0}, (1, 1y o o) 6.2
as (0,0, (2,2), (1,1)
as [{(1,1),(0,0), (1,1
as [{{0,0),(2,2), (0,0

ar [
as [{(1.1),(0,0),
as (L,1), (L, 1), <0 0

Fig. 2. TAGs associated with TPNs of Figure 1

3.2 Preservation Results

In this section, we establish the main result of our approach: The TAG is an
exact representation of the reachability state space of a TPN. In fact, for each
path in the TPN (resp. in the corresponding TAG) it is possible to find a path in
the TAG (resp. TPN) involving the same sequence of transitions and where the
time elapsed within a given state is between the minimum and the maximum
stay time of the corresponding aggregate.

Theorem 1. Let N be a TPN and let G = (A, T, ag,0) be the TAG associated
with N'. Then V7 = mo(dl_’ti)ml(dg_’t?) . (d_t>)mni>1, with d; € R>g, fori =
1...n+1, 3Imr = apSa1—s ... t5a, 5.t Vi=0...0, diyr < Aa;), m; = a;.m
andVi=1...n,d; > o;_1, .

44 PNSE’14 — Petri Nets and Software Engineering

Proof. Let T = mo(dl_’ti)ml(dz_’tf) e (dﬂ;‘)mnd"_ﬂl be a path of N, with d; € R,
for i = 1...n+ 1. Given a path ag—say ..., we denote by «;, (res. §;,), for
i =0..., the dynamic earliest firing time (resp. latest firing time) of a transition
t enabled by an aggregate a;.

Let us prove by induction on the length of 7 the existence of a path 7 in the
TAG satisfying the conditions of Theorem 1.

— | ™ |= 0: Obvious since mg = ap.m (by construction) and since d; is less or
equal to minge gnapie(mg) tmae Which is exactly the value of A(ao).

— |7 |=1ie,7T = mo ™) my %2, Tt is clear that ag,, < di < A(ap). The fact

that ¢; is fireable at mg implies that it is at ag (V¢ € Enable(my), ti1,,,, <
tmaz) and its firing leads to the aggregate a; satisfying a;.m = m;y. Let
us assume that do > A(ay1) and let t,, be the transition that is enabled
at a; and which has the smallest latest firing time i.e., 31, = A(ay). If
tm is newly enabled at a; then ds should clearly be greater or equal to

A(ay). If tp, €1 (ao,t1) then 31, =1 —t1,,,,- Since dy > t1,, , then

Mmaxzx

trmas = tlmin = tmme. — d1- The fact that da > (1, ~would imply that
dy + dz > t.,,,,, which is contradictory with the STS semantics. Thus dy <
A(al).

— Assume that for any path 7 s.t. | T |< n, there exists a path in the
TAG with the same trace and satisfying the above conditions. Let 7 =
mo(dl—’ti)ml(@—’tf) - (M)mn(d”ﬂ?“)mnﬂtﬁf be a path of length n + 1.
Let 7 = ag-"sa1 -2y ... *7ya, be the path in the TAG associated with the
n-length prefix of 7 (by the induction hypothesis). Then d,11 < A(ay).
Let us demonstrate that d,y1 > an, ,: It is clear that this is the case
when t,11 €1 (an, tnt1. I thi1 €1 (an, i1, let LastNew;(t) be the func-
tion that returns the greatest integer, smaller than (or equal to) i, such
that ¢ €1 (a;—1,t;). If such a value does not exist, then ¢ became enabled,
for the last time, at the initial aggregate ap and the function returns 0.
Let k = LastNew;(tn41), then oy, ., = tpt1,,,, — Z;:kl SCR(a;,tny1).
The STS semantics implies that 377" SCR(a;,tnr1) > S0, diy1 Thus
tut i — Sors SCR(ai, tni1) > tog1,.,, — Sorp dit1, and dpyy > O,
would means that Z?:k di+1 < tp41,,,, which would prevent the firing of
tn+1 at my,. Thus, dp41 < Qn, - Let us show now that ¢, is fireable at
an. Assume the opposite, this would imply that there exists a transition ¢
enabled by a, such that a™(tn+1:t) > gmtini) Tet LastNewy(tpy1) = I,
LastNew,(t) = k, and let us consider the three following cases:

1. I = k, then gm(ttnt1) = ¢ and a™(n+10) = ¢, and the fact that
tn,.in > tmaz Would prevent ¢, 11 from being fireable at m,, which is not
the case. Thus, ¢, is fireable at a,, as well.

2. 1 < k. In this case, a™{tnt1:t) — toti,,,, — Z?;ll SCR(aj,tn+1) and
prltitnet) — ¢ Again, the STS semantics implies that Zf:_ll SCR(a;,
tny1) > Zi;:ll dit1. Thus, ¢4y, — Zf;ll SCR(ai,tny1) < tnti,,,,
Zf:_ll dip1, and a™(tn+tt) > ¢ would means that Zf:z dit1 < tpi1

min

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 45

which would prevent the firing of t,,,1 at m,,. Thus, a™(n+1:t) < gmttnis)
and t,41 is necessarily fireable at a,,.

3.1 > k. In this case, o™+t = ¢, and gmbint) = ¢, .. —

S Max(0, (et — (gmittin) — g,)). Knowing that 3\21 Max(0,
(amtitat) — (gmittiv) — g,)) < Zi;i d; 1 (otherwise, the time spent
between k and some i < [is smaller than o) which is contradic-
tory with the recurrence hypothesis), ¢maz — Zi;,lc Maz(0, (a™E+1:t) —
(Bm(t7ti+l) - Bit)) Z tmaz - Zi;}@ diJrl- ThUS, if tn+1m,;n > IBm(t7tn+1)
then 11, , > tmaz — Zi;i d;+1 which prevent the firing of t,, 11 at m,,
(before firing t) which is not true. Thus, ¢, is fireable at a,,.
Let us now demonstrate that d,+2 < A(an4+1). Assume the opposite,
and let ¢, be the transition enabled by a,+; which has the small-
est latest firing time i.e. 8,11, = A(an41). It is clear that if ¢, €1
(an,tny1) then dyio < A(any1). Otherwise, if t,, €l (an,tnq1) and
k = LastNewp 1 (ty) then Bny1, = tm,... — > iy Maz(0, (o (tit1stm)
Again, since Y1, dip1 > Sor, Max(0, (@™F+1tn) - then Brn+1,, <
Ermas — 2oiei, dit1, and the fact that dyny1 > Bny1,, would imply that
dpto + Z?:k diy1 > tm,,,. which is not allowed by the STS semantics.
TlhllS7 dn+2 < A(an+1).

Theorem 2. Let N be a TPN and let G = (A, T,ag,8) be the TAG associated

with N'. Then, for any path m = ap-tvay—s ... tnva,, in the TA G, there exists

_ dt du sty , ,
a run T = mo(l—i)m1—>... (—>)mn in N, st. Vi =0...n, my = a;.m,

Vi=1. ..n, ai—lti) <d; < A(ai_l), and ¥d € RZO, mni> S d< A(an)

Proof. Let @ = ag-Yya1—s ... ‘"va,. We denote by a;, (res. B;,) the dynamic
earliest firing time (resp. the dynamic latest firing time) of a transition t at

aggregate a;, for i € {0,...,n — 1}. Let us demonstrate that the path T =

mo(dl—’ti)ml—> e (dﬂi‘)mn obtained by the following algorithm satisfies the

requirement. The function LastNew;(t) returns the greatest integer [, smaller
than 4, such that ¢t €1 (a;—1,%). If such a value does not exist, then ¢ became
enabled, for the last time, at the initial aggregate ay and the function returns
0. We propose to proceed by construction and built a path 7 satisfying the

Theorem 2. We use the following algorithm to compute a set of delays d;, for

i =1...n and prove that the ao.m(dl—’ti)al.m—> ... (d”—’ti‘)an.m is a run of the

TPN associated with the TAG.
Input: an abstract path 7 = ag—tya1—s ... say,

Output: a concrete path ™ = mo(dl_’ti)ml_> o (d"_’tﬁ’)mn
begin

1 Vi=1...n

2 di a1,

3 Vi=n-—1...1

4 k = LastNew;(t;+1)

5 I(C it < i)

46 PNSE’14 — Petri Nets and Software Engineering

6 VE <j<i

7 djy1 = Max(djﬂ’aﬁm B Oéj“%l)
8 I dig1 >ti,,)

9 VE < j<i

10 djt1 = Min(djt1, Xjtipr aj“*'“rl)

11Vt € Enable(a;.m)
12 I = LastNew;(t)

13 IE((k > 1) A (tmax — o5y dig1 < tigi,,,)

14 Vi<ji<k
15 djy1 = Min(dj1, o), — aj1,)
end

The intuition of the above algorithm is to build a concrete path 7T guided
by the abstract path . 7 is built by traversing m by backtracking. Initially
(lines 1 — 2), the stay time at each marking is set to the minimum i.e., as
soon as the desired transition is fireable. Then, starting from the last aggregate,
each time a transition ;1 is fired from an aggregate a; (for i = 1...n), the
firability conditions are ensured by (possibly) changing the time that is elapsed
before reaching a;. Roughly speaking, two conditions must be satisfied in order
to make the transition ¢,11 fireable from a; (i.e., a;.m): (1) The first condition
is that the elapsed time, since t;; became enabled for the last time, belongs
to the interval [t;+1 . ,%i+1,...] while the second condition (2), is that there is
no transition ¢ enabled by a; that prevents the firing of ¢,41. The only way for
the last condition to be satisfied is that ¢ has been enabled (for the lat time)
before t;11 and the elapsed time between the moment ¢ became enabled and
tiy1 became enabled is strictly greater than ¢,,q4e — tit1,,,,- The first condition
is treated at lines 5 — 10: If the elapsed time since ¢;;1 has been enabled for
the last time and the current state (a;.m) is strictly smaller than ¢;41 . (lines
5 — 7) then it must be increased without exceeding ¢;11 . This is ensured by

’ maw
i—1

the fact that, by construction of the TAG, ijzk(ozjti+1 — O[j+1ti+1) =Tit1,,,,
and Z;_:}C(ajt —aj41,) < tiy,,,, for any transition ¢ €| (a;_1,t;). Now, the
elapsed time since the last time ¢;;; became enabled can exceed t;4q, . This

can occur if, in order to ensure the firing of some transition ¢; (for j > i+1) this
time has been increased by the algorithm (lines 5— 7). Thus, one has to decrease
this time while maintaining the firability of the transition ¢;. This is ensured by
lines 8 — 10. The last condition that could prevent t¢;; from being fireable at
a;. is that condition (2) is violated: the time elapsed between the moment some
transition ¢, enabled before, ¢; 1, and the moment ;1 became enabled is bigger
than t,,q0 —tit+1,,,,- This can happen when the firing of some transition t;, with
j > 1+ 1, involved the increase of this quantity of time. This case is treated at
lines 11 — 15, by fixing this problem while maintaining the future firability of ¢;.

Thus, the algorithm ensures the construction of a run of the TPN associated
with the TAG that has the same trace. It is clear that the values of d;, for
i =1...n, respects the conditions of Theorem 2. Now, Theorem 1 ensures that
if my,—2Ls, for some d € R, then d < A(ay). Finally, given d € Rx¢ s.t.,

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 47

d < A(ay,), the algorithm used to build 7 implies that the involved markings are
reached as soon as possible. By construction of the TAG, A(a,,) is the maximum
time the system can stay at m,,.

Using the above results one can use the TAG associated with a TPN in order
to analyse both event and state based properties. In particular, we can check
whether a given marking (resp. transition) is reachable (resp. is fireable) before
(or after) some time.

4 Checking Time Reachability Properties

Our ultimate goal is to be able, by browsing the TAG associated with a TPN,
to check timed reachability properties. For instance, we might be interested in
checking whether some state-based property ¢ is satisfied within a time interval
[d,D), with d € N and D € (NU {o0}), starting from the initial marking. The
following usual reachability properties belong to this category.

1. 304, p) : There exists a path starting from the initial state, consuming be-
tween d and D time units and leading to a state that satisfies (.

2. VUjg;py : For all paths starting from the initial state, all the states, that
are reached after d and before D time units, satisfy .

3. VOa;py : For all paths starting from the initial state, there exists a state in
the path, reached after d and before D time units that satisfies (.

4. 90,y : There exists a path from the initial state where all the states,
that are reached after d and before D time units, satisfy ¢.

For the verification of time properties, an abstraction-based approach should
allow the computation of the minimum and maximum elapsed time over any
path. In the following, we establish that the TAG allows such a computation.

Definition 8. Let N' be a TPN and let G = (A, T,ag,8) be the correspond-
ing TAG. Let 7 = ag-ya1—s ... '"va, be a path in G. For each aggregate a;
(fori=0...n), MinAT.(a;) (resp. MaxATy(a;)) denotes the minimum (resp.
maximum,) elapsed time between ag and a;. In particular, MinAT (ag) :== 0 and
Max AT (ag) := Alap).

Proposition 1. Let N be a TPN and let G = (A, T, ag,d) be the corresponding
TAG. Let 7 = ag-ya1—s ... ‘2va, be a path in G. We denote by a;, (resp.

Bi,) the dynamic earliest (resp. latest) firing time of a transition t at aggregate
a;, fori=1...n. Then, Vi =1...n, the following holds:

- MZTLATW(CLZ) = MZ"I'LATTF(CLi_l) + ai_lti
— Mazx ATy (a;) = Max AT (a;—1) + Mine gnabie(a,) SCR(as, t)

48 PNSE’14 — Petri Nets and Software Engineering

Region,
Maz AT < d
< d
Regions
7/
/
»
MaxAT > d
MinAT < D
= e?
7/
< D
Regions
MinAT > D

temps

Fig. 3. Reachability analysis on the TAG

Using the previous proposition, one can browse the TAG graph and compute
the minimum and maximum bounds of the elapsed time of the current path
on-the-fly. If a path of the TAG is considered as a counterexample for some time
reachability property, one can use the algorithm given in the proof of Theorem 2
in order to build a concrete counterexample. Here we do not give the detailed
algorithms for checking reachability properties on-the-fly, but we give the main
intuition. The TAG is represented as a tree which is partitioned into three re-
gions (see. Figure 3). The first region (Region;) contains the aggregates that
are reachable strictly before d time units. The second region (Regions) contains
the aggregates that are reachable between d and D time units and the last re-
gion contains the aggregates that are reachable strictly after D time units. In
case D = oo Regiong is empty. By doing so, the verification algorithms behave
as follows: only aggregates belonging to Regions are analyzed with respect to
. Region; must be explored in order to compute the maximal and minimum
access time of the traversed aggregates, but Regiong is never explored. In fact,
as soon as an aggregate is proved to belong to Regiong the exploration of the
current path is stopped. Furthermore, one has to check for a particular kind of
Zeno behavior: if a cycle involving only aggregates whose minimal and maximal
access times are equal, then the exploration of the current branch is stopped.

For instance checking the formula number 1 is reduced to the search of an
aggregate a in Regions that satisfies ¢. As soon as such an aggregate is reached
the checking algorithm stops the exploration and returns true. When, all the
aggregates of Regiony are explored (none satisfies ¢) the checking algorithm
returns false. Dually, the formula number 2 is proved to be unsatisfied as soon as
an aggregate in Regions that do not satisfy ¢ is reached. When all the aggregates
of Regiongy are explored (each satisfies ¢) the checking algorithm returns true.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 49

Checking formulae number 3 and 4 is slightly more complicated. In fact,
checking formula number 3 is reduced to check if, along any path in Regions,
there exists at least one aggregate satisfying ¢. As soon as a path in Regions is
completely explored without encountering an aggregate satisfying ¢, the explo-
ration is stopped and the checking algorithm returns false. Otherwise, it returns
true. Finally, checking formula 4 is reduced to check that there exists a path
in Regiony such that all the aggregates belonging to this path satisfy ¢. This
formula is proved to be true as soon as such a path is found. Otherwise, when
all the paths of Regiony are explored (none satisfies the desired property), the
checking algorithm returns false.

5 Related works

This section reviews the most known techniques, proposed in the literature,
that abstract and analyse the state space of real-time systems described by
means of TPN. Abstraction techniques aim at constructing, by removing some
irrelevant details, a contraction of the state space of the model, which preserves
properties of interest. The existing abstraction approaches mainly differ in the
states agglomeration criteria, the characterization of states and state classes
(interval states or clock states), the kind of preserved properties.

The States Class Graph (SCG) [3] was the first method of state space repre-
sentation adapted to TPNs. A class (m, D) is associated with a marking m and
a time domain D represented by a set of inequalities over variables. The vari-
ables represented in the SCG are the firing time intervals of enabled transitions.
The SCG allows for the verification of some TPN properties like reachability,
boundness. However, it preserves the linear time properties only. To address this
limitation, a refinement of the method was proposed in [24], in the form of a
graph called Atomic States Class Graph (ASCG). The authors use a cutting of
state class by adding linear constraints so that each state of an atomic class has
a successor in all the following classes. With this improvement, they are able to
verify CTL* properties on TPN, but with the limitation that the time intervals
of transitions are bounded. A new approach for the construction of atomic classes
was proposed in [4] and allows the verification of CTL* without restriction on
time intervals. The state class approach is implemented in a software tool called
TINA [5].

The Zones Based Graph (ZBG) [10] is an other approach allowing to abstract
the TPN state space. This approach is inspired by the Region Graph (RG) [1]
technique, initially introduced for timed automata. In practice, the number of
regions is too large for an effective analysis, thus, the regions are grouped into
a set of zomes. A zone is a convex union of regions and can be represented by a
DBM (Difference Bound Matrix) [8]. In [10], the clocks of transitions are directly
encoded within the zones. This allows to verify temporal and quantitative prop-
erties but not CTL* properties. As for timed automata, a disadvantage of the
method is the necessary recourse to approximation methods (k-approximation
or kx-approximation) in the case where the infinity is used in the bounds of time

50 PNSE’14 — Petri Nets and Software Engineering

intervals. Lime and Roux also used TPNs to model system behavior [17]. They
used the state class approach to build a timed automaton that preserves the be-
havior of the TPN using as less clock variables as possible. The resulting model
is then verified using the UPPAAL tool [16]. However, even though UPPAAL
can answer about quantitative temporal properties, it can only verify a subset of
TCTL. Adding a new transition to measure time elapse was proposed in [6] to
perform TCTL model-checking in TPNs. Using this transition, TCTL formulae
are translated into CTL formulae. Then a ZBG for TPN is refined leading to a
graph called Atomic Zone Based Graph (AZBG) that preserves CTL properties.

Unlike the TAG, in all existing approaches, the time information does not
appear explicitly in nodes which leads to additional and costly calculations such
as: the manipulation of DBM to encode the zones (for zones based approaches)
and the classes (for state-class based approaches), the approximations to counter
the problem of unbounded transitions, conversion of graphs to timed automata
(using UPPAAL) to model check properties (etc). In our work the time infor-
mation is encoded within the aggregates allowing to check time properties just
by browsing the graph, which has a significant impact on the construction com-
plexity. The encoding of the timing information in the aggregates is such that
the minimum and maximum elapsed time in every path of the TAG can be
computed.

6 Experimental results

The efficiency of the verification of timed reachability properties is closely linked
with the size of the explored structure to achieve this verification. Thus, it was
important to first check that the TAG is a suitable/reduced abstraction before
performing verification on it. Our approach for building TAG-TPN was imple-
mented in a prototype tool (written in C++), and used for experiments in order
to validate the size of the graphs generated by the approach (note that the pro-
totype was not optimized for time efficiency yet, therefore no timing figures are
given in this section). All results reported in this section have been obtained
on a Mac-os with 2 gigahertz Intel with 8 gigabytes of RAM. The implemented
prototype allowed us to have first comparison with existing approaches with re-
spect to the size of obtained graphs. This section is dedicated to report, compare
and discuss the experimental results obtained with three approaches: SCG, ZBG
and TAG-TPN. Notice that we used the ROMEO tool to build both SCGs and
ZBGs. The built versions preserve Linear-time Temporal Logic (LTL) properties.
We tested our approach on several TPN models and we report here the obtained
results for three well known examples of parametric TPN models.

The considered models are: (1) a TPN representing a composition of pro-
ducer/consumer models by fusion of a single buffer (of size 5) [12], (2) the second
example (adapted from [19]) is the Fischer’s protocol for mutual exclusion, and
(3) the last is the train crossing example [4].

Tablel reports the results obtained with the SCG, the ZBG and the TAG-
TPN approaches, in terms of graph size number of nodes/number of edges).

K. Klai: On-The-Fly Model Checking of Times Properties on TPN

51

Parameters

SCG (with Tina)
(nodes / arcs)

ZBG (with Romeo)
(nodes / arcs)

TAG-TPN
(nodes / arcs)

Nb. prod/cons TPN model of producer/consumer

1 34 / 56 34 / 56 34 / 56

2 748 / 2460 593 / 1922 740 / 2438

3 4604 / 21891 3240 / 15200 4553 / 21443

4 14086 / 83375 9504 / 56038 13878 / 80646
5 31657 / 217423 20877 / 145037 30990 / 207024
6 61162 / 471254 39306 / 311304 60425 / 449523
7 107236 / 907 708 67224 / 594795 106101 / 856050
Nb. processes Fischer protocol

1 4/4 4/4 4/4

2 18 /29 19 / 32 20 / 32

3 65 / 146 66 / 153 74 / 165

4 220 / 623 221 / 652 248 / 712

5 727 / 2536 728 / 2 615 802 / 2825

6 2378 / 9154 2379 / 10098 2564 / 10728

7 7737 / 24744 7738 / 37961 8178 / 39697

8 25080 / 102242 25081 / 139768 26096 / 144304
Nb. processes Train crossing

1 11/14 11 /14 11 /14

2 123 / 218 114 / 200 123 / 218

3 3101 / 7754 2817 / 6944 2879 / 7280

4 134501 / 436896 122290 / 391244 105360 / 354270

Table 1. Experimentation results

The obtained preliminary results show that the size of the TAG is comparable
to the size of the graphs obtained with the ZBG and the SCG approaches.
The TAG achieves better performances than both SCG and ZBG for the train
crossing example, while it is slightly worse for the Fischer’s protocol and performs
similarly to SCG but worse than ZBG for the producer/consumer example.

This is an encouraging result because of the following reasons: The TAG
allows for checking timed properties while the SCG approach do not. Also, it
can be used for the verification of event-based timed properties while the ZBG
approach do not. An other difference consists in the fact that the verification of
timed properties can be achieved directly on the TAG, without any synchroni-
sation with an additional automaton (representing the formula to be checked),
nor any prior step of translation to timed automata. Moreover, using the algo-
rithm given in the proof of Theorem 2, and in the prospect of using the TAG
in order to check timed properties, one can exhibit (e.g., from a counterexam-
ple abstract path in the TAG) an explicit run involving the time spent at each
reached marking. Finally, we claim that the TAG is a suitable abstraction for
further reductions, especially the partial order reduction which is based on the
exploitation of the independency between the TPN transitions. The third exam-

52 PNSE’14 — Petri Nets and Software Engineering

ple of Figure 2 is a typical illustration of the gain one could have by applying
such a reduction.

7 Conclusion

We proposed a new symbolic graph for the abstraction of the TPN state space.
The proposed graph, called TAG, produces a finite representation of the bounded
TPN behavior and allows for analyzing of timed reachability properties. Unlike,
the existing approaches, our abstraction can be directly useful to check timed
logic properties. We think that our approach is more understandable than the
SCG and the ZBG approaches (the two main approaches for TPNs analysis since
three decades) and easily implementable. Another feature of our approach is that
each path of the TAG can be matched with a concrete path of the TPN model
where the elapsed time at each encountered state is exhibited.

Our ultimate goal is to use the TAG traversal algorithm for the verification
of timed reachability properties expressed in the TCTL logic. Several issues have
to be explored in the future: We first have to improve our implementation so
that time consumption criterion can be taken into account in our comparison
to existing tools. We should also, carry out additional experimentations (using
more significant use cases) to better understand the limits of our approach and
to better compare the TAG technique to the existing approaches. Second, we
believe that partial order reduction techniques can be used to reduce the size
of the TAG while preserving time properties but without necessarily preserving
all the paths of the underlying TPN. Finally, two challenging perspectives can
be considered in the future: (1) the design and the implementation of model
checking algorithms for verification of TCTL formulae, and (2), the extension of
our approach to timed automata.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183-235, 1994.

2. B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. Software Eng., 17(3):259-273, 1991.

3. B. Berthomieu and M. Menasche. An Enumerative Approach for Analyzing Time
Petri Nets. In IFIP Congress, pages 41-46, 1983.

4. B. Berthomieu and F. Vernadat. State Class Constructions for Branching Anal-
ysis of Time Petri Nets. In TACAS 2003, volume 2619 of LNCS, pages 442—-457.
Springer, 2003.

5. B. Berthomieu and F. Vernadat. Time Petri Nets Analysis with TINA. In QEST,
pages 123-124, 2006.

6. H. Boucheneb, G. Gardey, and O. H. Roux. TCTL Model Checking of Time Petri
Nets. J. Log. Comput., 19(6):1509-1540, 2009.

7. M. Boyer and O. H. Roux. Comparison of the Expressiveness of Arc, Place and
Transition Time Petri Nets. In ICATPN 2007, volume 4546 of LNCS, pages 63-82.
Springer, 2007.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 53

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, pages 197-212. Springer-Verlag, 1990.

G. Gardey, D. Lime, M. Magnin, and O. (h. Roux. Roméo: A Tool for Analyzing
time Petri nets. In In Proc. CAVOO05, vol. 3576 of LNCS, pages 418-423. Springer,
2005.

G. Gardey, O. H. Roux, and O. F. Roux. Using Zone Graph Method for Computing
the State Space of a Time Petri Net. In FORMATS 2003, volume 2791 of LNCS,
pages 246—259. Springer, 2003.

R. Hadjidj and H. Boucheneb. Improving state class constructions for CTL* model
checking of time Petri nets. STTT, 10(2):167-184, 2008.

R. Hadjidj and H. Boucheneb. On-the-fly TCTL model checking for time Petri
nets. Theor. Comput. Sci., 410(42):4241-4261, 20009.

K. Klai, N. Aber, and L. Petrucci. To appear in a new approach to abstract
reachability state space of time petri nets. In To appear in 20th International
Symposium on Temporal Representation and Reasoning, TIME 2013, 2013.

K. Klai, N. Aber, and L. Petrucci. Verification of reachability properties for time
petri nets. In Reachability Problems - 7th International Workshop, RP 2013, vol-
ume 8169 of Lecture Notes in Computer Science, pages 159—-170. Springer, 2013.
K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In
FCT ’95, volume 965 of LNCS, pages 62—88. Springer, 1995.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL: Status and Developments. In
CAV, pages 456459, 1997.

D. Lime and O. H. Roux. Model Checking of Time Petri Nets Using the State
Class Timed Automaton. Discrete Event Dynamic Systems, 16(2):179-205, 2006.
P. M. Merlin and D. J. Farber. Recoverability of modular systems. Operating
Systems Review, 9(3):51-56, 1975.

W. Penczek, A. Polrola, and A. Zbrzezny. SAT-Based (Parametric) Reachability
for a Class of Distributed Time Petri Nets. T. Petri Nets and Other Models of
Concurrency, 4:72-97, 2010.

C. A. Petri. Concepts of net theory. In MFCS’73. Mathematical Institute of the
Slovak Academy of Sciences, 1973.

M. Pezzé and M. Young. Time Petri Nets: A Primer Introduction. In Tutorial at the
Multi- Workshop on Formal Methods in Performance Evaluation and Applications,
1999.

C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. Technical report, Cambridge, MA, USA, 1974.

J. Sifakis. Use of Petri nets for performance evaluation. Acta Cybern., 4:185-202,
1980.

T. Yoneda and H. Ryuba. CTL model checking of time Petri nets using geometric
regions. 1998.

54 PNSE’14 — Petri Nets and Software Engineering

SMT-based Abstract Temporal Planning*

Artur Niewiadomski' and Wojciech Penczek!>?

1 1CS, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
artur.niewiadomski@uph.edu.pl
2 1CS, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland
penczek@ipipan.waw.pl

Abstract. An abstract planning is the first phase of the web service
composition in the Planics framework. A user query specifies the initial
and the expected state of a plan in request. The paper extends Planics
with a module for temporal planning, by extending the user query with
an LTL" , formula specifying temporal aspects of world transformations
in a plan. Our solution comes together with an example, an implemen-
tation, and experimental results.

Keywords: Web Service Composition, SMT, Abstract Planning, Temporal Plan-
ning, LTL

1 Introduction

Web service composition within Service-Oriented Architecture (SOA) [2] is still
attracting a lot of interest, being a subject of many theoretical and practical
approaches. The main idea consists in dealing with independent (software) com-
ponents available via well-defined interfaces. As typically a simple web service
does not satisfy the user objective, a composition is investigated in order to
make the user fully satisfied. An automatic composition of Web services aims at
relieving the user of a manual preparation of detailed execution plans, matching
services to each other, and choosing optimal providers for all the components.
The problem of finding such a satisfactory composition is NP-hard and well
known in the literature as the Web Service Composition Problem (WSCP) (2,1,
21]. There are many various approaches to solve WSCP [14,16], some of them
we discuss in the next section.

In this paper, we follow the approach of the system Planics [8,9], which has
been inspired by [1]. The main assumption is that all the web services in the
domain of interest as well as the objects which are processed by the services, can
be strictly classified in a hierarchy of classes, organised in an ontology. Another
key idea consists in dividing planning into several stages. The first phase, called
the abstract planning, deals with classes of services, where each class represents
a set of real-world services. This phase has been implemented in Planics using

* This work has been supported by the National Science Centre under the grant No.
2011/01/B/ST6/01477.

56 PNSE’14 — Petri Nets and Software Engineering

two approaches: one based on a translation to SMT-solvers [17] and another one
exploiting genetic algorithms [22]. The second phase, called concrete planning,
deals with concrete services. Thus, while the first phase produces an abstract
plan, it becomes a concrete plan in the second phase. Such an approach enables
to reduce dramatically the number of concrete services to be considered as they
are already eliminated in the abstract planning phase. This paper focuses on the
abstract planning problem, but extends it to so called temporal planning. This
extension together with the experimental results is the main contribution of the
paper. The main idea behind this approach consists in providing the user with a
possibility to specify not only the first and the expected state of a plan in request,
but also to specify temporal aspects of state transformations in a plan. To this
aim we introduce two general types of atomic properties for writing a temporal
formula, namely propositions and level constraints. The propositions are used to
describe (intermediate) states of a plan in terms of existence (or non-existence)
of objects and abstract values of object attributes. The level constraints, built
over a special set of objects, are used for influencing a service ordering within
solutions. However, in order to express such restrictions the user has to rely on
some knowledge about the planning domain. In order to get this knowledge, the
planner can be first run without temporal constraints and then these restrictions
can be added after a non-temporal planning results have been obtained.

We propose a novel approach based on applying SMT-solvers. Contrary to
a number of other approaches, we focus not only on searching for a single plan,
but we attempt to find all significantly different plans. We start with defining
the abstract planning problem (APP, for short). Then, we present our original
approach to APP based on a compact representation of abstract plans by mul-
tisets of service types. We introduce the language of LT L* . for specifying the
temporal aspects of the user query. This approach is combined with a reduction
to a task for an SMT-solver. The encoding of blocking formulas allows for prun-
ing the search space with many sequences which use the same multiset of service
types in some plan already generated. Moreover, we give details of our algo-
rithms and their implementations that are followed by experimental results. To
the best of our knowledge, the above approach is novel, and as our experiments
show it is also very promising.

The rest of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 deals with the abstract planning problem. In Section 4 the
temporal planning is presented. An example of an abstract temporal planning is
shown in Section 5. Section 6 discusses the implementation and the experimen-
tal results of our planning system. The last section summarizes this paper and
discusses a further work.

2 Related Work

A classification matrix aimed at the influence on the effort of Web service compo-
sition is presented in [14]. According to [14], situation calculus [6], Petri nets [11],
theorem proving [20], and model checking [23] among others belongs to AI plan-

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 57

ning. A composition method closest to ours based on SMT is presented in [16],
where the authors reduce WSCP to a reachability problem of a state-transition
system. The problem is encoded by a propositional formula and tested for satis-
fiability using a SAT-solver. This approach makes use of an ontology describing
a hierarchy of types and deals with an inheritance relation. However, we consider
also the states of the objects, while [16] deals with their types only. Moreover,
among other differences, we use a multiset-based SMT encoding instead of SAT.

Most of the applications of SMT in the domain of WSC is related to the
automatic verification and testing. For example, a message race detection prob-
lem is investigated in [10], the paper [4] takes advantage of symbolic testing and
execution techniques in order to check behavioural conformance of WS-BPEL
specifications, while [15] exploits SMT to verification of WS-BPEL specifications
against business rules.

Recently, there have also appeared papers dealing with temporal logics in
the context of WSC. Bersani et al. in [5] present a formal verification technique
for an extension of LTL that allows the users to include constraints on integer
variables in formulas. This technique is applied to the substitutability problem
for conversational services. The paper [13] deals with the problem of automatic
service discovery and composition. The authors characterize the behaviour of a
service in terms of a finite state machine, specify the user’s requirement by an
LTL formula, and provide a translation of the problem defined to SAT. However,
the paper does not specify precisely experimental results and such important
details as, e.g., the number of services under consideration. An efficient appli-
cation of the authors method is reported for plans of length up to 10 only. The
authors of [3] address the issue of verifying whether a composite Web services
design meets some desirable properties in terms of deadlock freedom, safety, and
reachability. The authors report on automatic translation procedures from the
automata-based design models to the input language of the NuSMV verification
tool. The properties to be verified can be expressed as LTL or CTL formulae.

Searching for plans meeting temporal restrictions is also a topic of interest of
a broad planning community. The PDDL language [12] has been also extended
with LTL-like modal operators, but for planning automata-based methods are
used instead of SMT-based symbolic ones.

3 Abstract Planning

This section introduces APP as the first stage of WSCP in the Planics frame-
work. First, the Planics ontology is presented. Next, we provide some basic
definitions and explain the main goals of APP.

3.1 Planics Ontology

The OWL language [19] is used as the Planics ontology format. The concepts
are organized in an inheritance tree of classes, all derived from the base class -
Thing. There are 3 children of Thing: Artifact, Stamp, and Service (Fig. 1).

58 PNSE’14 — Petri Nets and Software Engineering

Thing
Artifact Stamp Service

Fig. 1. The base classes in Planics ontology

The branch of classes rooted at Artifact is composed of the types of the
objects, which the services operate on. Each object consists of a number of
attributes, whereas an attribute consists of a name and a type. Note that the
types of the attributes are irrelevant in the abstract planning phase as they are
not used by the planner. The values of the attributes of an object determine
its state, but in the abstract planning it is enough to know only whether an
attribute does have some value (i.e., is set), or it does not (i.e., it is null). The
Stamp class and its descendants define special-purpose objects, often useful in
constructing a user query, and in the planning process. A stamp is a specific type
aimed at a confirmation of the service execution. The specialized descendants
of the Service class can produce the stamp being an instance of any subtype
of Stamp and describing additional execution features. Note that each service
produces exactly one confirmation object. The classes derived from Artifact and
Stamp are called the object types.

Each class derived from Service, called a service type, stands for a description
of a set of real-world services. It contains a formalized information about their
activities. A service type affects a set of objects and transforms them into a new
set of objects. The detailed information about this transformation is contained
in the attributes of a service type: the sets in, inout, and out, and the Boolean
formulas pre and post (pre and post, for short). These sets enumerate the objects,
which are processed by the service. The objects of the in set are read-only,
i.e., they are passed unchanged to the next world. Each object of inout can be
modified - the service can change some values of its attributes. The objects of
out are produced by the service.

3.2 Basic definitions

Let I denote the set of all identifiers used as the type names, the objects, and the
attributes. In APP we deal with abstract values only, the types of the attributes
are irrelevant, and we identify the attributes with their names. Moreover, we
denote the set of all attributes by A, where A C 1. An object type is a pair
(t, Attr), where t € I, and Attr C A. That is, an object type consists of the type
name and a set of the attributes. By P we mean a set of all object types.

Example 1. Consider the following exemplary ontology containing in addition to
Thing also the class Artifact and Stamp. The class Artifact corresponds to the
object type (Artifact, {id}) (the only attribute is an identifier) while the class

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 59

Stamp corresponds to the object type (Stamp, {serviceClass, serviceld,level}),
introducing the attributes describing the service generating the stamp, and the
position of this service in an execution sequence we consider.

We define also a transitive, irreflexive, and antisymmetric inheritance relation
Ext C PxP,such that ((tl,Al), (tQ,AQ)) € Ext iff t1 # to and A; C Ay. That
is, a subtype contains all the attributes of a base type and optionally introduces
more attributes. An object o is a pair o = (id, type), where id € I and type € P.
By type(o) we denote the type of o. The set of all objects is denoted by Q.
Amongst all the objects we distinguish between the artifacts (the instances of
the Artifact type) and the stamps (the instances of the Stamp type). The set of
all the stamps is denoted by ST, where ST C Q. Moreover, we define the function
attr : O — 22 returning the set of all attributes for each object of Q.

Service types and user queries. The service types available for composition are
defined in the ontology by service type specifications. The user goal is provided
in a form of a user query specification, which is then extended by a temporal
formula. Before APP, all the specifications are reduced to sets of objects and
abstract formulas over them. An abstract formula over a set of objects O
and their attributes is a DNF formula without negations, i.e., the disjunction of
clauses, referred to as abstract clauses. Every abstract clause is the conjunction
of literals, specifying abstract values of object attributes using the functions
isSet and isNull. In the abstract formulas used in APP, we assume that no
abstract clause contains both isSet(o.a) and isNull(o.a), for the same o € O
and a € attr(o). For example (isSet(o.a) A isSet(0.b)) VisNull(o.a) is a correct
abstract formula. The syntax of the specifications of the user queries and of the
service types is the same and it is defined below.

Definition 1. A specification is a 5-tuple (in,inout, out, pre, post), where in,
inout, out are pairwise disjoint sets of objects, and pre is an abstract formula
defined over objects from in U inout, while post is an abstract formula defined
over objects from in U inout U out.

A user query specification ¢ or a service type specification s is denoted by
specg; = (ing, inouty, out,, pre,, post,), where x € {q, s}, resp. In order to for-
mally define the user queries and the service types, which are interpretations
of their specifications, we need to define the notions of valuation functions and
worlds.

Definition 2. Let ¢ = \/,_; ,, a; be an abstract formula. A valuation of
the attributes over «; is the partial function va, : U,colo} x attr(o) —
{true, false}, where:

e v, (0,a)=true if isSet(o.a) is a literal of a;, and
e v, (0,a)= false if isNull(o.a) is a literal of a;, and
e v,,(0,a) is undefined, otherwise.

60 PNSE’14 — Petri Nets and Software Engineering

We define the restriction of a valuation function v,, to a set of objects O C O
as Vg, (0) = vq, Uneo {0} xattr(o)" The undefined values appear when the inter-

preted abstract formula does not specify abstract values of some attributes,
which is a typical case in the WSC domain. The undefined values are used also
for representing families of total valuation functions. Next, for a partial valua-
tion function f, by total(f) we denote the family of the total valuation functions
on the same domain, which are consistent with f, i.e., agree on the values de-
fined of f. Moreover, we define a family of the valuation functions V, over the
abstract formula ¢ as the union of the sets of the consistent valuation functions
over every abstract clause «;, i.e., V,, = (Ji_, total(va,). The restriction of the
family of functions V, to a set of objects O and their attributes is defined as

V,(0) = UL, total (v, (0)).

Definition 3. A world w is a pair (O, vy), where Oy C O and vy, = v(Oy)
is a total valuation function equal to some valuation function v restricted to O,,.
The size of w, denoted by |w| is equal to |Oyl.

That is, a world represents a state of a set of objects, where each attribute is
either set or null. By a sub-world of w we mean a world built from a subset of
O, and v, restricted to the objects from the chosen subset. Moreover, a pair
consisting of a set of objects and a family of total valuation functions defines a set
of worlds. That is, if V = {vy, ..., v, } is a family of total valuation functions and
O C Qs a set of objects, then (O, V(0)) means the set { (0, v;(0)) | 1 <i < n},
for n € N. Finally, the set of all worlds is denoted by W.

Now, we are in a position to define a service type and a (basic) user query
as an interpretation of its specification. In the next section the user query is
extended to a temporal version.

Definition 4. Let spec, = (ing,inout,, out,, pre,, post,) be a user query or a
service type specification, where x € {q, s}, resp. An interpretation of spec, is a

pair of world sets x = (Wy.., Wy,s,), where:

- Whe= (ing U inoutm,V;fTe), where V.. is the family of the valuation func-
tions over pre,,

= Wpost = (ing Uinout, Uout,, Vz'fost), where Vo, is the family of the valuation
functions over post,,.

An interpretation of a user query (service type) specification is called simply a
user query (service type, resp.).

For a service type (Wp,.e, Wiost); Wy, is called the input world set, while Wy, ,
- the output world set. The set of all the service types defined in the ontology is
denoted by S. For a user query (W4.., WL) W4_ is called the initial world set,

pre» post pre
while W, - the ezpected world set, and denoted by W, and W, , respectively.

ost xp?

Abstract Planning Overview. The main goal of APP is to find a composition
of service types satisfying a user query, which specifies some initial and some
expected worlds as well as some temporal aspects of world transformations.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 61

Intuitively, an initial world contains the objects owned by the user, whereas
an expected world consists of the objects required to be the result of the service
composition. To formalize it, we need several auxiliary concepts.

Let 0,0 € O and v and v’ be valuation functions. We say that v'(o’) is
compatible with v(0), denoted by v'(o')=%v(0), iff the types of both objects
are the same, or the type of o’ is a subtype of type of o, i.e., type(o) = type(o’)
or (type(o’),type(o)) € Ext, and for all attributes of o, we have that v" agrees
with v, i.e., Vaeartr(o)v'(0'; @) = v(0, a). Intuitively, an object of a richer type (o')
is compatible with the one of the base type (o), provided that the valuations of
all common attributes are equal.

Let w = (0,v), w' = (O',v") be worlds. We say that the world w’ is compati-
ble with the world w, denoted by w’>="""w, iff there exists a one-to-one mapping
map : O — O’ such that V,eov’(map(0))=°%v(0). Intuitively, w’ is compat-
ible with w if both of them contain the same number of objects and for each
object from w there exists a compatible object in w’. The world w’ is called sub-
compatible with the world w, denoted by w’>=*""'w iff there exists a sub-world
of w’ compatible with w.

World transformations. One of the fundamental concepts in our approach con-
cerns a world transformation. A world w, called a world before, can be trans-
formed by a service type s, having specification specg, if w is sub-compatible
with some input world of s. The result of such a transformation is a world w’,
called a world after, in which the objects of outs; appear, and, as well as the
objects of inouts, they are in the states consistent with some output world of s.
The other objects of w do not change their states. In a general case, there may
exist a number of worlds possible to obtain after a transformation of a given
world by a given service type, because more than one sub-world of w can be
compatible with an input world of s. Therefore, we introduce a context function,
which provides a strict mapping between objects from the worlds before and
after, and the objects from the input and output worlds of a service type s.

Definition 5. A context function ctzy, : ins U inouts U outs — O is an
injection, which for a given service type s and a set of objects O assigns an
object from O to each object from ing, inouts, and outs.

Now, we can define a world transformation.

Definition 6. Let w, w' € W be worlds, called a world before and a world after,
respectively, and s = (W,..,Wy,s,) be a service type. Assume that w = (O, v),
w' = (0',v"), where O C O" C O, and v,v" are valuation functions. Let ctxy),
be a context function, and the sets IN, 10, OU be the ctzf, images of the sets
ins, inouts, and outs, respect., i.e., IN = ctxy, (ins), 10 = ctxp, (inouts), and
OU = ctx}, (outs). Moreover, let IN,I0 C (ONO’) and OU = (O’ \ O).

We say that a service type s transforms the world w into w’ in the context
all the

s,ctx?,
s ’ o Iy s s s s
ctxy, denoted by w — — w', if for some v, € V.. and vy, € Vs,

pre pre
following conditions hold:

1. (IN,v(IN))>=""t(ing, v5,..(ins)),

62 PNSE’14 — Petri Nets and Software Engineering

2. (10,v(10))="""(inouts, v3, (inout,)),
3. (I0,0'(10))="" (inout s, v5,s (inouts)),
4. (OU W' (OU))=rt (outs,vpost(outs)),

.

vOE(O\IO) Vaeattr(o) (0 a’) vl(ov a)'

Intuitively, (1) the world before contains a sub-world built over I N, which is
compatible with a sub-world of some input world of the service type s, built
over the objects from ing. (2) The world before contains a sub-world built over
10, which is compatible with a sub-world of the input world of the service type
s, built over the objects from inouts. (3) After the transformation the state of
objects from IO is consistent with posts. (4) The objects produced during the
transformation (OU) are in a state consistent with posts. (5) The objects from
IN and the objects not involved in the transformation do not change their states.

In the standard way we extend a world transformation to a sequence of world
transformations seq. We say that a world wq is transformed by the sequence seq
into a world w,, denoted by wg = wy,, iff there exists a sequence of worlds

si,ctx;‘)i/,
p = (wo,w1,...,wy) such that Vi<;<p, wi_y — * w; = (0;,v;) for some v;.
Then, the sequence seq = (s1, ..., $,) is called a transformation sequence and p

is called a world sequence.
Having the transformation sequences defined, we introduce the concept of
user query solutions or simply solutions, in order to define a plan.

Definition 7. Let seq be a transformation sequence, q = (Wl‘fm,Wew) be a

user query. We say that seq is a solution of q, if for w € W ., and some world

w' such that w 3 w', we have w'=rtwd, L for some wi,,, € W, . The world
sequence corresponding to seq is called a world solution. The set of all the (world)

solutions of the user query q is denoted by QS(q) (WS(q), resp.).

Intuitively, by a solution of ¢ we mean any transformation sequence transforming
some initial world of ¢ to a world sub-compatible to some expected world of ¢.

Plans. Basing on the definition of a solution to the user query ¢, we can now
define the concept of an (abstract) plan, by which we mean a non-empty set of
solutions of q. We define a plan as an equivalence class of the solutions, which
do not differ in the service types used. The idea is that we do not want to distin-
guish between solutions composed of the same service types, which differ only in
the ordering of their occurrences or in their contexts. So we group them into the
same class. There are clearly two motivations behind that. Firstly, the user is
typically not interested in obtaining many very similar solutions. Secondly, from
the efficiency point of view, the number of equivalence classes can be exponen-
tially smaller than the number of the solutions. Thus, two user query solutions
are equivalent if they consist of the same number of the same service types,
regardless of the contexts.

Definition 8. Let seq € QS(q) be a solution of some user query q. An abstract
plan is a set of all the solutions equivalent to seq, denoted by [seq]~

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 63

It is important to notice that all the solutions within an abstract plan are built
over the same multiset of service types, so a plan is denoted using a multiset
notation, e.g., the plan [25 4+ 4T + 3R] consists of 2 services S, 4 services T', and
3 services R.

In order to give the user a possibility to specify not only the initial and
expected states of a solution, we extend the user query with an LTL* . formula
o specifying temporal aspects of world transformations in a solution. Then, the
temporal solutions are these solutions for which the world sequences satisfy .
This is formally introduced in the next section.

4 Temporal Abstract Planning

In this section we extend the user query by an LT LF x temporal formula and a
solution to a temporal solution by requiring the temporal formula to be satisfied.
The choice of linear time temporal logic is quite natural since our user query
solutions are defined as sequences of worlds. The reason for disallowing a direct
use of the operator X (by removing it from the syntax) is twofold. Firstly, we
still aim at not distinguishing sequences which differ only in the ordering of
independent service types. Secondly, if the user wants to introduce the order on
two consequtive service types he can use formulas involving level constraints. On
the other hand our language and the temporal planning method can be easily
extended with the operator X.

We start with defining the set of propositional variables, the level constraints,
and then the syntax and the semantics of LTLF X-

4.1 Propositional variables

Let 0o € O be an object, a € attr(o). The set of propositional variables PV =
{PEx(0), pSet(o.a),pNull(o.a) | 0 € O, a € attr(o)}. Intuitively, pEx (o) holds
in each world, where the object o exists, pSet(o.a) holds in each world, where
the object o exists and the attribute a is set, and pNull(o.a) holds in each world,
where the object o exists and the attribute a is null.

In addition to PV we use also the set of level constraints LC over the stamps
ST, defined by the following grammar:

Ic ::=lexp ~ lexp (1)

lexp ::= ¢ | s.level | lexp @ lexp

where s € ST, c€ Z,® € {+,—,,/,%}, ~ €{<,<,=,>,>}, and /,% stand
for integer division and modulus, respectively.

Intuitively, s.level < c holds in each world, where the stamp s exists and the
value of its level is smaller than c.

64 PNSE’14 — Petri Nets and Software Engineering

4.2 Syntax of LTL’iX
The LTLF formulae are defined by the following grammar:

pu=pl-plle|-le|onp|oVe|eUcp | pRapep.

where p € PV, 1lc € LC, and k € N.

Observe that we assume that the LT LF formulae are given in the negation
normal form (NNF), in which the negation can be only applied to the propo-
sitional variables and the level constraints. The temporal modalities U, and
R« are named as usual k-restricted until and release, respectively. Intuitively,
U1 means that eventually, but in less than k steps, ¥ holds and always ear-
lier ¢ holds. The formula @R ;1 expresses that either for the next k — 1 states
1) holds or in less than k steps, ¢ holds and always earlier ¢ holds.

The derived basic temporal modalities are defined as follows: F = trueUo o

and Gy o falseRcpp.

4.3 Semantics of LTL’iX

We start with defining models over the world solutions, which are finite sequences
of worlds.

Definition 9. A model is a pair M = (p,V,), where p = (wo, w1, ..., wy) 5 a
world solution with w; = (Oy,v;) for 0 < i < n, and V, : J;_ {w;} x ST —
N U {0} is the function over the worlds of p valuating the expressions of the
form stamp.level, defined as follows:

— Vy(w;, s.level) = 0o if s € Oy,
— V,(w;, s.level) =0 if s € O,
— Vy(w;, s.level) = j if s € O; and s € Oj_1, for some 1 < j <.

The intuition behind the definition of V, is as follows. If a stamp s is not an
element of a world w, then the value of s.level in w does not exist, and this is
denoted by oo. If a stamp s is an element of the world wy, then the value of
s.level is 0 in all the worlds. If w; is the world, where s appears for the first
time, then the value of s.level is equal to j in w; as well as in all further worlds.

Before defining the semantics of LT L* we extend the stamp.level valuation
function V), from ST to the level expressions as follows:

Vo(wi, c) =

V,(w;, lexp 69 lexp’) = V,(w;,lexp) & V,(w;,lexp’) if V,(w;,lexp) # oo #
V,(w;,lexp’),

V,(w;, lexp & lexp’) = oo if V,(w;, lexp) = oo or V,(w;,lexp’) = oo,

We say that an LTL* . formula ¢ is true in M = (p,V,) (in symbols M [¢)
iff wy | ¢, where for m < n we have:

— wmy = pEx(o) iff 0 € O,

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 65

— Wy, = pSet(o.a) iff 0o € O, and v,, (0, a) = true,

— Wy, = pNull(o.a) iff 0 € Oy, and v,,(0,a) = false,

— wpy, = p iff wy, Ep, for p e PV,

— Wy, E (lexp ~ lexp’) iff V,(w(m),lexp) ~ V,(wy,,lexp’) and

Vp(wmﬂ lexp) 7é o0 7é Vp(wmv leXp/)a

— w,, E le iff wy, £ lc, for 1c € LC,

- Wm ':@/\wiﬂ‘wm):(Pandwm)21%

- wm'ch\/q/}iﬂ:wm):@orwm’:wa

- Wnm ': @U<kw iff (Hmin(m+k,71)>l2m)(wl ': ¢ and (vm§j<l>wj ': 90)7

- Wm ': SOR<H/) iff (vmin(m+k,n)>12m) wy ': ¢) or
(Fmin(mtk,n)y>izm) (Wi F @ and (Vim<j<i)w; = 1P).

The semantics of the propositions follows their definitions, for the level con-
straints the semantics is based on the valuation function V), whereas for the
temporal operators the semantics is quite standard. Note that we interpret our
language over finite sequences as the solutions we are dealing with are finite.

Now, by a temporal query we mean a query (as defined in the former section)
extended with an LTL* formula ¢. The temporal solutions are these solutions
for which the world sequences satisfy ¢. A temporal plan is an equivalence class
of the temporal solutions, defined over the same multiset of services.

5 Example of Temporal Abstract Planning

This section contains an example showing how the abstract temporal planning
can be used in practice for a given ontology and user (temporal) queries.

Fig. 2. Example ontology

Consider the ontology depicted in Fig. 2. In the Artifact branch one can see
several types of objects, like, e.g., Arbour (the main point of interest of this ex-
ample), which is a subclass of Ware, Paintable Artifact, and Construction. At
the left hand side the Service branch and its subclasses are located. The service
Select (St) is able to search any Ware, Selling (Sg) allows to purchase it, while
Transport (T) can be used to change its location. The Painting (P) service
is able to change colour of any PaintableArtifact, but it needs to use some
Paint. The Building (B) service can be used to obtain some Construction, but

66 PNSE’14 — Petri Nets and Software Engineering

it needs BuildingM aterials. Finally, two subclasses of Building are specialized
in production of wooden constructions using the supplied boards and nails. The
services WoodBuilding (Wb) and WoodBuildingLuxz (Wbx) are similar, but
the latter also paints the product to the chosen colour using their own paint,
however for a higher price.

Assume the user wants to get a wooden arbour painted in blue. He formulates
the query as follows: in = inout = 0, pre = true, out = {Arbour a}, post =
(a.colour = blue A a.owner = Me A a.location = MyAddress). The post
formula is automatically translated to its abstract form, that is (isSet(a.colour)
A isSet(a.owner) A isSet(a.location)). The shortest plans are [St + Sg] and
[St + Sg + T). The former satisfies the user query only if the Selling service is
located in a close proximity of the user’s address.

Assume that during the next planning steps (i.e., the offer collecting and
the concrete planning) those plans turn out to have no realization acceptable
by the user. Perhaps, there are no blue arbours in nearby shops or they are
too expensive. Then, the alternative plan is to buy and transport an arbour
in any colour, as well as some blue paint, and then use the Painting service:
[2St+2Sg+ 2T + P], where one triple of services (St, Sg,T) provides the arbour,
and the other a blue paint.

However, it could be the case that, e.g., the transport price of such a big
object like an arbour exceeds the budget. If so, the possible solution is to buy
boards, nails, and paint, transport them to the destination address, then to
assembly the components with an appropriate building service, and paint, finally.
This scenario is covered, for example, by the following plan: [3St + 3Sg + 3T +
Wb+ P], where the triples of services (St,Sg,T) provide and transport boards,
nails, and the paint.

Although, there are over eight hundred abstract plans of length from 2 to 11
satisfying the above user query, including these with multiple transportations of
the arbour, or painting it several times. In order to restrict the plans to more
specific ones, the user can refine the query demanding of specific types of ser-
vices to be present in the plan using stamps. Thus, for example, by adding the
following set of stamps to out: {Stamp t1, Stamp ta, Stamp t3} and extending
post by: \,_; 5(ti.serviceClass instanceO f Transport), the number of possible
abstract plans (of length from 2 to 11) can be reduced below two hundred. Then,
if instead of buying a final product the user wants to buy and transport the com-
ponents, in order to build and paint the arbour, he can add two more stamps and
conditions to the query. That is, by adding to out the set {Stamp b, Stamp p},
and by extending post by the expression (A b.serviceClass instanceO f Building
A tz.serviceClass instanceO f Painting), one can reduce the number of result-
ing plans to 2 only: [35t+3Sg+ 3T+ Wb+ P] and [35t+3Sg+ 3T + Wbz + P].

However, even 2 abstract plans only can be realized in a number of different
ways, due to possible many transformation contexts, and the number of different
partial orders represented by a single abstract plan. If the user wants to further
reduce the number of possible plan realizations by interfering with an order of
services, he should specify some temporal restrictions. For example, if the user

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 67

wants to ensure that all the transports are executed before the building starts,
he can express it as a formula:

@1 = F((b.level > ti.level) A (b.level > ty.level) A (b.level > t3.level))

Moreover, if the intention of the user is to proceed with some service directly
after another one, for example, to start building just after the third transport,
one can express such a constraint as:

g = F(b.level = t3.level + 1)

Moreover, using a temporal query the user can prevent some services from
occurring in the plan. For example, using the following formula:

w3 = “pEx(a) U pNull(a.colour),

which means that just after the arbour has been produced, its colour is not set,
the user excludes the WoodBuildingLux service (which builds and paints the
arbour).

The other possibility of extending the user query by a temporal component
includes using the k-restricted versions of modal operators. For example, consider
the following formula:

Y4 = F<10(pEX(Tf1) A\ pEX(tQ) N pEX(tg)),

which states that three transportations should be executed in the first nine steps
of the plan.

6 Implementation, Experiments, and Conclusions

In this section we sketch the implementation of the propositions and the level
constraints, and then we evaluate the efficiency of our tool using several scalable
benchmarks.

6.1 Implementation

The implementation of the propositions and the level constraints exploits our
symbolic representation of world sequences. The objects and the worlds are rep-
resented by sets of wvariables, which are first allocated in the memory of an
SMT-solver, and then used to build formulas mentioned in Section 4. The rep-
resentation of an object is called a symbolic object. It consists of an integer
variable representing the type of an object, called a type variable, and a number
of Boolean variables to represent the object attributes, called the attribute vari-
ables. In order to represent all types and identifiers as numbers, we introduce a
function num : AUPUS UQO —— N, which with every attribute, object type,
service type, and object assigns a natural number.

68 PNSE’14 — Petri Nets and Software Engineering

A symbolic world consists of a number of symbolic objects. Each symbolic
world is indexed by a natural number from 0 to n. Formally, the i-th symbolic
object from the j-th symbolic world is a tuple: 0; ; = (t; ;,i,0.5s -, i mazar—1,5)
where t; ; is the type variable, a; , ; is the attribute variable for 0 < z < mazq,
where mazx,; is the maximal number of the attribute variables needed to repre-
sent the object.

Initial ; Final Expected
WD q W2 Wn
o o o
. 0,1 0,2]
in, N | o out
m s, 044 s, 0, s Oin
n
m] 054 o 2,2 o O2n S
inout, m 04 3,2 Osn M
m 044 4,2 O%n
— [P M
out Os,1 O, Osn
Sq
6,1 O O%n
o. ”
out, 072 Orn Mo
2
Qg2 O%n

Fig. 3. Symbolic worlds of a transformation sequence

Note that actually a symbolic world represents a set of worlds, and only
a wvaluation of its variables makes it a single world. The j-th symbolic world
is denoted by w;, while the number of the symbolic objects in w; - by |w;|.
Note that the set of the initial worlds of the query ¢ (W/,,,) is represented by a
symbolic world wy. Fig. 3 shows subsequent symbolic worlds of a transformation
sequence.

One of the important features of our encoding is that for a given index of a
symbolic object ¢ we are able to determine the step of a solution, in which the
object was produced. This is done by the function lev, : N +— N, such that for a

given query q:

) 0 for i < |wyq|
l = j ’
evg(4) {L(ZWO)J+1fori>|WO| ()

maxoqyut

where max,,; is the maximal number of the objects produced by a single service.

Another important feature of our encoding is that the objects of out, need
to be identified among the objects of the symbolic world w,, (of indices greater
than |wyg)|). To this aim, we allocate a new symbolic world w, (with e = n + 1),
containing all the objects from out,. Note that the world w, is not a part of a

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 69

world solution, but it provides a set of additional, helper variables. Finally, we
need a mapping between the objects from a final world w,, produced during the
subsequent transformations and the objects from w.. To this aim we allocate p
additional mapping variables in the symbolic world w., where p = |out,|. These
variables, denoted by mg,...,m,_; ., are intended to store the indices of the
objects from a final world, which are compatible with the objects encoded over
we. Thus, we encode the state of the expected worlds of the query ¢ (W2,,),
imposed by post,, using two sets of symbolic objects. The objects of in, Uinout,
are encoded directly over the (final) symbolic world w,,. The state of the ob-
jects from out, are encoded over w,, and since their indices are not known, all
possible mappings between objects from w, and w,, are considered, by encoding
a disjunction of equalities between objects from w, and w,,. See [18] for more
details.

The translation of the propositions defined over the objects and their at-
tributes of a user query ¢ in a symbolic world w,, (0 < m < n) is as follows:

true, for o € ing U tnouty,
[PEx(0)]™ = < false, for o € out,,m = 0, (3)

levg (M, ym (0),e) < M, for o € outy,m > 0.

That is, the objects from the initial world exist in all the subsequent worlds, the
objects from the out set do not exist in the world wq, and they appear in some
subsequent world. Then, since the index of the object o is stored as the value of
corresponding mapping variable 1M, (0),e, We can determine if it exists in the
world w,, using the lev, function.

The proposition pSet(o.a) is encoded over the symbolic world w,, as:

a; z.m,for o € ing U outy,

W |—1 .
Viciwe| (Myje =iAaigm) for oc out,

[pSet(0.a)]™ = [pEx(0)]" A { 1)

where j = num(o) and x = num(a).

It follows from our symbolic representation that the indices of objects from
an initial world are known, and we can get the value of the appropriate attribute
variable directly. However, in the case of objects from out, we have to consider
all possible mappings between objects from w, and w,,. Note that the encoding
of the proposition pNull(o.a) over the symbolic world w,, (i.e., [pNull(o.a)]™)
is very similar. The only change is the negation of a; ; ,,, in the above formula.

In order to encode the level constraints, we introduce a set of the special level
variables. That is, for every stamp s used in some level constraint we introduce
to the world w, an additional integer variable 1; ., where i = num(s), intended
to store the level value of the stamp s. The level value is assigned to 1; . using
the following formula [bind(:)] := (l; ¢ = levy(m;)) for i = num(s), where ¢
is a user query. Then, for every stamp s used in a level constraint we add the
corresponding [bind(num(s))] formula as an SMT assertion. Thus, the encoding
of the level constraints is as follows:

70 PNSE’14 — Petri Nets and Software Engineering

c for lexp = ¢
llexp] = < 1; ., for lexp = s.level,i = num(s) (5)

[lexp’] @ [lexp”] for lexp = lexp’ @ lexp”

The encoding of arithmetic operators is straightforward, since they are sup-
ported by theories built in SMT-solvers, like, e.g., Linear Integer Arithmetic or
Bitvector theory. In what follows, [¢]™ denotes the translation of the formula ¢
at the state w,, of the world sequence of length n + 1.

Definition 10 (Translation of the LTL* | formulae to SMT). Let ¢ be an
LTL’iX formula, (wo, ..., w,) be a sequence of symbolic worlds, and 0 < m < n.
o [p|" :=[p]™, forp € PV,
[=pl, = =[p|™, forp € PV,
[lexp’ ~ lexp”|™ := [lexp] ~ [lexp”] Nsestexp) PEX(s)]™
AsEst(lexp”)[pEX(S)]m7

o [Hlc]" := —[lc], for lc € LC,
o oAU = [AT
. n = Lol VWL

PUt], = VI (Wl A Nl |
PR o= Ntk i\t (o) ANE [,

where st(lexp) returns the set of the stamps over which the expression lexp is
buslt.

Theorem 1. The encoding of the temporal query is correct.

Proof. This can be shown by induction on the length of a formula. Omitted here

because of lack of space?.

6.2 Experimental Results

In order to evaluate the efficiency of our approach we performed several exper-
iments using standard PC with 2GHz CPU and 8GB RAM, and Z3 [7] ver-
sion 4.3 as an SMT-solver. The results are summarized in Table 1. Using our
Ontology Generator (OG) we generated 15 ontologies, each of them consist-
ing of 150 object types and from 64 to 256 service types (the column named
n of Tab. 1). For each ontology a query has been generated in such a way
that it is satisfied by exactly 10 plans of length from 6 to 18 (the parameter
k). The queries demand at least two objects to be produced, and impose re-
strictions on (abstract) values of some of their attributes. A generated query
example is as follows: in = {Rjlbp rjlbpl}, inout = {Bozwd bozwdl}, out =
{Opufo opufol, Ehxjb ehxjb2}, pre = isSet(bozwdl.avg) A isSet(rjlbpl.ppw),

3 The full version of this paper is available at http://artur.ii.uph.edu.pl/pnsel4ltl.pdf.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 71

post = isSet(opufol.epv) A isNull(bozwdl.dyn) A isSet(ehzjb2.zdv) A
isNull(ehzjb2.rxz) A isSet(bozwdl.fsl).

First, we ran our planner for each ontology and each query instance without
a temporal query (column 1), in order to collect statistics concerning the time
needed to find the first plan (Py), all 10 plans (Pyg), as well as the total time
(column T) and the memory consumed (M) by the SMT-solver in order to find
all the plans and checking that no more plans of length k exist. We imposed the
time limit of 1000 seconds for the SMT-solver. Each time-out is reported in the
table by T'O. It is easy to observe that during these experiments as many as 9
instances ran out of time.

Table 1. Experimental results

1 = true V3 N Vs
n | k|Pi|Piwo| T | M|[Pi1|Pio|] T M||P{|Piwo| T M||P:1|Pio|] T| M
[s] | Is] | [s] [vBr|| [s] | [s] | [s] |iaBIf| (s) | 1s1 | (sl [(vB1|| [s] | [s] | [s] |imB]

6 |7.23(9.73(19.5|19.7||2.34|7.17|8.49(14.1{|2.19|4.14|4.21|11.6||3.51| 4.7|6.48|10.8

9 (23.5(53.1| 177| 173(|20.1|34.5(47.0|38.3|(15.9(18.8|19.2|22.3|{14.8|40.1|44.7(36.0

64 (12| 165| 479| TO -(| 101| 216| 354| 117{|60.5|85.2(87.6|59.3|(95.1| 122| 127|68.1

15| 305 TO| TO| -|| 329| 762| TO 119| 216| 241| 105|| 195| 345| 351| 129

18| TO| TO| TO TO| TO| TO 461| TO| TO 604|TO |TO |-

6 [16.0(28.1(55.7|42.7||9.75|19.8|22.6|21.3||7.68|10.1{10.2(16.8|{10.9{12.7|15.1|16.3

9 153.1]94.9| 270| 250(|55.5|98.2| 104|44.7{|21.8|34.0{34.2(31.0||38.1{54.7|62.6|44.9

128|12| 136| 677| TO -|| 134| 428| 474(96.3||76.8/99.9| 102|61.9|(93.1| 114| 117|47.9
15| TO| TO| TO -|| 456| 780| TO| -|| 116| 199| 202| 86|| 183| 258| 263|79.8

18| TO| TO| TO TO| TO| TO 381| 556| 573| 143|| 383| 708| 714| 130

6 (16.1/30.6|41.5(35.4(|20.3|25.7(30.0{26.1|(11.1{13.9(14.1|21.7({14.9|18.3| 21|21.6

9 (84.4| 137| 374 466||63.7|99.3| 131|53.4|(26.2(38.4|39.1|37.5(|88.5| 119| 156{74.9

256(12| 267| TO| TO -|| 242| 584| 692| 112|| 114| 181| 183|80.6|| 250| 315| 321|73.4
15| 685 TO| TO -|| 562| TO| TO| -|| 198| 304| 309|86.8|| 472| 582| 592| 120
18| TO| TO| TO -|| TO| TO| TO| -|| 574| 919| 937| 137|| 942|TO |TO |-

The next experiments involve temporal queries using level constraints. To
this aim we extended the out set of the generated queries by the appropriate
stamp set. Moreover, the post formulas of the queries have been also extended

k
with the expression: /\}iﬂ (si.serviceClass instanceO f C;), where s; € ST, while
C; € S are service types occurring in the solutions generated by OG.
Our second group of experiments involved the temporal formula s:

l5]-1
e = F(/\ s;level < s;yq.level),
i=1

which expresses that about a half of the stamps being effects of the solution
execution, should be produced in the given order. We do not present detailed

72 PNSE’14 — Petri Nets and Software Engineering

results, because they are in general comparable with the performance in the for-
mer experiments. Similarly, there are 9 time-outs, but the time and the memory
consumption varies a bit - for some cases the results are slightly better, while
for others are a little worse.

In the third group of the experiments we imposed stronger restrictions on
the possible service orders of the solutions using the following formula:

L%)
3 = F(/\ s;level < i+ 2).
i=1

This formula still leaves a certain degree of freedom in a service ordering, how-
ever its encoding as an SMT-instance is more compact, since the constant values
are introduced in place of some level variables. Thus, probably, it is also easier
to solve. The results are summarized in the column 3 in Table 1. It is easy to
observe that the time and the memory consumption is significantly lower. More-
over, the number of time-outs dropped to 6. Thus, this is an example showing
an improvement in the planning efficiency using a temporal query.

Our next experiment involves the formula v, specifying the strict ordering
of several services in the solution using stamp-based level constraints:

15)
Py = F(/\ s;.level =1).
i=1

The analysis of the results (given in the column ¢, of Table 1) indicates a
dramatic improvement of our planner efficiency, in terms of time and memory
consumption by the SMT-solver. Moreover, in this experiments group the plan-
ner has been able to terminate its computations in the given time limit for all
but one instances.

Finally, we want to confront the planner behaviour with other kind of tem-
poral formulae. Using the Until modality, we demand that one of the objects
from out, has to be produced no later than in the middle of the plan. Moreover,
knowing the structure of the generated queries, we impose that after the object
appears one of its attributes should already be set. This is expressed by the
following formula:

5 = -pEx(0) Uy pSet(o.a)

where o € outy, a € attr(o), and the expression isSet(o.a) is not contradictory
with post,. The results has been summarised in column 5 of Table 1. It is easy
to observe that also this time the plans have been found faster and using less
memory than in the case when no temporal formula is involved.

7 Conclusions

In this paper we have applied the logic LT L* x to specifying temporal queries
for temporal planning within our tool Planics. This is a quite natural extension

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 73

of our web service composition system, in which the user gets an opportunity to
specify more requirements on plans. These requirements are not only declarative
any more. The overall conclusion is that the more restrictive temporal query,
the more efficient planning, given the same ontology. Assuming that the more
restrictive temporal queries, the longer formulas expressing them, the above
conclusion shows a difference with model checking, where the complexity depends
exponentially on the length of an LTL* , formula.

Our temporal planner is the first step towards giving the user even more
freedom by defining a so-called parametric approach. We aim at having a planner
which in addition to the current capabilities, could also suggest what extensions
to the ontology or services should be made in order to get better or unrealizable
plans so far. This is going to be a subject of our next paper.

References

1. S. Ambroszkiewicz. Entish: A language for describing data processing in open
distributed systems. Fundam. Inform., 60(1-4):41-66, 2004.

2. M. Bell. Introduction to Service-Oriented Modeling. John Wiley & Sons, 2008.

3. J. Bentahar, H. Yahyaoui, M. Kova, and Z. Maamar. Symbolic model checking
composite web services using operational and control behaviors. Ezxpert Systems
with Applications, 40(2):508 — 522, 2013.

4. L. Bentakouk, P. Poizat, and F. Zaidi. Checking the behavioral conformance of
web services with symbolic testing and an SMT solver. In Tests and Proofs, volume
6706 of LNCS, pages 33-50. Springer, 2011.

5. M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-based
verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In SEFM, pages 244-254, 2010.

6. V. Chifu, I. Salomie, and E. St. Chifu. Fluent calculus-based web service composi-
tion - from OWL-S to fluent calculus. In Proc. of the 4th Int. Conf. on Intelligent
Computer Communication and Processing, pages 161 —168, 2008.

7. L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In Proc. of TACAS’08,
volume 4963 of LNCS, pages 337-340. Springer-Verlag, 2008.

8. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Pélrola,
and J. Skaruz. HarmonICS - a tool for composing medical services. In ZEUS,
pages 25-33, 2012.

9. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Pétrola,
M. Szreter, and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundam.
Inform., 112(1):47-71, 2011.

10. M. Elwakil, Z. Yang, L. Wang, and Q. Chen. Message race detection for web ser-
vices by an SMT-based analysis. In Proc. of the 7th Int. Conference on Autonomic
and Trusted Computing, ATC’10, pages 182-194. Springer, 2010.

11. V. Gehlot and K. Edupuganti. Use of colored Petri nets to model, analyze, and
evaluate service composition and orchestration. In System Sciences, 2009. HICSS
’09., pages 1 -8, jan. 2009.

12. A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic
planning in the fifth international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence, 173(5-6):619 — 668, 20009.
Advances in Automated Plan Generation.

74

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

PNSE’14 — Petri Nets and Software Engineering

S. Hao and L. Zhang. Dynamic web services composition based on linear tem-
poral logic. In Information Science and Management Engineering (ISME), 2010
International Conference of, volume 1, pages 362—-365, Aug 2010.

Z. Li, L. O’Brien, J. Keung, and X. Xu. Effort-oriented classification matrix of web
service composition. In Proc. of the Fifth International Conference on Internet and
Web Applications and Services, pages 357-362, 2010.

G. Monakova, O. Kopp, F. Leymann, S. Moser, and K. Schéfers. Verifying business
rules using an SMT solver for BPEL processes. In BPSC, pages 81-94, 2009.

W. Nam, H. Kil, and D. Lee. Type-aware web service composition using boolean
satisfiability solver. In Proc. of the CEC’08 and EEE’08, pages 331-334, 2008.

A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In Proc. of KEOD 2018 — International Conference on Knowledge
Engineering and Ontology Development, pages 123-131, September 2013.

A. Niewiadomski, W. Penczek, and A. Pélrola. Abstract Planning in PlanICS
Ontology. An SMT-based Approach. Technical Report 1027, ICS PAS, 2012.
OWL 2 web ontology language document overview. http://www.w3.org/TR/owl2-
overwiew/, 2009.

J. Rao, P. Kiingas, and M. Matskin. Composition of semantic web services using
linear logic theorem proving. Inf. Syst., 31(4):340-360, June 2006.

J. Rao and X. Su. A survey of automated web service composition methods. In
Proc. of SWSWPC’04, volume 3387 of LNCS, pages 43-54. Springer, 2004.

J. Skaruz, A. Niewiadomski, and W. Penczek. Automated abstract planning with
use of genetic algorithms. In GECCO (Companion), pages 129-130, 2013.

P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In The Semantic Web — ISWC 2004, volume 3298 of LNCS,
pages 380-394. 2004.

Kleene Theorems for Labelled Free Choice Nets

Ramchandra Phawade and Kamal Lodaya

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Abstract. In earlier work [LMP11]|, we showed that a graph-theoretic
condition called “structural cyclicity” enables us to extract syntax from a
conflict-equivalent product system of automata. In this paper we have a
“pairing” property in our syntax which allows us to connect to a broader
class of product systems, where the conflict-equivalence is not statically
fixed. These systems have been related to labelled free choice nets.

1 Introduction

Petri nets are an excellent visual representation of concurrency. But like any
graphical notation they are less amenable to syntax. For finite automata, Kleene’s
regular expressions provide us with a formalism where we can switch between the
graphical and the textual. For 1-bounded Petri nets, equivalent syntax has been
provided by Grabowski [Gra81|, Garg and Ragunath [GR92| and other authors.
Here we place restrictions on this syntax in an effort to match the 1-bounded
labelled free choice nets, a very well-studied subclass [Hac72| with more effi-
cient analysis and algorithms [DE95]. It has been claimed that free choice nets
can be useful in business process modelling [SH96], but our motivation is more
conceptual than dictated by business concerns.

As is usual when dealing with subclasses, this turns out to be challenging.
We also follow the example of finite automata and work directly with labelled
nets, not relying on a renaming operator in the syntax. As in our earlier paper
[LMP11], we rely on an intermediate formalism, “direct” products of automata,
which are known to be weaker than 1-bounded nets [Zie87,Muk11|. There we
identified a subclass called FC-products, and a graph-theoretic property called
“structural cyclicity”, for which we presented an equivalent syntax which was
restricted to being without nested Kleene star operators.

The improvement in this paper is that on the system side we have an en-
larged subclass called FC-matching products. On the syntax side we drop
the structural cyclicity condition and do not place any restriction on the Kleene
stars, thus (unlike in our earlier paper) including all regular expressions. We do
have global restrictions. A “pairing” condition identifies synchronizations which
will take place at run-time. Assuming a communication alphabet {a,b,c}, the
expression (a + a + b)(a + ¢ + ¢) the a’s in the two groups of parentheses will
be paired into different synchronizations. Correspondingly we have a “matching”
condition in the product systems. The matching condition produces free choice
nets (and the converse also holds). Our proofs go through a subclass where
communications are labelled with the place from which they are issued.

76 PNSE’14 — Petri Nets and Software Engineering

2 Preliminaries

Let X be a finite alphabet and X* be the set of all words over alphabet X,
including the empty word . A language over an alphabet X is a subset L C X*.
The projection of a word w € X* to a set A C X', denoted as w{ ,, is defined by:

elp=cand (ao)lp = {Zi‘jij) IEZ ; 2,

Definition 1. Let Loc denote the set {1,2,...,k}. A distribution of X over Loc
is a tuple of nonempty sets (Xy, Yo, ..., X) with X = |J,<;<; 2. For each
action a € X, its locations are the set loc(a) = {i | a € X;}. Actions a € X such
that |loc(a)] =1 are called local, otherwise they are called global.

A regular expression over alphabet X; defining a nonempty language is given by:
s u=a € X;|s1 - s2|s1 + sa|s]

As a measure of the size of an expression we will use wd(s) for its alphabetic
width—the total number of occurrences of letters of X' in s. We will use syntactic
entities associated with regular expressions which are known since the time of
Brzozowski [Brz64]|, Mirkin [Mir66] and Antimirov [Ant96].

For each regular expression s over X;, its initial actions form the set Init(s) =
{a | av € Lang(s) and v € X*} which can be defined syntactically. Similarly, we
can syntactically check whether the empty word € € Lang(s). Next we syntacti-
cally define derivatives [Ant96].

Definition 2. Given regular expression s and symbol a, the partial derivatives
of s wrt a, written Der,(s) are defined as follows.
Der,(b)=0ifa#b
Dery(a) = {e}
Dery(s1 + s2) = Dery(s1) U Dery(s2)
Der,(s7) = Derq(s1) - s7
Dery(s1) - soU Dery(s2) if € € Lang(sy
Dera(sy - 52) = {Deragslg - 89 >2) otherwise)
Inductively Der gy (s) = Dery,(Dery(s)).
The set of all derivatives Der(s) = U Dery(s).
weZ‘;‘

We have the Antimirov derivatives Der,(ab+ ac) = {b, c} and Dery(a(b+c)) =
{b + ¢}, whereas the Brzozowski a-derivative [Brz64] (which is used for con-
structing deterministic automata, but which we do not use in this paper) for
both expressions would be {b + c}.

A derivative d of s with global a € Init(d) is called an a-site of s. An
expression is said to have equal choice if for all a, its a-sites have the same
set of initial actions. For a set D of derivatives, we collect all initial actions to
form Init(D). We syntactically partition the a-sites of s, each set of the partition
containing those coming from a common source derivative, as follows.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 77

Definition 3. For partitions X1, Xo with blocks Dy, Dy containing elements
dy,ds respectively, we use the notation (X; U Xo)[d/dy,ds] for the modified par-
tition ((Xl @] XQ) \ {Dl, DQ}) U {(Dl U D2 U {d}) \ {dl,dg}}.

Part,(b) =0 ifa#b
N (52)) 1 +52/51, 52 (51452)
Part,(s1) U Part, S1+82/81,82] if a € Init(s1+so
Parta(s1+5) = Party(s1) U Part,(sz2) otherwise
o Parta(sl)[sl/sl] if a € Init(s1)
Parto(si) = Part,(s1) - s otherwise
_ [Partq(s1)[s1 82/81] U Part,(s2) if € € Lang(sy)
Parta(sy - 52) = Party(s1) - s2 U Part,(s2) otherwise

The next definition and the following proposition identify the key property
of this partition of a-sites for this paper.

Definition 4. Given a set of derivatives D and an action a, define the pre-
fizes PrefP(L) = {x | zay € L,3d € Der,(L) N D,e € Dergy(d)}, suf-
fizes SufP(L) = {y | zay € L,z € PrefP(L)}, and the relativized language
LP = {zay | zay € L,3d € Der,(L)ND,e € Dery,(d)}. We say that the deriva-
tives in set D a-bifurcate L if LP N X*aX* = PrefP(L) a SufP(L). If D is
the set of all derivatives, we say L is a-bifurcated.

Proposition 1. Every block D of the partition Part,(s) a-bifurcates Lang(s).
Proof. By induction on the definition. O

Consider a regular expression s in the context of a distribution (X, ..., X%),
so that some of the actions are global. The following properties of expressions
will be important in this paper, where the derivatives are taken for regular
expressions and also for the connected expressions defined in the next section.

Definition 5. If for all global actions a occurring in s, the partition Part,(s)
consists of a single block, then we say s has unique sites. It has determin-
istic global actions if for every global action a and every a-site d € Der(s),
|Der,(d)| = 1. It has unique global actions if it has both these properties.

3 Connected Expressions over a Distribution

We have a simple syntax of connected expressions. The s; can be any regular ex-
pressions (of any star-height), which is different from our earlier paper [LMP11].

e ::= 0| fsync(si, s, ..., 8k), $; over X;

When e = fsync(s1, s2,...,s,) and I C X let the projection ell = IT;cys;.
For the connected expression 0, we have Lang(0) = (. For the connected
expression e = fsync(sy, sa,...,Sk), its language is given by

Lang(e) = Lang(s1)|| Lang(s2)| ... || Lang(sk),

78 PNSE’14 — Petri Nets and Software Engineering

where the synchronized shuffle L = Lq]| ... || Lk is defined by
we Liff forallie {1,...,k},wly € L;.

The definitions of derivatives can be easily extended to connected expressions. 0
has no derivatives on any action. Given e = fsync(si, s2,. .., Sk), its derivatives
are defined by induction using the derivatives of the s; on action a:

Derg(e) = {fsync(ri,re,...,m) | Vi € loc(a), r; € Dery(s;); otherwiser; = s;}.

We will use the word derivative for expressions such as d = fsync(ry,ra,...,7%)
above (essentially tuples of derivatives of regular expressions), and d[i] for r;.
The number of derivatives can be exponential in k. Define Init(d) to be those
actions a such that Der,(d) is nonempty. If a € Init(d) we call d an a-site.
The reachable derivatives are Der(e) = {d | d € Der,(e),z € X*}. For example,
fsync(ab, ba) has derivatives other than the expression itself, but none of them
is reachable.

3.1 Properties of Connected Expressions

We now define some properties of connected expressions over a distribution.
These will ultimately lead us to construct free choice nets. All but the last
property are PTIME-checkable. The last property requires PSPACE since it runs
over all reachable derivatives.

Definition 6. Let e = fsync(si,sa,...,sk) be a connected expression over X.
For a global action a, an a-pairing is a subset of tuples Ilicioca)Party(sq),
the projections of these tuples covering the a-sites in s;, such that if a block
of Part,(s;),j € loc(a) appears in one tuple of the pairing, it does not ap-
pear in another tuple. (For convenience we also write pairing(a) as a subset of
Iicioc(ayDer(si) which respects the partition.) We call pairing(a) equal choice if
for every tuple in the pairing, the derivatives in the tuple have equal choice.

We extend the definition to connected expressions. A derivative fsync(ri,...,Tk)
is in pairing(a) if there is a tuple D € pairing(a) such that r; € D[i] for all i €
loc(a). For convenience we may write a derivative as an element of pairing(a).
Ezxpression e is said to have (equal choice) pairing of actions if for all global
actions a, there exists an (equal choice) pairing(a). Expression e is said to be
consistent with a pairing of actions if every reachable a-site d € Der(e) is
in pairing(a).

Ezample 1. Let (X1 = {a}, X2 = {a}). Expression fsync(aa,a) does not have a
pairing. The two a’s on the left are in different blocks of the partition and they
have to pair with one block on the right, which is not allowed.

Ezample 2. Let (X1 = {a}, Y2 = {a,b,c,d, f}). In expression e = fsync(aa, bad+
caf) we have two blocks on the left and two blocks on the right, so we can have
a pairing. But e cannot be consistent with any pairing.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 79

Ezample 3. Let (X1 = {a,c}, Xy = {b,c}),Xs = {a,b,c}). Consider this ex-
pression fsync((ac)*, (bc)*, (a(b+ ¢))*). Individual regular expressions are r; =
(ac)*, ro = (be)* and r3 = (a(b + ¢))*. Now we have rj = Der,(r1) = c(ac)*
and Init(r]) = {c}. For r3 we have, 4 = Dery(r3) = (b + ¢)(a(b + ¢))* and
Init(ry) = {b, c}. 1 and 74 do not have equal choice.

Proposition 2. For a connected expression e checking existence of a pairing of
actions and checking whether it is equal choice can be done in polynomial time,
checking consistency with a pairing of actions is in PSPACE.

Proof. We have to visit each derivative of all the regular expressions to construct
the a-partitions for every a. We can record their initial actions. Maximum num-
ber of Antimirov derivatives of any regular expression s is at most wd(s) + 1
[Ant96]. There are k regular expressions in e. If the number of blocks in two a-
partitions is not the same, there cannot be an a-pairing, otherwise there always
exists an a-pairing. For an equal choice pairing, we have to count blocks whose
sets of initial actions are the same, this can be done in cubic time.

On the other hand, to check consistency with a pairing of actions, we have
to visit each reachable derivative, this can be done in PSPACE. a

4 Product Systems over a Distribution

Fix a distribution (X1, X5, ..., Xx) of X. We define product systems over this.

Definition 7. A sequential system over a set of actions X; is a tuple A; =
(P;, =i, Gi, pY) where P; are called places, G; C P; are final places, p{ € P; is
the initial place, and —;C P; x X; X P; is a set of local mowves.

Let —! denote the set of all a-labelled moves in the sequential system A;.

A run of the sequential system A; on word w is a sequence poa1p1az, - - . , GnPn,
from set (P; x X;)* P;, such that py = p? and for each j € {1,...,n}, pj_1 SEN Dj-
This run is said to be accepting if p,, € G;. The sequential system A; accepts word
w, if there is at least one accepting run of A; on w. The language L = Lang(A;)
of sequential system A; is defined as L = {w € X;*|w is accepted by A;}.

Given a place p of A;, we also define relativized languages and we will extend
this definition to product systems: PrefP(L) = {z | zay € L,py = p ~% G},
similarly Suf?(L), L? = {zay | zay € L,po = p — G;}. Say the place p
a-bifurcates L if LP = PrefP(L) a SufP(L).

Definition 8. Let A; = (P;,—;, Gy, pY) be a sequential system over alphabet X;
for 1 <i<k. A product system A over the distribution ¥ = (Xq,...,Xy) is
a tuple (A1, ..., Ag).

Let II;cr0.P; be the set of product states of A. We use R[i| for the projec-
tion of a product state R in A;, and R|I for the projection to I C Loc. The
relativizations LF of a language L C X consider projections to place R[i] in A;.

80 PNSE’14 — Petri Nets and Software Engineering

The initial product state of 4 is R® = (pY,...,p?), while G = I;cr0.Gi
denotes the final states of A.

Let = 4= I;cioc(a) —* . The set of global moves of A is == Usex =a- Then
for a global move

g = <<pl1aa7p;1>7 <p127 aap22>7 .. <plm7aap;m>> €:>a7 ZOC((Z) - {117127 ey lm}v

we write g[é] for (p;, a,p.), the projection to A;, i € loc(a) and pre(a) for the
product states where such a move is enabled.

Please note that the set of product states as well as the global moves are not
explicitly provided when a product system is given as input to some algorithm.

4.1 Properties of Product Systems

The first property for a product system is modelled on the free choice property
of nets. It can be checked in PTIME by counting local moves with the same label.
We also define another stronger property.

Definition 9. For global a € X, an a-matching is a subset of tuples Ilcioc(a) Pi,s
such that if a place p € Pj,j € loc(a) appears in one tuple, it does not appear
in another tuple. We say a product state R is in an a-matching if its projection
Rlloc(a) is in the matching.

A product system is said to have matching of labels if for all global a € X,
there is an a-matching such that for i,j € loc(a), (p,a,q) €—;, the pre-place p
is matched to a pre-place p’ such that (p',a,q’) €—; and such that all pre-places
with a-transitions are covered by the tuples of the matching. A product system A
is said to have separation of labels if for all i € Loc, if (p,a,p’),{q,a,q") €=
then p = q.

Proposition 3. Let A = (A;,...,Ax) be a product system over distribution
Y =(X,...,%). If A has separation of labels, then for every i and every global
action a, L; = Lang(A;) is a-bifurcated. If A has matching of labels, then for
every i and every global action a,

LinXfaX = U PrefRU(L) a SufFi(L;).
Rlloc(a)ematching(a)

Proof. Let A be a product system as above with separation of labels. Let L(q)
be the set of words accepted starting from any place ¢ in A;. If Pref,(L(q))
is nonempty then L(q) is a-bifurcated, because the words containing a have to
pass through a unique place. When A has a matching of labels, since the places
R]i] appear in unique tuples, one can separately consider the places a-bifurcating
L(q) and the required property follows. O

The next property is necessary for product systems to represent free choice
in equivalent nets. In our earlier paper [LMP11] we used the definition of an
FC-product below. The definition of FC-matching product is a generalization
since conflict-equivalence is not required for all a-moves uniformly but refined
into smaller equivalence classes depending on the matching.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 81

Definition 10. In a product system, we say the local move (p,a,q1) €—; is
conflict-equivalent to the local move (p',a,q}) €—;, if for every other local
move (p,b,q2) €—;, there is a local move (p',b,q5) €—; and, conversely, for
moves from p’ there are moves from p. If the product system has a matching of
labels and we require this whenever p,p’ are related by the matching, we call the
matching conflict-equivalent. A system having a conflict-equivalent matching
is a weaker condition than the system being conflict-equivalent.

We call A = (Ay,...,Ar) an FC-product if for every global action a € X,
every a-labelled move in A; is conflict-equivalent to every a-labelled move in A;.
We call A an FC-matching product if it has a conflict-equivalent matching.

Checking that a system is an FC-product or an FC-matching product is in
PTIME because one makes a pass through all transitions with the same locations,
computing for each pre-place which partition it falls into.

Proposition 4. Let A be an FC-matching product system. For any i, if there
exist local moves (p,a,p'), (p,b,p") in —;, then loc(a) = loc(D).

Proof. Since p has an outgoing a-move, p belongs to some tuple of matching(a).
If j € loc(a), then in this tuple there exists a state ¢ € P;, which has an outgoing
a-move. Since A is an FC-matching product, matching(a) is conflict-equivalent.
And, as states p and g appear in a tuple of matching(a), these states are conflict-
equivalent. Therefore there exists a local move (g,b,q") €—;. This implies that
J € loc(b). O

4.2 Language of a Product System

Now we describe runs of A over some word w by associating product states with
prefixes of w: the empty word is assigned initial product state R°, and for every
prefix va of w, if R is the product state reached after v and @ is reached after va
where, for all j € loc(a), (R[j],a,Q[j]) €—; and for all j ¢ loc(a), R[j] = Q[j].
Let pre(a) = {R|3Q,R % Q}.

A run is said to be accepting if the product state reached after w is in G. We
define the language Lang(A) of product system A, as the words on which the
product system has an accepting run.

We use the following characterization of direct product languages, which
appears in [MR02,Muk11].

Proposition 5. L = Lang(A) is the language of product system A = (A4, ...,
Ay) over distribution X iff

L={we X |Vie{l,...,k}, Fu; € L such that wly, =u;lyx,}.
Further L = Lang(A1)]| ... ||Lang(Ag).

The next definition is semantic, new to this paper and not easy to check (in
Pspack). If a system has separation of labels, the property obviously holds.

Definition 11. A run of A is said to be consistent with a matching of
labels if for all global actions a and every prefix of the run RO=>R=Q, the
pre-places Rlloc(a) are in the matching.

82 PNSE’14 — Petri Nets and Software Engineering

5 Connected Expressions and Product Systems

In this section we prove the main theorems of the paper. To place them in context
of our earlier paper [LMP11], there we used a “structural cyclicity” condition
which allowed a run to be split into finite parts from the initial product state to
itself, since it was guaranteed to be repeated. The new idea in this paper is that
runs are split up using matchings which correspond to synchronizations, what
happens in between is not relevant for the connections across sequential systems.
Hence extending our syntax to allow full regular expressions for the sequential
systems does not affect the synchronization properties which are the main issue
we are addressing. In Section 6 we outline the connections to labelled free choice
nets which are detailed in another paper [PL14].

5.1 Synthesis of Systems from Expressions

We begin by constructing product automata for our syntactic entities. For regular
expressions, this is well known. We follow the construction of Antimirov, which
in polynomial time gives us a finite automaton of size O(wd(s)), using partial
derivatives as states.

Now we come to connected expressions, for which we will construct a product
of automata.

Lemma 1. Let e be a connected expression with unique global action sites. Then
there exists a product system A with separation of labels accepting Lang(e) as
its language. If e had equal choice, then A is conflict-equivalent.

Proof. Let e = fsync(si, s, ..., k). Then for each s;, which is a regular expres-
sion, defined over some alphabet X;, we produce a sequential system A; over X,
using Antimirov’s derivatives, such that Lang(s;) = Lang(A;), Vi€ {1,...,k}.
Next we trim it—remove places not reachable from the initial place p? and places
from where a final state is not reachable. Now, for each global action a, we quo-
tient A; by merging all derivatives d such that a € Init(d) into a single place.

Call the resulting automaton A]. Let p be the merged place in A} which is
now the source of all a-transitions. Clearly Lang(A4;) C Lang(A}) since no paths
are removed, we show next that the inclusion in the other direction also holds,
using the unique global action sites condition.

Let a be a global action. Consider a word w = x1axs...ax, in Lang(A}),

where the factors z1,xs,...,x, do not contain the letter a. We wish to find
derivatives dy, d1, ..., d, of A; such that d,, is a final place and for every j there
is a run d, Lo & g, of A; when § > 0, and dp S22 L 22,

when j = 0, which will show the desired inclusion.
We proceed from n downwards. For any place d,, in G there is a run from d,

on ¢ € Lang(d,) in A;. Inductively assume we have d; such that there is a run
dj ATj+41

is reachable from the initial place. Since there is a run p RAEN p in A} there are

.2 d,, of Ay, s0 xji1azjty ... ax, is in Suf,(Lang(s;)) since d;

derivatives d;_1, c; of e, such that there is a run d;_; BT ¢jin A; (when j =1

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 83

we get dy — ¢, by this argument). Since ¢; quotients to p, it has an a-derivative
csuch that cisin Derasz;q(dj—1) (Derg,a(do) when j = 1). Because d;_; is reach-
able from the initial place by some v and because some final state is reachable
from ¢, vz; € Pref,(Lang(s;)) which is nonempty. By the unique global ac-
tion sites condition and Proposition 1, since ;41 ...az, is in Suf,(Lang(s;)),
Vax;aT 41 ... A%y, is in Lang(s;) and so xjaxj41 ...ax, is in Suf,(Lang(s;)).
This means that there is a run from some d;_; on az;az 41 ...ax, ending in a
final state d,, of A;. So we have the induction hypothesis restored. If j = 1 we
get dy which quotients to py and has a run on w to d,, in G.

So we get a product system A’ = (A}, A5, ..., A}) defined over X. If the
expression had equal choice, this system is conflict-equivalent. Because of the
quotienting A’ has separation of labels.

w € Lang(e) iff Vi,wly, € Lang(s;), by definition
iff Vi, wl s, € Lang(Aj)
iff w € Lang(A’), by Proposition 5.

Theorem 1. Let e = fsync(sy,...,sk) be a connected expression over a distri-
bution X with a pairing of actions. Then there exists an FC-matching product
system A over X, accepting Lang(e). If the expression had deterministic sites,
the constructed product will have deterministic global actions. If the pairing was
equal choice, the matching is conflict-equivalent. If the expression is consistent
with the pairing, all runs of A will be consistent with the matching.

Proof. We first rewrite e to another expression e’, construct an automaton A’
for Lang(e'), and then change it to recover an automaton for Lang(e).

Consider global action a and tuple of blocks D = Iljcjoc(a)Di C pairing(a).
By Proposition 1 D; a-bifurcates Lang(s;). We rename for all ¢ in loc(a), the
occurrences of a in s; which correspond to an a in Init(D;), by the new letter
a”. This is done for all global actions to obtain from e a new expression e/ =
fsync(sy,. .., s)) over a distribution X’, where every s, now has the unique sites
property. For any word w € Lang(e), there is a well-defined word w’ € Lang(e’).

By Lemma 1 we obtain an FC-product A’ with separation of labels for
Lang(e'). Say p(aP) is the pre-place for action a” in A,. We change all the
(p(a®),aP, q) transitions to (p(a”),a,q) in all the A’ to obtain an FC-product
A over the alphabet Y. Asw’ € Lang(e') = Lang(A’) is well-defined from w and,
as the renaming of transition labels does not remove any paths, w is in Lang(A).
Conversely, for every run on w accepted by A, because of the separation of la-
bels property, there is a well-defined run on w’ with the label of a transition
appropriately renamed depending on the source state, which is accepted by A’,
hence w’ is in Lang(e’). So renaming w’ to w gives a word in Lang(e). This
construction preserves determinism.

Now we refer to the pairing of actions in e. This defines for each global action
a and tuple of blocks of a-sites D, a relation between pre-places of a”-moves in
different components in the product A’. By the separation of labels property of
A’, the tuples in the relation are disjoint, that is, the relation is functional. So

84 PNSE’14 — Petri Nets and Software Engineering

for pre-places of a-moves in the product A we have a matching. If the pairing
was equal choice, the matching is conflict-equivalent.

If the expression e is consistent with the pairing, all reachable a-sites are
in the pairing, so we can partition Lang(e) N X*aX* using the partitions in
Part,(e). Letting D range over blocks of connected expressions, each block D
contributes a global action a” in the renaming, so we get an expression e’ such
that for every global action a”, we have the unique a-sites property. Applying
Lemma 1, we have the product system A’ with separation of labels. By Proposi-
tion 3, every Lang(A!) is aP-bifurcated, and using the characterization of Propo-
sition 5, Lang(A") N (X')*aP(X')* = Pref,o(Lang(A"))aP Suf,p(Lang(A")).
Since several actions a” are renamed to a and the corresponding tuples of pre-
places are recorded in the matching, by Proposition 3 and Proposition 5:

U Prefl(Lang(A)) a Suff(Lang(A)) C Lang(A) N Z*aX*.

Rematching(a)

But this means that all runs of A are consistent with the matching. a

5.2 Analysis of Expressions from Systems

Lemma 2. Let A be a FC-product system with separation of labels. Then we
can compute a connected expression for the language of A, where every regular
expression has unique sites. If the FC-product had deterministic global actions,
then so do the regular expressions in the computed expression. If the FC-product
was conflict-equivalent, the constructed expression has equal choice.

Proof. Let A= (Aq,...,A;) be an FC-product with separation of labels, where
A; is a sequential system of A with places P, initial place pg and final places G.
Kleene’s theorem gives us an expression s; for the language of A;. We claim the
required connected expression is fsync(s,. .., Sk).

Consider global action a. By separation of labels there is a single state p in
A; enabling a. For simplicity let us assume there is only one global action «a
enabled at p. Let Q@ = P\ {p}. Let T be the set of transitions excluding the
a-actions enabled at p. We wish to decompose the expression s; that we started
with into paths which go through p and paths which do not. Depending on
whether we have a sequential transition p < p, or transitions p — Pj, Dj # Ds
or a combination of these two types, we obtain an expression with the same
language as s;:

€p = Z egovf + 61{07P6;7P€1?f’
feag

where the expression e, , is given by one of the following refinements, for the
three cases considered above respectively:

(a+ egp), or ((Z aegj’p) + eziqp), or (a+ (Z aegj}p) + elap).
J J

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 85

The superscripts T, Q) indicates that these expressions are derived, as in the
McNaughton-Yamada construction [MY60], for runs which only use the states Q
or transitions 7. Whichever be the case, we note that we have an expression with
D%(ep) = {e;pegf} as its singleton set of a-sites. If the system had deterministic
global actions, the a-site would have only had one a-derivative. This idea can be
easily extended to considering several global actions enabled at the same place,
by considering a different refinement of s; taking into account the combined
possibilities. If the product system was conflict-equivalent, the a-sites are all
equal choice.

But the expression s; could have been obtained by considering the place p
at an arbitrary point in the McNaughton-Yamada construction. Consider e, as
refining some intermediate expression s; for the place p. The expression e, may
make copies of parts of s;. This does not affect the deterministic global actions
property. For ¢ # a the c-sites D(e,) are obtained as:

De(ep) = |J D¥(eg, 1) U D (eg,) UD (eps) - €5, €5 U D (e5))-
feG

That is, Part.(ep) is preserved as a single block if it formed a single block in the
earlier expressions. Thus the expression s; has the unique sites property. a

Theorem 2. Let A be a FC-matching product system. Then we can compute a
connected expression for the language of A, where every reqular expression has a
pairing of actions. If the FC-product had deterministic global actions, then so do
the regular expressions in the computed expression. If the matching was conflict-
equivalent the pairing is equal choice. If all runs of A were consistent with the
matching, the expression constructed will be consistent with the pairing.

Proof. Let A be a product system with a conflict-equivalent matching. Enumer-
ate the global actions a,b,.... Say the a-matching has n tuples.

We construct a new product system A’ where, for the places in the j’th
tuple of the a-matching, we change the label of the outgoing a-transitions to
a’; similarly for the places in tuples of the b-matching; and so on. We now have
a new product system where the letter a of the alphabet has been replaced by
the set {a',...,a"}; the letter b has been replaced by another set; and so on,
obtaining a new distribution X’. By definition of a matching, the various labels
do not interfere with each other, so we have a matching with the new alphabet,
conflict-equivalent if the previous one was. Runs which were consistent with
the matching continue to be consistent with the new matching. Again by the
definition of matching, the new system A’ has separation of labels. Hence we
can apply Lemma 2.

From the lemma we get a connected expression ¢’ = fsync(sy,...,si) for the
language of A’ over X’ where every regular expression has unique global action
sites. From the proof of the lemma we get for every sequential system A’ in the
product, for the global actions a', ..., a", tuples D'(a’) = Hieloc(a)Dg(aj) which
are sites for a’ in the expression s;, for every j. Now substitute a for every letter

a',...,a™ in the expression, each tuple D’ is isomorphic to a tuple D of sites

86 PNSE’14 — Petri Nets and Software Engineering

for a in e and the sites are disjoint from one another. We let pairing(a) be the
partition formed by these tuples. Do the same for b obtaining pairing(b). Repeat
this process until all the global actions have been dealt with. The result is an
expression e with pairing of actions. If the matching was conflict-equivalent, the
pairing has equal choice.

The runs of A have to use product states in pre(a) for global action a, define

L = Lang(A) N X*aX* = U PrefR(Lang(A)) a Suff(Lang(A)).
Repre(a)

The renaming of transitions depends on the source state, so L is isomorphic to

L' = Lang(A)N() (2")*a’ (£')) = | Prefus(Lang(A"))a’ Suf,; (Lang(A")).

J Jj=1n

Keeping Proposition 5 in our hands, the lemma ensures that Lang(A’) = Lang(e’)

and the expression ¢/ has unique a’-sites forming a block D’(j). Then L’ can

be written as U Pref£ (J)(Lang(e’))ajSufg (J)(Lcmg(e’)). When we rename
Jj=1ln

the a’ back to a we have a partition of pairing(a) into sets D such that

L= U PrefP(Lang(e)) a SufP (Lang(e)).

DCpairing(a)

If all runs of A were consistent with the matching, the product states in pre(a)
would all be in the matching, and we obtain that the expression e is consistent
with the pairing. O

6 Nets

Definition 12. A labelled net N is a tuple (S, T, F, \), where S is a set of places,
T is a set of transitions labelled by the function A\ : T — X and F C (T x S)U
(S x T) is the flow relation. It will be convenient to define loc(t) = loc(A(t)).

Elements of SUT are called nodes of N. Given a node z of net N, set *z = {z |
(x,z) € F} is called pre-set of z and z°® = {z | (z,2) € F} is called post-set of
z. Given a set Z of nodes of N, let *Z = J,.,*2z and Z°* = J,., 2°*. We only
consider nets in which every transition has nonempty pre- and post-set.

Definition 13. Let N = (SN X, TN X,F N (X x X)) be a subnet of net
N = (S,T,F), generated by a nonempty set X of nodes of N. N’ is called a
component of N if,

— For each place s of X, ®s,s®* C X (the pre- and post-sets are taken in N),
— For all transitions t € T, we have |*t| =1 =|t*| (N’ is an S-net [DE95]),
— Under the flow relation, N' is connected.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 87

A set C of components of net N is called S-cover for N, if every place of the
net belongs to some component of C. A net is covered by components if it has an
S-cover.

Note that our notion of component does not require strong connectedness
and so it is different from notion of S-component in [DE95|, and therefore our
notion of S-cover also differs from theirs.

Fix a distribution (X, X, ..., Xk) of X. The next definition appears in sev-
eral places for unlabelled nets, starting with [Hac72].

Definition 14. A labelled net N = (S, T, F,\) is called S-decomposable if,
there exists an S-cover C for N, such that for each T; = {\"*(a) | a € X;}, there
exists S; such that the induced component (S;, T;, F;) is in C.

Now from S-decomposability we get an S-cover for net N, since there exist
subsets 51,52, ..., Sk of places .S, such that S = S;USU. .. S and *S;US; =T;,
such that the subnet (5;,T;, F;) generated by S; and T; is an S-net, where F; is
the induced flow relation from S; and T;.

6.1 Properties of Nets

Definition 15 ([DE95]). Let x be a node of a net N. The cluster of x, denoted
by [x], is the minimal set of nodes contaning x such that

— if a place s € [x] then s* is included in [z], and
— if a transition t € [z] then °*t is included in [z].

A cluster C is called free choice (FC) if all transitions in C' have the same pre-set.
A net is called free choice if all its clusters are free choice.

The next definitions will turn out to be the analogue to the separation of
labels property of product systems. It is checkable in linear time.

Definition 16. A labelled net N = (S, T, F, \) is said to have the unique clus-
ter property (briefly, ucp) if Va € X having |loc(a)| > 1, there exists at most
one cluster in which all transitions labelled a occur. It is deterministic for
synchronization if for every a, every cluster contains at most one a-labelled
transition.

6.2 Net Systems and their Languages

For our results we are only interested in 1-bounded (or condition/event) nets,
where a place is either marked or not marked. Hence we define a marking as a
function from the states of a net to {0,1}.

A transition ¢ is enabled in a marking M if all places in its pre-set are marked
by M. In such a case, ¢ can be fired to yield the new marking M’ = (M \ *t)Ut*°.
We write this as M[t)M’ or M[A(t))M’.

88 PNSE’14 — Petri Nets and Software Engineering

A firing sequence (finite or infinite) A(t1)A(t2) ... is defined by composition,
from My[t1)Mi[t2) ... For every i < j, we say that M; is reachable from M;. A
net system (N, Mp) is live if, for every reachable marking M and every transition
t, there exists a marking M’ reachable from M which enables ¢.

Definition 17. For a labelled net system (N, My, G), its language is defined as
Lang(N, My, G) = {\(o) € Z* | o0 € T* and My[o)M, for some M € G}.

If a net (S,T,F,)\) is 1-bounded and S-decomposable then a marking can
be written as a k-tuple from its components S; X Sy X ... x Sg. It is known
[Zie87,Muk11] that if we do not enforce the “direct product” condition below we
get a larger subclass of languages.

Definition 18. An S-decomposable labelled net system (N, My,G) is an
S-decomposable labelled net N = (S, T, F,\) along with an initial marking My
and a set of markings G C p(.S), which is a direct product: if (¢1,q2,...qx) € G
and <q,15q/27 .. Q;q> € g then {Q17q,1} X {q27qg} XX {Qk7Q;g} g g

6.3 Product Systems to Nets

Given a product system A = (A, Ag, ..., A) over distribution X', we can pro-
duce a net system (N = (S, T, F,\), My, G) as follows using a standard construc-
tion. When we construct nets from product systems with a conflict-equivalent
matching of labels with respect to which all runs are consistent, we can refine
the construction above to choose T" C T and get a free choice net.

Theorem 3 ([PL14]). Let (N, My, G) be the net system constructed from prod-
uct system A above. Then N is an S-decomposable net with Lang(N, My, G) =
Lang(A). Further, if A has deterministic global actions and all runs of A are
consistent with a conflict-equivalent matching of labels, we can choose T' C T
such that the subnet N’ generated by T' is a free choice net with deterministic
synchronization and (N', My, G) accepts the same language.

6.4 Nets to Product Systems

Even if a net is 1-bounded and S-decomposable each component need not have
only one token in it, but when we say that a 1-bounded net is S-decomposable we
assume that each component has one token. For live and 1-bounded free choice
nets, such S-covers can be guaranteed [DE95]. Now we can prove:

Theorem 4 ([PL14]). Let (N, My, G) be a live, 1-bounded, S-decomposable la-
belled free choice net system with deterministic synchronization. Then one can
construct a product system A with deterministic global actions, which has a

conflict-equivalent matching of labels that all its runs are consistent with. Further
Lang(N, My,G) = Lang(A).

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 89

7 Conclusion

In earlier work [LMP11]|, we showed that a graph-theoretic condition called
“structural cyclicity” enables us to extract syntax from a conflict-equivalent prod-
uct system. In the present work we have generalized this condition so that we can
deal with a larger class of product systems with a conflict-equivalent matching.
In our paper [PL14] we show a connection between free choice nets with deter-
ministic synchronization and product systems which have these properties along
with deterministic global actions. Thus we obtain a Kleene characterization for
the class of labelled free choice nets with deterministic synchronization.

Acknowledgements. We would like to thank the referees of the PNSE workshop
for urging us to improve the presentation of the proofs of the main theorems.
This led us to invent Definition 3 and correct the site properties in Definition 5.

References

[Ant96] Valentin Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comp. Sci., 155(2):291-319, 1996.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481—
494, 1964.

[DE95] Jorg Desel and Javier Esparza. Free choice Petri nets. Cambridge University
Press, New York, USA, 1995.

[GR92] Vijay K. Garg and M.T. Ragunath. Concurrent regular expressions and their
relationship to Petri nets. Theoret. Comp. Sci., 96(2):285-304, 1992.

[Gra81] Jan Grabowski. On partial languages. Fund. Inform., IV(2):427-498, 1981.

[Hac72] Michel Henri Théodore Hack. Analysis of production schemata by Petri nets.
Project Mac Report TR-94, MIT, 1972.

[LMP11] Kamal Lodaya, Madhavan Mukund, and Ramchandra Phawade. Kleene the-
orems for product systems. In Markus Holzer, Martin Kutrib, and Giovanni
Pighizzini, editors, Proc. 18th DCFS, Limburg, volume 6808 of LNCS, pages
235-247, 2011.

[Mir66] Boris G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engg. Cybern., 5:110-116, 1966.

[MRO2] Swarup Mohalik and R. Ramanujam. Distributed automata in an assumption-
commitment framework. Sadhana, 27, part 2:209-250, April 2002.

[Muk11] Madhavan Mukund. Automata on distributed alphabets. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, pages
257-288. World Scientific, 2011.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata. IEEE Trans. IRS, EC-9:39-47, 1960.

[PL14] Ramchandra Phawade and Kamal Lodaya. Direct product automaton repre-
sentation of labelled free choice nets. Submitted, 2014.

[SH96] Pablo A. Straub and L. Carlos Hurtado. Business process behaviour is (al-
most) free-choice. In Proc. CESA, Lille, pages 9-12. IEEE, 1996.

[Zie87] Wiestaw Zielonka. Notes on finite asynchronous automata. Inform. Theor.
Appl., 21(2):99-135, 1987.

90 PNSE’14 — Petri Nets and Software Engineering

Using Symbolic Techniques and Algebraic Petri
Nets to Model Check Security Protocols for Ad
Hoc Networks

Mihai Lica Pura and Didier Buchs

Centre Universitaire d’Informatique
University of Geneva
Carouge, Switzerland

Abstract. Petri nets have proved their effectiveness in modeling and
formal verification of a large number of applications: control systems,
communication protocols, application workflows, hardware design, etc.
In the present days, one important focus of computer science is on se-
curity and secure communications. The use of Petri nets for verifying
security properties is not a mature field due to a lack of convenient mod-
eling and verification capabilities. So far, in the Petri Net field there is
only the CPN tool that is mature enough for modeling using the colored
Petri nets formalism. Nevertheless verification cannot be performed on
large systems as CPN tool verification is based on an exhaustive way of
computing the semantics of a model. In this paper we present the use of
AIPiNA, another candidate for this task. AIPiNA is a symbolic model
checker that uses the formalism of algebraic Petri nets. We have used
it successfully for modeling ad hoc networks and for verifying security
protocols designed for this type of networks. As a case study and bench-
mark we have chosen the ARAN secure routing protocol. We managed to
find all the attacks that were already reported for this protocol. To our
knowledge this work is also the first successful attempt to use Petri nets
for model checking the security properties of ad hoc networks protocols.

Keywords: model checking, ad hoc networks, algebraic Petri Nets.

1 Introduction

Place/Transition nets are a modeling language that proved its effectiveness in
modeling a large variety of systems based on concurrent processes. Over the
years, the initial Petri net formalism was enriched in order to simplify the spec-
ification of more and more complex systems. Two of the applications targeted
were the model checking of security protocols and of the ad hoc network proto-
cols (but not ad hoc network security protocols). To the best of our knowledge,
model checking the security protocols specially designed for ad hoc networks has
not been reported yet.

There is no need to argue for the importance of security in computer sci-
ence, or for the need to prove the security properties of the protocols used in the

92 PNSE’14 — Petri Nets and Software Engineering

information systems. Ad hoc networks are a novel approach to assuring commu-
nications. The communications networks that are now in use are based on an
infrastructure composed of devices like switches, hubs, gateways, routers, and
so on. Ad hoc networks aim to assure communications without the use of any
infrastructure. In such networks there are no other devices, except the ones that
actually form it, and want to communicate. And they will also act as the in-
frastructure devices from a classical network, by routing the messages of all the
other nodes. Such a behavior is assured by specially designed ad hoc routing
protocols. These routing protocols and their possible attack schemes are more
complex than the ones of the other kinds of networks, so for their specification
a more powerful language is needed.

One of the enrichments of P/T nets dedicated specifically to data based
functionality is High Level Petri Nets (HLPN). In HLPN the tokens have different
types and these types are part of a many-sorted algebra ([1]). The possibility to
use other types than the usual black tokens made it possible to use HLPN in
modeling and verification of security protocols.

Colored Petri Nets (CPN) were the first concrete realization of HLPN that
were used for model checking security properties, because they were the first
one who was expressive enough for this ([2]). But besides CPN, there are other
implementations of HLPN. The difference between the different implementations
of HLPN stands in the way the many-sorted algebra is defined. In CPN the many-
sorted algebra is defined using the CPN ML language, which was built upon the
standard ML.

For modeling ad hoc networks we focus on the model checker AIPINA ([3, 4]).
AIPiNA implements HLPN by algebraic Petri nets (APN), in which the colored
tokens are defined using algebraic abstract data types (AADT) ([1]). Like all
the other model checkers, the focus of AIPiNA is to handle the state explosion
problem in order to perform verification on real size system models. When using
HLPN, the state space explosion has one more dimension (the data) than in
the case of P/T nets. HLPN are more expressive and as a consequence, the
state space of a HLPN model is in general much bigger. AIPINA addresses this
problem by using symbolic techniques based on several layers of Data Decision
Diagrams, Set Decision Diagrams and Sigma Decision Diagrams [1]. In addition,
some optimizations specific to the APN formalism (algebraic clustering, partial
algebraic unfolding) [5] are supported. The tool can be downloaded from [5].

We have successfully used AIPiNA for modeling ad hoc networks and for
model checking security protocols of ad hoc networks. From our studies, we have
seen some advantages that this tool has over the other tools used for these pur-
poses; in terms of modeling the protocol itself, as well as the possible attackers.
In this paper we will present the modeling of ad hoc networks and the verification
of ARAN (Authenticated Routing for Ad Hoc Networks [6]) security protocol
with APNs, and the advantages of AIPiNA for performing these tasks.

The rest of the paper is organized as follows. The second section presents the

use of Petri nets in literature for modeling ad hoc networks and verifying prop-
erties related to them. In the third section we describe the use of algebraic Petri

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 93

nets and AIPiNA for modeling ad hoc networks and the ARAN protocol. The
fourth section contains the presentation of our results regarding verification of
routing information correctness for ARAN. The last section contains conclusions
and our future work directions.

2 The Use of Petri nets in modeling ad hoc networks

Petri nets already proved their effectiveness in modeling ad hoc networks. So
far, researchers have used Fuzzy Petri nets, Stochastic Petri nets and Colored
Petri nets to model ad hoc networks. The purpose of these models was to obtain
qualitative or quantitative information about the behavior of applications and
protocols in the context of ad hoc networks. As far as we know, algebraic Petri
nets were never used so far to model ad hoc networks.

We will continue by presenting some of the latest published results concerning
the use of Petri nets in ad hoc networks research.

2.1 Modeling for Quantitative evaluation

The research presented in [7] uses Fuzzy Petri Nets for modeling and analyzing
the QoS dimension in order to evaluate how to manage congestion in wireless ad
hoc networks. The networks itself, the nodes, the communication protocol are
not actually modeled. In [8] Fuzzy Petri Nets are used to represent the multicast
routing in an ad hoc network and to calculate multicast trees. The authors only
model the topology of the network but not the actual routing protocol.

In [9] the authors present how to use Stochastic Petri Nets to model ad hoc
networks. An ad hoc network is modeled by a single node, for which a proper
amount of traffic is generated. By measuring how the node behaves under the
given traffic, using suitable metrics, some conclusions can be obtained regard-
ing a whole network with a given number of nodes like the modeled one. In
[10] Stochastic Petri Nets are used to model mobility of ad hoc networks, but
the actual ad hoc network is not modeled, neither the ad hoc routing, only an
application level protocol that takes into account the fact that the nodes are
moving between different geographic regions, and also the required performance
indices. Thus the authors are able to obtain quantitative data about the specified
performance indices.

The authors of [11] and [12] use Colored Petri Nets. They propose models for
the nodes of the network, for the routing protocol AODV (Ad Hoc On-Demand
Distance Vector Routing) [12] and DSR (Dynamic Source Routing) [11] and for
the behavior of the ad hoc network. The purpose of the modeling was to con-
duct a comparison between the two ad hoc routing protocols mentioned above,
from the point of view of their efficiency (number of generated overhead packets,
data packet delivery delay). In [13] Colored Petri Nets are used to model and
to compare another pair of routing protocols, AOMDV (Ad Hoc On-Demand
Multipath Distance Vector Routing) and DSR. In [14], Colored Petri Nets are
used to model and validate the specification of a multicast routing protocol for

94 PNSE’14 — Petri Nets and Software Engineering

ad hoc networks called DYMO (Dynamic MANET On-Demand). The properties
that the authors specify and verify are all related to the correctness of the pro-
tocol: establishments of routes, and correct processing of the routing messages.
By this work, the authors also found several ambiguities in the definition of the
protocol, which were taken into consideration in two revisions.

2.2 Modeling for Qualitative evaluation

From the point of view of model checking security protocols, Colored Petri nets
are the only type of Petri nets used for this purpose up to now. But as far as
we know, no Petri nets were used to model check the security protocols of ad
hoc networks. So our paper is the first presentation using algebraic Petri nets
to model ad hoc networks and to do model checking of security properties for
specific ad hoc network protocols.

For example, [2] and [15] present the work of using CPN to model check con-
fidentiality and authentication for TMN authenticated key exchange protocol.
In [16] CPN are used to verify the same security properties for Andrew secure
RPC protocol. In all these papers, the use of CPN helps to find attacks over the
considered protocols, and even some attacks that were previously unknown. So
this indicates the high potential of using these techniques for model checking ad
hoc network specific security protocols.

In the next sections, we will present the state of the art of modeling ad
hoc networks with the help of Petri nets. Modeling an ad hoc network implies
modeling the following elements: the nodes and the topology of the network.

2.3 Modeling the nodes

For modeling the nodes of an ad hoc network, a single approach was used by
all the researchers. The nodes were modeled by their behavior in the considered
protocol or application. The Petri net contains a single instance of a node’s
behavior. But this behavior is parameterized with the identity of a node. The
identities of the nodes, which are part of the considered network, are placed
inside a special place. When the state space is calculated, all these identities are
considered as executing the modeled behavior ([11]).

2.4 Modeling the topology

When modeling the topology of the ad hoc networks, two aspects should be
taken into consideration. The first one is how to model the actual topology of
the network at a given time. The second aspect is how to model the mobility
of the nodes which implies the modeling of the dynamicity of the topology.
Both of these aspects influence the modeling of the way messages travel through
the network. Based on the current topology, a message transmitted by a node
should only be received by the other nodes which are in the coverage area of the
transmitting node.

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 95

So far, researches have proposed three ways for modeling topology. We will
briefly present them in the following paragraphs.

In [11], [12] and [13] the network topology was modeled by an approximation
mechanism. Let us presume that the network has n nodes. When a node A
sends a broadcast message, it actually sends n-1 copies of the message to a place
that stores them in order to distribute them to the corresponding nodes. Based
on a probability that represents how many nodes are in the coverage area of
A, a certain number of these messages will be forwarded to other nodes, and
the remaining messages will be dropped. In the case of unicast messages, they
are sent only to the corresponding nodes. The authors of [12] call this model
a topology approximation mechanism and prove through simulation that it can
indeed mimic the mobility of a mobile ad hoc network (MANET).

In [14] the wireless mobile ad hoc network is modeled by two parts: a part
that handles the transmission of the packets, and another part that handles the
mobility of the nodes. The transmission of the packets is done based on the
current topology of the network, which is explicitly represented in the following
way: each node A has an adjacency list of nodes. Each node from this list is a
node that is in the coverage area of A, and thus can receive packets from it. Based
on the information from these lists, the transmission part of the model of the ad
hoc network sends the packets to the appropriate nodes. The mobility part of the
model is responsible with making modification to the topology. At the beginning
of the validation, there is an initial topology and also the possible topology
changes. Based on these changes, the mobility part modifies the topology as the
validation continues.

The authors of [17] and [18] use reconfigurable algebraic higher-order net
systems in order to model mobility for the ad hoc networks. The idea is to apply
graph transformation (rewriting of the model) to algebraic nets. That is, the net
gets reconfigured at run time in order to simulate the mobility of the nodes in
an ad hoc network. The modeling is abstracted from the network layer, and the
considered application is modeled in terms of work-flows.

3 Using Algebraic Petri Nets in Modeling Ad Hoc
Networks

3.1 Algebraic Petri nets definition

An APN is a HLPN where algebraic abstract data types are used. The structure
of the net is the structure of a Place/Transition net, but algebraic values are
used as tokens. Also, the transitions can have guards that are pairs of algebraic
terms that allow the firing of the respective transitions. In the following a sketch
of the model components are given, more details can be found in [1].

An algebraic Petri net specification is a 5-tuple
N — SPEC =< Spec, T, P, X, AX >, where:

— Spec =< X, X', FE > is an algebraic specification extended in < [X], X', F >,
where [X] is a multiset over the signature X' =< S, F > ([19]) such that:

96 PNSE’14 — Petri Nets and Software Engineering

e S is a finite set of sorts;
o F'=(Fys)wesses is a (S x S) sorted set of function names;
— T is the set of transition names;
— P is the set of place names and there is a function 7 : P — S which associates
a sort to each place;
— X is a S-sorted set of variables;
— AX is a set of axioms and it will be defined below.

Given an algebraic Petri net specification N—SPEC =< Spec, T, P, X, AX >,
an axiom in AX is a 4-tuple < t, Cond, In, Out > such that:

t € T is the transition name for which the axiom is defined;

— Cond C Tx x x T x is a set of equalities attached to the transition name ¢
for this axiom; Cond is satisfied if and only if all the equalities from the set
are satisfied;

In = (Iny)pep is a P-sorted set of terms such that Vp € P, In, € (T1s),x) ()
is the label of the arc from place p to transition ¢;

— Out = (Outp)pecp is a P-sorted set of terms such that Vp € P,Out, €
(T1s1,x) =(p)] is the label of the arc from transition ¢ to place p.

In AIPiNA, the input of a transition is a set that can only contain variables
and closed terms [4]. However, this limitation has no effect over the complexity of
the systems that can be modeled and verified. It is just simplifying the complexity
of the computations.

In order to provide a semantics to a specification N — SPEC, we can define
the set of reachable states StN — SPEC(M) from a given marking M. In this
paper we do not need the precise definition; please consult [1] for more details.

3.2 Case study: ARAN secure routing protocol

In order to present our methodology for modeling ad hoc networks, we have taken
as case study the ARAN secure routing protocol. We have chosen it because it
is simple, well known and it is the state of the art regarding secure routing in
ad hoc networks. The purpose of ARAN is to provide a route path for any node
in the network. It is an implicit routing protocol, which means that it will not
respond with the whole path, but only with the identity of the next node in the
path. ARAN uses digital signatures to assure authentication and integrity for
the exchanged routing information.

ARAN uses two message types: route discovery and route response. Each
message is signed by its source node. As it travels to its destination, the signed
message is also cosigned by each intermediate node, after eliminating the signa-
ture of the previous intermediary, if it exists. Each node validates the received
message by validating the signature(s) from the message. If the signature(s) are
not valid, the message is discarded. Otherwise, the intermediary node broad-
casts the message, if it is a route discovery message, or unicast it, if it is a
route response message. When a route discovery message reaches destination,
the node will respond with a route response message. When a route response

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 97

reaches destination, the node will modify its routing table accordingly. Also, each
intermediary node that receives a routes response for a route discovery that he
processed, will also update its routing table. Each route from the routing table
has a given lifetime. When no traffic has occurred on an existing route for that
route’s lifetime, the route is deactivated. When data is received for an inactive
route, the corresponding note will demand the source node of the data to make
a new route request for the targeted destination node. So topology changes will
determine route inactivation in some nodes’ routing tables, which will further de-
termine new route requests for the destination. For more information regarding
the protocol, please consult [6].

The modeling of ARAN for the purpose of its verification implies the model-
ing of the following elements: the nodes, the ad hoc network, the adversary and
the protocol operation. The general model for ARAN is given in Fig. 1. We will
now continue with the presentation of all the parts of the model.

Node behavior Broadcast/
model according to[® unicast of model
ARAN specification%—messages model}e (Fig. 5)

(Fig. 6) (Fig. 3) '
v &

Network
topology model

le|Attacker

Fig. 1. ARAN general model

3.3 Modeling the nodes

A node of the ad hoc network is modeled as a AADT Node. Each node has an
identity which is unique in the ad hoc network. Each node has also a routing
table and some other structures needed for the operation of the considered ad
hoc routing protocol. Because ARAN uses digital signatures, each node also has
a pair of public/private keys and a digital certificate. In addition, each node
knows the public key of the certification authority that issued his certificate.
Since all the nodes are identical, they all behave the same way. So in the actual
Petri net, all the nodes are placed inside the same place called Nodes collecting
identifiers of type Node. Here is the AADT Node in the case of ARAN:

Adt node

Sorts node;

Generators

node: Identity, RouteDiscoveryRequests, RouteDiscoveryRequests,
RoutingTable, Nonce, Certificate, PrivateKey,

98 PNSE’14 — Petri Nets and Software Engineering

PublicKey -> Node;
Operations
get_identity: Node -> Identity;
Axioms
get_identity(node($i, $rdr, $rp, $rt, $n, $c, $priv, $pub))=%i;
Variables
i : Identity;

All the elements used by the generator for the AADT Node, are other AADTs
that define (in this order): the identity of the node, a list with the route discovery
requests that were already broadcasted, a list with the route discovery responses
that were already forwarded, a lists with the routes, the current value for the
nonce used in the messages, the certificate of the node, the private key of the
node, and the public key of the certification authority that issues certificates for
the nodes.

3.4 Modeling the topology

An ad hoc network can be defined as a graph. We have assumed the connections
are bidirectional, so the graph is an undirected one. The nodes of the graph are
the nodes of the ad hoc network, and the arcs represent the fact that two nodes
can communicate directly through their wireless devices. So the topology of an
ad hoc network can be represented as a graph. We modeled it as the AADT
Topology, which is in fact a list of pairs of node identities, and represents the arc
list that defines the graph.

The actual topology is a variable of the type Topology. Its value can be given
in two different ways. Depending on the type of properties that will be verified,
the first or the second approach will be preferred. The first way is to give the
value explicitly. In this case, the model will represent the exact ad hoc network
that has that topology. For example, the topology of the ad hoc network given
in Fig. 2, will be defined by the next term:

cons (pairIdentityIdentity(i(i0), i~2(i0)),
cons(pairIdentityIdentity(i~2(i0), i(i0)),
cons(pairIdentityIdentity(i~2(i0), 1~3(i0)),
cons(pairIdentityIdentity(i~3(i0), i~2(i0)),
cons(pairIdentityIdentity(i~3(i0), i~4(i0)),
cons(pairIdentityIdentity(i~4(i0), i~3(i0)),
cons(pairIdentityIdentity(i~3(i0), i~5(i0)),
cons(pairIdentityIdentity(i~5(i0), i~3(i0)), empty))))))))

The second way is to not assign any value to the variable. This way it will be
a free variable. Then, with the use of domain unfolding, AIPiNA will generate for
that variable all the possible values within a given range. We will next explain
how this works and the impact of such a choice.

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 99

i"2(i0) in5(i0)

i4(i0)

Fig. 2. An example of an ad hoc network topology

3.5 Using unfolding to model topology

Unfolding is used for the verification process in order to let the user define the
part of the domain of a data type that will be taken into consideration when the
state space is computed. For example, in our model, the Identity AADT is used
for the identification of nodes. So when a certain operation must be done for
all the nodes in the network, that operation is parameterized with a variable of
type Identity for which no value is specified. Then the type Identity is unfolded
to the number of nodes in the network. As a result, prior to building the state
space, AIPiINA will unfold the Petri net by considering for that Identity variable
all the possible values, up to the number of nodes in the network. Let us show
how we can use this technique to model the topology of the ad hoc networks.

Topology AADT is actually a list of pairs of identities. Each pair of identities
represents a direct connection in the ad hoc network and it is defined by the
AADT Pairldentityldentity. So the definition of the type Topology is based on
the type Pairldentityldentity, which is based on the type Identity. As a result, in
order to unfold Topology, one needs to unfold also the other two types. Unfolding
of a data type is specified by the name of the type, and the limit that will be
considered for the domain. Here is an example of unfolding specification for
Topology and for its dependencies.

Identity : TOTAL;
PairIdentityIdentity : TOTAL;
Topology : 3;

The type Identity is unfolded to the number of nodes in the network; the type
Pairldentityldentity is totally unfolded. That means that all the possible pairs
that can be created with the identities of the nodes in the network will be
taken into consideration. Topology is then unfolded to the desired depth. For
example, if the bound is set to 3, AIPiNA will take into consideration all the lists

100 PNSE’14 — Petri Nets and Software Engineering

with three pairs that can be constructed with the pairs obtained by unfolding
Pairldentityldentity type. This way, we have actually defined all the topologies
that a network can have with the given number of nodes, and in which there are
three nodes which can communicate directly.

The number of topologies that will be taken into consideration in a non de-
terministic way through the above unfolding mechanism depends on the number
n of nodes in the network, and on the number m of direct connections between
them. This value represents the number of combinations of pairs that can be
formed with n identities, taken m at a time. As the values for n and m increase,
this value is rapidly increasing too. Unfortunately, the topology of the network
cannot be abstracted, nor parameterized because of the way message exchange
is done in wireless networks. In the case of a broadcast, the nodes which should
receive the message can be determined only from the topology. Likewise, in the
case of unicast or multicast, the topology is the only information regarding the
fact that a node should receive the message or not. In conclusion, the topologies
have to be taken into consideration explicitly.

Let us consider an example. If the ad hoc network has three nodes: A, B,
and C, it means that for Identity all these three values will be considered. Next,
because Pairldentityldentity is totally unfolded, the following values will be con-
sidered for it: AB, AC, BA, BC, CA, and CB. As a result, Topology can have
the following values:

1) {1,
(2) {AB}, {AC}, {BA}, {BC}, {CA}, {CB},
(3) {AB, AC}, {AB, BA}, {AB, BC}, {AB, CA}, {AB, CB},

(4) {AB, BA, BC}, {AB, BA, CA}, {AB, BA, CB},

With (1) we consider the topology in which none of the nodes have direct wireless
connections. With (2) we consider the possible topologies in which only two nodes
can communicate directly, the third one being outside the communication range
with each of the other two. With (3) we consider the possible topologies in which
there are two groups of two nodes which can reach each other. And with (4) we
consider all the topologies in which there are three groups of two nodes which
can communicate with each other.

If the same value is considered for the topology for a whole protocol run, it
means that after considering all these values, the protocol will be verified for
all the possible topologies for three nodes. When different values are consider
successively in the same protocol run, it means that the protocol is verified over
a dynamic topology. So because of the fact that the order in which each of these
values is considered is non deterministic, the verification will be made for all the
topologies and for all the possible node movements in each of the topologies.

Because it is a list, Topology is an infinite data type. So unfolding its entire
domain is impossible. But AIPiNA allows the partial unfolding up to a given
bound on the number of elements, as we explained above. It is important to
state that this second way of defining the topology of the network is particular

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 101

to AIPiNA and it works thanks to a special characteristic of the verification
algorithm called partial net unfolding. Partial net unfolding means that it is not
mandatory to unfold all the types, and the user can choose only the type that
it needed to be unfolded ([1]).

When the topology is defined as a closed term, AIPiNA will compute the state
space for the given algebraic Petri net N, starting from the initial marking. If
My is the initial marking, then the state space computed for a given topology
can be written as:

St (My).

When the topology is defined by unfolding, the algebraic Petri net is param-
eterized by a free variable of type Topology. If $tp is the name of this variable,
then the parameterized algebraic Petri net can be written as:

N ($tp).

By unfolding, AIPiNA will instantiate the variable $tp with each of the possi-
ble values of the topology, as explained above, thus computing a set of algebraic
Petri nets, one for each value:

N = UGJETE,TopozogyN('r)'

When computing the state space, AIPINA will actually compute the set of
state spaces such that each state space corresponds to a value for the topology.
We can write this as follows:

StN(Mo) = UzeTs ropotog, St (z) (Mo)-

As it will be presented in section 4, the security properties that we have
model checked with AIPiINA were expressed through an invariant property. In
order to check such a property, AIPiNA starts by computing the state space of
the algebraic Petri net provided as input. Then, it checks if the specified property
is true for each of the states. If it is, then the property holds for the model. If not,
the property does not hold for the model, and a counter-example is provided.

If the topology is defined as a closed term, checking a property for the model
implies checking the property for the state space computed for the corresponding
APN.

Stn(My) = invariantproperty

If the topology is defined by unfolding, checking a property for all models
implies checking it for the set of state spaces generated by instantiating the
topology variable with all the possible values.

Stn(My) | invariantproperty <

UzeTs ropotogy (SIN () (Mo) |= invariantproperty)

So we will check the invariant on all instances; finding a contradiction will
mean there is one topology that contradicts the invariant. If the invariant is sat-
isfied on the whole model it means that it is obviously satisfied in each instance.

3.6 Modeling the network

The message exchange in an ad hoc network has special characteristics, because
all the nodes act like routers. When a node transmits a message, it is received
only by the nodes which have a direct connection to that node. Then, each
of the nodes which received the message, processes it according to the routing

102 PNSE’14 — Petri Nets and Software Engineering

protocol, and then retransmits it. This process continues until the message gets
to the destination. Another aspect that must be taken into consideration is the
fact that messages can be of unicast or broadcast type. If a message is unicast,
it will be processed only by the node to which it is destined. If a message is
broadcast, it should be processed by all the nodes which can receive it directly
according to the topology of the network.

The messages transmitted by all the nodes are stored in the place called
Transmitted Packets (Fig. 3). The network processes the messages from this
place and then stores them in the place called Received Packets (Fig. 3), from
where the nodes can take them for processing and so on.

Transmitted Packets

get_sendto($pkt)=i0&..

get_sendto($pkt)!=i0

Received Packets
I Packet is Unicast L_‘ | Packet is Broadcast

| $pkt | T
{ [broadcast_to_unicast(get_router($pn),$pkt)]

Fig. 3. The model for the ad hoc network operation

In order to have in the High level Petri net model the behavior presented
above, we need to model accordingly two elements: the format of the messages
exchanged by the nodes and the network itself. Regarding the format of the
messages, besides the fields that a message has according to the considered rout-
ing protocol, we added two extra fields: a field that stores the identity of the
previous node that transmitted it (prev), and a field that represents the identity
of the node which should receive the message (next). If next field contains the
value 40, then it means that the message is broadcast. Otherwise the message is
unicast. The structure of the AADT Packet is provided in Fig. 4.

The modeling of the transmission/reception of a message is given in Fig. 3. All
the messages transmitted by the nodes are stored in the place called Transmitted
Packets. From here they are processed in order to provide the behavior explained
in the previous paragraph. First we check if the message is unicast or broadcast.
If it is unicast, no other processing is required (transition Packet is unicast) so
the message is placed in the Received Packets place from where the destination
node can pick it up for processing.

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 103

Identity Identity of the Signature(s)
of the node that

node that|should process | Message type

the message/ | (route discovery
Broadcast request/route
message [(discovery response

sent the
message

Nonce
Certificate(s)

Destination
node

Fig. 4. The model for the ARAN messages

If the message is broadcast (transition Packet is broadcast), we search in
the topology for all the identities of the nodes which can receive the message
according to it, and we produce the same number of copies for the message, but
with the next field filled with the corresponding identity. To verify in the APN
if a certain node with identity ¢ can receive a message, we search the variable of
type Topology if it contains a pair of identities formed by the identity stored in
prev and by .

It is worth mentioning that this model of broadcast has an atomicity problem
caused by some limitations of the Petri nets. Unfortunately there is no better
way of modeling it with the current formalism. The problem is the fact that all
the copies of the broadcasted message should reach all the destination nodes at
the same time, as if they would be produced in the same transition. This is not
possible to model, so, as a result, given the non determinism of the Petri net,
other transition could be fired before all the copies reach the destination nodes.
This could be solved by an extension of the Petri net, as the one proposed in
[20]. The LLAMAS (Language for Advanced Modular Algebraic Systems) model
proposed here is based on the old ideas of CO-OPN and it uses synchronization
between the transitions in order to provide a better control of the atomicity. By
using such synchronization it would be possible to force the correct transmis-
sion of a broadcast message by preventing any other transition to fire before the
transition that handles the broadcast fires all the possible times. Such a mech-
anism will also have an impact over the combinatorial explosion by eliminating
possibilities that have no meaning in the real ad hoc networks.

3.7 Modeling the adversary

The model that we used for the adversary was the Dolev-Yao model ([21]). In this
model it is presumed that the adversary can perform the following operations:

— he can intercept all the messages transmitted in the network (1);

— he can generate new messages based on the knowledge he obtained from the
intercepted messages (2);

— he can transmit messages (without modifying them) in the name of any node
in the network (3);

— he can prevent a node from receiving a message that was meant for it, with
the purpose of sending it another message (4).

104 PNSE’14 — Petri Nets and Software Engineering

Due to the state space explosion problem, we were unable to fully implement
this kind of adversary in our model. We have only implemented attack types (1),
(3) and (4). To implement attack type (1), the adversary was modeled as having
access to all the messages exchanged in the network (places Transmitted Packets
and Received Packets in Fig. 3). Thus he can perform the following actions over
the messages: he can drop a message and thus preventing a node to receive it
(implementation of attack type (4)) with the purpose of replacing the dropped
message with another one, and he can retransmit a message (without modifying
it) to another node than the node it was meant for (attack type (3)).

| Replay Attacks

—{ [change_sendto($id,$pkt)] |— $id!=i0

Transmitted Packets

_| [trs_packet($pkt,$nd)]

[packet(i0,i(i0),sign(...

Received Packets

Fig. 5. The model for the adversary

As a consequence, cryptographic security properties like authentication, con-
fidentiality and integrity cannot be checked. Correctness properties can be checked
and we will present how in section 4.

3.8 ARAN operation

When modeling ARAN, we have focused on the most important part of the
protocol which is the route discovery. As one can see from Fig. 6, the behav-
ior of a node that participates in a route discovery process was modeled with
two transitions. The transition REP Packet at source corresponds to the fact
that the node that initiated the route request receives the response message.
The transition Packet processing corresponds to all the other processing that a
node has to do: broadcast of a route request message by an intermediary node,
reception of the route request message by the targeted node, validation of the

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 105

digital signature(s) from the message, response to a route request message by
the destination node, and the unicast of a response to a route discovery mes-
sage. The actual behavior is implemented by axioms in the AADTSs that define
the nodes, the messages, the certificates, and the cryptographic operations. The
conceptual difference between the two transitions is the presence of the place
called Witness Nodes I. The purpose of Witness Nodes I will be explained in
the following paragraph.

Witness Nodes S

ransmitted Packets|

[packet(i0,i(i0),sign(i...

Witness Nodes |

[get_identity($nd)]

[update_node_state($pkt,$nd)]

Packet Processing

verify_cnd($pkt,$nd)]

[node(i(i0),cons(pair... trs_packet($pkt,$nd)

| $nd H?EPPacket at Sourcel_

Received Packetg

verify_cnd($pkt,$nd)]—_|

Fig. 6. The model for the node behavior in ARAN

4 Verification of security properties for ARAN

The security objectives of ARAN are to provide authentic and correct routing
information for the nodes that issue a route request. Thus, the security proper-
ties that have to be verified are authentication of the nodes which participate
in the route discovery, and integrity and correctness of the exchanged routing
information. ARAN was already modeled and verified using different tools, and
we will only cite the latest paper on the subject, [22]. ARAN is successful in
assuring authentication and integrity, but an intruder can disturb it by replay-
ing attacks and can propagate incorrect information about the topology of the
network. In order to validate our method of modeling using AIPiNA, we wanted
to see if we will obtain the same results as the ones already reported by previous
research.

The security property that we have verified is correctness of routing infor-
mation. Authentication and integrity were not considered for reasons explained
in section 3 and there are no known attacks against these objectives.

To present what correctness of routing information means, let us consider
the topology presented in Fig. 2. If i(i0) is the initiator node, and i~5(i0) is the

106 PNSE’14 — Petri Nets and Software Engineering

destination node, then the expected path between them that should be returned
by the protocol is: i(i0), i~2(i0), i~3(i0), and i~5(i0). In this case, we say that
the protocol provided correct routing information, if and only if for each route
discovery request made by node i(i0) for node i ~5(i0), the protocol will always
return the above path. In all the other cases the routing information would not
be correct.

In order to verify routing information correctness, we reduced the model of
the intruder so that he will only use the possibility of replay attacks. Also, we
added to the Petri net the places Witness Nodes I, and Witness Nodes S. Their
role will be presented next. Each time an intermediary node along the routing
path from the source node to the destination node processes a message related
to the discovery process, its identity is stored in Witness Nodes I. The same
thing will happen for the destination node too: when it will respond to the route
discovery, its identity will be stored in Witness Nodes I. In the same manner,
when the source node, the node that initiated the route discovery request, will
receive the response from the destination node, its identity will be copied to the
place called Witness Node S.

In the initial marking of the Petri net, the place called Transmitted Packets
contains a route discovery message from node i(i0) for the destination i~5(i0).
The places Witness Nodes S and Witness Nodes I are empty. When generating
the state space of the model, the place Witness Nodes S will eventually contain
the identity of the source node i(i0). This will mean the protocol run has finished,
and the route to the destination was obtained. The identities of the nodes forming
the returned route will be in the place Witness Nodes I.

To verify the correctness of the routing information, we need to compare
the identities of the nodes from Witness Nodes I place with the identities of
the nodes from the actual path in the considered topology. Using the property
specification language available in AIPiNA, we have specified this property in
the following way: If the number of nodes in the place Witness Nodes S is equal
to one it implies that the number of nodes in the place Witness Nodes I is equal
to the number of nodes in the path from the considered topology. Here is the
specification of this property in AIPiNA’s property specification language:

(card($x in WitnessNodesS) =1) =>
(card($y in WitnessNodesI) = value);

If the property holds when model checking is performed it means the protocol
provided correct routing information. Otherwise, the routing information is in-
correct and AIPiNA will display a counter-example: content for the place Witness
Nodes I that contains a different number of nodes. Based on this counter-example
we can reconstitute the attack performed by the intruder.

After performing the model checking we have seen that the protocol does not
always provide correct routing information, meaning that the intruder was able
to mount an attack on it (in concordance with [22]).

Returning to the example we have considered when explaining how the ver-
ification is done, when model checking the protocol for this topology, the place

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 107

Witness Nodes I, contains {i°2(i0)}, or {i~3(i0)}, or {i~5(i0)}, or {i~2(i0),
i°3(10), i~5(i0) }. Only the last value for Witness Nodes I corresponds to a cor-
rect run of the protocol. The other values represent incorrect routing information
that the intruder manages to propagate in the network by replaying attacks. For
example, if place Witness Nodes I contains {i°5(i0)}, it means that the intruder
managed to replay the route discovery message sent by i(i0) to i ~5(i0), and pre-
vented node 7 ~2(i0) from receiving it. In this way i ~5(i0) believes it has a direct
connection with A, and responds accordingly. The intruder does the same with
the route response message from i~5(i0).

Table 1. Quantitative information

Tool's performance for ARAN

Number of nodes | Time (s) 2{2 toefs

4 (all nodes attacked) 0.95 436
5 (all nodes attacked) 3.70 4655

Tool name

6 (all nodes attacked) | 80.82 | 77239

AIPiNA | 7 (6 nodes attacked) | 110.95 | 79131
8 (5 nodes attacked) 20.22 | 11637

9 (5 nodes attacked) 32.92 | 15500
10 (5 nodes attacked) 44.06 19363

4 0.05 -

5 0.07 -

AVISPA

The table above presents quantitative information regarding the verification
of routing information correctness, as previously described, in comparison with
another model checker called AVISPA, used in [22]|, where the authors reported
the same verification results as we have. The variable of the runs is the number
of nodes, besides the adversary, in the topology of the ad hoc network that is
taken into consideration. For some of the cases, the tool was unable to compute
the state space for all the possible attacks. So we limited the number of nodes
which were attacked to some maximum value, which is provided in the table
between parentheses, in the same cell as the number of nodes.

AVISPA uses an on-the-fly model checking technique in which attacks are
searched for without a prior computation of the whole state space. On the con-
trary, AIPiNA first computes the entire state space in a symbolic manner, and
only then makes the search for attacks. As a consequence, the values provided
for AVISPA represent the time of finding the replaying attack for the consid-
ered specification, while in the case of AIPiNA, the time column represents the
time of computing the entire state space of the considered model. These values
cannot be directly compared, but they reveal the fact that AIPiNA is capable of

108 PNSE’14 — Petri Nets and Software Engineering

handling the whole state space of the specifications verified with AVISPA, but
with the limitation explained above. AIPiNA is capable of handling state spaces
of 1-2 millions of states, but in this case, because of the atomicity problem pre-
sented at the end of subsection 3.6, starting with 7 nodes, all being attacked,
the size of the state spaces goes directly to more millions of states than AIPiNA
can handle. This is the reason of using these limitations and also the reason for
the fact that the biggest size of the state space in the table is a little less then
80000.

In [22], the authors state they were unable to check the protocol for more
than four and five nodes respectively, because of the state space explosion. But
using AIPiNA, we managed to model check the protocol for 10 nodes.

5 Conclusions and Future Work

In this paper we have presented the use of algebraic Petri nets for modeling
ad hoc networks and for verifying correctness properties for security protocols
specially designed for this type of networks, with the use of AIPiNA, a symbolic
model checker based on APNs. As far as we know this is the first report of using
Petri nets for verifying security properties of the protocols designed for ad hoc
networks.

As one can see from the figures we have provided, the Petri net that models
the ad hoc network and the security protocol is very simple and clear and has a
very small number of places. For example, the model for ARAN has six places.
The heavy part of the model is represented by the AADTs that were defined.
Thus AIPiNA combines the powerful symbolic model checking with the easy to
use APN formalism, providing a good user experience, but also with the ability
to master state space explosion.

The limitation of our approach refers to the fact that fabrication attacks
were not considered. Fabrication refers to the ability of the intruder to create
and send new messages, based on what he previously learned from the network.
Our model for the adversary is capable of using the messages he learned from the
network, but cannot create new messages. Because it is a symbolic model checker,
when an attack is found, AIPiNA cannot provide attack traces. This makes
it very difficult to model fabrication attacks, because of the lack of feedback
from the tool. But we plan to address this limitation by developing a technique
for inversing transitions in an APN, and thus providing attack traces and the
necessary feedback.

The model and the verification performed for ARAN secure routing protocol
discovered all the attacks that were previously reported for this protocol. This
proves the validity of the method, but most importantly, it proves that AIPiNA
can be used with success for verifying security protocols.

As future work, we have proposed to perform a quantitative comparison be-
tween CPN Tools and AIPiNA in order to see the actual performance improve-
ment brought by the latter. Also we will work on proposing an extension to the
current APN model, that will be more adequate to the modeling of distributed

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 109

protocols, in general, and which, in particular, will be capable of handling broad-
cast and similar operations in a correct manner. Another future work direction
is to modify the modeling of the topology, such that equivalent topologies will
be eliminated from the verification, thus reducing the state space and increasing
the performance of the model checking.

References

1. Steve Patrick Hostettler, High-level Petri net model checking: the symbolic way,
PhD thesis, University of Geneva, 2011.

2. Yongyuth Permpoontanalarp, Panupong Sornkhom, A New Colored Petri Net
Methodology for the Security Analysis of Cryptographic Protocols, in The 10th
Workshop and Tutorial on Practical Use of Colored Petri Nets and the CPN Tools,
Denmark, pp. 81-100. 2009.

3. Didier Buchs, Steve Hostettler, Alexis Marechal, Matteo Risoldi, Alpina: A symbolic
model checker, Applications and Theory of Petri Nets, pp. 287-296, 2010.

4. Steve Patrick Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, Didier
Buchs, High-Level Petri Net Model Checking with AIPiNA, Fundamenta Informati-
cae, IOS Press, Amsterdam, The Netherlands, vol. 113, no. 3-4, August 2011, ISSN,
0169-2968, pp. 229-264, 2011.

5. AIPiNA tool web page, http://alpina.unige.ch/, the 23 of December 2013.

6. Kimaya Sanzgiri, Bridget Dahill, A Secure Routing Protocol for Ad Hoc Networks,
Proceedings of the 10th IEEE International Conference on Network Protocols, pp.
78-87, 2002.

7. L. Khoukhi, S. Cherkaui, Intelligent Solution for Congestion Control in Wireless Ad
hoc Networks, in WONS 2006: Third Annual Conference on Wireless On-demand
Network Systems and Services, pp. 10-19. 2006.

8. Tzu-Chiang Chiang, Zueh-Min Huang, Multicast Routing Representation in Ad Hoc
Networks Using Fuzzy Petri Nets, Proceedings of the 18th International Conference
on Advanced Information Networking and Application, vol. 2, pp. 420, 2004.

9. Congzhe Zhang, Mengchu Zhou, A Stochastic Petri Net Approach to Modeling and
Analysis of Ad Hoc Network, in Proceedings of the International Conference on
Information Technology: Research and Education, pp. 152-156, 2003.

10. Marco Beccuti, Massimiliano De Pierro, Andras Horvath, Adam Horvath, Karoly
Farkas, A Mean Field Based Methodology for Modeling Mobility in Ad Hoc Net-
works, in Vehicular Technology Conference (VTC Spring), 2011, IEEE 73rd, pp.
1-5, 2011.

11. Piyush Prasad, Baltej Singh, Asish Kumar Sahoo, Validation of Routing Protocol
for Mobile Ad Hoc Networks using Colored Petri Nets, bachelor thesis, National
Institute of Technology, Rourkela, 2009.

12. Chaoyue Xiong, Tadao Murata, Jeffery Tsai, Modeling and Simulation of Routing
Protocol for Mobile Ad Hoc Networks using Colored Petri Nets, Proceedings of the
Conference on Application and Theory of Petri Nets: Formal Methods in Software
Engineering and De-fence Systems, vol. 12, pp. 145-153, 2002.

13. Mohammad Ali Jabraeil Jamali, Tahere Khosravi, Validation of Ad Hoc On-
demand Multipath Distance Vector Using Colored Petri Nets, International Confer-
ence on Computer and Software Modeling, Singapore, vol. 14, pp. 29-34, 2011.

110 PNSE’14 — Petri Nets and Software Engineering

14. Kristian L. Espensen, Mads K. Kjeldsen, Lars M. Kristensen, Modeling and Initial
Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks, Appli-
cations and Theory of Petri Nets: 29 International Conference, Lecture Notes in
Computer Science Volume 5062, pp. 152-170, 2008.

15. Yongyuth Permpoontanalarp, Apichai Changkhanak, Security Analysis of the
TMN Protocol by Using Colored Petri Nets: On-the-fly Trace Generation Method
and Homomorphic Property, the 8th International Joint Conference on Computer
Science and Software Engineering (JCSSE), pp. 63-68, 2011.

16. Yang Xu, Modeling and Analysis of Security Protocols Using Colored Petri Nets,
Journal of Computers, vol. 6, no. 1, pp. 19-27, 2011.

17. Ulrike Golas, Kathrin Hoffman, Hartmut Ehrig, Alexander Rein, Julia Padberg,
Functional Analysis of Algebraic Higher-Order Net Systems with Applications to
Mobile Ad-Hoc Networks, Bulletin of the EATCS, no. 101, pp.148-160, June 2010.

18. J. Padberg, H. Ehrig, L. Ribeiro, Formal Modeling and Analysis of flexible Pro-
cesses in mobile ad-hoc networks, Bulletin of the EATCS, pp. 128-132, 2007.

19. Hartmut Ehrig, Bernd Mahr, Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, Monographs in Theoretical Computer Science, An EATCS
Series, Springer, 1985.

20. Alexis Ayar Marechal Marin, Unifying the syntax and semantics of modular ex-
tensions of Petri nets, PhD thesis, University of Geneva, 2013.

21. Danny Dolev, Andrew Yao, On the Security of Public Key Protocols, IEEE Trans-
actions on Information Theory, vol. IT-29, nr.2, pp. 198-208, 1983.

22. Davide Benetti, Massimo Merro, Luca Vigano, Model Checking Ad Hoc Network
Routing Protocols: ARAN vs. endairA, The 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM), pp. 191-202, 2010.

Part 111

PNSE’14: Short Presentations

Morphisms on Marked Graphs

Luca Bernardinello, Lucia Pomello, and Stefano Scaccabarozzi

Dipartimento di Informatica, Sistemistica e Comunicazione,
Universita degli studi di Milano - Bicocca,
Viale Sarca, 336 - Edificio U14 - 1-20126 Milano, Italia

luca.bernardinello@unimib.it

Abstract. Many kinds of morphisms on Petri nets have been defined
and studied. They can be used as formal techniques supporting refine-
ment /abstraction of models. In this paper we introduce a new notion
of morphism on marked graphs, a class of Petri nets used for the rep-
resentation of systems having deterministic behavior. Such morphisms
can indeed be used to represent a form of abstraction on marked graphs,
consisting in folding cycles and identifying chains. We will then prove
that systems joined by these morphisms show behavioral similarities.

Keywords: Petri nets, marked graphs, morphisms, model abstraction,
preservation of behavioral properties

1 Introduction

When working on concurrent and distributed systems, the dimensions and com-
plexity of a model may lead to difficulties in the analysis of its features and
properties. For this reason it is useful to have formal techniques allowing the
decomposition of the entire model into separate modules which can be studied
separately, then being recomposed maintaining their properties. Another way to
reduce the dimension and complexity of a model is to use a multilevel approach
to its analysis: we start working on a very abstract version of the model, then
proceed through different levels of refinement by adding details to the model.

In order to obtain such functionalities we can use morphisms on Petri nets. In
the literature (see, for example, [1], [2], [3], [4] and [5]) several kinds of morphism
on different classes of Petri nets have been introduced. In this paper we propose
a new definition of morphism on marked graphs, a class of Petri nets often
used for representing systems having deterministic behavior. These so called
F-morphisms and the subclass of F-morphisms constitute a formal instrument
which can be used to obtain a kind of abstraction of marked graphs.

Some kinds of morphisms defined in the literature, such as a-morphisms ([5]),
allow to collapse part of the initial model on a single place or a single transition
in order to obtain the abstract system. Differently, F—morphisms map places on
single places and transitions on single transitions, preserving the environment
of each mapped element. Instead of collapsing portions of the detailed model
into a single element, the abstraction is here obtained by “folding” cycles and

114 PNSE’14 — Petri Nets and Software Engineering

identifying chains and cycles. Both these elements still remain in the reduced
model.

Such kind of abstraction preserves the behavior of the mapped part of the
original system. This means that, whenever we apply a F—morphism on a system,
all the sequences of actions executable in the reduced version can be found in
the original model.

In the last part of this paper, an analysis of preserved and reflected behavioral
properties and invariants of marked graphs joined by F—morphisms is performed.

In the next section, basic definitions related to Petri nets and their unfoldings
are recalled. In Section 3 F- and F' -morphisms are introduced together with
their main features. Then the relationship between the unfoldings of two marked
graphs joined by a F-morphism is explicated. Section 4 shows the results of the
analysis of behavioral and structural properties preserved and reflected by F-
morphisms. The paper is closed by a short concluding section.

2 Preliminary definitions

In this section we recall basic definitions about marked graph theory and unfold-
ings. These notions will be used in the next chapters to study important aspects
of F-morphisms.

2.1 Petri nets
We first start introducing the notion of net as seen in [6], with some adjustements.
Definition 1. A net is a triple N = (S, T, F'), where

— S is a set of places,
— T is a set of transitions such that SNT = 0,
— F is a set of directed arcs (flow relation), FF C (S x T)U (T x S).

All places and transitions are said to be elements of N. A net is finite if the
set of elements is finite.
For an element x of SUT, its pre-set is defined by

‘z={yeSUT|(y,x) € F'}
while its post-set is defined by
x*={yeSuT|(x,y) € F}.

A directed path (path for short) in a net N is a nonempty sequence g ... Zj
satisfying x; € x?_; for each i (1 <4 < k). We say that this path leads from x
to zi. The net is strongly connected if for each two elements x and y there exists
a directed path leading from z to y.

An undirected path is a nonempty sequence xg ...z of elements satisfying
x; € *x;—q Uz, for each i (1 <4 < k). Such undirected path leads from z(to

L. Bernardinello et al.: Morphisms on Marked Graphs 115

x). The net is weakly connected if, for each two elements = and y, there exists
an undirected path leading from x to y. In this paper, we will call connected a
weakly connected net.

A directed circuit is a directed path xg...xzpxo such that, for each i,j € N,
1,7 <k, i # j, x; # x; holds.

The states of a Petri net are defined by its markings. State changes are caused
by the occurrences of transitions. A marking of anet N = (S, T, F) is a mapping
M : S — N. A place s € S is marked by a marking M if M(s) > 0.

A transition t is enabled at a marking M if M marks every place in *t. Then
t can occur. Its occurrence transforms M into the marking M’, defined for each
place s as

M(s)—1 ifse *t\¢t,
M'(s)=¢ M(s)+1 ifse t*\ *t,
M(s) otherwise.

In this case we write M - M’. Notice that a place in *tNt*® is marked whenever ¢
is enabled but does not change its token count by the occurrence of t. A marking
is called dead if it enables no transition of N. A net N together with an initial
marking My constitutes a Petri Net System (also called place/transition system),
denoted (N, My).

Let M be a marking of a net. A finite sequence ¢ ...ty of transitions is called
a finite occurrence sequence, enabled at M , if there are markings My, ..., M} such
that

t t t
M = My 2 ... 25 M.

In this case we write M < M, where w = t; ...t;. The empty sequence & is

enabled at any marking M and satisfies M 5 M. A marking M’ is said to be
reachable from a marking M if there exists a finite occurrence sequence w such
that M <> M'.

In this paper we will mainly work on a particular kind of Petri nets, the
marked graphs.

Definition 2. A Petri net N = (S,T, F, My) is a marked graph if, for every
s€S,|°s| <1 and |s*| < 1.

2.2 Behavioral properties

The presence of an initial marking M, allows to identify the behavior of the
Petri net system (N, M), defined as the set of all markings reachable from M,
together with the set of occurences of each transition which make the global
state of the system change.

Properties of a net depending on the initial marking are known as behavioral
properties of the net. We now introduce some behavioral properties ([7]) which
will be used in the next sections.

116 PNSE’14 — Petri Nets and Software Engineering

Definition 3. A Petri net (N, My) is said to be k-bounded or simply bounded
if the number of tokens in each place does not exceed a finite number k for any
marking reachable from My, i.e., M(s) < k for every place s and every reachable
marking M. (N, My) is said to be safe if it is 1-bounded.

While boundedness implies the presence of a finite number of global states
for a finite net, liveness ensures that every event can potentially occur in the
future.

Definition 4. A Petri net (N, My) is said to be live (or equivalently My is
said to be a live marking for N) if, no matter which marking has been reached
from My, it is possible to ultimately fire any transition of the net by progressing
through some further firing sequence.

2.3 Incidence matrix and structural invariants
Definitions recalled in this section are taken from [7], with some adaptations.

Definition 5. Let (N, My) be a Petri net with n transitions and m places. Its
incidence matriz A = [a;;] is an m X n matric of integers and its typical entry
s given by

+

Aij = Q5 — Qg5

where a;;- =1 if there is an arc of N going from transition j to its post-condition
+

i, otherwise a;; = 0, while a;; =1 if there is an arc to transition j from its

pre-condition i, otherwise a;; = 0.

Some properties of a Petri net can be studied through the incidence matrix
and its invariants. A S-invariant associates weights to places in a way such that
the weighted sum of tokens is the same in all reachable markings.

Definition 6. Let N be a net and let A be its incidence matriz. A vector I :
S — Z is a S-invariant for N iff it is a solution of: IA = 0.

T-invariants allow to identify possible cyclic behaviors in a Petri net.

Definition 7. Let N be a net and let A be its incidence matriz. A vector J :
T — Z is a T-invariant for N iff it is a solution of: AJT = 0.

2.4 Branching processes and unfoldings

The behavior of a Petri net N can be represented in different ways. One of these
is to use the so called unfolding of N. In order to understand what the unfolding
of a net is, we first need to introduce some formal definitions. The theoretical
notions we will relate in this subsection are all taken from [7]. From now on, we
will only consider Petri nets such that, for every transition ¢, *¢t and t® are finite
sets and, moreover, we assume them to be nonempty. Furthermore, we do not
allow more than one token on a place in the initial marking. Such constraints do
not result too restrictive with respect to the behavior of the studied systems.

L. Bernardinello et al.: Morphisms on Marked Graphs 117

Definition 8. Let N = (S,T,F, My) be a Petri net. For x,y € SUT we say
that x precedes y if there is a (possibly empty) directed path from x toy in N.
N is finitary if for every y € SUT the set {x € SUT | x precedes y} is finite.

The relation precedes defines a partial order on S U T, and Min(N) is the
set of minimal elements of that partial order. We now introduce the notion of
conflict.

Definition 9. Let N = (S, T, F, My) be a Petri net. For x1,x5 € SUT, x1 and
x9 are in conflict, denoted x1 # xo, if there exist distinct transitions ti,to € T
such that *t; N %t # O and t; precedes x;, for i = 1,2. Forx € SUT, x is in
self-conflict if x # x.

The concept of conflict is used to define occurrence net.

Definition 10. An occurrence net is a finitary acyclic net N = (S, T, F, Mg)
such that

— forevery s € S, |*s| <1,
— no transition t € T is in self-conflict, and

— My = Min(N).

We now define a particular kind of morphism called “folding” in [8]. Intu-
itively, a homomorphism from net N; to net Ny formalizes the fact that N7 can
be folded onto a part of No, or, in other words, that N7 can be obtained by
partially unfolding a part of No.

Definition 11. Let N; = (S;,T;, F;, M§) be nets, i = 1,2. A homomorphism
from Ny to Na is a mapping h : S1 UTy, — So UTs such that

- h(Sl) Q Sg and h(Tl) Q TQ,

— for every t € Ty, the restriction of h to *t is a bijection between *t and *h(t),
and similarly for t* and h(t)®, and

— the restriction of h to M} is a bijection between M} and M.

The notions of homomorphism and occurrence net are necessary to formally
define branching processes.

Definition 12. Let N = (S,T, F, My) be a net. A branching process of N is
a pair (N',m), where N' = (S',T',F', M{}}) is an occurrence net and 7 is a
homomorphism from N’ to N, such that, for every t1,t2 € T, if *t1 = *ty and
7T(t1) = W(tg), then tl = tQ.

In [9], a notion of homomorphism between branching processes of the same
net N is also defined. Injective homomorphisms define a partial order for the
branching processes of N, called approximation. The set of the isomorphism
classes of the branching processes of N, together with approximation, form a
complete lattice. The least upper bound of such lattice is the unfolding of N.

118 PNSE’14 — Petri Nets and Software Engineering

3 A new class of morphisms on marked graphs

In this section we introduce a new kind of morphism on marked graphs, the
F-morphisms. We will then focus on a subclass of such morphisms, the F-
morphisms, analysing some interesting features of theirs. Finally, we will study
the relationship between the unfoldings of two marked graphs joined by a F-
morphism. In this paper we only consider a particular kind of marked graphs.

Remark From now on, we only consider connected marked graphs without
self-loops.

It is now possible to introduce the main notion of this work.

Definition 13. Let N; = (S;,T;, F;, M{), i = 1,2, be two marked graphs. A
F-morphism from Ny to Ny is a pair (o,7), where o : S1 — Sy and 7: Ty — Th
are partial surjective functions, such that:

— if 7(t1) is undefined, then o(*t;) = 0 = o (%),

— if 7(t1) = ta, then the restriction of o to *ty is an injective and surjective
partial function from *t; to *ta and, similarly, the restriction of o to t3 is
an injective and surjective partial function from t3 to t3,

— for every s’ € Sy
Mg(s')= > Mg(s).

seo—1(s’)

We define the composition of two F-morphisms (o1,71) : Ny — Ny and
(02,72) : No — N3 by using the notion of composition of functions, i.e., (o1,71)0
(02,72) = (02 001,72 071) : N1 = N3. F-morphisms are closed by composition.

Theorem 1. Let N; = (S;,T;, F;, M¢) be marked graphs for i = 1,...,3. Let
(04,75), i = 1,2, be F-morphisms from N; to Nii1. The function (o,7) : Ny —
N3, where 0 = 090071 and T = 19 011 1S a F-morphism.

This theorem is proved in [10]. The identity function 1y = (idg,idr) is a F-
morphism, where idg : S — S and idy : T — T are the total identity functions.
The composition is associative. Hence, the family of F-morphisms, together with
marked graphs, form a category which takes the name of Marked Graph System,
denoted MGS.

With these morphisms we allow to map chains on cycles, as shown in Figure
1, representing an example of F-morphism from Nj to N5. The labels suggest
the arrows of the morphism. Notice that the cardinality of the pre-images of the
elements labelled by 1, b and 2 of N5 is one, while the place labelled by ac has
two elements in its pre-image.

By adding a further constraint to the definition of F-morphisms, we get a
subclass of morphisms which preserve cycles and chains.

Definition 14. Let N; = (S;,T;, F;, M¢) be marked graphs for i = 1,2. A F-
morphism from Ny to Ny is a F-morphism (o,7) with the following restriction:

L. Bernardinello et al.: Morphisms on Marked Graphs 119

N, N,
1
a lll b 2 [
O—[1—-0O—[1—-0O ac b
2

Fig. 1

— for all s; € S1 such that o(s1) = sa, the restriction of T to *sy is a bijection
from ®sy to ®sa and, similarly, the restriction of T to s} is a bijection from
sy to s5.

It is easy to see that F-morphisms are closed by composition. In fact, since
we already know that a F-morphism (0,7) is a F-morphism, it is sufficient to
prove that the additional constraint that characterizes F—morphisms is preserved
by composition. We prove it simply by observing that the composition of two
bijections is also a bijection.

The example in Figure 1 shows a F-morphism (o,7) which is not a F-
morphism: let s; be the place of N; labelled with ¢ and let o(s1) = s (therefore,
9 is the place of Ny labelled with ac). The restriction of 7 to s} is not a bijection
from s$ to s3, in fact we have that s} =) # s3.

In Figure 2 three examples of F-morphisms are shown: the first two of them,
((o1,71) : N1 = Ny and (092, 72) : N3 — Ny, respectively, Figure 2a and Figure
2b), allow us to observe that, using F—morphisms7 it is possible to compress cy-
cles and to identify chains; in the last one, ((03,73) : N5 — Ng, Figure 2¢), an
identification of cycles is represented.

Let us now compare F -morphisms with another kind of morphisms defined
in [2], N-morphisms, corresponding to a kind of partial simulation. We want
to do this since we will later show that we can always find a N-morphism be-
tween the unfoldings of two marked graphs joined by a F-morphism. First of all,
N-morphisms are defined on elementary net systems, while ﬁ'—morphisms are
defined on marked graphs. N-morphisms define a relation between the places
of the joined systems, such that its inverse is a partial function. Differently,
F- morphisms allow two places to have the same image. Furthermore, for F-
morphisms the mapping between events is surjective, while N-morphisms do
not require such constraint. The last main difference is that, if two places s and
s’ of different elementary net systems are joined by a N-morphism, s belongs to
the initial case of the first system if and only if s’ is in the initial case of the
second one, whereas whith F -morphism a place of the starting system contain-

120 PNSE’14 — Petri Nets and Software Engineering

L. Bernardinello et al.: Morphisms on Marked Graphs 121

ing no tokens in the initial marking can be mapped on a place containing tokens.

We now show some interesting features of F-morphisms.

Theorem 2. Let N; = (S;,T;, F;, M{) be marked graphs, for i = 1,2, joined
by a F—morphism (o0,7) : Ny — Ns. Let Ay and As be the incidence ma-
trices of, respectively, N1 and Na. Let s’ € Sy be a place of No such that
o~ 1(s") = {s1,82,...,8n}. For every transition t € Ty such that T(t) is defined,
the following equation holds:

ZAl(si,t) = Ay(s', 7(1)). (1)

Proof. In order to prove the theorem, we need to compare the incidence matrices
of N7 and Ns. Let A;, i = 1,2, be the incidence matrices of, respectively, N; and
Ns. Because of the structure of a marked graph, it is possible to say that every
row of A; contain one 1 or -1 value or both of them, while the remaining entries of
that row contain 0 values. Let us now consider n distinct places s1, ..., s, of Ny,
such that o(s;) = s’, 1 <4 < n. For each s; € 07 1(s'), if |*s;| = 1 we denote te
the input transition of |s;| and, similarly, if [s{| = 1, we denote t,,s; the input
transition of |s;|. So, if such entries exist, A1(s;,tpre) = 1 and A1(s;, tpost) =
—1. For definition of F-morphism, Ag(s',7(tpre)) = 1 and Aa(s',7(tpost)) =
—1. Furthermore, since we consider marked graphs without self-loops and o
defines an injective and surjective partial function between the pre-conditions of
transitions joined by 7, for each s; € 07 1(s'), j # i, we have A (s;,tpre) = 0 and
A1(8j,tpost) = 0. This proof about one generic s’ place of No can be extended
to all the places of Ns: so the theorem is proved.

The previous theorem allows us to introduce another interesting feature of
F-morphisms. Intuitively, if two marked graphs N; and N, are joined by a F-
morphism (o,7) : Ny — Na, the pre-images of any element of Ny contain the
same number n of elements.

Theorem 3. For i = 1,2, let N; = (S:, Ty, F;, M) be marked graphs and let
(0,7) : N; = Ny be a F-morphism. Every x € P, UTy has pre-image containing
the same number n of elements.

Proof. Let A;, i = 1,2, be the incidence matrices of, respectively, N7 and Ns.
For every place s’ € S, if |o071(s’)] = m, then it is possible to find n dis-
tinct columns tq, ..., ¢, of Ay such that Ay(s;,t;) = 1 or Ai(s;,¢;) = —1, with
s; € 07 1(s’). Let t' be the input or output transition of p'; it is easy to verify
that 7=1(¢') = {t1,...,t,}. This means that, if the pre-image of a place of Ny
contains n elements, the pre-images of its input and output transitions also con-
tain n elements. We can extend this proof to every place of N3, thus proving the
theorem.

We call n the reduction factor of (o,7). The ﬁ'—morphism shown in Figure
2b has reduction factor 2, while the one in Figure 2¢ has reduction factor 3.

122 PNSE’14 — Petri Nets and Software Engineering

3.1 F-morphisms and behavioral relationships

We now want to show the relationship between the behaviors of two marked
graphs joined by a F-morphism. In this paper we assume that the behavior of
a system can be entirely described by means of its unfolding, according to the
definition given in [9]. For this reason, from now on, we will only consider marked
graphs with one technical restriction: in the initial marking there should not be
more than one token on each place.

Marked graphs are used to model deterministic systems. The absence of
choices in the behavior of deterministic systems can be used to observe that
the unfolding of a marked graph does not contain conflicts. In [9] the unfolding
of anet N is formally defined as a pair (N’ 7), where N’ is an occurrence net and
7 is a homomorphism from N’ to N. An occurrence net containing no conflicts
is called causal net, which is an acyclic marked graph.

Let us now consider N-morphisms defined in [2] for elementary net systems,
and compared to F -morphisms in the previous subsection. Causal nets, used to
represent the unfoldings of marked graphs, form a subclass of elementary net
systems. This allows us to explicit the relationship between the behaviors of two
marked graphs joined by a total F-morphism.

Theorem 4. Fori = 1,2, let N; = (S;,T;, F;, M{) be marked graphs joined by
a F-morphism (o,7) : Ny = Ny and let (N7, 71) and (N}, m3) be, respectively,
the unfoldings of N1 and No. Then, there exists a N-morphism (8,7n) : N{ — N}
which makes the following diagram commute.

N1L>N2

R

NI 21, N

In particular, B~ is an injective partial function and, if (o, 7) is total, (3,n) is
an isomorphism.

The proof of this theorem can be found in [10], together with the necessary
theoretical notions. Such proof uses an improved version of McMillan’s unfolding
algorithm (see [11]) with some modifications.

4 F-morphisms and their properties

In this section we want to analyze some properties about liveness, boundedness,
safeness, S and T-invariants of two marked graphs N; and Na, joined by a F-
morphism (o, 7) : Ny — No. We will first analyze behavioral properties and then
structural invariants.

L. Bernardinello et al.: Morphisms on Marked Graphs 123

4.1 Analysis of behavioral properties

First of all, it is useful to observe that directed circuits are preserved by F-
morphisms. Intuitively, this means that, given two marked graphs N; and Ny
and a ﬁ'—morphism (0,7) : Ny = Na, if v = 2129 ... 22 is a directed circuit of
Ny, z; € S;UTh, (0,7) maps «y on a directed circuit of Na.

In [7] marked graphs are defined as Petri nets N = (S, T, F, My) in which,
for each s € S, it holds |*s| = |s®| = 1. Then, they prove that a marked graph N
is live ¢ff the initial marking places at least one token on each directed circuit
in N. In this paper we consider a more general notion of marked graph: for each
place s we have |*s| < 1 and |s*| < 1. Tt is well known (for example, see [7])
that, given a marked graph N such that |*s| = 1 for each place s, N is live if
and only if the initial marking places at least one token on each directed circuit
in N.

N,
N,
135
ach bdg
246
(a)
N, N,
a b [+ ac
1 2 3 4 13 24
d e f df
(b)
Fig.3

The previous remarks allow to prove that F-morphisms preserve liveness.

Theorem 5. Fori=1,2, let N; = (S, T}, Fi, M{) be two marked graphs joined
by a F-morphism (o,7) : Ny = Na. If Ny is live, then Ny is also live.

124 PNSE’14 — Petri Nets and Software Engineering

Generally, liveness is not reflected by F-morphisms. In Figure 3a an example
of F -morphism from N; to Ny is shown. Ny is a live net, while Ny is not live:
transitions labelled with 5 and 6 are never enabled.

Since we proved that there is a N-morphism between the unfoldings of two
marked graphs joined by a a -morphism, it is easy to observe that F -morphisms
also preserve occurrence sequences.

Theorem 6. Let N; = (S;,T;, F;, M), i = 1,2, be two marked graphs joined by
a F—morphism (0,7) : Ny = Na. Let w = t1...tg, be an occurrence sequence
of N1 enabled at the initial marking Mg . Therefore w' = 7(t1)...7(t2) is an
occurrence sequence of Ny enabled at Mg.

From the definition of F-morphism, it follows immediately that, if two marked
graphs Ny and N, are joined by a F-morphism (o, 7) : Ny — N, for each place
s of N3, the sum of the number of tokens placed by the initial marking of N; in
the elements of the pre-image of s is equal to the number of tokens placed by
the initial marking of Ns in s. It is possible to extend this condition to every
reachable marking of the two systems.

Theorem 7. Fori=1,2, let N; = (S;, T3, I, M{) be two marked graphs joined
by a F-morphism (o,7): N — No. Let w = t1 ...t be an occurrence sequence
of Ny enabled at M} such that M§ <5 M. Then, ' = 7(t1)...7(t}) is an

’

occurrence sequence of Ny enabled at M§ such that M@ 2“5 M’ and, for each
s’ € Sy, the following equation holds

M'(s)= > M(s).

s€o—1(s’)

Using Theorem 7 it is easy to prove that boundedness is preserved by F-
morphisms.

Theorem 8. Fori=1,2, let N; = (S;,T;, I, M{) be two marked graphs joined
by a F-morphism (o,7) : Ny — Na. If Ny is bounded, then Ny is also bounded.

So F -morphisms preserve boundedness but, generally, they do not reflect it.
The F—morphism from N; to Ny represented in Figure 3a does not preserve
boundedness: N5 is a 1-bounded net, while in N7 the places labelled with e and
f can be filled with an infinite number of tokens.

Note that the reflection of boundedness is obtained if (o, 7) is total.

Theorem 9. Fori=1,2, let N; = (S;, T}, Fi, M) be two marked graphs joined
by a F-morphism (o,7) : Ny — Na such that o is total. If Ny is bounded, then
N7 is also bounded.

Proof. Each place of Ny is mapped on a place of No. If Ny is bounded, by
theorem 7 it is easy to see that N is also bounded.

Notice that, in general, safeness (1-boundedness) is not preserved. Let us

consider the example shown in Figure 3b: there is a F-morphism from N3 to Ny
and, while N7 is a safe net, Ny is 2-bounded.

L. Bernardinello et al.: Morphisms on Marked Graphs 125

4.2 On structural invariants

We now focus on some properties about S and T-invariants of two marked graphs
N7 and N joined by a F—Inorphism (o,7) : Ny — Ns. It is possible to prove
that F -morphisms reflect S-invariants. In order to obtain such result, we need
to order the rows of the incidence matrix A; of Ny in the following way. Let Ao
be the incidence matrix of Ny and let n be the reduction factor of (o). Given
the first row of As, representing the place s of Ny, let us consider the n rows of
A; corresponding to places of N3 mapped by o on s. We will put such rows in
the first n positions of the matrix. The same procedure can be used to order the
remaining rows of A;. The rows corresponding to places not mapped by o will
occupy the last positions of A;.

A
1 1 2 3 5
HEY B T°0 00!
1 I
¢l 0 0 0 1 -1 O,
™[0 "0 1 1 0o o]
1 1
id| 0 -1 0 o0 1 o0,
el 1. o -1 o o o
fl o o0 0 1 o0 -1
g/ -1 o o 0o o 1
N A
2 35 * | 35 24
ac -1 1
bd 1 -1
ac bd
24

Fig. 4

Theorem 10. Fori= 1,2, let N; = (S;, T;, F;, M) be two marked graphs joined
by a EF-morphism (o,7) : N1 — Ny. Let Ay, As and n be, respectively, the
incidence matrices of N1 and No, ordered as seen before, and the reduction factor
of (o,7). If Iy = (qaa ... ap), with o € N and P = |Ss|, is a S-invariant for

126 PNSE’14 — Petri Nets and Software Engineering

No, then

n times n times n times

I, = (o ...a1 009 ...a9 ... apap...ap0...0)
is a S-invariant for Ni.

The previous theorem is proved in [10]. Let us now consider the F-morphism
(0,7) : N = N shown in Figure 4, having reduction factor n = 2. The incidence
matrix of Ny is ordered as explained. I, = (11) is a S-invariant for N,. The
corresponding S-invariant for N; is built by taking n times each single value of
I, as the first components and adding Os in the remaining positions. Thus, we
obtain I; = (1111000).

F -morphisms reflect S-invariants but do not preserve them. The S-invariant
I, =(0100111) for N; in Figure 4 can not be used to build a corresponding S-
invariant for No. It is impossible to assign to each place of Ny the weight of the
elements of its pre-image. For example, let s be the place of Ny labelled with bd:
I, assigns a different weights to the elements of o=1(s). I3, built by assigning
to each place of Ny the sum of the weights of the elements of its pre-image, is
not a S-invariant of Ns.

Regarding T-invariants, we observe that, in marked graphs, an occurrence
sequence leads back to the initial marking if and only if it fires every transition
an equal number of times. Then, since F-morphisms are surjective, by Theorem
7 they preserve T-invariants.

In general, T-invariants are not reflected by F—morphisms. For instance, let
us consider the example in Figure 4. J2 = (11) is a T-invariant for N,. For
each transition ¢ of Ny, we assign to the elements of its pre-image the weight
given by JQT to t, and we use Os for the other transitions of Ni. So, we obtain
JT = (011110), which is not a T-invariant for N;.

5 Remarks and conclusions

We have introduced F- and F' -morphisms, new kinds of morphisms on marked
graphs, a basic class of Petri nets. These morphisms can be used as a formal
technique to deal with a kind of abstraction on marked graphs, consisting in the
folding of cycles and the identification of chains. We have also proved that the
unfoldings of two systems joined by a F-morphism are joined by a N-morphism
(see [2]). We have finally shown that liveness, boundedness and T-invariants are
preserved by such morphisms, while S-invariants are reflected.

We now plan to define a new operation for the composition of marked graphs
driven by F-morphisms mapping the components on a net which works as an
interface, similarly to what described in [12], [13] for N-morphisms. We also
intend to extend the theory related to F-morphisms to other classes of Petri nets,
such as persistent, free choice and Place/Transition Petri nets, thus applying such
functions to systems having conflicts. Finally, we want to apply F -morphisms
to models representing real systems having deterministic behavior (such as, for

L. Bernardinello et al.: Morphisms on Marked Graphs 127

example, manufacturing systems or cyclic processes) to formally analyze them
by using a step-by-step approach based on different levels of refinement of the
modelled system.

Acknowledgement.

This work was partially supported by MIUR and by MIUR-PRIN 2010,/2011
grant ‘Automi e Linguaggi Formali: Aspetti Matematici e Applicativi’, code
H41J12000190001.

References

11.

12.

13.

Desel, J., Merceron, A.: Vicinity respecting homomorphisms for abstracting system
requirements. Transactions on Petri Nets and Other Models of Concurrency 4
(2010) 1-20

Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems.
Theor. Comput. Sci. 96(1) (1992) 3-33

Padberg, J., Urbéasek, M.: Rule-based refinement of Petri nets: A survey. In
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H., eds.: Petri Net Technology for
Communication-Based Systems. Volume 2472 of Lecture Notes in Computer Sci-
ence., Springer (2003) 161-196

Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Inf. Comput.
72(3) (1987) 197-238

Bernardinello, L., Mangioni, E., Pomello, L.: Local state refinement and composi-
tion of elementary net systems: An approach based on morphisms. T. Petri Nets
and Other Models of Concurrency 8 (2013) 48-70

Desel, J., Reisig, W.: Place/Transition Petri Nets. In Reisig, W., Rozenberg, G.,
eds.: Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer
(1996) 122-173

Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541-580

Winskel, G.: Event structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Ad-
vances in Petri Nets. Volume 255 of Lecture Notes in Computer Science., Springer
(1986) 325-392

Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6) (1991) 575-591

. Bernardinello, L., Pomello, L., Scaccabarozzi, S.: Morphisms on Marked Graphs

(Extended Version). http://www.mc3.disco.unimib.it/pub/bps2014ext.pdf
(2014)

Esparza, J., Romer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20(3) (2002) 285-310
Bernardinello, L., Monticelli, E., Pomello, L.: On preserving structural and be-
havioural properties by composing net systems on interfaces. Fundam. Inform.
80(1-3) (2007) 31-47

Pomello, L., Bernardinello, L.: Formal tools for modular system development.
In Cortadella, J., Reisig, W., eds.: ICATPN. Volume 3099 of Lecture Notes in
Computer Science., Springer (2004) 77-96

128 PNSE’14 — Petri Nets and Software Engineering

A Petri Net Approach for Reusing and Adapting
Components with Atomic and non-atomic
Synchronisation

D. Dahmani', M.C. Boukala!, and H. Montassir?

! MOVEP, USTHB, Algiers.
dzaouche,mboukala@usthb.dz,
2 LIFC, Comp. Sci. Dept, Franche-Comté University
hmountassir@lifc.univ-fcomte.fr

Abstract. Composition of heterogeneous software components is re-
quired in many domains to build complex systems. However, such compo-
sitions raise mismatches between components. Software adaptation aims
at generating adaptors to correct mismatches between components to be
composed. In this paper, we propose a formal approach based on Petri
nets which relies on mapping rules to generate automatically adaptors
and check compatibilities of components. Our solution addresses both
signature and behaviour level and covers both asynchronous and syn-
chronous communication between components. State space of the Petri
model is used to localise mismatches.

Keywords: Interface automata, components reuse, components adaptation
Petri nets, synchronous and asynchronous communication.

1 Introduction

Component-based development aims at facilitating the construction of very com-
plex and huge applications by supporting the composition of simple building
existing modules, called components. The assembly of components offers a great
potential for reducing cost and time to build complex software systems and im-
proving system maintainability and flexibility. The reuse of a component and
substitution of an old component by a new one are very promising solution [8,
9].

A component is a software unit characterised by an interface which describes
the services offered or required by the component, without showing its imple-
mentation. In other terms, only information given by a component interface are
visible for the other components. Moreover, interfaces may describe component
information at signature level (method names and their types), behaviour or
protocol (scheduling of method calls) and method semantics.

130 PNSE’14 — Petri Nets and Software Engineering

A software component is generally developed independently and is subject to as-
sembly with other components, which have been designed separately, to create a
system. Normally ‘glue code’ is written to realise such assembly. Unfortunately,
components can be incompatible and cannot work together. Two components are
incompatible if some services requested by one component cannot be provided
by the other [1, 3]. The pessimistic approach considers two components compat-
ible if they can always work together. Whereas, in the optimistic approach two
components are compatible if they can be used together in at least one design [1].

Incompatibilities are identified: (i) at signature level coming from different
names of methods, types or parameters, (ii) at behaviour or protocol level as in-
compatible orderings of messages, and (iii) at semantic aspect concerning senses
of operations as the use of synonyms for messages or methods [3].

There exist some works aiming at working out mismatches of components
which remain incompatible, even in the optimistic approach. These works gener-
ally use adaptors, which are components that can be plugged between the mis-
matched components to convert the exchanged information causing mismatches.
For example, the approach proposed in [11] operates at the implementation level
by introducing data conversion services. Similarly, in [2, 7] smart data conversion
tools are deployed to resolve data format compatibility issues during workflow
composition.

Other works are based on formal methods such as interface automata, logic
formula and Petri nets which give formal description to software interface and
behaviour |3, 5].

In [4], an algorithm for adaptor construction based on interface automata is
proposed. Such adaptors operate at signature level and rely on mapping rules.
The adaptors are represented by interface automata which aim at converting
data between components according to mapping rules. However, the proposed
approach allows not atomic action synchronization, but doesn’t cover all possible
behaviours. In [3], manual adaptation contracts are used cutting off some incor-
rect behaviours. They propose two approaches based on interface automata and
Petri nets, respectively. However, unlike our approach, these works allow only
asynchronous communications. In [6] the behaviour of interacting components
is modelled by labelled Petri nets where labels represent requested and provided
services. The component models are composed in such a way that incompatibil-
ities are manifested as deadlocks in the composed model. In [13], OR-transition
Colored Petri Net is used to formalize and model components where transitions
can effectively represent the operations of the software component. Both [6]
and [13] focus more on component composition than on adaptation.

In our approach, we propose Petri net construction to check compatibilities of
components according to a set of matching rules without any behaviour restric-
tion. Contrary to [3], we deal with both synchronous and asynchronous commu-
nications. We use state graph of the Petri net model to localise mismatches.
This paper contains five sections. Section 2 is consecrated to describe interface
automata. The concept of mapping rules is given in section 3. In section 4, we

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 131

describe our component adaptation approach. Finally, we conclude and present
some perspectives.

2 Interface automata

Interface automata are introduced by L.Alfaro and T.Henzinger [1], to model
component interfaces. Input actions of an automaton model offered services by
the component, that means methods that can be called or reception of messages.
Whereas output actions are used to model method calls and message transmis-
sions. Internal actions represent hidden actions of the component. Moreover,
interface automata interact through the synchronisation of input and output
actions, while internal actions of concurrent automata are interleaved asyn-
chronously.

DEFINITION 1 (Interface automaton)
An interface automaton A = (Sa, ST X4, Ta) where :

— S4 is a finite set of states,

— St C Sy is a set of initial states. If ST = 0 then A is empty,

I Eg U EA U Ef a disjoint union of output, input and internal actions,
— 74 € Sa X X4 X Sa.

The input or output actions of automaton A are called external actions de-
noted by ¥ = ¥ U X1, A is closed if it has only internal actions, that is
Y6rt = (); otherwise we say that A is open. Input, output and internal actions
are respectively labelled by the symbols ”?7”, ”!” and ”;”. An action a € X4 is
enabled at a state s € Sy if there is a step (s,a,s’) € 74 for some s’ € S4.

EXAMPLE 1 Fig. 1 depicts a model of remote accesses to a data base. This
example will be used throughout this paper. The system contains two compo-
nents Client and Server which have been designed separately. On the one hand,
Client issues an authentication message structured into a password (\pwd) and a
username (luid). If Client is not authenticated by Server (\nAck andlerrN), it
exits. Otherwise, Client loops on sending read or update requests. A read request
(Ireq) is followed by its parameters (\arg), then Client waits the result (?data).
An update request is an atomic action (lupdate). At any moment, Client can
exit (lexit).

On the other hand, when Server receives a username (Tuid) followed by a pass-
word (Tpwd), it either accepts the client access request (1ok) or denies it (\nOk).
Afterwards, Server becomes ready to receive a read or update requests. If it re-
cetves a read request (Tquery), it performs a local action (;readDB) and sends
the appropriate data (\data). Server can execute an update request (Tupdate).
Figure 1.a depicts interface automaton Server. It is composed of six states
(S0, .. S5), with state so being initial, and nine steps, for instance (so, Tuid, s1).

132 PNSE’14 — Petri Nets and Software Engineering

Some arcs are dashed, they will be referred in section 4. The sets of input, output
and internal actions are given below:

- Eger'uer :{Oka 'I’LO/{, data},
éerver - {uzd,pwd, logout, query, Update};
- 24, per= {readDB}.
711id ?piud ?qulery ?upiiate ?loglout \data ok InOk
?logout . — — — — — - -

~
?uid ?pwd lok ?query ;read DB

——O0—0—8——0
\] ldata

[

Tupdate

(a) Server

(b) Client

Fig. 1: Server and Client interface automata

2.1 Composition of interface automata

Let A; and A two automata. An input action of one may coincide with a
corresponding output action of the other. Such an action is called a shared ac-
tion. We define the set shared(A1, Ay) = (X4 N X9) U (XS NXL)), eg. set
Shared(Client, Server) = {uid, pwd, update, data}.

The composition of two interface automata is defined only if their actions are dis-
joint, except shared input and output ones. The two automata will synchronize
on shared actions, and asynchronously interleave all other actions [1].

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 133

DEFINITION 2 (Composable automata)
Two interface automata A1 and As are composable iff

(B NZay=0)A(ZE,NZa, =0 A (T4, NZL, =0)A(ZF, NZF, =0)

DEFINITION 3 (Synchronous product)
If A1 and As are composable interface automata, their product Ay ® As is the
interface automaton defined by:

Sa@a, = Sa, X Sa,

SZrth®A2 _ S'Lnt % Sznt

E,{{l@A (EA UEA)Ushared(Al,Ag),

EA1®A2 =X}, U X))\ shared(Ay, As),

EA1®A2 =(x9 UEA)\ shared(A;, As),

TAL®As 7{(11 u) a, (v’ w) | (v,a,v") € T4, Na & shared(Ay, A) Nu € Sa,}
U {(v,u),a, (v,u) | (u,a,u’) € Ta, Aa & shared(Aq, A2) ANv € Sa, }

U {(v,u),a, (v, u) | (v,a,v") € T4, A (u,a,u’) € Ta, Na € shared(Az, As2)}.

S S Lo o=

An action of Shared(A;, As2) is internal for A; ® As. Moreover, any internal
action of A; or As is also internal for A; ® Ay (3). The not shared input (resp.
output) actions of A; or A, are input (resp. output) ones for A1 ® Ay (4, 5).
Each state of the product consists of a state of A; together with a state of A,
(1). Each step of the product is either a joint shared action step or a non shared
action step in A; or Az (6).

In the product A; ® As, one of the automata may produce an output action
that is an input action of the other automaton, but is not accepted. A state of
A; ® As where this occurs is called an illegal state of the product. When A; ® Ao
contains illegal states, A; and As can’t be composed in the pessimistic approach.
In the optimistic approach A; and Ay can be composed provided that there is
an adequate environment which avoids illegal states [1].

The automata associated with Client and Server are composable since defini-
tion 2 holds. However, their synchronous product is empty, in fact (s, s) is an
illegal state: Client sends password (!pwd) while Server requires a username
(?uid), causing a deadlock situation. Thus, Client and Server are incompatible.
As mentioned in the introduction, two incompatible components can be com-
posed provided that there exits an adaptor to convert the exchanged information
causing mismatches. In particular, mapping rules are used to adapt exchanged
action names between the components. Such rules may be given by designer. For
more details, we refer reader to [11].

3 Mapping rules for incompatible components

A mapping rule establishes correspondence between some actions of A; and As.
Each mapping rule of A; and As associates an action of A; with more actions
of Ay (one-for-more) or vice versa (more-for-one).

134 PNSE’14 — Petri Nets and Software Engineering

DEFINITION 4 (Mapping rule)

A mapping rule of two composable interface automata Ay and As is a couple
(L1, Ls) € (222? X 222?) such that (L1 U Lg) N shared(Az, A2) = 0 and if
|Li| > 1 (resp. |La| > 1) then |La| =1 (resp. |L1]| =1).

A mapping @(A;, Az) of two composable interface automata A; and As is a
set of mapping rules associated with A; and As.
We denote by Xg(a, a,) the set {a € X" U X Fa € $(A;, As) st a €
I (o)) UIIo (o)}, with 111 ((L1, Lo)) = Ly and II2({L1, L2)) = Lo are respectively
the projection on the first element and the second one of the couple (Li, La).
Observe that each action of Xg (4, 4,) is a source of mismatch situation between
A1 and AQ.

EXAMPLE 2 Consider again the components of example 1. In Client a read
request is structured into two parts ('req and larg), whereas it is viewed as one
part (Tquery) in Server. A mapping rule is necessarily to map {lreg,larg} to
{?query}. The sets of mapping rules between Client and Server @ (ciient, Server)
and Xg(Client,Server) are defined as follows:

— D(Client,Server) = 1001, 02, a3, aq} with, :
ar = ({!regq,larg}, {?query}),
az = ({Pack}, {lok}),
az = ({"nAck, ?err N}, {InOk}),
ay = ({lexit}, {?logout})}
- Zé(client,Server) -
{req,arg, query, ack, ok, nAck,nOk, err N, exit, logout }

4 Towards Components Adaptation

In A; ® Ay, the actions of Y4, 4,) are interleaved asynchronously since they
are named differently in A; and As. In fact, A ® Ay doesn’t deal with corre-
spondence between actions of Xg (4, 4,). Moreover, the product A; ® Ay doesn’t
accept shared actions which have incompatible ordering in A; and As. For in-
stance Client sends a password followed by a user name, whereas Server accepts
the last message and then the former one. It is obvious that A; ® Ay cannot be
used to check the compatibility of A; and As. In this context, an adaptor com-
ponent, must be defined. Such an adaptor is mainly based on the set (A7, As)
and is a mediator between A; and As. It receives the output actions specified
in Yg(4,,4,) from one automaton and sends the corresponding input actions to
the other. In case of incompatible ordering of shared actions, the adaptor works
out such situations by receiving, reordering and sending such actions to their
destination component.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 135

DEFINITION 5 (Adaptation of A1 and Ay)

The automata A; and As are adaptable according to P(A1, As) if (i) A1 and
As are composable, (ii) P(A1, Az) is not empty and (iii) there is a non empty
automaton adaptor.

4.1 Petri Net Construction for Components Adaptation

Contrary to interface automata formalism, the Petri net model is well suited to
validate interactions between components, especially whenever events reordering
is required. In fact, Petri nets allow to store resources (e.g. messages) before their
use. In this paper, we use a Petri net model to adapt two interface automata
according to a set of mapping rules given by the user of the components. The
approach we propose consists of building a Petri net which mimics the compo-
nent interfaces. Furthermore, the Petri net also contains a set of transitions, one
per matching rule, which represent the adaptor component. More details will be
given below.

First, we give the basic definitions of a Petri net model. For more details, we
refer reader to [12,10].

DEFINITION 6 (Labeled Petri Net) A Petri net N is a tuple (P, T, W, \) where

— P is a set of places,

T is a set of transitions such that P N'T = (),

— W is the arc weight function defined from P x T UT x P to N.
A is a label mapping defined from T to an alphabet set XU {e}.

A marking is a function M: P — N where M (p) denotes the number of tokens
at place p. The firing of a transition depends on enabling conditions.

DEFINITION 7 (Enabling) A transition t is enabled in a marking M iff ¥V p €
P, M(p) = W(p,t).

DEFINITION 8 (Firing rule in a Marking) Let t be a transition enabled in a
marking M. Firing t yields a new marking M', Vp € P, M'(p) = M(p) —
Wi(p,t) + W(t,p).

DEFINITION 9 (State Space) A state space, denoted by S(N, My), of a marked
labelled Petri net (N, M) is an oriented graph of accessible markings starting
from My. An arc M 5 M’ of S(N, My) means that M’ is obtained by firing t
from M.

136 PNSE’14 — Petri Nets and Software Engineering

S S a
3 Q(s,s") !a(&sl)

’ /
s a s

Fig. 2: Translation rules

The algorithm described below returns a marked labelled Petri net (N, My)
composed of three parts dedicated for A;, As and a set of matching rules.
These parts are glued by mean of places which model communication chan-
nels and are associated with external actions of A; and As, i.e. the actions of
sets Shared(Ay, Az) and Yg(a, a,)-

For each state s (resp. external action a) of A; and As, the algorithm gener-
ates a corresponding place s (resp. a) in N. Furthermore, the places correspond-
ing to initial states of interface automata will be initially marked in N.

Fig. 2.a, 2.b and 2.c show how to translate steps of A; and As. The gray full
circles represent communication places. An internal action s -— s is represented
by a transition ;a(,,) which has an input place s and an output place s’ (Fig

2.a). An output action s 19, o i represented by a transition !a(, .y which has
an input place s and two output places s’ and a. A firing of la(, sy produces a
token in place a modelling an emission of a message a (see Fig 2.b). Fig 2.c gives

the translation of an input action s ra, s, here each firing of ?a(,) models a
reception of a message a.

Fig. 2.d and 2.b show how to translate the mismatch rules. For each mis-
match rule a = ({!a}, {?a1,...,%a,}) of ®(A4;1, As), a transition « is added. The
input places of « are ay ... a, and its output place is a. Each firing of @ models
the receptions of a; ... a, and the emission of a (see Fig 2.d). The same pattern

is applied for a rule « = ({?a1,...,%a,},{la}). Fig 2.e shows the translation
of arule a = ({lay,...,lan}, {?a}) or a = ({?a},{las,...,lay}). In this case,
each firing of @ models the reception of a and the emissions of a; ... a,. These

transitions simulate the adaptor.

For analysis requirement (next section), transitions associated with mismatch
rules are labelled by the rule names and the others by the corresponding action
names.

Algorithm 1 BuildPetriNet

Inputs Ay = <Sl,A1,Il,T1>, Ay = <SQ,A2,IQ,T2> and @(Al,AQ) a set
of rules
Output

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 137

4 labelled Petri Net N =(P,T,W,)\) and its initial marking M,
Initialization P =00, T = ()
Begin
// Genmeration of places corresponding to the states of A; and A
for each state s € S; U Sy do

add a place s to P

If s € Sy USY" then My(s) =1 else My(s) =0

Endif
endfor
// Places simulating direct communication between A; and A,
for each action a € Shared(A;, As) do

add a place a to P
endfor
// Places simulating indirect communication between A; and Ao
for each action a € Yg(a,,4,) do

add a place a to P
endfor
// Transitions simulating steps of A1 and As

for each transition s; éﬁ>32 e huTy, (with e {,?,;})
add a transition das, s, to T
Adas, s,) = da
add the arcs s; — das, s, and das, 5, — S2 to W
case:
="V : add the arc lay, s, > a to W
§='?" : add the arc a — Tas, 5, to W
endcase
endfor
// Transitions simulating adaptor of Ay and As
for each a € P(A;, A2) do
add a transition o to T
AMa) =«
case:
a € {({la},{?a1,...,%n}), {{?a1,...,%an},{la})} :
add the arcs a; >, i € 1...n, and «a —a to W,
ae{{la,...,lan}, {?a}), {?a},{la1,...,lan})}:
add the arcs a v«o and a« —a;, t € 1...n, to W
endcase
endfor
return (N, My)
End

Fig. 3 gives a labelled and marked Petri net N associated with Client and
Server according to the set of rules @(Client, Server) (which are defined in
example 2). For sake of clarity, communication places are duplicated and tran-
sitions are represented by their labels. Moreover, transitions Tupdate, lupdate

138 PNSE’14 — Petri Nets and Software Engineering

nOk

exit

'nOk

logout

uid

Tack

lupdate

o e e

/ ?update
’ °5 P s5
3
lreq larg —
Tquery ;readD B
update update
req O query
/
s sS4
-----_--_-_-__ét ________ d N o o o e e e e e e e e b4

Qo
-
2
5
o
[~}
. O
N o
g
Q
3
& Q
-
°]
i &

Fig. 3: A Petri net for adaptation of Server and Client

and place update are represented differently, a special attention will be accorded
to them in the next section. The left and right parts of the net are respec-
tively dedicated to Client and Server, they are glued by mean of communica-
tion places uid, pwd, update and data. These latter correspond to the actions
of Shared(Client, Server) and are used to simulate direct communications be-
tween Client and Server.

The lower part of the net represents the adaptor, it contains four transitions
a1, g, s and ay, each one represents a rule of &(Client, Server). The commu-
nication places req, arg, query, ack, ok, nAck, nOk, errN, exit and logout are
used to link the three parts and correspond to the actions of X¢(ciient,Server)-
Places sp and s are initially marked in N, they translate the initial places of
Client and Server automata.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 139

4.2 Synchronisation Semantics between Components

At this level, the Petri net construction models only asynchronous communica-
tion between two components. Such kind of communication may be source of
incoherence as illustrated by the following scenario:

— Client: Authentication,

— Server: Okay message,

— Client: update request,

— Client: read request,

— Server: response for the read request,
— Server: data base update.

It is worth noting that the result of the read request may be incorrect. This
occurs whenever the required information is concerned by the update operation.
To work out this problem, Client and Server must synchronise on update ac-
tion. Therefore, we propose to enrich the Petri net construction to strengthen
synchronisation between transitions which are related to critical shared actions
(e.g. update action): (1) such transitions must be fired by pair (w.r.t some critical
action, one for an output step and the other for an input step). (2) The com-
munication places of critical external actions are not useful since here messages
are not stored. (3) The set of critical actions, denoted by Synch, is an input of
the algorithm. The set of transitions related to Synch is denoted by T'syncn. For
instance, to avoid the previous scenario, action update is considered as critical,
so transitions lupdate and Tupdate must be fired simultaneously. Place update
is omitted, Sync = {update} and Tsyn. = {?update, lupdate}.

4.3 Building and analysing state space

In order to model synchronous communication between components, transitions
of T'syncn are fired by pair. Further conditions are necessary to fire simultane-
ously a pair of transitions ¢ and ¢’ belonging to Tsy,cn from a state s :

- A(t) = da and \(t') = éa.

- Both t and t' are enabled in s.

As mentioned in the introduction, the compatibility control of components
is made by using the state graph. In order to do this, we adapt the notion of
illegal state for our approach. We use the classical definition [1] where an illegal
state indicates that some service is required by one component but cannot be
offered by the other one.

DEFINITION 10 (Illegal state)

Let s be a state of S(N, My), s is an illegal state if:

- 8 has no successor and contains at least a marked communication place,

- or there is an enabled transition t of Tsynch, with A(t) = la but no enabled
transition t' with A(t') = ?a in s.

140 PNSE’14 — Petri Nets and Software Engineering

The state graph of the marked Petri net shown in Fig. 3 contains no illegal
state, therefore Client and Server can be composed according to the set of rules
&(Client, Server).

EXAMPLE 3

Consider again the example of Fig. 2 and let us omit the dashed arcs. The cor-
responding state graph contains two illegal states. Fig. 4 exhibits a particular
sequence of the state graph, containing the two illegal states (gray states):

1. In (s3s%), transition lupdate is enabled but cannot be fired since transition
?update is not enabled within the state. This means that Client issues an
update request which is not assumed by Server at this state.

2. State (s3sg,exit) has no successor in the state graph and a marked com-
munication place (exit). Such a mark means that Client has sent an exit
request which will not be covered by Server.

'pwd luid ?uid ?pwd lok
(TN ey SN s e ECLCN pry e TGN gy LN g gy

ay

7 ay - — lewit D ?ack N
5336, logout](—[s3sg, exit](—[s3sg3](—[5352, ack]

Fig. 4: A firing sequence

5 Conclusion

Software Adaptation is widely used for adapting incompatible components, viewed
as black boxes. In this paper, we have presented a Petri net construction for
software adaptation at signature and behavioural levels based on mapping rules.
These latter are used to express correspondence between actions of components.
The Petri net construction reflects the structure of component interface au-
tomata to assemble and their corresponding mapping rules. The proposed con-
struction is incremental, e.g. rules can be easily added or replaced. Our approach
allows both synchronous and asynchronous communications, unlike the other ap-
proaches referred in this paper. In our future work, we plane to extend our Petri
net construction to take into account adaptation of components with temporal
constraints.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 141

References

1.

10.

11.

12.

13.

L. Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages
109-120. Press, 2001.

S. Bowers and B. Ludascher. An ontology-driven framework for data transforma-
tion in scientific workflows. DATA INTEGRATION IN THE LIFE SCIENCES,
PROCEEDINGS, 2994:1-16, 2004.

C. Canal, P. Poizat, and G. Salaun. Model-based adaptation of behavioral mis-
matching components. IEEE Transactions on Software Engineering, 34(4):546—
563, 2008.

S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components behaviours
using interface automata. In SEAA’10, 86th Euromicro Conference on Software
Engineering and Advanced Applications, pages 119-122, Lille, France, September
2010. IEEE Computer Society Press.

S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components using interface
automata strengthened by action semantics. In FoVeoos 2010, int. conf. on Formal
Verification of Object-oriented software, pages 7-21, Paris, France, June 2010.

D. C. Craig and W. M. Zuberek. Petri nets in modeling component behavior and
verifying component compatibility. In Int. Workshop on Petri Nets and Software
Engineering, in conjunction with the 28-th Int. Conf. on Applications and Theory
of Petri Nets and Other Models of Concurrency, 2007.

W. Kongdenfha, H.R. Motahari Nezhad, B. Benatallah, F. Casati, and R. Saint-
Paul. Mismatch patterns and adaptation aspects: A foundation for rapid develop-
ment of web service adapters. IEEE Transactions on Services Computing, 2(2):94—
107, 2009.

C.W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131-183, June 1992.
L. Kung-Kiu and W. Zheng. Software component models. IEEE Transactions on
Software Engineering, 33(10):709-724, 2007.

T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

H.R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.
Semi-automated adaptation of service interactions. In WWW, pages 993-1002,
2007.

W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, 31 July 2013. 230 pages; ISBN 978-3-642-33277-7.

Yong Yu, Tong Li, Qing Liu, and Fei Dai. Modeling software component based
on extended colored petri net. In Ran Chen, editor, Intelligent Computing and
Information Science, volume 135 of Communications in Computer and Information
Science, pages 429-434. Springer Berlin Heidelberg, 2011.

142 PNSE’14 — Petri Nets and Software Engineering

Observable Liveness

Jorg Desel! and Goérkem Kiling!+2

! Fakultat fiir Mathematik und Informatik, FernUniversitit in Hagen, Germany
2 Universita degli Studi di Milano-Bicocca, Italy

Abstract. Whereas the traditional liveness property for Petri nets guar-
antees that each transition can always occur again, observable liveness
requires that, from any reachable marking, each observable transition can
be forced to fire by choosing appropriate controllable transitions; hence
it is defined for Petri nets with distinguished observable and control-
lable transitions. We introduce observable liveness and show this new
notion generalizes liveness in the following sense: liveness of a net im-
plies observable liveness, provided the only conflicts that can appear are
between controllable transitions. This assumption refers to applications
where the uncontrollable part models a deterministic machine (or several
deterministic machines), whereas the user of the machine is modeled by
the controllable part and can behave arbitrarily.

1 Introduction

Liveness and boundedness have turned out to be the most prominent behavioral
properties of Petri nets — a Petri net is considered to behave well if it is live and
bounded. This claim is supported by many publications since decades, and in
particular by the nice correspondences between live and bounded behavior of a
Petri net and its structure, see e.g. [4, 11]. Nowadays workflow Petri nets receive
a particular interest, and with them the behavioral soundness property. However,
as shown in [16], soundness of workflow nets is identical to the combination of
liveness and boundedness of the net obtained by addition of a feedback place
(between the final and the initial transition) to a workflow net. This way, these
behavioral properties are also applied to models of processes, that have a start
and an end action.

This paper concentrates on liveness, but looks at yet another scenario: Petri
nets with transitions that can be observable or unobservable (silent transitions),
and can be controllable or not. These nets are inspired by Petri net applications
in control theory [8,2], but can also be seen as a generalization of Petri nets
with silent transitions. We provide a notion of liveness which is tailored for Petri
nets with observable and controllable transitions, or for the systems modeled by
these nets. Observable liveness of a model of a software system (embedded or
not) with a user interface roughly means liveness from the user’s perspective.

The standard definition of liveness for traditional Petri nets reads as follows:

A transition t is live if, for each reachable marking m, there is a
marking m’ reachable from m that enables t. A net is live if all its
transitions are live.

144 PNSE’14 — Petri Nets and Software Engineering

We consider Petri net models of software systems where only some activities
are observable, and only a subset of these can be controlled by a user (like a vend-
ing machine, which has a user interface and an internal behavior). Our liveness
notion applies to such nets, which also have observable transitions and, among
them, controllable ones. This liveness notion still follows the idea that, no matter
which marking m was reached, an occurrence sequence can be constructed which
includes a given transition t. However, in contrast to the traditional definition,

— we only consider observable transitions ¢ (i.e., if a transition cannot be ob-
served then we do not care about it),

— we assume that instead of constructing the entire sequence, we (i.e., the user)
can only control the net by choosing controllable transitions whenever they
are enabled, whereas the net is always free to fire uncontrollable transitions
arbitrarily. In particular, if a controllable transition is in conflict with an
uncontrollable one, the controllable one might fire but cannot be enforced
by the user.

This paper consists of two main parts with two different aims: In the first
part of the paper we motivate observable liveness notion for observable software
system models. The second part concentrates on the special case where the
uncontrollable part of the considered software system behaves deterministically,
that means conflict situation can only occur between two controllable transitions.
We show that liveness implies observable liveness if no uncontrollable part ever
is in conflict with any other transition. This assumption refers to applications
where the uncontrollable part models a deterministic machine, whereas the user
of the machine is modeled by the controllable part and can behave arbitrarily.

The paper is organized as follows. In Section 2, we introduce our setting
and illustrate a simple example. Section 3 is devoted to basic definitions. In
Section 4 , we introduce the notion of observable liveness. Section 5 discusses
some properties of the new notion and relate it with the traditional liveness.
Section 6 is devoted to the case of deterministic uncontrollable behavior. We
finish the paper with conclusions, related work and further ideas.

2 The Setting

When defining observable liveness, several design decisions had to be made. We
had a particular setting of a modeled system in mind, that motivated our choices.
This section aims at explicating this setting and motivating our design decisions.

The generic software system to be modeled consists of a machine (or several
machines), a user interface to this machine, and perhaps of activities and condi-
tions which do not belong to the machine. The user can observe and control all
activities outside the machine, he can neither control nor observe any activities
inside the machine. Concerning the user interface, there are activities that the
user can only observe but not control, whereas other interface activities might
be both observable and controllable.

J. Desel, G. Kiling: Observable Liveness 145

One might argue that instead of activities, only local states of machines are
observable, for example a light which can be on or off. Then, instead of observing
this state, in our setting we observe the activities that cause the changes of the
state. In terms of nets, instead of observing a place, we observe the (occurrences
of) transitions in the pre- or post-set of the place.

Controllable activities can be those not connected to the machine or can be
activities of the interface. Whereas a controllable activity outside the machine is
clearly also observable, one might argue that this is not obvious for controllable
interface activities. In fact, if the activity can be caused by pressing a button,
the user cannot be sure that with every use of this button the activity takes
place. An additional prerequisite is that the activity is enabled by the machine,
whereas buttons can always be pressed. So we implicitly assume that the user
sees whether a controllable transition is enabled or not and can thus distinguish
activities from non-activities caused by buttons.

Assume that a user wants to enforce an observable activity a after some
previous run of the system. Then, depending on what he has observed so far,
he should have a strategy to control activities in such a way that eventually
he can observe a. By translating activities to transitions, the same holds for
the Petri net model. The strategy is formalized by a function that maps an
arbitrary sequence of observable transitions to a set of controllable transitions:
if a sequence was observed, then one of these controllable transitions can be
fired. Since the domain of this function is infinite in general, and its co-domain
finite (theoretically exponential in the number of controllable transitions, but
usually linear), different sequences are mapped to the same set. We assume that
the user can effectively compute this function by using, e.g., only a finite history
or an automata based approach. For generality of our approach, we nevertheless
consider a strategy an arbitrary function as above.

There might be states in which controllable activities and uncontrollable ones
are enabled, i.e., both the machinery and the user can do something. In such a
state, we cannot expect that the user is able to do his controllable activity first.
This means that, in case of competition between activities, the user does not
have control if not only controllable activities are involved.

For an observably live activity, we want that the user can enforce the oc-
currence of this activity. Therefore, we provide an appropriate behavioral model
of the net. Clearly, the user can only enforce any reaction from the machine if
the machine obeys some progress assumption: we do not consider runs in which
an uncontrollable transition is enabled, does not occur, and is not in conflict
with any other occurring transition. Progress is only assumed for controllable
transitions if they are persistently chosen by the response function and moreover
concurrent to uncontrollable ones.

Throughout the paper, a controllable transition is illustrated via a black
filled rectangle, an observable transition is illustrated by a bold rectangle, while
unobservable ones are drawn by not bold rectangles. The incoming and outgoing
arcs which are not connected to any place or transition are used when only a
part of a net is shown.

146

PNSE’14 — Petri Nets and Software Engineering

Po init machine money delivered

choose coffee choose tea

refill tea

Fig. 1. An observably live net which represents a vending machine.

J. Desel, G. Kiling: Observable Liveness 147

The example net shown in Fig. 1 models a vending machine with coffee and
tea options. The user can operate the machine by inserting a coin and using
three buttons (insert coin, choose coffee, choose tea and take money back are
controllable transitions). Using these controllers, the user can take coffee, take
tea or take his money back. The transitions coffee comes out, tea comes out and
money comes out are observable, and the user can always force these transitions
to occur by using the controllable ones. In other words, each of the observable
transitions in the net is observably live and so the entire net is observably live.
In case that there is no more coffee or tea, the machine needs a refill operation.
In this case the user has to wait until the refill operation is done. Regarding
the progress assumption, the refill operation will be done since refill coffee and
refill tea transitions will fire eventually, and they are not in conflict with any
transitions which can disable them. Note that the entire net is not live since the
unobservable part includes a transition which can only fire once (init machine).
However, this behavior does not affect our notion of observable liveness since
the observable transitions can still be forced to fire. Considering such a machine,
observable liveness is a useful notion to express the serviceability of a machine
via an interface. We can generalize this for models of all kinds of software systems
with a user interface. In this case, observable liveness expresses the liveness of a
software system from the user’s point of view.

3 Basic Definitions

An (initially marked) place/transition net N consists of a finite and non-empty
set of places P, a finite and non-empty set of transitions T with PNT = 0, a
set of arcs F' C (P x T) U (T x P) and an initial marking my: P — N. For a
place or transition x, we denote its pre-set by *x = {y € PUT | (y,z) € F}.
Similarly, the post-set of z is denoted by z®* ={y € PUT | (z,y) € F}.

A marking m is an arbitrary mapping m: P — N. It enables a transition ¢
if each place p € *t satisfies m(p) > 0. If it enables ¢ then ¢ can fire, which leads
to the successor marking m’, defined by

m(p)+1 ifpets,pe°t
m/(p) =4 m(p)—1 ifpet,pgt®
m(p) otherwise

We denote this by m RIS
The set of reachable markings of the net N, R(N), is the smallest set of
markings that contains the initial marking mq and satisfies

meR(N) A m 5 m] = m eR(N).

The place/transition net is called bounded if R(N) is finite. Equivalently, it is
bounded if and only if there exists a bound b such that each marking m € R(N)
satisfies for each place p: m(p) <b. It is called 1-bounded if this condition holds
for b=1.

148 PNSE’14 — Petri Nets and Software Engineering

If my 2T mo 2 ms s, my -+, then tytotsty ... is called occurrence
sequence (enabled at marking mq). If an occurrence sequence o is finite, i.e.
o=ty ty...t,, then we write m; — Mpt1-

The place/transition net is live if, for each reachable marking m and each
transition ¢, there exists a marking m’ reachable from m that enables t. Equiv-
alently, it is live if and only if for each transition ¢ and each finite occurrence
sequence o enabled at mg there exists a transition sequence 7 such that o7t is an
occurrence sequence enabled at mg. Note that in order to append two sequences,
the left hand one is supposed to be finite. In turn, when writing o 7 we implicitly
express that o is finite.

Transitions can be observable or non-observable, and they can be controllable
or non-controllable. We denote by O C T the set of observable transitions and
by C' C O the set of controllable ones.

A place/transition net with observable and controllable transitions is called
observable place/transition net N = (P, T, F,mg,0,C). Given an occurrence
sequence o of the place/transition net, its projection & to the observable transi-
tions is called observable occurrence sequence. Conversely, a sequence tq tots ...
of observable transitions is an observable occurrence sequence if and only if
there are finite sequences og,01,09,... of unobservable transitions such that
ooty 0112 09 t3...1s an occurrence sequence.

An infinite occurrence sequence t; to t3... enabled at some marking m is
called weakly unfair w.r.t. some transition ¢ if, for some k € N, t1 to... ¢yt
is enabled at m and, for each j > k, we have *¢; N *¢t = () (after some finite
initial phase, ¢ is persistently enabled and not in structural conflict with any
occurring transition). Notice that this definition is slightly weaker than the usual
definition of weak fairness which only demands that ¢ is persistently enabled. The
occurrence sequence is weakly fair w.r.t. t if it is not weakly unfair w.r.t. ¢. By this
definition, every finite occurrence sequence is weakly fair w.r.t. to all transitions.

There are many different fairness notions for Petri nets (and previously for
other models). Our notion - often also called progress assumption - was first
mentioned in [12]. It is particularly obvious for partially ordered behavior notions
such as occurrence nets and can now be viewed as a standard notion.

4 Observable Liveness

In order to give the definition of observable liveness, we first stick to observ-
able liveness of a single transition, which apparently has to be observable, and
later define observable liveness of observable place/transition nets as observable
liveness of all observable transitions.

So consider a single observable transition ¢ which might be moreover control-
lable or not. If the net reaches from the initial marking mg a marking m by the
occurrence of an arbitrary occurrence sequence og, an agent wants to enforce
transition ¢ by selecting appropriate controllable, enabled transitions. If this is
always (for each reachable marking m) possible, then we call ¢ observably live.

J. Desel, G. Kiling: Observable Liveness 149

From the marking m, the net first proceeds arbitrarily and autonomously,
i.e., some occurrence sequence op without controllable transitions occur. This
sequence can be

a) finite and lead to a deadlock,

b) finite and lead to a marking that enables controllable and uncontrollable
transitions,

¢) finite and lead to a marking that enables only controllable transitions,

d) or infinite.

For the infinite case we demand weakly fair behavior w.r.t. all uncontrollable
transitions, i.e. there is progress in all concurrent parts of the net.

For cases b) and c), the agent fires a controllable transition and then proceeds
as before with a next autonomous sequence o5, and so on. This will lead to either
an infinite sequence o;, or eventually to case a) or case d).

Our liveness notion should express that — in case of observable liveness —
there always is (at least one) controllable transition after any sequence o; in
case ¢). To formalize this, (and to avoid an infinite alternation of V and 3) we
introduce a response function ¢, which delivers a set of possible controllable
transitions as a response of the agent to the sequence observed so far. Notice
that an observed sequence does not determine the reached marking because
unobservable transitions might occur, changing the marking but not effecting
the observed sequence. In turn, different observed sequences might lead to the
same marking.

We call the transition ¢ observably live if, for some such response function,
we eventually observe t in the sequence created this way.

More formally, the definition reads as follows:

Definition 1. Let ¢: O* — 2° be a response function and let mg - m be
an occurrence sequence. We call an occurrence sequence o, enabled at marking
m, @-mazimal if it is either an infinite composition 0 = o1ty 09ta 03t3 ... or a
finite composition 0 = o1ty 02ts . ..okt 1, where k > 0, satisfying the following:

a) All o; are finite and can be empty, u is finite or infinite.

b) For each t; we have t; € p(Gg T1 t1 T ta...T4), .., t; is a response to the
sequence observed so far.

¢) No o; contains a controllable transition (i > 1), and the same holds for .

Only for the second variant:

d) p is weakly fair w.r.t. all non-controllable transitions. p is moreover weakly
fair w.r.t. all controllable transitions t satisfying t ¢ p(Goo’) for only finitely
many prefizes a'ofo.

e) If p is finite then all transitions enabled after o are controllable and do not
belong to p(ao @) (this includes deadlocks).

Lemma 1. Assume that o leads from mq to a marking m and o is a p-maximal

g .
occurrence sequence enabled at m. If o = 01 02 and m ——= my, then oo is a
p-mazimal occurrence sequence enabled at m1.

150 PNSE’14 — Petri Nets and Software Engineering

Proof. The claim follows immediately from the definition of p-maximal occur-
rence sequence. g

Some comments: All g; in Definition 1 are finite and succeeded by a control-
lable transition, chosen by the response function. If we get stuck in a deadlock,
this is the case of a finite yu. We do not expect that after some o; only control-
lable transitions are enabled. Therefore, there might be situations where the user
can fire a controllable transition but also the net can proceed autonomously. If
liveness can only be enforced by passivity of the user in this case, the response
function yields the empty set for the observed sequence.

Fig. 2. Some example nets.

Figures 2.a, 2.b, and 2.c illustrate the weak fairness notion employed in our
definition of p-maximal occurrence sequence.

In the net shown in Fig. 2.a., after the controlled occurrence of ¢; the system
can choose between to and t4. It can even always prefer ¢y, and t4 never occurs.
Only strong fairness would imply that eventually ¢4 can be observed, but our
chosen notion of weak fairness does not. So t4 is not observably live.

In Fig. 2.b., the net of Fig. 2.a. is extended by a concurrent sequence. Our
weak fairness assumption implies that the left branch proceeds even if the right
stays in an infinite loop. So transition ¢3 is observably live.

Figure 2.c. illustrates the difference between our weak fairness and the one
usually used in the literature, e.g. [13]. We do not expect that ts eventually occurs
although it remains enabled at each marking reached after the occurrence of ty4.

J. Desel, G. Kiling: Observable Liveness 151

However, since t5 and tg share the input place ps we do have a conflict here. So
again, t3 is observably live and tg is not.

Pe

Fig. 3. Example nets.

In the net shown in Fig. 3.a, there is a conflict between t3 and t4. In this
situation, even if the response function ¢ tells us to fire ¢4 after t;, we cannot
be sure that t4 will stay enabled since the unobservable transition ¢35 might also
fire. Since we cannot force t4 to fire, ¢5 is not observably live.

Now we define observable liveness as follows:

Definition 2. An observable transition t of an observable place/transition net
is observably live if there is a response function p,: O* — 2¢ such that, for
each mg -2 m, each @ -mazimal occurrence sequence enabled at m contains
an occurrence of t. An observable place/transition net is observably live if all its
observable transitions are observably live.

In this definition, “an occurrence of t" can be replaced by “infinitely many
occurrences of t", as in the definition of traditional liveness.

Theorem 1. An observable transition t of an observable place/transition net is
observably live if and only if there is a response function g,: O* — 2¢ such
that, for each myg 2o, m, each @¢-maximal occurrence sequence enabled at m
contains infinitely many occurrences of t.

Proof. Clearly we only have to prove =, because each occurrence sequence with
infinitely many occurrences of ¢ has at least one t-occurrence.

152 PNSE’14 — Petri Nets and Software Engineering

So assume observable liveness of ¢, i.e., a response function ¢;: O* — 2¢

such that, for each myg 2oy ! , each p;-maximal occurrence sequence enabled
at m’ contains an occurrence of ¢ (notice that we replaced o¢ by o, and m by
m’).

Let mg -2+ m and let o be a p¢-maximal occurrence sequence enabled
at m. We have to show that o contains infinitely many occurrences of t. By
assumption we know that o contains at least one occurrence of t. Let o1 be the
prefix of o that ends after the first occurrence of ¢t and let ¢ = o1 03. Then
mo 297y 4 for some marking m;. This marking m; enables the ¢;-maximal
occurrence sequence oo by Lemma 1. Again using the assumption, oo contains
an occurrence of t.

The arbitrary repetition of this argument yields arbitrarily many occurrences
of ¢t in o, whence this sequence must have infinitely many t-occurrences. O

5 Properties and Relations with Traditional Liveness

In this section, we provide some properties of observable liveness and relations
to traditional liveness.

. g .
Lemma 2. For each response function ¢ and each mg —— m, there is a @-
mazimal occurrence sequence enabled at m.

Proof. In order to construct a p-maximal occurrence sequence, we proceed it-
eratively. Assume that we constructed a finite sequence o', enabled at m, in

accordance with a), b) and c) of Def. 1 and let m 2 m/. If m’ enables an
uncontrollable transition ¢ or a controllable one which is in the current response
set p(7go’), then we append t to o’. If there is more than one such candidate, we
choose the least recently chosen such transition in order to ensure weak fairness.

If this is not possible then all transitions enabled after o’ are controllable and
do not belong to ¢(p0’), whence then o’ is a p-maximal occurrence sequence
by e) of Def. 1. O

Proposition 1. Fach observably live transition t is live.

Proof. Since t is an observably live transition there is a response function ¢; such
that for each mo —2 m, each p;~-maximal occurrence sequence enabled at m
includes t. By Lemma 2 there exists a ¢;-maximal occurrence sequence. This
implies that, for each reachable marking m, there exists an occurrence sequence
which enables ¢, and so t is live. a

Corollary 1. An observably live net is live if all transitions are observable. 0O

Notice that Cor. 1 does not hold without the assumption that all transitions
are observable. The net shown in Fig. 3.b is not live since t3 can never occur,
but it is observably live.

The converse of Prop. 1 does not hold in general. Figure 2.a, if t4 is assumed
to be connected to t1, shows a live net which is not observably live. However, if

J. Desel, G. Kiling: Observable Liveness 153

all transitions are controllable then liveness of ¢ implies its observable liveness,
as shown next:

Proposition 2. If O = C = T then observable liveness of a transition t coin-
cides with its liveness.

Proof. By Prop. 1, we only have to show the implication <.

Assume that ¢ is live. We have to show that there is a response function
i O* — 29 such that, for each my 2% m, each p¢-maximal occurrence
sequence enabled at m contains an occurrence of ¢. Since ¢ is live, there exists
an occurrence sequence o’ enabled at m such that ¢ is enabled after o’.

an/t

Let og o’ t = 0go’t = tytats...tx and mg ——— . We choose any response
function with @ (t1te...t;) = {t;11} for i =0,1,...,k — 1. Since all transitions
are controllable, the unique @;-maximal occurrence sequence consists of only

controllable transitions. The o; (for ¢ = 1,2,3,...) given in Def. 1 are thus
empty sequences, and so there is only one ¢;-maximal occurrence sequence for
each m. O

Corollary 2. If O = C = T, then observable liveness of a net coincides with
liveness of the net. O

Proposition 3. Assume that in an observable net there is an infinite and weakly
fair occurrence sequence o without controllable transitions. Then each observable
transition which does not appear in o infinitely often is not observably live.

Proof. Let mg - m and assume that ¢ is an observably live transition. There
is a response function ¢; such that each ¢;-maximal occurrence sequence enabled
at m contains an occurrence of ¢. So an infinite weakly fair occurrence sequence
without controllable transitions ¢ which is enabled at some marking m’ such

that mg —= m —— m/ -2 has to include ¢ to be observably live. Since
the sequence o does not include any instance of ¢, t cannot be observably live.
O

Corollary 3. If an observable net without controllable transitions has an infinite
and weakly fair occurrence sequence which does not include all the observable
transitions then the net is not observably live. a

6 Deterministic Uncontrollable Behavior

As seen before, a live net is not necessarily observably live. The main reason
is that, for proving liveness, we can always choose an appropriate occurrence
sequence enabling some transition ¢ whereas for observable liveness this choice
is only possible for controllable transitions (which are not in conflict with unob-
servable ones) and the net behaves arbitrarily elsewhere.

In this section, we show that the situation is different if the only choices
to be made are among controllable transitions. This is not an unrealistic set-
ting; the automated part of a system often behaves deterministically (but still
concurrently), whereas the user model might allow for alternatives.

154 PNSE’14 — Petri Nets and Software Engineering

Formally, deterministic behavior is given in terms of the conflict-free property,
to be defined next. Intuitively, a transition is conflict-free if it is never in conflict
with any other transition; if both are enabled then they are enabled concurrently.
Since “never" refers to reachable markings, the definition applies to a net with
an initial marking and its state space and not only to its structure. However,
each two transitions that are ever in conflict necessarily share an input place
which is thus forward branching. With concurrent behavior we mean that two
transitions do not compete for tokens. If a place carries more than one token,
one could argue that two transitions in its post-set still can occur concurrently
(see [17]). We take the stricter view that every two enabled transitions with a
common input place (which can carry one or more tokens) are considered in
conflict and not concurrent.

Definition 3. A Petri net is conflict-free w.r.t. a transition u if, for each reach-
able marking m enabling u, every other transition v enabled at m is concurrent
tou, i.e., *un®v=>0.

Figure 3.c shows a net fragment which is conflict-free w.r.t. all its unob-
servable transitions. Notice that there is concurrency between these transitions.
Notice also that forward branching places are possible, provided every reachable
marking enables at most one output transition of a branching place. The follow-
ing lemma will be used frequently in the sequel. It follows immediately from the
occurrence rule.

Lemma 3. Assume two transitions u and v of a net, both enabled at some
marking m, such that *uN®*v = 0. Then m enables uv as well as vu, and both
sequences lead to the same marking. a

A well-known result for conflict-free nets [10] is given by the following lemma.
We provide a proof for the sake of self-containment, and since our lemma refers
to a single conflict-free transition only.

Lemma 4. If a Petri net is conflict-free w.r.t. a transition u, and some reach-
able marking m enables u as well as a sequence o u where u does not appear in
o, then m also enables the sequence u o, and the occurrences of o u and of u o
lead to the same marking.

Proof. By induction on the length of o.

Base: If ¢ is the empty sequence then nothing has to be shown.

Step: Assume o = v o’. We have u # v because u does not appear in o. By
conflict-freeness w.r.t. u and since m enables both u and v, these transitions are
concurrent. Therefore, and by Lemma 3, m also enables the sequences v u and
vo'u Let m - m'.

The induction hypothesis can be applied to the marking m’, enabling u and
o’ u, yielding the sequence u ¢’ enabled at m’. So v u ¢’ is enabled at m. Again
since v and v are concurrent and by Lemma 3, m also enables u v o/, which is
identical with u o.

J. Desel, G. Kiling: Observable Liveness 155

Since each transition occurs in ¢ u and in u o the same number of times,
and by the occurrence rule, the occurrences of these sequences lead to the same
marking. a

Lemma 5. If a Petri net is conflict-free w.r.t. a transition u, and some reach-
able marking m enables u as well as a sequence o where u does not appear in o,
then m also enables the sequence o u.

Proof. By induction on the length of o.

Base: If o is the empty sequence then nothing has to be shown.

Step: Assume o = v o’. We have u # v because u does not appear in o. By
conflict-freeness w.r.t. u and since m enables both u and v, these transitions are
concurrent. Therefore, and by Lemma 3, m also enables the sequence v u. Let
m — m.

The induction hypothesis can be applied to the marking m’, enabling u and
o', yielding the sequence ¢’ u enabled at m’. So v ¢’ u is enabled at m. We have
v o’ = o, which finishes the proof. O

The following theorem constitutes the main result of this paper. It applies
only to nets where the only possible conflicts occur between controllable tran-
sitions, i.e., to nets which are conflict-free w.r.t. all uncontrollable transitions.
This rules out conflicts between two uncontrollable transitions as well as conflicts
between controllable and uncontrollable transitions.

As a preparation, we need a couple of definitions and lemmas.

Definition 4. An occurrence sequence o enabled at a marking m is called min-
imal towards t, where t is a transition, if o ends with t, contains no other
occurrence of t, and nmo transition in o can be postponed, i.e., 0 = o' t, t does
not occur in o', and o cannot be divided as o = p' u p” for some transition u,
u # t, such that p' y” is enabled at m, too.

A transition u can only occur if its input places carry tokens, and another tran-
sition v might have to occur before because it produces the token consumed by
u. We then call the occurrence of v a causal predecessor of the occurrence of u. A
minimal occurrence sequence towards a transition ¢ contains one occurrence of t,
its causal predecessors, the predecessors of these predecessors etc., and nothing
else. In partially ordered runs, where causal dependence between transition oc-
currences is explicitly modeled by means of a partial order, this corresponds to
a run containing the occurrence of ¢ and all transition occurrences that precede
t.

Definition 5. Given a sequence o, any deletion (i.e, replacement by the empty
sequence) of elements in o yields a subsequence of o. Its complementary se-
quence is the sequence obtained from o by deleting all elements that appear in
the subsequence.

This definition captures the case o = ¢’ ¢” where ¢’ is a subsequence and
o is its complementary sequence (and vice versa), but is more general. For
example, if 0 = t1,ta,...,t2,, the sequence t1,ts,...,ta,_1 is a subsequence,
and to,t4,...ta, its complementary sequence.

156 PNSE’14 — Petri Nets and Software Engineering

Lemma 6. Assume a conflict-free net with a reachable marking m, a transition
t and an occurrence sequence o enabled at m that contains an occurrence of t.
Then there exists a subsequence o’ of o, enabled at m, which is minimal towards
t. Moreover, if 0" is the complementary subsequence, m enables o’ 0" .

Proof. Define p as the prefix of o which ends with the first occurrence of ¢, and
let 7z be the rest of o. Clearly, p is finite.

Assume that p can be divided as p = p/ w /' such that ' p” is enabled at
m and u does not occur in p”’. By Lemma 5, we can shift u behind p”” and thus
obtain the sequence u' " u. Still ¢ occurs only once, being the last transition in
e

If w; is the rightmost transition (transition occurrence, respectively) in p for
which such a division is possible, we obtain from p i the sequence p} pff uy 7.
Let po = pf pf. Now let ug be the rightmost transition with the same property
for the sequence pg and let po = ph us py. The same argument as above yields
the sequence pf uy ug uqfi. Exhaustive repetition of this procedure yields smaller
and smaller sequences p; to be considered and eventually the sequence

/ 1
Mg B Uk Ukg—g -« - UL [

such that no further transition to be postponed can be found in p) pf. So this
sequence is minimal towards ¢. By construction, it is a subsequence of o, and
U Ug—; - .. w1 @ 1S the complementary subsequence. O

Starting with the next lemma, we additionally require 1-boundedness, i.e.,
we assume that no reachable marking assigns more than one token to a place.

Lemma 7. Consider a 1-bounded and conflict-free Petri net with an arbitrary
transition t. All initially enabled occurrence sequences which are minimal towards
t lead to the same marking.

Proof. Consider two occurrence sequences p1 and us, both enabled at the initial
marking, and both minimal towards ¢. We proceed by induction on the length
of puy.

Base: The sequence 1 has only one element if and only if 1 = t. So then ¢
is initially enabled, and hence p; = pus = t.

Step: Assume that t is not initially enabled. We claim that there is an initially
enabled transition « which appears in p; as well as in pso, ie., pg = pj u pf and
to = phHw py. When this claim is proven, we know by conflict-freeness that
there are also initially enabled occurrence sequences u) pff and u pf 4. By the
induction hypothesis applied to the (new initial) marking obtained by firing u
and to the sequences pj pf and pf pf, both sequences lead to the same marking,
and we are finished.

So it remains to prove the claim, that some initially enabled transition occurs
in p1 and in po. We proceed indirectly and assume the contrary.

We again divide pug as uf 4, now such that no transition of u} occurs in
p1 and the first transition in pf, say v, occurs in p;. By assumption, v is not

J. Desel, G. Kiling: Observable Liveness 157

initially enabled. The sequence pf is not empty because both u; and ps contain
t. We divide p; as) pf such that pf begins with the first occurrence of v in p;.

Since v is not enabled initially, some place s € ®v is initially unmarked.
Since v is enabled after) and after p, s carries a token after the occurrence
of p) and after the occurrence of uj. By conflict-freeness and since the sets of
occurring transitions in p} and pf are disjoint, we can also fire both, i.e. u) pb,
from the initial marking. This yields a marking with two tokens on the place s,
contradicting 1-boundedness. a

The proof of the above lemma also shows that all minimal sequences towards
t have the same length, whence these sequences are exactly the sequences with
minimal length containing an occurrence of ¢.

Now we are ready for the main result: liveness of a 1-bounded net implies
observable liveness, provided the only conflict that can appear are between con-
trollable transitions. Although this result might seem obvious at first sight, its
proof is surprisingly involved. The core argument of the proof is that, in a live
Petri net, for each transition ¢, every reachable marking m enables an occurrence
sequence o, that includes an occurrence of ¢. If ¢ is observable, then observable
liveness requires that we can force ¢t to occur by only providing a suitable re-
sponse function ¢; which controls the behavior whenever there is a conflict. So
an obvious idea is to define ¢; in such a way that always the next transition
in o, is responded, if this transition is controllable. However, p; depends not
on markings, but on observed sequences. That means, instead of ¢ the user only
knows the sequence of observable transitions of the initially enabled occurrence
sequence oq that leads to m. For this observed sequence, there might exist many
sequences including unobservable transitions, and hence many different reached
markings m, and so also many different occurrence sequences o,,. Instead of the
unknown occurrence sequence oy we consider the set of all occurrence sequences
Lo satisfying g = 9. Among these sequences we concentrate on the minimal
ones. We will show that, if the net is 1-bounded, all these minimal occurrence
sequences lead to the same marking which we call mz;. We will moreover show
that m, the marking reached by the occurrence of og is reachable from mz;.
However, these results only hold for conflict-free nets, and our considered net is
not necessarily conflict-free. Since until now we only consider the behavior given
by the observed transitions of o, since all controllable transitions are observable
and since conflicts only appear among controllable transitions, we can transform
the considered net into a conflict-free one, without spoiling the relevant behavior.
By liveness (of the original net), mz; enables an occurrence sequence o contain-
ing t. First, we look at the first observable transition in ¢. Since there are no
conflicts, every occurrence sequence starting at mz; possessing a weak fairness
assumption eventually has to enable u. If u is controllable, it might be in conflict
with some other transition. In this case we set ¢:(dg = {u}) so that, if u is con-
trollable or not, also u eventually occurs. Fortunately, the distance between this
marking and a marking enabling ¢ is smaller than the distance between m and a
marking enabling ¢, where distance is defined in terms of the number of needed
observable transitions to reach one marking from the other. So we can repeat the

158 PNSE’14 — Petri Nets and Software Engineering

above considerations, this way defining y; on the fly, until we eventually force ¢
to occur.

Theorem 2. If a 1-bounded observable Petri net, which is conflict-free w.r.t. all
uncontrollable transitions, is live, then it is observably live.

Proof. Consider a 1-bounded live observable Petri net which is conflict-free w.r.t.
all uncontrollable transitions. We have to prove observable liveness, i.e., observ-
able liveness of each observable transition . So let ¢ be an observable transition.
To show observable liveness of ¢, we have to provide a response function ¢; such
that, for each mg —% m, each y;-maximal occurrence sequence o enabled at
m eventually contains ¢.

The considered net is only partially conflict-free, because there might be con-
flicts between controllable transitions. To be able to apply the previous lemmas,
we make the net conflict-free for a given initially enabled sequence pg:

For each observable transition v we add a fresh place s,, and an arc from
Sy to v. Then v can only occur when s, is marked. Now consider the sequence
Tio = V103 . .. V. For each transition v; in this sequence except the last (vy) we
add an arc from v; to s,, ,. The place s,, gets an initial token, the other new
places remain unmarked initially.

By construction, every reachable marking of this extended net marks at most
one of the new places. Since each observable transition has such a place in its pre-
set, always at most one observable transition is enabled. Since conflicts are only
possible between controllable transitions and since each controllable transition is
observable, thus no conflict can appear. Therefore, this extended net is conflict-
free. By construction, the new initial marking enables p(in the extended net.

The following claim also refers to an arbitrary initially enabled occurrence
sequence g and to the net extended with the places as mentioned above. It
generalizes Lemma 7:

Claim: All minimal occurrence sequences p enabled at mg which satisfy it =
Tio lead to the same marking.

Proof of Claim: by induction on the length of 1ig.

Base: If Tig is empty then the only minimal sequence u satisfying i = [is
the empty sequence.

Step: Let u1, po be minimal occurrence sequences enabled at mg which satisfy
1 = pi2 = 0o.

Let g1 = uy ug ... up and let u; be the first observable transition in u.
Similarly, let ps = v1 v2 ... v;. Then the first observable transition v; in fo
satisfies u; = v;.

We apply Lemma 6 to both sequences and thus obtain minimal subsequences
towards u; (vj, respectively). By Lemma 7, both subsequences lead to the same
marking. The induction hypothesis applies to the two complementary sequences.
This ends the proof of the claim.

The unique (for a given o) marking reached by a minimal sequence p sat-
isfying 1t = T1o will be called m,,, in the sequel. Abusing notation, we call the
same marking of the original net also m,,, ignoring the additional places.

J. Desel, G. Kiling: Observable Liveness 159

In the following, it will be useful to assume an arbitrary fixed total order
< on the set of observable transitions, i.e., if v and v are distinct observable
transitions then either v < v or v < u.

By liveness of the original net, for each initially enabled occurrence sequence
to there exists (at least one) occurrence sequence g ending with ¢ which is
enabled by m,,, (in the original net). We assume that jx(, has a minimal number
of observable transitions among all sequences with the above property, i.e., ,176
has minimal length. Among these minimal sequences we assume moreover that
the first observable transition in g is minimal w.r.t. <.

Now we define ¢; as follows: For each initially enabled occurrence sequence
u, we set (i) = {u} if i/ begins with u and u is controllable, and ¢; (1) = 0 if
4/ begins with u and u is not controllable. Notice that x/ contains ¢ as its last
transition and is hence not empty.

We now come back to the core of this proof and consider an arbitrary initially
enabled occurrence sequence oy which leads to a marking m. We have to show
that each p;-maximal occurrence sequence enabled at m eventually contains ¢.

We consider a conflict-free variant of the net as before, but instead of consid-
ering only the sequence oy we add places according to the sequence o p:(0p),
i.e., we allow to fire the observable transition ¢:(og) after oy.

We proceed by induction on the number of observable transitions in o, (which
is defined above as an occurrence sequence ending with ¢ enabled at m,, with a
minimal number of observable transitions).

Base: Assume that UT) = t. Then there is an occurrence sequence o{;, enabled
at m,, which eventually contains ¢ (and no other observable transition). Since
m is reachable from m,, by Lemma 6, for each ¢;-maximal occurrence sequence
enabled at m there is a suitable prefix yielding a ¢;-maximal occurrence sequence
from m,,. By conflict-freeness of the extended net and by weak fairness, each
p¢-maximal occurrence sequence enabled at m,, eventually contains ¢. Hence
this holds in particular for those passing through m.

Step: Assume that ?6 = uj Us...u t, k > 1. Arguing as in the Base case,
there is an occurrence sequence oy, enabled at m,, which eventually contains u;
(and no other observable transition). Since m is reachable from m,, by Lemma
6, for each ¢;-maximal occurrence sequence enabled at m there is a suitable
prefix yielding a ¢;-maximal occurrence sequence from m,,. By conflict-freeness
of the extended net and by weak fairness, each p;-maximal occurrence sequence
enabled at m,, eventually contains u;. Hence this holds in particular for those
passing m. So each ¢s;-maximal occurrence sequence o enabled at m can be
divided as ojujos where o9 is again ¢s-maximal, and &3 is shorter than . By
the induction hypothesis, o9 contains ¢, and therefore so does o. a

In Fig. 4, we see one net with a conflict and a conflict-free net. The net
shown in Fig. 4.a includes a conflict between a controllable transition and an
uncontrollable transition (which is also unobservable). Although the net is live,
since we cannot force t; to fire, both ¢; and t3 are not observably live and so the
net is not observably live. When the conflict in Fig. 4.a is resolved, we get the
net shown in Fig. 4.b which is both live and observably live.

160 PNSE’14 — Petri Nets and Software Engineering

Fig. 4. a: a net with a conflict, b: a conflict-free net, c: a net which is conflict-free
w.r.t. its uncontrollable transitions.

The net shown in Fig. 4.c is conflict-free w.r.t. all its uncontrollable tran-
sitions. Notice that there is a conflict between two controllable transitions t4
and t5. We can choose the related controllable transition in order to observe the
occurrence of any observable transitions. The only choice is ours to make, the
uncontrollable part of the machine behaves deterministically. This net is both
live and observably live.

7 Conclusion and Related Work

Petri nets are widely used in software engineering for modeling and verifying
software systems [3]. In this work, we provide a novel liveness notion which
expresses the serviceability of a software system via an interface.

We considered a variant of Petri nets with observable transitions, where an
observable transition can also be controllable. For further information about
controllability and observability in Petri nets and using Petri nets in control
theory, see [2,15].

In analogy to the usual definition of liveness of a Petri net, we provided
a notion for observable liveness, which roughly means that a user can always
enforce the occurrence of any observable transition, only by stimulating the net
by choosing appropriate enabled controllable transition. Therefore it is necessary
to assume that also the uncontrollable part of a net proceeds, i.e., we assume

J. Desel, G. Kiling: Observable Liveness 161

that the net behaves weakly fair. A similar notion, T'-liveness, yet for different
motivations, is represented in [9]. One of the main differences is that only the
fully controllable and observable nets are considered.

In general, liveness does not imply observable liveness and neither the op-
posite direction holds. This paper proves that for 1-bounded Petri nets with
transitions that can be observable or additionally controllable, liveness implies
observable liveness, where the latter means that control can force every transi-
tion to fire eventually from an arbitrary reachable marking — provided the net
model behaves deterministically in its uncontrollable part. This control can only
select enabled controllable transitions and is based only on the sequence of tran-
sitions observed so far. This way the result generalizes the obvious observation,
that in a fully deterministic net a transition is live if and only if it eventually
fires.

A future consideration refers to possible generalizations of our result. It
clearly still holds when there is some limited nondeterminism in the uncon-
trolled part. For example, if two alternative uncontrollable transitions cause the
same marking transformation, the result is not spoiled. More generally, we aim
at defining an equivalence notion on nets, based on the respective observed be-
havior, which preserves observable liveness. Reduction rules, as defined e.g. in
[1], [6] and [4] but also in many other papers, could be applied to the uncon-
trollable part leading to simpler but equivalent nets. However, there are obvious
additional rules. For example, a rule that deletes a dead transition is sound w.r.t.
the equivalence because dead uncontrollable transitions do not contribute to the
observable liveness or non-liveness of the considered net.

As a future work, we plan to consider an automata approach for the im-
plementation of the response function. The domain of the response function is
defined infinite. In order to decide which controllable transitions can be fired
next, an arbitrary history of observed transitions has to be considered. Often, a
finite amount of the history is enough for this decision. If this is the case, an au-
tomata based approach can be used for the realization of the response function:
the response then only depends on a state (of finitely many) of this automaton.

Concerning behavior, each run has an alternation between free choices of the
machine (where in analysis all possibilities must be considered) and particular
choices of the user. Therefore, describing the behavior with AND /OR-trees seems
promising, maybe in combination with unfolding approaches. The partial order
view would have obvious advantages to capture the progress assumption (that
we called weak fairness) in a natural way [5, 14].

A final remark concerns the relation to Temporal Logics. Since liveness and all
reachability questions in traditional Petri nets use existential quantification on
paths (of the reachability graph), and therefore require Branching Time concepts,
our approach explicates reasons for desired activities, i.e., transition occurrences.
More precisely, as in the discussion of liveness in this paper, we distinguish
uncontrollable alternatives and controllable choices, to be able to express that a
certain activity (of a user) leads to the eventual occurrence of an event, no matter
how the uncontrollable activities behave (but assuming they do not refuse work

162 PNSE’14 — Petri Nets and Software Engineering

at all). This is clearly a Linear Time property. So, very roughly speaking, we
translate Branching Time properties to Linear Time properties, and at the same
time add details about controllability and observability to the system model.
Future work aims at these transformations not only in the context of liveness
properties but for arbitrary properties expressed by logical formulae. A related
work has been done by Haddad et al. in [7].

Acknowledgements

The authors thank to Lucia Pomello and Luca Bernardinello for their valuable
comments. This work was partially supported by MIUR and by MIUR - PRIN
2010/2011 grant ‘Automi e Linguaggi Formali: Aspetti Matematici e Applica-
tivi’, code H41J12000190001.

References

1. Gérard Berthelot. Transformations and decompositions of nets. In Wilfried Brauer,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume
254 of Lecture Notes in Computer Science, pages 359-376. Springer, 1986.

2. Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

3. Giovanni Denaro and Mauro Pezzé. Petri nets and software engineering. In Jorg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency
and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 439—466.
Springer Berlin Heidelberg, 2004.

4. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge tracts in theoretical
computer science. Cambridge University Press, 1995.

5. Jorg Desel, Hans-Michael Hanisch, Gabriel Juhas, Robert Lorenz, and Christian
Neumair. A guide to modelling and control with modules of signal nets. In Hartmut
Ehrig, Werner Damm, Jorg Desel, Martin Grofse-Rhode, Wolfgang Reif, Eckehard
Schnieder, and Engelbert Westkédmper, editors, SoftSpez Final Report, volume 3147
of Lecture Notes in Computer Science, pages 270-300. Springer, 2004.

6. Serge Haddad. A reduction theory for coloured nets. In Grzegorz Rozenberg,
editor, European Workshop on Applications and Theory in Petri Nets, volume 424
of Lecture Notes in Computer Science, pages 209—-235. Springer, 1988.

7. Serge Haddad, Rolf Hennicker, and MikaelH. Mgller. Specification of asynchronous
component systems with modal i/o-petri nets. In Martin Abadi and Alberto
Lluch Lafuente, editors, Trustworthy Global Computing, Lecture Notes in Com-
puter Science, pages 219-234. Springer International Publishing, 2014.

8. Lawrence E. Holloway, Bruce H. Krogh, and Alessandro Giua. A survey of petri net
methods for controlled discrete event systems. Discrete Event Dynamic Systems,
7(2):151-190, 1997.

9. Marian V. Iordache and Panos J. Antsaklis. Design of t-liveness enforcing super-
visors in petri nets. IEEE Trans. Automat. Contr., 48(11):1962-1974, 2003.

10. L. H. Landweber and E. L. Robertson. Properties of conflict-free and persistent
petri nets. J. ACM, 25(3):352-364, July 1978.

11. T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEFE, volume 77, pages 541-580, April 1989.

12.

13.

14.

15.

16.

17.

J. Desel, G. Kiling: Observable Liveness 163

Wolfgang Reisig. Partial order semantics versus interleaving semantics for csp-like
languages and its impact on fairness. In Proceedings of the 11th Colloguium on
Automata, Languages and Programming, pages 403—413, London, UK, UK, 1984.
Springer-Verlag.

Wolfgang Reisig. Elements of distributed algorithms: modeling and analysis with
Petri nets. Springer, 1998.

Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, 2013.

Manuel Silva. Half a century after carl adam petri’s ph.d. thesis: A perspective on
the field. Annual Reviews in Control, 37(2):191 — 219, 2013.

Wil M. P. van der Aalst. The application of petri nets to workflow management.
Journal of Clircuits, Systems, and Computers, 8(1):21-66, 1998.

Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. On causal seman-
tics of petri nets. In Joost-Pieter Katoen and Barbara Konig, editors, CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 43—59. Springer, 2011.

164 PNSE’14 — Petri Nets and Software Engineering

Real-Time Property Specific Reduction for Time

Petri Net
Ning Ge Marc Pantel
LAAS-CNRS University of Toulouse, IRIT-CNRS
7 Avenue du Colonel Roche, Toulouse 2 Rue Charles Camichel, Toulouse
Ning.Ge@laas.fr Marc.Pantel@enseeiht.fr

Abstract. This paper presents a real-time property specific reduction
approach for Time Petri Net (TPN). It divides TPN models into sub-nets
of smaller size, and constructs an abstraction of reducible ones, which
exhibits the same property specific behavior, but has less transitions and
states. This directly reduces the amount of computation needed to gen-
erate the whole state space. This method adapts well to the verification
of real-time properties in asynchronous systems. It should be possible to
apply similar methods to other families of properties.

Keywords: Real-time property specific reduction, Time Petri net

1 Introduction

The key issue that prevents a wide application of model checking in the industry
is the scalability with respect to the size of the target system. A realistic sys-
tem usually has thousands and even millions of states and transitions. Although
a huge part of impossible firing sequences of transitions are eliminated during
the building of system’s behavior, the interleaving of all others is still a very
large number that will easily lead to combinatorial state space explosion. Clas-
sic verification methodologies usually encounter scalability issues very quickly
along with the growth of system scale, because they follow an implicit purpose:
many different kind of properties will be assessed relying on the same state space
graph (reachability graph). Indeed, once the reachability graph has been gen-
erated, it can be reused to verify different kinds of properties, just by revising
the assessed logic formulas. This consideration requires to build the reachability
graph preserving precise and sufficient information for the assessment of prop-
erties. The existing state space reduction methods, partial order reduction [1,
2], compositional reasoning [3, 4], symmetry [5, 6], abstraction techniques [7], on-
the-fly model checking [8, 9], etc., usually follow the same philosophy to produce
a complete state space that preserves the mandatory semantics. These generic
reduction methods have effectively improved the efficiency of model checking
techniques. But their improvement is becoming more and more difficult. We
thus might put aside the universality of the semantics expressed in the state
space graph, and take into account property specific reduction methods.

This work proposes a real-time property specific state space reduction ap-
proach for Time Petri Net (TPN). It divides the TPN model into sub-nets of

166 PNSE’14 — Petri Nets and Software Engineering

smaller size, and constructs an abstraction of reducible sub-nets, which exhibit
the same property specific behavior, but has less transitions and states. The
real-time property specific behavior (called real-time behavior for short in the
following parts) of TPN sub-nets is an abstraction of the whole state-transition
traces that only preserves real-time behaviors from the viewpoint of observa-
tions. This method adapts well to the verification of real-time properties in
asynchronous systems. It could be possible to apply similar methods to other
families of properties.

This paper is organized as follows: Section 2 presents some related works;
Section 3 introduces real-time properties and Time Petri Net; Section 4 gives
an overview of property specific reduction methods; Section 5 defines two real-
time behavior regularities for this work; Section 6 details the proposed reduction
method; Section 7 provides experimental results; Section 8 discusses the behavior
coverage issue; Section 9 gives some concluding remarks.

2 Related Works

Several existing works [10-13] defined reducible sub-net patterns for Petri nets,
Time Petri nets or Colored Petri nets, based on the idea of fusing redundant
places and transitions. They provide in fact simple behavior equivalent patterns.
The state space reduced by these patterns is rather limited.

The idea of our approach is similar to the partial order reduction [14, 2] and
the state space abstraction techniques applied in the TINA toolset.

The partial order reduction is usually used in asynchronous concurrent sys-
tems, where most of the activities in different processes are performed indepen-
dently, without a global synchronization. Its main idea is to construct a reduced
state class graph by analyzing the dependencies between the transitions and ex-
ploiting the commutativity of concurrently executed transitions, which result in
the same state when executed in different orders. A set of non-reducible transi-
tions are preserved in the reduced state class graph. The reduced behavior is a
subset of the behavior of the full state class graph. Compared to the partial order
reduction, the proposed property specific reduction exploits the commutativity
of TPN sub-nets, which result in the same property specific behavior.

The TINA toolset provides various state space abstractions for TPN when gen-
erating state class graphs, following the techniques proposed in [15, 9]. Depending
on the abstraction options, the construction can preserve the traces required by
the verification of markings, states, LTL, or ct1l* properties. This work relies on
the state class graph preserving markings to verify the real-time properties in
TPN. Even with this highest abstraction, the state space still rapidly increases
along with system scale. Therefore, more abstract state class graphs dedicated
to one type of properties (in our case real-time properties) is needed.

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 167

3 Preliminaries

3.1 Time Petri Net

Time Petri nets [16] extends Petri Nets with timing constraints on the firing of
transitions. Here we use the formal definition of TPN from [17] to explain its
syntax and semantics.

Definition 1 (Time Petri Net). A Time Petri Net (TPN) T is a tuple
(P, T, *(.),(.)*, Mo, (a, B)), where:

— P ={p1,p2,....,Dm} 15 a finite set of places;

— T = {t1,ta,...,t,} is a finite set of transitions;

*(.) € (NP)T s the backward incidence mapping;

(.)* € (NPYT s the forward incidence mapping;

— My € NP is the initial marking;

a € (Qs0)T and B € (Qs0 U 00)T are respectively the earliest and latest
firing time constraints for transitions.

Following the definition of enabledness in [18], a transition ¢; is enabled in a
marking M iff M > *(¢;) and a(t;) < v; < B(¢;) (v; is the elapsed time since
t; was last enabled). There exist a global synchronized clock in the whole TPN,
and «(t;) and B(t;) correspond to the local clock of ¢;. The local clock of each
transition is reset to zero once the transition becomes enabled. The predicate
1 Enabled(ty, M, t;) in the following equation is satisfied if ¢ is enabled by the
firing of transition ¢; from marking M, and false otherwise.

T Enabled(te, M, t:) = (M—"°(t:)+(t:)* > *(tu))A((M="°(t:) < *(tx))V (tx = t:)) (1)

Time Petri Net is widely used to formally capture the temporal behavior of
concurrent real-time systems due to its easy-to-understand graphical notation
and the available analysis tools, such as TINA, INA, Roméo, etc.

3.2 Real-Time Property Verification

The safety and reliability of real-time systems strongly depend on the satisfaction
of its real-time requirements, in both qualitative and quantitative aspects.

Dwyer et al. initially proposed qualitative temporal property patterns for
finite-state verification in [19]. Konrad created in [20] mappings of quantitative
requirements into timed logics MTL, TCTL, and RTGIL, and defined a pattern tem-
plate to ease the reuse. From the viewpoint of property verification, the real-time
requirements expressed by Dwyer’s and Konrad’s patterns are not atomic. We
thus defined a minimal set of atomic patterns, which allows to specify the same
time requirements as Dwyer’s and Konrad’s patterns do, to ease the property
verification based on observers. We have defined 12 event-based and 4 state-based
observers and verified real-time requirements using the reachability assertions.
Some early results about the observer-based verification approach are presented
in [21,22].

168 PNSE’14 — Petri Nets and Software Engineering

4 Approach Overview

Let’s first see an example benefiting from property specific reduction method.

Ezample 1 (Example of Property Specific Reduction). When generating the
reachability graph preserving markings for the TPN model in Fig. 1 by TINA,
it contains 177 states and 365 transitions. This system is identified as two
sub-nets A and B: A is the structure in dotted box, and B is the other parts. The
transition t4 is the only portal transition between A and B. From the viewpoint
of A through t4, A does not know the inner structure and inner behavior of B,
only two informations are observable: how many times t4 will be fired and the
time range for each firing occurrence of 4.

Figure 1. Example of Property Specific Reduction

We provide these informations based on the real-time property verification
method presented in the previous section. t4 is fired infinitely. The time ranges
for each firing occurrence are shown in Table 1. For each firing occurrence n
(n € N) of t4, the time range [t7", ™| is [5 + 17(n — 1),10 + 69(n — 1)].
The behavior regularity in this case is that, except the first occurrence, the time
difference between current occurrence and the previous one is always in [17, 69].

A sub-net B’ conforming to this regular pattern is constructed to replace
original sub-net B, as shown in Fig. 2. Sub-net A is kept as before. The reacha-
bility graph of the reduced TPN only contains 3 states and 3 transitions, but
exhibits the same real-time behavior as before from the viewpoint of A.

To summarize the main objective of this work from the above example, we
aim to find the regularity of the real-time behavior for the TPN sub-nets from
the viewpoint of observations. As we only observe TPN transitions, the real-time
behavior from the viewpoint of observed transitions concerns both the firing
occurrence times and the time range of each firing occurrence. A reducible sub-
net must be independent of its surrounding behavioral context. It means that

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 169

lOccurrence‘ Time [¢7%", t77] ‘Time Diff [¢7**" — t2°7, t7°9° — tfﬁ’lf”]‘
0 [0, 0] 5
1 [5, 10] [5, 10]
2 [22, 79] [17, 69]
3 30, 148] [17, 69]
n [64+17(n-1), 10+ 69(n-1)] [17, 69]

Table 1. Real-Time Behavior

Figure 2. Example Result of Behavioral Equivalence

whether it is "knocked out" from the system or not, it will exhibit exactly the
same behavior whenever it is measured, in terms of occurrence times of the portal
transition and its time range of each firing occurrence.

An overview of the approach is illustrated in Fig. 3. First, some reducible
sub-nets like A, B, and C are identified from the whole TPN model using the
Identification functions. These sub-nets contain either none incoming transition
and one unique outgoing transition such as A, denoted as one-way-out pattern; or
one incoming and one outgoing transitions such as B and C, denoted as generic
pattern. The regularity of real-time behaviors for each reducible sub-nets A, B
and C are searched using Reduction functions relying on observer-based property
verification method. If the regularity is founded, reduced sub-nets (A’, B’, and
(") are constructed to replace the original ones after their soundness is assessed
by the Refinement functions, which also rely on the observer-based property
verification method. As the one-way-out pattern and the generic pattern rely on
different identification functions but similar reduction and refinement functions,
for the page limit, we only develop our discussion based on the one-way-out
pattern.

5 Regularity of Real-Time Behavior

The regularity of real-time behavior depends on the characteristics of a system.
Fig. 4 illustrates two possible regularities of real-time behavior from the view-
point of observed transitions. The TPN in Fig.4 (a) has 3 sub-nets: A, B and C.
A (resp. B) has a unique portal transition T4 (resp. Tp) to C, and produces
tokens via T4 (resp. Tg) periodically or sporadically. From the viewpoint of C,

170 PNSE’14 — Petri Nets and Software Engineering

Figure 3. Overview of Behavior Equivalence Approach

regardless the complex inner behaviors of the A and B, they can be seen as single
transitions that may fire regularly under a pattern to feed C by tokens. There
exists thus an opportunity to abstract and redefine this regularity to a reduced
TPN A’ (resp. B’) that may contains less states and transitions than the original
one.

A B'
A TAl [tl’tz] i\ [ti,tj]
vd
¢ - [t3’t4] g/z C <= <tPLtCL
e i
B N
| P
[t]
m’n [X'y
(a) (b)

Figure 4. Reduction pattern

When the observation is performed on a TPN transition, the regularity of
its firing occurrence is either finite or infinite. The time range of each firing
occurrence can be measured using observers if the time ranges are bounded.

Fig. 4 (b) shows two kinds of possible regularity. Assume that we observe the
firing time of transitions T4 and T'g for each firing occurrence. The occurrence
of Ty/Ts can be either finite (A) or infinite (B). An infinity observer can be
added on a transition to check its infinity. Each occurrence T; has a bounded
time range [t ¢7%%]. These ranges are derived by adding BCET (Best Case
Execution Time) and WCET (Worst Case Execution Time) observers on T4 and
Tp.

Finite Firing Occurrence If the occurrence is finite, the sub-net A can be
represented by a finite sequential section of transitions Ty, = {I;} (i € N)

with adapted time range |T;.min,T;.maxz|, where T;.min = t7" — ¢ and

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 171

Ti.max = "9 — 1% and ¢77" = ¢79® = (. It is possible that the regularity
of A contains several control modes that lead to several branches with finite
sequential transitions.

Infinite Firing Occurrence If the occurrence is infinite, as we focus on finite-
state systems, the states in sub-net B must be finite. In other words, there must
exist a repeating pattern in B. Depending on system’s behavior, there are several
possible repeating patterns, such as single loop pattern, nested loop pattern, etc.
In this paper, we only discuss one of them: the pattern that is composed of an
eventual finite sequential section of transitions Ty, = {73} (i € N) and a loop
section of transitions Tjoop = {7} (j € N). The other patterns are under study.
Therefore, for now, if the system does not behave the infinite regularity with an
eventual sequential section and a loop section, it is considered as non-reducible.

6 Real-Time Property Specific Reduction

The property specific state space reduction method follows three steps (func-
tions): identification, reduction and refinement, which rely on the real-time prop-
erty specification and observer-based verification approaches presented in [21,
22]. This section details the algorithms for the above functions for the one-way-
out pattern.

6.1 Identification Function for One-Way-Out Pattern
We first define a symbolic system to ease the discussion:

— t* and ¢~ for a given transition ¢, represent respectively the outgoing and
incoming arcs of t.

— pT and p~: for a given place p, represent respectively the outgoing and
incoming arcs of p.

— TEW) and PEWY): for a given TPN N, represent respectively the sets of re-
ducible transitions and places.

We distinguish the reducible and non-reducible TPN structure. Non-reducible
elements include those structures directly associated with properties, including
observer structures, structures directly linked to observers and places/transitions
referred to by reachability assertions. The other parts are considered as reducible.

Before performing property specific reduction, some property-irrelevant
structures can be directly removed from the reducible net. They are the struc-
tures that have causality to the observers. The exact causality can be measured
using the reachability graph of the whole system. The paradox exists here: if
the whole reachability graph can be generated, we may not need any reduc-
tion method. Therefore, to ensure the safety of the removal, we rely on the
dependency analysis in TPN as a over-approximation. The detailed dependency
algorithm is trivial thus will not be presented here. Now assume the set of T#()
and PE(V) are available after the removal.

172 PNSE’14 — Petri Nets and Software Engineering

Identification function F(N) = <A, T,,;> identifies, for a given TPN N, the
enclosed sub-net A that could be possibly reduced (necessary condition), and
the unique portal outgoing transition Tp,;:

— A is a connected graph, AC N, Tt € A
—Vpe A, (pe PR A (pt Cc A)A(p~ C A)
—Vte A (te TEM) A (- C A)

— (Towt € A) N (TS, NAFD)

6.2 Reduction Function

Reduction function G(A4,t) = <Ng, N1 > extracts, for a given sub-net A and
the outgoing portal transition ¢, the behavioral equivalent sequential section Ng
for the finite cases, or an eventual sequential section Ng and the loop section Ny,
for the infinite cases. It first checks the infinity of ¢ in sub-net A using an infinity
observer. In both cases, the bounding time range [t", $9%] is measured using
predefined BCET and WCET observers for the i firing occurrence of ¢.

Building Sequential Section In the finite case, there is only a sequential
section Ng. The set of sequential transitions Tseq = {T;} (i € N) in Ng is built
using [t/ ¢me?]. Each transition T; in Tseq is associated with a time range
[T;.min, T;.maz|. The algorithm for building Ng from A using the transition ¢ is
described in Algo. 1. Initially, t7*" and t'* are set as 0. Ng starts from an initial
place with one token. Whether ¢ has occurred is checked using tHasOcc (i)
function relying on an occurrence observer. For each occurrence (i) of fired ¢,
a pair of BCET and WCET observers are added to ¢ in the sub-net A to compute
the ¢! and t7%*. Then the time range |T;.min, T;.max| is associated to the
transition T;. T; is added in Ng, and an associated new place without token is
also added in Ng.

Data: A,t

Result: Ng

tmin =0, ¢t =0 ;

Ns.add(new Place(1)) ;

it=o0;

while tHasOcc(i++) do
1M .= get0ccBCET(A,t,1) ;
ti"*" ;= getOccWCET(A,t,1) ;
T,.min = £ — ¢min
T;.mazx = t7°*° — ;29"
Ng.add(T;, new Place(0)) ;

end

Algorithm 1: Building Sequential Section

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 173

Building Loop Section In the infinite case, the key issue is to identify the
firing occurrence of ¢t that divides the sequential section Ng and the loop section
Np. The Algo. 2 is proposed to build the Ng and Ny, sections by searching for the
loop starting transition (loopStartIndex) and the length of loop (loopLength).

Data: A, t,occThreshold,loopT hreshold
Result: Ng, N
t(r)nin — O, tana:c =0 ;
Ng.add(new Place(1)) ;
occ :=0;
while occ++ < occThreshold do
M :— get0ccBCET (A,t,0cc); 7% := getOccWCET(A,t,0cc) ;
for loopStartindex = 0; loopStartIndex < occ; loopStartindex ++ do
for loopLength = 1; loopLength < occ - loopStartIndex; loopLength +-+
do
match : = 0 ;
for index = loopStartIndex; index < occ - loopLength; index++ do
if isSame(<tiyidee tindes >
<t%ZlZz+loopLength7tm?liz+looplﬁngth>) then
‘ match++ ;
end
else break;
end
if match > loop Threshold then
for k = 1; k < loopStartindex; k++ do

T.man = 7™ — 70 Ty omax = 7% — 797
Ngs.add(Ty, new Place(0)) ;

end

for k = loopStartindex; k < loopStartindexr + loopLength; k++

do
T.min = 7" — 70 Ty omax = 7% — 77
Nr.add (T}, new Place(0)) ;
Np.connect(lastPlace, TioopStartindes) ;

end
return ;
end
end
end

end
Algorithm 2: Building Loop Section

As the firing occurrence of ¢ is infinite, an occurrence bound value is pre-
defined as occThreshold to stop the algorithm. As the Identification function
F(N) uses necessary conditions, the identified sub-net A is considered as non-
reducible if the loop section cannot be found using occT hreshold. Another bound
value loopT hreshold judges whether the loopStartIndex and the loopLength are

174 PNSE’14 — Petri Nets and Software Engineering

found. If the loop pattern holds for loopThreshold times, it is considered that
this division of Ng and Ny, is statistically correct. It is obvious that no matter
how big the loopT hreshold is, the assurance cannot reach 100%, because the
loop execution is infinite. In order to make sure that the reduced net refines
exactly the same behavior as before, a pre-check (refinement function) must be
performed before accepting the reduced structure.

6.3 Refinement Function

The refinement function verifies the behavioral equivalence between the reduced
sub-net and the original one. Fig. 5 shows the principle of this function: com-
paring the time range of each firing occurrence between the nets B and B’. It is
realized by adding time interval observers between the transition T in B and
the transitions T; in B’. Although the firing occurrence is infinite, under the
repeating pattern, the number of T; is finite. If the refinement fails, it means
the system does not fit the behavior regularity, and thus the reduction method
cannot be applied.

fffffff Tl
T occl
B occ2 | observer ‘

[tp,tq]

i check ﬁﬁ

occi :
e O
¢ [tety]

Ti

Figure 5. Refinement Function

It is possible that the observed time range do not fully refine the original
behavior because of possible "time holes" in this range. For example, a transition
can fire during [10,15] or [20,30], but never during]15,20[. If [10,30] is directly
used as the time range, the original real-time behavior of the system is extended.
Therefore a detailed observation must be introduced to detect the time holes.

For a given observed range [min, max| of transition T, at its i*" occurrence,
the assertion check;, "exist T; between k and k+1" will be checked for all min <
k < max. If checky. If the check does not pass, the time range will be broken into
two sections: [min, k| and [k+1,max]|. To be more general, if checky, , checkg,, ...
checky, do not pass, the final refined equivalent time ranges of this occurrence
will become [min, k1|, [k1 + 1, k2], ..., [kn + 1, max]. Accordingly, the sequential
transition of the equivalent sub-net will be refined to a sub-structure which

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 175

contains branches representing all possible firing time range after removing those
impossible ranges. An example in Fig. 6 (a) shows that the transition T in the
reduced sub-net A exhibits a firing time range [t3,¢4]. But there exists time
holes on this time range, and thus the real time behavior is [ts,t5] U [t], t4],
where t5 <). The transition T should be replaced by the sub-range structure
(grey part in Fig. 6 (b)).

. A
I >

| : [tl’tz] C?

L) | Feu

|

| ??\‘\ (Ol i) X

T

) == ¢ | | 7 <

|

| Q 7 | [ts’tsy] [tt]

| / | 474

- M | = 7/7

(toytn] /
S 6]
(a) (b)

Figure 6. Deal with Holes on Time Range

7 Experimental Results

To experiment the property specific reduction method, we use an avionic case
study investigated by M. Lauer et al. [23], which is a part of a flight manage-
ment system (FMS). The FMS consists of two units, a control display unit and a
computer unit. The control display unit provides human/machine interface for
data entry and information display. The computer unit provides both comput-
ing platform Integrated Modular Avionics (IMA) and various interfaces to other
avionics. The communication between modules is implemented by Avionic Full
DupleX(AFDX). FMS uses redundant implementation of its functions.

The latency requirement is assessed in the case study. It depends on the
functional chain in Fig. 7. At any time, the pilot can request some information
on a given waypoint. The KU; (Keyboard and Cursor Control Unit) controls
the physical device used by the pilot to enter his requests. When K U; receives a
request (req;), it broadcasts wpid; and wpidy to the Flight Managers FM; and
FM; respectively. The FMs manage the flight plan, i.e., the trajectory between
successive waypoints. When a request occurs, both query the NDB (Navigation
Database) by sending query; (resp. querys) to retrieve the static information

176 PNSE’14 — Petri Nets and Software Engineering

on the waypoint such as the latitude and the longitude. The NDB separately
answers each FM by sending a message answer; (resp. answers) containing the
expected data. Upon reception of this message, each FM computes two comple-
mentary dynamic data: the distance to the waypoint, and the ETA (Estimated
Time of Arrival). These data (wpInfo; and wplnfoq resp.) are periodically
sent to respective MFDs (Multi Functional Display) which periodically elabo-
rate the pages to be displayed on the screens. The KU, FMs, NDB, MFDs are
asynchronous functional modules.

query; answer | wplnfo disp;
wpld EM > NDB > FM > MEFD >
req plag 1 1 1
1
—> KU,
query, answer wplnfo, disp,
wpld, FM, > NDB > FM, > MFD,

Figure 7. Functional Chain: Sporadic Response to Request

The latency requirement guarantees that the system responds quick enough
to a request. It corresponds to the time elapsed between pilot’s request (reg;) and
the first occurrence of the display signal depending on req; (disp;). Therefore,
the real-time property here is the worst case time (WCT) and best case time (BCT)
between req; and the first occurrence of disp; depending on req.

We model the functional chain in TPN. The WCT and BCT observers are added
respectively to the TPN. A binary search algorithm is used to search for the
bound values. The computation results (verified under MacOS 10.6.8 with a
processor 2.4 GHz Intel Core 2 Duo) are shown in Table 2. The WCT (resp. BCT)
is 450.4 (reps. 75.2) ms. By applying the reduction approach, the state space
is significantly reduced. Take the WCT for example, compared to the verification
time 278.313 s before reduction, the verification time is reduced to 2.484 s.

Table 2. Real-Time Property Verification Results

Property [State/Transition Number| Execution Time (s)

Property Value (ms) [Before Reduc.| After Reduc. |Before Reduc.[After Reduc.|
System N/A 9378/23250 N/A N/A N/A
Latency WCT 450.4 67105/145024 9/10 278.313 2.484
BCT 75.2 11162/28922 8/9 43.781 3.719

To test the scalability, the functional chain is enlarged by increasing the
number of NDB. Each functional chain traverses P NDB, i.e. 2P + 3 functions.

req wpld query query: queryp _1 query
L, =% KU,y Ly FM, 1, NDB; 2y . NDBp_, —"*P, NDBp
answerp answerp_ 1 answery answery wplnfoq dispy
P, NDBp_y NDB,; FM, MFD;

(2)

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 177

Before apply this reduction method, the state space begins to explode even
the NDB number is 2 under the test environment. By increasing P from 1 to 11,
we give out the state/transition number, reduction time, model checking (MC)
time and solving time after applying the reduction method in Table 3. The
reduction result is prominent. The solving time is almost linear with respect
to the system’s scale. This case study shows that after reduction, the explosive
systems can be analyzed, if the systems conform to the behavioral regularities.

Table 3. Scalability Test for Latency Property

State/Tran (after Red.)] Reduction [MC Time (s) [Solving Time (s)]|

NDB/ F““'} WCT [BCT | Time (s) [wer [BCT | Wwer [BCT |
1/7 9/10 8/9 38.049 2.484 | 1.860 | 40.533 | 39,000
2/8 9/10 8/9 57.876 2.656 | 1.883 | 60.532 | 59,750
3/9 9/10 6/5 79.813 2.812 | 2.079 | 82.625 | 81,802
1/10 9/10 6/5 102.500 2.906 | 2.079 |105.406| 104,579
5/11 9/10 6/5 124.987 3.015 | 2.102 |128.002| 127,089
6/12 9/10 6/5 149.359 2.801 | 2.196 |152.250| 151,556
7/13 9/10 6/5 169.607 2.053 | 2.227 |172.560| 171,834
3/14 9/10 6/5 103.329 3.031 | 2.250 |196.360| 195,579
9/15 9/10 6/5 216.230 3.000 | 2.211 [210.239| 218,45
10/16 9/10 6/5 239.053 3.047 | 2.105 |243.000| 242,148
11/17 9/10 6/5 263.049 3.188 | 2.195 |266.237| 265,244

8 Computation Complexity & Applicability

This method turns the combination problem of O(N - M) into a divide-and-
conquer problem of O(t;gen +n - N + M - N'), where

— N is the state unfolding complexity of the target sub-net,

— M is the complexity of the other parts of the TPN,

— N’ is the state unfolding complexity of the reduced sub-net, 1 < N’ < N.
It is expected that 1 < N’ <« N if the system conforms to the behavioral
regularity.

— tiden is the time for identification, it is O(NZ), where Ng is the number of
places and transitions in the TPN system.

— n is unfolding times of A by the reduction, refinement and cavity detection

e Finite case reduction: QNé - Agps, Np is the defined bound value of
occurrence times, Agps is the unfolding time of A with observer.

e Infinite case reduction: QNf_-j, - Aops, Np is the defined bound value of
occurrence times.

e Refinement: (ng +nr) - Agps, ns is the length of sequential section, ny,
is the length of loop section.

ns+nr
e Cavity Detection: > (max; — min;) - Aops
i=1

178 PNSE’14 — Petri Nets and Software Engineering

This method relies on the observers, it may thus take time to search for the
bound values of time ranges. In some cases, if the system does not conform to the
behavioral regularity, it can only be known after performing the reduction and
refinement methods. As our purpose is to reduce the state space of model check-
ing, the trade-off between computation time and the state space is acceptable,
except that the computation time is out of the predefined thread-hold value.
This is then an engineering problem.

9 Conclusion

This paper proposes a real-time property specific reduction approach for TPN
based model checking. We illustrate the reduction method for the one-way-out
pattern. More generic pattern with one incoming portal transition and one out-
going transition uses different identification function, but similar reduction and
refinement functions. This method makes the verification more scalable for sys-
tems conforming to some behavioral regularities. It makes a trade-off between
the state space and the solving time, and allows to verify large scale systems
that will easily encounter combinatorial explosion problem, especially for the
asynchronous real-time systems. The case study shows that after reduction, the
explosive systems can be analyzed, if the systems conform to the behavioral
regularities. The reduction and refinement functions rely on the real-time prop-
erty specification and observer-based verification approaches. For now, we have
defined two behavioral regularities for the finite and infinite firing occurrence,
and provided reduction methods for the pattern with an eventual sequential sec-
tion and a loop section. Other real-time behavioral regularities are under study.
Similar approaches can be studied to reduce the state space for verifying other
families of properties.

Acknowledgment

This work was funded by the FUI P and OpenETCS projects. We also wish to thank
Michaél Lauer and Frédéric Boniol for the sharing of the avionic case study.

References

1. Valmari, A.: A stubborn attack on state explosion. In: Computer-Aided Verifica-
tion, Springer (1991) 156-165

2. Godefroid, P., van Leeuwen, J., Hartmanis, J., Goos, G., Wolper, P.: Partial-
order methods for the verification of concurrent systems: an approach to the state-
explosion problem. Volume 1032. Springer Heidelberg (1996)

3. Misra, J., Chandy, K.M.: Proofs of networks of processes. Software Engineering,
IEEE Transactions on (4) (1981) 417-426

4. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(3) (1994) 843-871

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 179

Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1-2) (1996) 77-104
Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal methods in
system design 9(1-2) (1996) 105-131

Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16(5) (1994)
1512-1542

Holzmann, G.: On-the-fly model checking. ACM Computing Surveys (CSUR)
28(4es) (1996) 120

Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina - construction of abstract
state spaces for Petri nets and time Petri nets. International Journal of Production
Research 42(14) (2004) 2741-2756

Sloan, R.H., Buy, U.: Reduction rules for time Petri nets. Acta Informatica 33(7)
(1996) 687-706

Berthelot, G.: Transformations et analyse de réseaux de Petri: application au pro-
tocoles. Rapports de recherche / Université de Paris-Sud, Laboratoire de recherche
en informatique. LRI (1983)

Berthelot, G., et al.: Checking properties of nets using transformations. In: Ad-
vances in Petri Nets 1985. Springer (1986) 19-40

Haddad, S.: A reduction theory for coloured nets. In Rozenberg, G., ed.: Advances
in Petri Nets 1989. Volume 424 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (1990) 209-235

Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT press (1999)
Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time Petri nets. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer (2003) 442-457

Merlin, P., Farber, D.: Recoverability of communication protocols—implications of
a theoretical study. Communications, IEEE Transactions on 24(9) (1976) 1036 —
1043

Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed
automata. JSS 79(10) (October 2006) 14561468

Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3) (March 1991) 259-273
Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering. ICSE 99, ACM (1999) 411-420

Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering, ACM (2005) 372-381

Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE
safety critical real-time systems. In: Modelling Foundations and Applications.
Springer (2012) 352-367

Ge, N., Pantel, M., Crégut, X.: Formal specification and verification of task time
constraints for real-time systems. In: Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies. Springer (2012) 143—
157

Lauer, M.: Une méthode globale pour la vérification d’exigences temps réel -
Application a I’Avionique Modulaire Intégrée. PhD thesis, INPT (juin 2012)

180 PNSE’14 — Petri Nets and Software Engineering

Visual Language Plans - Formalization of a Pedagogical
Learnflow Modeling Language

Kerstin Irgang! and Thomas Irgang?

! Human-Centered Information Systems, Clausthal University of Technology,
kerstin.pfahler @tu-clausthal.de
2 Department of Software Engineering and Theory of Programming, Fernuniversitit Hagen,
thomas.irgang @fernuni-hagen.de

Abstract. In this paper we present an approach to support selfregulated learn-
flows in the collaborative environment Metafora. In this environment students
construct Visual Language Plans. Those plans model workflows of learning ac-
tivities, which the students execute to solve complex learning scenarios across
different tools.

Visual Language plans were already used in the context of different pedagogical
studies but have no formal syntax or semantics,