
Editors: Daniel Moldt and
Heiko Rölke

Proceedings of the
International Workshop on

P etri
N ets and
S oftware
E ngineering

PNSE’14

University of Hamburg
Department of Informatics

These proceedings are published online by the editors as Volume 1160 at

CEUR Workshop Proceedings
ISSN 1613-0073
http://ceur-ws.org/Vol-1160

Copyright c© 2014 for the individual papers is held by the papers’ authors. Copying
is permitted only for private and academic purposes. This volume is published and
copyrighted by its editors.

http://ceur-ws.org/Vol-1160

Preface

These are the proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’14) in Tunis, Tunisia, June 23–24, 2014. It is
a co-located event of Petri Nets 2014, the 35th international conference on
Applications and Theory of Petri Nets and Concurrency and ACSD 2014,
the 14th International Conference on Application of Concurrency to System
Design. More information about the workshop can be found at:

http://www.informatik.uni-hamburg.de/TGI/events/pnse14/

For the successful realisation of complex systems of interacting and reactive
software and hardware components the use of a precise language at different
stages of the development process is of crucial importance. Petri nets are be-
coming increasingly popular in this area, as they provide a uniform language
supporting the tasks of modelling, validation, and verification. Their popular-
ity is due to the fact that Petri nets capture fundamental aspects of causality,
concurrency and choice in a natural and mathematically precise way without
compromising readability.

The use of Petri Nets (P/T-Nets, Coloured Petri Nets and extensions) in
the formal process of software engineering, covering modelling, validation, and
verification, will be presented as well as their application and tools supporting
the disciplines mentioned above.
The program committee consists of:
Kamel Barkaoui (Conservatoire National des Arts et Métiers, France)
Robin Bergenthum (University of Hagen, Germany)
Didier Buchs (University of Geneva, Switzerland)
Lawrence Cabac (University of Hamburg, Germany)
Christine Choppy (Paris-North University (LIPN), France)
Piotr Chrzastowski-Wachtel (University of Warsaw, Poland)
José-Manuel Colom (University of Zaragoza, Spain)
Raymond Devillers (Université Libre de Bruxelles, Belgium)
Jorge C.A. de Figueiredo (Federal University of Campina Grande, Brazil)
Luís Gomes (Universidade Nova de Lisboa, Portugal)
Nicolas Guelfi (University of Luxembourg)
Stefan Haar (ENS Cachan, France)
Serge Haddad (ENS Cachan, France)
Xudong He (Florida International University, USA)
Thomas Hildebrandt (IT University of Copenhagen, Denmark)
Lom-Messan Hillah (University P. & M. Curie, LIP 6, France)
Kunihiko Hiraishi (Japan Advanced Institute of Science and Technology, Japan)
Vladimír Janoušek (Brno University of Technology, Czech Republic)
Peter Kemper (College of William and Mary, USA)
Astrid Kiehn (IIIT Delhi, India)
Ekkart Kindler (Technical University of Denmark, Denmark)

4 PNSE’14 – Petri Nets and Software Engineering

Hanna Klaudel (Université d’Evry-Val d’Essonne, France)
Radek Kočí (Brno University of Technology, Czech Republic)
Lars Kristensen (Bergen University College, Norway)
Michael Köhler-Bußmeier (University of Applied Science Hamburg, Germany)
Niels Lohmann (University of Rostock, Germany)
Robert Lorenz (University of Augsburg, Germany)
Daniel Moldt (University of Hamburg, Germany) (Chair)
Berndt Müller (University of South Wales, United Kingdom)
Chun Ouyang (Queensland University of Technology, Australia)
Wojciech Penczek (ICS PAS and Siedlce UPH, Poland)
Laure Petrucci (University Paris 13, France)
Lucia Pomello (Università degli Studi di Milano-Bicocca, Italy)
Heiko Rölke (DIPF, Germany) (Chair)
Christophe Sibertin-Blanc (Université Toulouse 1, France)
Mark-Oliver Stehr (SRI International)
Harald Störrle (Technical University of Denmark, Denmark)
Eric Verbeek (Eindhoven University of Technology, Netherlands)
Jan Martijn van der Werf (Utrecht University, Netherlands)
Manuel Wimmer (Vienna University of Technology, Austria)
Karsten Wolf (University of Rostock, Germany)

There is one invited talk by Lars Kristensen from Bergen University Col-
lege, Norway. We received more than 28 high-quality contributions. For
each paper three to four reviews were made. The program committee has
accepted five of them for full presentation. Furthermore the committee ac-
cepted 13 papers as short presentations and one short paper. Several more
contributions were submitted and accepted as posters.

The international program committee was supported by the valued work of
following sub reviewers: Sofiane Bendoukha, Maximilien Colange, Tadeusz
Czachorski, Markus Huber, Yasir Khan, Görkem Kılınç, Luca Manzoni, Artur
Niewiadomski, and Józef Winkowski. Their work is highly appreciated.

Furthermore, we would like to thank our colleagues in the local organization
in Tunis, Tunisia, for their support.

Without the enormous efforts of authors, reviewers, PC members and the or-
ganizational team this workshop wouldn’t provide such an interesting booklet.

Thank you,

Daniel Moldt and Heiko Rölke Hamburg, June 2014

Contents

PNSE’14 Proceedings

Contents

Part I PNSE’14: Invited Talk

An Approach for the Engineering of Protocol Software from
Coloured Petri Net Models:
A Case Study of the IETF WebSocket Protocol
Lars Michael Kristensen . 13

Part II PNSE’14: Long Presentations

Verification of Logs - Revealing Faulty Processes of a Medical
Laboratory
Robin Bergenthum and Joachim Schick . 17

On-The-Fly Model Checking of Times Properties on Time
Petri Nets
Kais Klai . 35

SMT-based Abstract Temporal Planning
Artur Niewiadomski and Wojciech Penczek . 55

Kleene Theorems for Labelled Free Choice Nets
Ramchandra Phawade and Kamal Lodaya . 75

Using Symbolic Techniques and Algebraic Petri Nets to
Model Check Security Protocols for Ad-Hoc Networks
Mihai Lica Pura and Didier Buchs . 91

Part III PNSE’14: Short Presentations

Morphisms on Marked Graphs
Luca Bernardinello, Lucia Pomello and Stefano Scaccabarozzi 113

A Petri Net Approach for Reusing and Adapting Components
with Atomic and non-atomic Synchronisation
Djaouida Dahmani, Mohand Cherif Boukala and Hassan Mountassir . . . 129

Observable Liveness
Jörg Desel and Görkem Kılınç . 143

Real-Time Property Specific Reduction for Time Petri Net
Ning Ge and Marc Pantel . 165

Visual Language Plans - Formalization of a Pedagogical
Learnflow Modeling Language
Kerstin Irgang and Thomas Irgang . 181

Slicing High-level Petri Nets
Yasir Imtiaz Khan and Nicolas Guelfi . 201

Performance Analysis of M/G/1 Retrial Queue with Finite
Source Population Using Markov Regenerative Stochastic
Petri Nets
Ikhlef Lyes, Lekadir Ouiza and Djamil Aïssani . 221

Petri Nets Based Approach for Modular Verification of
SysML Requirements on Activity Diagrams
Messaoud Rahim, Malika Boukala-Ioualalen and Ahmed Hammad 233

Compatibility Analysis of Time Open Workflow Nets
Zohra Sbaï, Kamel Barkaoui and Hanifa Boucheneb 249

Petra: A Tool for Analysing a Process Family
Dennis Schunselaar, Eric Verbeek, Wil van der Aalst and
Hajo A. Reijers . 269

An Evaluation of Automated Code Generation with the
PetriCode Approach
Kent Inge Fagerland Simonsen . 289

Computing Minimal Siphons in Petri Net Models of Resource
Allocation Systems: An Evolutionary Approach
Fernando Tricas, José Manuel Colom and Juan Julián Merelo 307

Part IV PNSE’14: Short Papers

Persistency and Nonviolence Decision Problems in P/T-Nets
with Step Semantics
Kamila Barylska . 325

Part V PNSE’14: Poster Abstracts

Construction of Data Streams Applications from Functional,
Non-Functional and Resource Requirements for Electric
Vehicle Aggregators. The COSMOS Vision
José Ángel Bañares, Rafael Tolosana-Calasanz, Fernando Tricas, Unai
Arronategui, Javier Celaya and José Manuel Colom 333

Modular Modeling of SMIL Documents with Complex
Termination Events
Djaouida Dahmani, Samia Mazouz and Malika Boukala 335

D&A4WSC as a Design and Analysis Framework of Web
Services Composition
Rawand Guerfel and Zohra Sbaï . 337

Constructing Petri Net Transducers with PNTε
ooL

Markus Huber and Robert Lorenz . 339

SLAPN : A Tool for Slicing Algebraic Petri Nets
Yasir Imtiaz Khan and Nicolas Guelfi . 343

Generating CA-Plans from Multisets of Services
Łukasz Mikulski, Artur Niewiadomski, Marcin Piątkowski and
Sebastian Smyczyński . 347

LoLA as Abstract Planning Engine of PlanICS
Artur Niewiadomski and Karsten Wolf . 349

PlanICS 2.0 - A Tool for Composing Services
Artur Niewiadomski and Wojciech Penczek . 351

Petri Net Simulation as a Service
Petr Polasek, Vladimir Janousek and Milan Ceska 353

Part I

PNSE’14: Invited Talk

An Approach for the Engineering of Protocol
Software from Coloured Petri Net Models:

A Case Study of the IETF WebSocket Protocol

Lars Michael Kristensen

Department of Computing, Bergen University College, Norway
Email: lmkr@hib.no

Invited Talk

The vast majority of software systems today can be characterised as con-
current and distributed systems as their operation inherently relies on protocols
executed between independently scheduled software components. The engineer-
ing of correct protocols can be a challenging task due to their complex behaviour
which may result in subtle errors if not carefully designed. Ensuring interoper-
ability between independently made implementations is also challenging due to
ambiguous protocol specifications. Model-based software engineering offers sev-
eral attractive benefits for the implementation of protocols, including automated
code generation for different platforms from design-level models. Furthermore,
the use of formal modelling in combination with model checking provides tech-
niques to support the development of reliable protocol implementations.

Coloured Petri Nets (CPNs) [3] is formal language combining Petri Nets
with a programming language to obtain a modelling language that scales to
large systems. In CPNs, Petri Nets provide the primitives for modelling con-
currency and synchronisation while the Standard ML programming language
provides the primitives for modelling data and data manipulation. CPNs have
been successfully applied for the modelling and verification of many protocols,
including Internet protocols such as the TCP, DCCP, and DYMO protocols [1,
4]. Formal modelling and verification have been useful in gaining insight into the
operation of the protocols considered and have resulted in improved protocol
specifications. However, earlier work has not fully leveraged the investment in
modelling by also taking the step to automated code generation as a way to
obtain an implementation of the protocol under consideration.

In earlier work [5], we have proposed the PetriCode approach and a support-
ing software tool [7] has been developed for automatically generating protocol
implementations based on CPN models. The basic idea of the approach is to
enforce particular modelling patterns and annotate the CPN models with code
generation pragmatics. The pragmatics are bound to code generation templates
and used to direct a template-based model-to-text transformation that generates
the protocol implementation. As part of earlier work, we have demonstrated the
use of the PetriCode approach on small protocols. In addition, it has been shown
that our approach supports code generation for multiple platforms, and that it
leads to code that is readable and also compatible with other software [6].

In the present work we consider the application of our code generation ap-
proach as implemented in the PetriCode tool to obtain protocol software im-
plementing the IETF WebSocket protocol [2] protocol for the Groovy language
and platform. This demonstrates that our approach and tool scales to industrial-
sized protocols. The WebSocket protocol is a relatively new protocol and makes
it possible to upgrade an HTTP connection to an efficient message-based full-
duplex connection. WebSocket has already become a popular protocol for several
web-based applications such as games and media streaming services where bi-
directional communication with low latency is needed.

The contributions of our work include showing how we have been able to
model the WebSocket protocol following the PetriCode modelling conventions.
Furthermore, we perform formal verification of the CPN model prior to code gen-
eration, and test the implementation for interoperability against the Autobahn
WebSocket test-suite [8] resulting in 97% and 99% success rate for the client and
server implementation, respectively. The tests show that the cause of test fail-
ures were mostly due to local and trivial errors in newly written code-generation
templates, and not related to the overall logical operation of the protocol as
specified by the CPN model. Finally, we demonstrate in this paper that the
generated code is interoperable with other WebSocket implementations.

Acknowledgement. The results presented in this invited talk is based on joint
work with Kent I.F. Simonsen, Bergen University College and the Technical Uni-
versity of Denmark, and Ekkart Kindler, the Technical University of Denmark.

References

1. J. Billington, G.E. Gallasch, and B. Han. A Coloured Petri Net Approach to Proto-
col Verification. In Lectures on Concurrency and Petri Nets, volume 3098 of Lecture
Notes in Computer Science, pages 210–290. Springer, 2004.

2. I. Fette and A. Melnikov. The websocket protocol, 2011.
http://tools.ietf.org/html/rfc6455.

3. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

4. L.M. Kristensen and K.I.F. Simonsen. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs. In Transactions on Petri Nets and Other
Models of Concurrency VII, volume 7480 of LNCS, pages 56–115. Springer, 2013.

5. K. I. F. Simonsen, L. M. Kristensen, and E. Kindler. Generating Protocol Software
from CPN Models Annotated with Pragmatics. In Formal Methods: Foundations
and Applications, volume 8195 of LNCS, pages 227–242. Springer, 2013.

6. K.I.F. Simonsen. An Evaluation of Automated Code Generation with the PetriCode
Approach. In To appear in Proc. of PNSE’14, 2014.

7. K.I.F. Simonsen. PetriCode: A Tool for Template-based Code Generation from CPN
Models. In SEFM 2013 Collocated Workshops: BEAT2, WS-FMDS, FM-RAIL-Bok,
MoKMaSD, and OpenCert, volume 8368 of LNCS, pages 151–166. Springer, 2014.

8. Tavendo GmbH. Autobahn|Testsuite. http://autobahn.ws/testsuite/.

14 PNSE’14 – Petri Nets and Software Engineering

Part II

PNSE’14: Long Presentations

Verification of Logs - Revealing Faulty
Processes of a Medical Laboratory

Robin Bergenthum and Joachim Schick

Department of Software Engineering and Theory of Programming
FernUniversität in Hagen

{robin.bergenthum,joachim.schick}@fernuni-hagen.de
http://www.fernuni-hagen.de/sttp

Abstract. If there is a suspicion of Lyme disease, a blood sample of
a patient is sent to a medical laboratory. The laboratory performs a
number of different blood examinations testing for antibodies against
the Lyme disease bacteria. The total number of different examinations
depends on the intermediate results of the blood count. The costs of each
examination is paid by the health insurance company of the patient. To
control and restrict the number of performed examinations the health
insurance companies provide a charges regulation document. If a health
insurance company disagrees with the charges of a laboratory it is the
job of the public prosecution service to validate the charges according to
the regulation document.
In this paper we present a case study showing a systematic approach
to reveal faulty processes of a medical laboratory. First, files produced
by the information system of the respective laboratory are analysed and
consolidated in a database. An excerpt from this database is translated
into an event log describing a sequential language of events performed
by the information system. With the help of the regulation document
this language can be split in two sets - the set of valid and the set of
faulty words. In a next step, we build a coloured Petri net model corre-
sponding to the set of valid words in a sense that only the valid words
are executable in the Petri net model. In a last step we translated the
coloured Petri net into a PL/SQL-program. This program can automat-
ically reveal all faulty processes stored in the database.

1 Introduction

A lot of information systems are used in the healthcare sector and each system
produces some kind of log-data. This is particularly true in the domain of med-
ical laboratories where all samples, materials and examination results have to
be stored. This "good laboratory practice" is an important method of quality
management and big medical laboratories own records about several millions of
processed orders.

Every examination performed by a medical laboratory is paid by a health
insurance company. The cost of each examination is rated by a fixed scale of
charges given in a so-called charges regulation document. Of course, the correct

application of the regulations have to be proven to the health insurance com-
panies. If a suspicion about irregular application of the regulations arises, it is
the job of the public prosecution service to validate the billed charges accord-
ing to the regulation document. Usually, the prosecution service orders a report
investigating the issue from an expert-office.

In this case study we describe an approach using coloured Petri nets which is
inspired by the methods of the area of process mining and process discovery to
reveal faulty processes given in log-files of a medical laboratory. The files contain
data recorded over a period of five years having 1500-2000 orders a day. Each
order consisting of 20-30 events, examinations and results. Altogether, we face
about 100 million lines of log that need to be analysed and verified. Each line
describes an event or a sub-process of the medical laboratory. Each event refers
to the occurrence of an action of the information systems and is annotated with
a time stamp, order-id, variables etc. Typical actions of the system are register
order, register requirements, register examination results, validate results, make
invoice, archive order In addition to these basic actions, a medical laboratory
is able to perform a huge number of different examinations. In this case study
the prosecution service ordered a report revealing all faulty processes concerned
with Lyme disease.

To reveal all faulty processes of a set of log-files we choose a four step ap-
proach. We call the first step consolidation step. The main goal is to develop a
schema to integrate all the recorded files into a relational database. Using the
same schema it is also easy to implement a view on top of the database tables.
The view abstracts from redundant or superfluous information and reduces the
data to events and results corresponding to processes considering Lyme disease.
With the help of this view we are able to produce an event log, i.e. a sequence
of events bearing only information about order-number, time-stamp and result.

The next step is called the formalization step. Each sequence of events cor-
responds to a sequence of actions. Each sequence of actions is called a word.
The set of words is called the language of the event log. The main task in the
formalization step is to split this language into two sublanguages, the set of valid
and the set of faulty words. This has to be done manually with the help of the
charges regulation document. Of course, this is a time consuming task, but we
believe that it is very easy and hardly error-prone to classify single words. We
could also try to directly build a model of regulations from the charges regula-
tion document to classify the set of words automatically, but often the regulation
document is given as plain text. Starting from such a description is error-prone
and easily yield a model that does not fit the recorded event log regarding names
of actions, values and level of abstraction. Remark, we only need to partition
the set of words, we do not classify the complete event log. In the formalization
step a set of valid sequences of actions is produced. We call this set the language
of regulations.

The third step is called integration step. The language of regulations is in-
tegrated into a coloured Petri net model. Such an integration can be supported
by synthesis or workflow mining algorithms. In our case study the language of

18 PNSE’14 – Petri Nets and Software Engineering

regulations is already highly compressed and settled, such that we construct a
corresponding coloured Petri net model by hand using the editor CPN-Tools
[1]. The constructed coloured Petri net model is a formalization of the charges
regulation document using the language of the recorded files. Only valid process
instances of the Lyme disease diagnostic processes are executable in this Petri
net model. A big advantage of such a Petri net model is that it can be analysed,
simulated and verified.

The fourth step is called implementation step. Coloured Petri nets are well
readable and have an intuitive formal semantic. We will show how to translate
such a coloured Petri net model into a PL/SQL-program. We translate transi-
tions to functions, places to tables and arcs to delete or insert statements. With
the help of such a PL/SQL-program all sequences of events can be replayed in
the database. If the replay fails, the sequence corresponds to the occurrence of
a faulty process of the medical laboratory.

Fig. 1. Approach to reveal faulty processes

Figure 1 depicts an overview of the presented approach. A key feature is that
it is built on a chain of formal models. The initial models, i.e. the schema, the
view and the event log, consolidate the recorded data. Afterwards, the language
of regulations, the coloured Petri net and the PL/SQL-program are build. The
constructed models document of the whole inspection procedure, all results can
easily be reconstructed, the produced models can be reused when inspecting
other laboratories. Of course, stepping from one formal model to another highly
supports the validity of the investigation report produced. Each step can be

R. Bergenthum and J. Schick: Verification of Logs 19

supported by algorithms and tools. Some steps can even run fully automated
using e.g. synthesis algorithms for the construction of the Petri net model or
automated generation of the PL/SQL-program.

The chosen approach is inspired by techniques well known in the area of
process mining where some recorded behaviour is merged into a formal model of
the underlying process [2–4]. Remark, that it is of great importance to choose an
appropriate process mining algorithm that does not introduce much additional
behaviour to the model. There are language base discovery algorithms [5–7] or
even synthesis algorithms [8–11] that meet this requirement. The approach is also
inspired by work done in the field of business process modelling and requirements
engineering were the starting point of the discovery phase is the construction of
a formal and valid specification [12–16]. Nevertheless, there are two major points
that are unusual to approaches known in both areas. We model the process of
the underlying system by coloured Petri nets since they highly depend on the
intermediate results of a chain of different blood examinations. In addition the
formal language of the event logs needs to be filtered by hand according to the
charges regulation document. This step can not be automated and is crucial for
the quality of the report produced.

The paper is organized as follows: Section 2 provides formal definitions. Sec-
tion 3 presents the approach and our case study. In Section 4, we sum up the
results to prove the applicability of the developed approach.

2 Preliminaries

In this section we briefly recall the basic notions of languages, event logs and
coloured Petri net.

An alphabet is a finite set A. The set of words over an alphabet A is denoted
by A∗. The empty word is denoted by λ. A subset L ⊆ A∗ is called language
over A.

Business processes describe the flow of work within an organisation [17]. Each
process consist of a set of activities that needs to be performed. We denote T
the set of all activities and call the execution of an activity an event. Events are
labelled with the name of the corresponding activity. Furthermore, events can
carry a time stamp showing the time of execution and values denoting results
of the execution. We denote V the set of values. A set of events corresponding
to the occurrence of a processes is called a case. Recording the behaviour of a
system yields a set of interleaved cases we call an event log.

Definition 1. Given a finite set of activities T , a finite set of values V and a
finite set of cases C. An element σ ∈ (T × V ×C)∗ is called an event log. Fix a
case c ∈ C we define the function pc : (T × V × C)→ (T × V) by

pc(t, v, c′) =
{

(t, v) ,if c = c′

λ ,else.
Given an event log σ = e1 . . . en ∈ (T ×V ×C)∗ we define the language L(σ)

of σ by L(σ) = {pc(e1)...pc(ei)|i ≤ n, c ∈ C} ⊆ (T × V)∗.

20 PNSE’14 – Petri Nets and Software Engineering

The language of an event log is finite and prefix closed. It reflects the control
flow between activities given by the events of the log. Each case adds a word to
the set of words called language.

In this paper we use coloured Petri nets to model valid behaviour of a med-
ical laboratory. The underlying Petri net models the control flow between ac-
tions while variables control the examination results. The following definition of
coloured Petri nets was given in [1].

Definition 2. A coloured Petri net is a tuple CPN = (P, T, F,Σ, V,D,G,E, I),
where:

P is a finite set of places.
T is a finite set of transitions, such that P ∩ T = ∅ holds.
F ⊆ (P × T) ∪ (T × P) is a set of directed arcs.
Σ is a finite set of non-empty colour sets.
V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈ V .
D : P → Σ assigns a colour set to each place.
G : T → EXP V assigns a guard to each transition t such that Type[G(t)] =
Bool.

E : F → EXP V assigns an arc expression to each arc f such that Type[E(f)] =
D(p)MS, where p is the place connected to the arc f .

I : P → EXP 0 is an initialisation expression to each place p such that
Type[I(p)] = D(p)MS.

In contrast to low-level Petri net a place of a coloured Petri net belongs to a
given type called colour. According to this colour each place carries values called
tokens. Arcs carry variables and if an arc is connected to a place, the tokens
of the place can bind to variables of the arc. A binding b of a transition maps
variables of related arcs into values of related places. A transition t is executable
if there is a binding b such that the transition guard evaluates to true. When the
transition occurs, as for low-level Petri net, it removes the specified tokens from
the input places and produces tokens in the output places (see [1] for a formal
definition).

The initialisation function I assigns tokens to places yielding an initial mark-
ing. Given a coloured Petri net CPN a sequence of sequential enabled transitions
is called an occurrence sequence of CPN . In this paper we add the values of the
respective bindings to each transition of an occurrence sequence. The language
L(CPN) of CPN is defined as the set of all occurrence sequences. Given an
event log log ∈ (T × V × C)∗, log is executable in CPN if L(log) ⊆ L(CPN)
holds.

3 Verification of Logs

In this section we present an approach to validate a set of given recorded files
with the help of a regulation document. In the following case study, on behalf
of the public prosecution service, recorded data of an information system of a

R. Bergenthum and J. Schick: Verification of Logs 21

medical laboratory has to be reviewed. During a period of five years 1800 files
were produced and recorded. Each file contains about 1500 processed orders.
The regulation document is given by a charges regulation document provided by
health insurance companies. The goal is to identify faulty processes performed
by the medical laboratory considering all processes corresponding to Lyme dis-
ease diagnostic. An overview of our approach is sketched in Figure 1 given in
the introduction. The subsections of this section reflect the four steps of our
approach.

3.1 Consolidation Step

In a first step the recorded files need to be consolidated and formalized. The aim
of this step is to load the recorded files into a database to extract an event log
from it afterwards. For the storage and processing of data, the commercial Oracle
Database is used. This database system provides a procedural programming
language named PL/SQL for the implementation of the stored procedures. To
set up the database an entity-relationship diagram is produced. Of course, to
produce this diagram first the recorded files need to be reviewed. Afterwards,
we use the Oracle SQL Developer Data Modeler to construct the model.

An excerpt of a file recorded by the medical laboratory is depicted in Figure 2.
All files of the laboratory’s information system have a hierarchical structure with
a flexible record length up to 1024 characters. Each file is a sequence of different
types of blocks. Each block corresponds to a set of different actions of the system.
The first line of each block is the header of the block and all following lines are
indented.

The file depicted in Figure 2 starts with a block corresponding to the reg-
istration of a new order for a blood count. The header of this block reads as
follows: The first number corresponds to the registration-id 727980834 gener-
ated for this new order. This id perfectly fits the need to identify cases in the
given file. In our case study each registration-id corresponds to a case of the
system. The next two numbers refer to the time the registration occurred, i.e.
January 25th 2011, 11:49:54 in our example. The next two strings indicate that
this action was manually triggered. The last number of the header encodes the
name of the action occurred. In this particular information system the number
10 refers to the action order blood count. The inner lines of this first block carry
the values of this registration action. Possible values are the name, birthday and
address of the patient registered.

The next block corresponds to the scheduling of examinations. The header
refers to the same case as the first registration block since both ids match.
Remark, both recorded actions even occurred within the same second. The dif-
ference between both headers is only given by the number at the end of the
line. In this block 20 refers to the action schedule examination. This block con-
sists of two sub-blocks, both sub-blocks marked by the keyword BORR. BORR
stands for Lyme disease and indicates that the scheduled examinations are part
of Lyme disease diagnosis. Again, the inner lines carry values of the scheduling
where BORG and BORM are abbreviations of two different blood examinations.

22 PNSE’14 – Petri Nets and Software Engineering

Fig. 2. An excerpt of a recorded file of the medical laboratory.

R. Bergenthum and J. Schick: Verification of Logs 23

In this example the block corresponds to the occurrence of two different actions.
A BORG-examination and a BORM-examination is scheduled.

The sixth block shown in Figure 2 corresponds to the recording of results
of the scheduled examinations. The number 21 refers to the action receive re-
sult. This block matches the schedule examination block besides two important
differences. First, the keyword ONLVAL indicates that this event was automat-
ically triggered by the information system when the results of examinations are
received. Second, the inner lines of the block carry the results of these examina-
tions. In this example the results of the BORG- and the BORM-examinations
are received. The value of the BORG-examination is smaller than 10.00 and the
value of the BORM-examination is smaller than 18.00. Both values show the ab-
sence of the corresponding antibodies, i.e. both examinations are negative and
no further examinations need to be scheduled.

After knowing the structure of the files an entity-relationship diagram is
built. With the help of this schema a PL/SQL-program is written to load all
files into the Oracle Database. If all the data is stored, the next step is to
extract a consolidated and formal event log from this database. The event log
only contains events and values corresponding to processes that need to fulfil
regulations given in the charges regulation document concerning Lyme disease
diagnostic. We omit a detailed description of the produced entity-relationship
diagram, but give a short impression in Figure 3.

Fig. 3. Entity-relationship diagram of our Oracle Database.

Given the entity-relationship diagram it is easy to implement a view on top of
the tables of the database to receive an appropriate event log. In our example, the
excerpt depicted in Figure 2 only contains four blocks corresponding to Lyme
disease diagnostic. In the first and in the third block two new orders arrived
and both patients are registered. In the second block a BORG- and a BORM-
examination for the first order is scheduled. The sixth block shows the results

24 PNSE’14 – Petri Nets and Software Engineering

of both examinations. We are able to discard all other blocks shown in Figure
2. If we apply the constructed view to this excerpt we get the event log shown
in Table 1. This event log abstracts from additional events and values. It shows
the six events corresponding to the four blocks concerned with Lyme disease of
Figure 2.

id action value stamp

727980834 10 25.01.11, 11:49:54
727980834 20 BORG 25.01.11, 11:49:54
727980834 20 BORM 25.01.11, 11:49:54
702673748 10 25.01.11, 11:50:04
727980834 21 BORG < 10 27.01.11, 12:33:44
727980834 21 BORM < 18 27.01.11, 12:33:44

Table 1. Event log of the file depicted in Figure 2.

With the help of the Oracle Database and the implemented view arbitrary
extracts of the recorded files can be shown as event logs. These logs are the
results of the consolidation step of our approach. In the next steps these logs are
filtered with the help of the regulation document and integrated to an executable
model.

3.2 Formalisation Step
In the second step of our approach first the event log is used to define the for-
mal language of the recorded behaviour. Then, in a next step, this behaviour is
filtered with the help of the charges regulation document yielding a language of
valid words. The aim of this formalisation step is to bring together the recorded
behaviour and the regulation document given as plain text. Remark, that it is
much easier to only evaluate the recorded language with the help of the regula-
tions and not to build an independent model of all regulations hoping it will fit
the language of the recorded behaviour.

To deduct a formal language from the event log, first the actions of the system
need to be identified. In our case study the list of significant actions reads as
follows:

T = {10, 20BORG, 20BORM, 20BV LSEG, 20BP 39G, 20BP 83, 20BIV 1,
20BIV 2, 20BIV 3, 20BIV 4, 20BOSP C, 20BV LSEM, 20BP 39M,
21BORG, 21BORM, 21BV LSEG, 21BP 39G, 21BP 83, 21BIV 1,
21BIV 2, 21BIV 3, 21BIV 4, 21BOSP C, 21BV LSEM, 21BP 39M}

The numbers 10, 20 and 21 indicate if a blood count for a patient is registered,
an examination is scheduled or if a result is received. The attached letters are

R. Bergenthum and J. Schick: Verification of Logs 25

the abbreviations of the corresponding examinations. There are 12 different tests
corresponding to Lyme disease diagnostic leading to 25 different actions in total.
Every action having a name starting with 21 carries a value of the type boolean
(i.e. either the examination is negative or positive). At this point we are able to
abstract from any other value given in the files such that any other action occurs
without additional data. As stated above all events having the same registration-
id belong to the same case. Events of the same case can be ordered by their time
stamp. If we apply this knowledge to our event log we get a set of words. The
following table shows three example words given by the event log of our case
study:

L(log) = {10 20BORG 20BORM (21BORG,false) (21BORM,false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,true)
(21BORM,true) (21BVLSEG,false) (21BP39G,false) (21BP83,false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM,false) (21BP39M,false),

10 20BORG 20BORM 20BVLSEG 20BP39G 20BP83 20BIV1 20BIV2
20BIV3 20BIV4 20BOSPC 20BVLSEM 20BP39M (21BORG,false)
(21BORM,false) (21BVLSEG,false) (21BP39G,false) (21BP83,false)
(21BIV1,false) (21BIV2,false) (21BIV3,false) (21BIV4,false)
(21BOSPC,false) (21BVLSEM,false) (21BP39M,false),

. . .
Table 2. The language of the event log.

The language depicted in Table 2 was automatically processed from the given
event log. This language is a complete and formal description of the set of pro-
cesses occurred in the information system of the medical laboratory. Any new
sequence of actions and values given by the events of a case yields a new word in
the language of the log. Of course, the language of the log is much smaller than
the event log since cases corresponding to the same process are not distinguished.

Given the language of the log the next step is to distinguish valid and faulty
words. This is a major task in the presented approach which can not be auto-
mated. The charges regulation document is given as text. It is absolutely neces-
sary to understand the given regulations and apply them to the set of words. The
main advantage of the presented approach is that the set of words is given in a
very compact and formal style. There is no room for interpretations or ambigu-
ities. The rules of the charges regulation document do not need to be modelled
explicitly, they just need to be applied to the given language. As stated in [13, 16]
a single word is much easier to understand than a whole system. The evaluation
of single words can be performed by experts on the regulation document. There
is no need that these experts know how to model a system or even can read the
files or know how the information system works.

26 PNSE’14 – Petri Nets and Software Engineering

In our example given in Table 2 the first two words are valid. The third
word is faulty since the set of examinations {BVLSEG, BP39G, BP83, BIV1,
BIV2, BIV3, BIV4, BOSPC, BVLSEM, BP39M } may only be preformed if one
of the BORG- and BORM-examination is positive. According to the regulation
document the blood count needs to be performed in two steps. First, the BORG-
and BORM-examination results need to be evaluated, if one of these is positive,
a more detailed set of examinations should be performed.

The result of the formalization step is the set of valid words. This set can
be seen as the relevant part of the language of the charges regulation document
given in the language of the information system. If this language is found, the
most challenging task of the investigation process has been completed. In the
next steps this set is integrated into an executable model.

3.3 Integration Step

The third step of our approach is called integration step. The aim is to build
an executable model having the language of the charges regulation document.
As suggested in [18] it would be possible to skip this integration step and just
filter the event log with the help of the set of valid words given by the language
constructed in the former step, but there are mainly two important reasons to
build an integrated model first. A model provides a more compact representation
of the set of words such that the model can more easily be simulated and anal-
ysed. For this purpose there exist a lot of well known Petri net algorithms in the
literature. Second, an executable model can easily be translated into executable
code in the last step of our approach.

The problem of integrating a set of words into a Petri net is a well known
problem. There exists a lot of work tackling the problem in the area of process
mining [2, 19, 20, 7] and in the area of language based synthesis [8, 21, 11, 9, 6].
Algorithms from both areas can by applied to support the integration step.
In the presented case study we built the corresponding model by hand. The
constructed language of the charges regulation document was already compressed
in such a way that there was no need for automated integration. At first, a
transition is constructed for every action of the given language. According to
the ordering of actions given in the language places are added to this set of
transitions such that only words of the language are executable in the resulting
net. In a second step the values carried by actions yield coloursets added to the
constructed Petri net. Variables are added to arcs connected with the respective
transitions corresponding to actions carrying a value. The coloured Petri net
is adjusted in such a way that each pair of an action and value given in the
language corresponds to a transition and a binding. In a last step, like it is
common for coloured Petri nets, it is possible to merge some transitions. Similar
parts of the Petri net are folded yielding additional coloured tokens representing
each part. For modelling we use CPN-Tools [22, 23]. CPN-Tools is developed at
the AIS group of the Technische Universiteit Eindhoven and supports all editing
and simulation features for coloured Petri net.

R. Bergenthum and J. Schick: Verification of Logs 27

In our case study our initial low-level Petri net contains 25 transitions cor-
responding to the 25 actions of our process identified in the formalization step.
The control flow is rather simple and we just add the corresponding places.
First, a blood count have to be registered, then an arbitrary number of the 12
examinations concerning Lyme disease can be scheduled. The execution of these
12 examinations must follow the simple rule, that first the BORG- and BORM-
examination need to be performed before the other examinations occur. Remark,
the control flow of the initial low-level net is independent form the values given
in the language. Rules and regulation concerning values are added in the next
step. All actions that corresponds to an examination result carry a value. For
this reason we introduced a boolean colourset called RES and allow each such
transition to be executed while binding to true or false. At this point we are
able to require that a BORG- or BORM-examination must be positive before
any other examination can be executed. In a last step we folded transitions if
possible. The resulting net is depicted in Figure 4.

Fig. 4. Coloured Petri net representing the charges regulation document.

In Figure 4 the transition named 10 is enabled in the initial marking. If
transition 10 fires, a BORG- and a BORM-token is produced in the place search
test and tokens corresponding to all other examinations are produced in the place
western blot test. In such a marking only the upper transition 20 is enabled. If
transition 20 fires a BORG- or a BORM- examination is scheduled. As soon
as an examination is scheduled transition 21 is enabled. If transition 21 fires,
it consumes a token from the place investigation and moves this token to the
place results. While the token is moved a random boolean value is attached.
The lower transition named 20 is enable if the western blot tests are scheduled
and if there are at least two tokens in the places results. The arc inscription
1′y + +1′z denotes a pair of tokens. One token is assigned to the variable y

28 PNSE’14 – Petri Nets and Software Engineering

and another token is assigned to the variable z. The guard [fb(z)] ensures that
the token called z carries the value true. It follows that in the model shown in
Figure 4 the western blot tests can only be preformed if the results of the BORG-
and BORM-examination are present and at least one of these examinations was
evaluated with true.

The model shown in Figure 4 is only able to reproduce one single run of the
information system. In some sense it is a model of valid words, not a model of
the running information system. Our goal is to replay each case of the event
log in this model, there is no need to construct a model which is able to handle
multiple cases at once.

Besides the possibility to validate the produced model by simulation, CPN-
Tools provides some model checking algorithms (see [1] for details). Table 3
depicts a small part of the CPN-Tools state space report of the model shown in
Figure 4.

Liveness Properties ————————
Dead Transition Instances: None
Live Transition Instances: None
Fairness Properties ————————
No infinite occurrence sequences.

Table 3. CPN-Tools state space report of the model shown in Figure 4.

The integration step yields a sound and integrated model of the valid lan-
guage produced during the formalization step. Of course, if analysing this model
uncovers faults or additional requirements, the language produced in the formal-
ization step needs to be adopted according to the change made in the model.
If model and language match and describe the valid behaviour of the underly-
ing charges regulation document, in the last step of our approach, the model is
translated into executable PL/SQL-code.

3.4 Implementation Step

The fourth and last step of our approach is called the implementation step.
Although, the coloured Petri net model is executable we translate the produced
Petri net into PL/SQL-code. PL/SQL is a proprietary programming language
which is integrated in the Oracle Database. Since it can execute SQL statements
directly it is more suitable than Java or C++ in our approach. The aim is to
get an executable program directly running next to the recorded data. With the
help of this program faulty processes preformed by the medical laboratory can
automatically be revealed.

During the case study the coloured Petri net model depicted in Figure 4 is
transformed into PL/SQL mainly using the following ideas:

(i) Each place of the coloured Petri net yields a temporary table in the database.
The tables are able to store records representing tokens and their values.

R. Bergenthum and J. Schick: Verification of Logs 29

(ii) Each transition of the coloured Petri net yields a parametrized function in
the database. A function returns true only if the corresponding transition
is executable. To check if a transition is executable arcs of the Petri net are
translated into SQL-statements. Roughly speaking, these statements check
if there exist appropriate values in the tables corresponding to places in the
preset of the transition.

(iii) Each arc of the coloured Petri net yields an SQL-statement in the database.
Arcs leading from a place to a transition correspond to DELETE-statements
consuming tokens from tables. Arcs leading from a transition to a place
correspond to INSERT-statements producing tokens in tables.

(iv) Each guard or function of the coloured Petri net yields a function in the
database. The SML-functions given in the coloured Petri net can easily be
translated.

CPN PL/SQL-program

COLOUR a list of attributes
PLACE a table having a COLOUR
TOKEN a record in PLACE
PT-Arc DELETE from PLACE return TOKEN
TP-Arc INSERT into PLACE values TOKEN
EXPRESSION a WHERE expression
TRANSITION a function using ARCS
GUARD a sub-function of TRANSITION

Table 4. Pattern of transformations form a CPN into a PL/SQL-program.

A table of transformation patterns is given in Table 4. With the help of
these transformation rules it is even possible to implement a fully automated
transformation procedure.

To actually verify the event log with the help of the PL/SQL-program the
set of cases of the event log is replayed. The registration-ids of the set of faulty
cases is stored in an additional table. With the help of this procedure faulty
processes can be revealed. The set of faulty processes is the basis of the report
produced for the prosecution service. The specific results produced in our case
study are presented in the next section.

4 Results and Conclusion

In the context of the presented case study, a set of files of a medical laboratory
has been verified. The files record all occurred actions of the information system
of the laboratory over a period of five years. In that given period, 22432 orders of
Lyme disease diagnostic have been performed by the laboratory. The PL/SQL-
program produced by our approach calculates the following results:

30 PNSE’14 – Petri Nets and Software Engineering

recorded processes valid faulty runtime

22432 3311 19121 11 minutes

Table 5. Results of the presented case study.

As shown in Table 5 only 15% of the recorded behaviour is valid according to
the charges regulation document. It turned out, that the considered laboratory
in almost every case performed the complete set of 12 examinations in a first
step. The regulations require that the BORG- and BORM-examination precede
all other examinations. Only if one of the two examinations is positive, the set
of all examinations can be charged.

To get a more detailed view on the recorded data, in a second step, we ad-
justed our coloured Petri net model. We removed the transition guard requiring
a positive result from one of the BORG- or BORM-examination, assuming a
more sloppy interpretation of the regulation document. If we repeat the valida-
tion procedure we get that 50% of all recorded processes are valid concerning
this more liberal model. In other words, even if we allow that all 12 examina-
tions can be performed at once, 50% of all processes contain additional faults
like unnecessary actions or manual changing of examination values.

In the paper we presented an approach together with a case study to verify
logs revealing faulty processes of a medical laboratory. The produced PL/SQL-
program can directly be applied to any medical laboratory using the same infor-
mation system. The main advantage of the presented approach is that it is based
on a chain of formal models. With the help of these models it is easy to keep
track of the validity of the produced report. Most of the steps can be supported
using algorithms or tools well known in the area of Petri nets. Furthermore,
experts on the regulation document can support the formalisation step without
any knowledge about modelling techniques. If a model is produced it also can
be adopted and reused. This can help to generate different criteria regarding
only parts of the regulation document. Of course, all calculated results can be
reproduced at any time, if this is required by the public prosecution service.

From the experience we gained in the case study we feel that the approach
forces us to tackle the given task in a very structured way. The approach provides
good documented, traceable results. In the future, we will test the presented
approach on a larger regulation document yielding a larger regulation model
and try to automate each step of the approach further.

R. Bergenthum and J. Schick: Verification of Logs 31

References

1. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

2. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182–192

4. Rozinat, A.: Process Mining: Conformance and Extension. PhD thesis, TU Eind-
hoven (2010)

5. van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase Process Mining: Building
Instance Graphs. In Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W., eds.:
ER. Volume 3288 of Lecture Notes in Computer Science., Springer (2004) 362–376

6. Bergenthum, R., Mauser, S.: Mining with User Interaction. In Desel, J., Yakovlev,
A., eds.: Proceedings of the Workshop Applications of Region Theory, Petri Nets
2011. Volume 725 of CEUR Workshop Proceedings. (2011) 79–84

7. Bergenthum, R., Mauser, S.: Folding Partially Ordered Runs. In Desel, J.,
Yakovlev, A., eds.: Proceedings of the Workshop Applications of Region Theory,
Petri Nets 2011. Volume 725 of CEUR Workshop Proceedings. (2011) 52–62

8. Badouel, E., Darondeau, P.: Theory of Regions. In Reisig, W., Rozenberg, G., eds.:
Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer (1996)
529–586

9. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of Process Models
from Example Runs. Petri Nets and Other Models of Concurrency 2 (2009) 243–
259

10. Darondeau, P.: Synthesis and Control of Asynchronous and Distributed Systems.
In Basten, T., Juhás, G., Shukla, S.K., eds.: ACSD, IEEE Computer Society (2007)
13–22

11. Bergenthum, R., Desel, J., Kölbl, C., Mauser, S.: Experimental Results on Process
Mining Based on Regions of Languages. In: Proceedings of the Workshop CHINA,
Petri Nets 2008, China (2008) 73–87

12. Glinz, M.: Improving the Quality of Requirements with Scenarios. In: Second
World Congress on Software Quality, Yokohama (2000) 55–60

13. Desel, J.: From Human Knowledge to Process Models. In Kaschek, R., Kop, C.,
Steinberger, C., Fliedl, G., eds.: UNISCON. Volume 5 of Lecture Notes in Business
Information Processing., Springer (2008) 84–95

14. Weske, M.: Business Process Management - Concepts, Languages, Architectures,
2nd Edition. Springer (2012)

15. Mayr, H.C., Kop, C., Esberger, D.: Business Process Modeling and Requirements
Modeling. In: ICDS, IEEE Computer Society (2007) 8

16. Mauser, S., Bergenthum, R., Desel, J., Klett, A.: An Approach to Business Process
Modeling Emphasizing the Early Design Phases. In: Proceedings of the Workshop
Algorithmen und Werkzeuge für Petrinetze. Volume 501 of CEUR Workshop Pro-
ceedings. (2009) 41–56

17. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series. MIT Press (2011)

18. Harel, D.: Come, Let’s Play - Scenario-based Programming using LSCs and the
play-engine. Springer (2003)

32 PNSE’14 – Petri Nets and Software Engineering

19. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundam. Inform. 94(3-4) (2009)
387–412

20. IEEE Task Force on Process Mining: Process Mining Manifest. In Daniel, F.,
Barkaoui, K., Dustdar, S., eds.: Business Process Management Workshop. Vol-
ume 99 of Lecture Notes in Business Information., Springer (2012) 169–194

21. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages. In Alonso, G., Dadam, P., Rosemann, M., eds.: BPM. Volume
4714 of Lecture Notes in Computer Science., Springer (2007) 375–383

22. Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing, M.S.,
Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In van der Aalst, W.M.P., Best, E., eds.:
ICATPN. Volume 2679 of Lecture Notes in Computer Science., Springer (2003)
450–462

23. Westergaard, M.: CPN Tools 4: Multi-formalism and Extensibility. In Colom, J.M.,
Desel, J., eds.: Petri Nets. Volume 7927 of Lecture Notes in Computer Science.,
Springer (2013) 400–409

R. Bergenthum and J. Schick: Verification of Logs 33

34 PNSE’14 – Petri Nets and Software Engineering

On-The-Fly Model Checking of Timed Properties
on Time Petri Nets

Kais Klai

LIPN, CNRS UMR 7030
Université Paris 13, Sorbonne Paris Cité

99 avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

kais.klai@lipn.univ-paris13.fr

Abstract. This paper deals with model checking of timed systems mod-
eled by Time Petri nets (TPN). We propose a new finite graph, called
Timed Aggregate Graph (TAG), abstracting the behavior of bounded
TPNs with strong time semantics. The main feature of this abstract rep-
resentation compared to existing approaches is the encoding of the time
information. This is done in a pure way within each node of the TAG
allowing to compute the minimum and maximum elapsed time in every
path of the graph. The TAG preserves runs and reachable states of the
corresponding TPN and allows for on-the-fly verification of reachability
properties. We illustrate in this paper how the TAG can be used to check
some usual timed reachability properties and we supply an algorithm for
extracting an explicit timed trace (involving the elapsed time before each
fired transition) from an abstract run of the TAG. The TAG-based ap-
proach is implemented and compared to two well known TPNs analysis
approaches.

1 Introduction

Time Petri nets are one of the most used formal models for the specification
and the verification of systems involving explicit timing constraints, such as
communication protocols, circuits, or real-time systems. The main extensions of
Petri nets with time are time Petri nets [18] and timed Petri nets [22]. In the
former, a transition can fire within a time interval whereas, in the latter, time
durations can be assigned to the transitions; tokens are meant to spend that
time as reserved in the input places of the corresponding transitions. Several
variants of timed Petri nets exist: time is either associated with places (p-timed
Petri nets), with transitions (t-timed Petri nets) or with arcs (a-timed Petri
nets) [23]. The same holds for time Petri nets [7]. In [21], the authors prove that
p-timed Petri nets and t-timed Petri nets have the same expressive power and
are less expressive than time Petri nets. Several semantics have been proposed
for each variant of these models. Here we focus on t-time Petri nets, which we
simply call TPNs. There are two ways of letting the time elapse in a TPN [21].
The first way, known as the Strong Time Semantics (STS), is defined in such a

manner that time elapsing cannot disable a transition. Hence, when the upper
bound of a firing interval is reached, the transition must be fired. The other
semantics, called Weak Time Semantics (WTS), does not make any restriction
on the elapsing of time.

For real-time systems, dense time model (where time is considered in the
domain R≥0) is the unique possible option, raising the problem of handling
an infinite number of states. In fact, the set of reachable states of the TPN is
generally infinite due to the infinite number of time successors a given state could
have. Two main approaches are used to treat this state space: region graphs [1]
and the state class approach [3]. The other methods [2,24,4,10,5,17,6,11] are
either refinements, improvements or derived from these basic approaches. The
objective of these representations is to yield a state-space partition that groups
concrete states into sets of states presenting similar behavior with respect to the
properties to be verified. These sets of states must cover the entire state space
and must be finite in order to ensure the termination of the verification process.

In this work, we propose a new finite graph, called Timed Aggregate Graph
(TAG), abstracting the behavior of bounded TPNs with strong time semantics.
A preliminary version of this work has been published in [13,14], where a coarser
abstraction of TPNs’ state graph is proposed. The key idea behind the approach
presented in this paper is the fact that the time information associated with
each node is related to the current path leading to this node. In particular, given
a node of the TAG, for each couple of enabled transitions 〈t, t′〉, the value of
the earliest and latest firing times of t (reps. t′) the last time, in the current
path, it "met" t′ (resp. t) is stored in the node. This information , represented
by a matrix, allows us (1) to maintain the relative differences between the firing
times of enabled transitions (diagonal constraints), (2) to determine the fireable
transitions at each node, and (3) to compute dynamically the earliest and the
latest firing time of each enabled transition for each node of the TAG. This
new version of the TAG allows to preserve the timed traces of the underlying
TPN while the abstraction proposed in [13,14] is an upper approximation of the
set of traces of the underlying TPN. Moreover, one can compute the minimum
and maximum elapsed time through every path of the graph which permits on-
the-fly verification of timed reachability properties (e.g., is some state reachable
between d and D time units).

This paper is organized as follows: In Section 2, some preliminaries about
TPNs and the corresponding semantics are recalled. In Section 3, we define the
Timed Aggregate Graph (TAG) associated with a TPN and we discuss the main
preservation results of the TAG-based approach. In Section 4, we show how the
verification of some usual reachability properties can be accomplished on-the-
fly by exploring the TAG. Section 5 relates our work to existing approaches. In
Section 6, we discuss the experimental results obtained with our implementation
compared to two well-known tools, namely Romeo [9] and TINA [5]. Finally, a
conclusion and some perspectives are given in Section 7.

36 PNSE’14 – Petri Nets and Software Engineering

2 Preliminaries and Basic Notations

A TPN is a P/T Petri net [20] where a time interval [tmin; tmax] is associated
with each transition t.

Definition 1. A TPN is a tuple N = 〈P, T,Pre,Post , I〉 where:

– 〈P, T,Pre,Post〉 is a P/T Petri net
– I : T −→ N × (N ∪ {+∞}) is the time interval function such that: I(t) =

(tmin, tmax), with tmin ≤ tmax, where tmin (resp. tmax) is the earliest (resp.
latest) firing time of transition t.

A marking of a TPN is a functionm : P −→ N wherem(p), for a place p, denotes
the number of tokens in p. A marked TPN is a pair N = 〈N1,m0〉 where N1 is
a TPN and m0 is a corresponding initial marking. A transition t is enabled by
a marking m iff m ≥ Pre(t) and Enable(m) = {t ∈ T : m ≥ Pre(t)} denotes the
set of enabled transitions in m. If a transition ti is enabled by a marking m, then
↑(m, ti) denotes the set of newly enabled transitions [2]. Formally, ↑(m, ti) = {t ∈
T | t ∈ Enable(m−Pre(ti)+Post(ti))∧ (t 6∈ Enable(m−Pre(ti))∨ (t = ti))}. If
a transition t is in ↑(m, ti), we say that t is newly enabled by the successor of m
by firing ti. Dually, ↓(m, ti) = Enable(m−Pre(ti)+Post(ti))\↑(m, ti) is the set
of oldly enabled transitions. The possibly infinite set of reachable markings of N
is denoted Reach(N). If the set Reach(N) is finite we say that N is bounded.

The semantics of TPNs can be given in terms of Timed Transition Systems
(TTS) [15] which are usual transition systems with two types of labels: discrete
labels for events (transitions) and positive real labels for time elapsing (delay).
States (configurations) of the TTS are pairs s = (m,V) where m is a marking
and V : T −→ R≥0∪{⊥} a time valuation. In the following, s.m and s.V denote
the marking and the time valuation respectively of a state s. If a transition t is
enabled in m then V (t) is the elapsed time since t became enabled, otherwise
V (t) = ⊥. Given a state s = (m,V) and a transition t, t is said to be fireable in
s iff t ∈ Enable(m) ∧ V (t) 6= ⊥ ∧ tmin ≤ V (t) ≤ tmax.

Definition 2 (Semantics of a TPN). Let N = 〈P, T,Pre,Post , I,m0〉 be a
marked TPN. The semantics of N is a TTS SN = 〈Q, s0,→〉 where:

1. Q is a (possibly infinite) set of states
2. s0 = (m0, V0) is the initial state such that:

∀t ∈ T, V0(t) =
{
0 if t ∈ Enable(m0)
⊥ otherwise

3. → ⊆ Q× (T ∪R≥0)×Q is the discrete and continuous transition relations:

(a) the discrete transition relation:
∀t ∈ T : (m,V)

t−→ (m′, V ′) iff:

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 37





t ∈ Enable(m) ∧m′ = m− Pre(t) + Post(t)
tmin ≤ V (t) ≤ tmax

∀t′ ∈ T : V ′(t′) =





0 if t′ ∈ ↑(m, t)
V (t′) if t′ ∈ ↓(m, t)
⊥ otherwise

(b) the continuous transition relation: ∀d ∈ R≥0, (m,V)
d−→ (m′, V ′) iff:





∀t ∈ Enable(m), V (t) + d ≤ tmax
m′ = m
∀t ∈ T :

V ′(t) =

{
V (t) + d if t ∈ Enable(m);
V (t) otherwise.

The above definition requires some comments. First, a state change occurs
either by the firing of transitions or by time elapsing: The firing of a transition
may change the current marking while the time elapsing may make some new
transitions fireable. Second, the delay transitions respect the STS semantics: an
enabled transition must fire within its firing interval unless it is disabled by the
firing an other transition.

Given a TPN N and the corresponding TTS SN , a path π = s0
α1−→s1 α2−→ . . . ,

where αi ∈ (T ∪ R≥0), is a run of SN iff (si, αi, si+1) ∈→ for each i = 0, 1,
The length of a run π can be infinite and is denoted by | π |. The possibly
infinite set of runs of SN is denoted [SN]. Without loss of generality, we assume
that for each non empty run π = s0

α1−→s1 α2−→ . . . of a STS corresponding to
a TPN, there do not exist two successive labels αi and αi+1 belonging both
to R≥0. Then, π can be written, involving the reachable markings of N , as
π = m0

(d1,t1)−→ m1
(d2,t2)−→ . . . where di is the time elapsed at marking mi−1 before

firing ti. In order to associate a run π of SN with a run of N , denoted P(π),
we define the following projection function, where � denotes the concatenation
operator between paths and πi, for i = 0, 1 . . . , denotes the suffix of π starting
at state si.

P(π) =





s0.m if | π |= 0

s0.m
(0,α1)−→ � P(π1) if α1 ∈ T

s0.m
(α1,α2)−→ � P(π2) if α1 ∈ R≥0∧ | π |≥ 2

s0.m
α1−→ � P(π1) if α1 ∈ R≥0∧ | π |= 1

3 Abstraction of a TPN State Space

3.1 Timed Aggregate Graph

In this subsection, we propose to abstract the reachability state space of a TPN
using a new graph called Timed Aggregate Graph (TAG) where nodes are called

38 PNSE’14 – Petri Nets and Software Engineering

aggregates and are grouping sets of states of a TTS. The key idea behind TAGs
is the way the time information is encoded inside aggregates. In addition to the
marking characterizing an aggregate, the time information is composed of two
parts:

– The first part of the time information characterizing an aggregate is a dy-
namically updated interval, namely (αt, βt), associated with each enabled
transition t. This interval gives the earliest and the latest firing times of
any enabled transition starting from the corresponding aggregate. Either
the corresponding transition is fireable at the current aggregate and the sys-
tem must remain within the aggregate at least αt time units and at most βt
time units (as long as the other enabled transitions remain fireable) before
firing t, or t is not possible from the current aggregate (e.g. because of some
diagonal constraint), and the system must move to an other aggregate by
firing other transitions until t becomes fireable. In the latter case, the system
must consume at least αt, and can consume at most βt to make t fireable in
the future.

– The second part of the time information characterizing an aggregate is a ma-
trix, namely Meet, allowing to dynamically maintain the relative differences
between the firing times of enabled transitions (diagonal constraints). Given
two enabled transitions t1 and t2,Meet(t1, t2) is an interval representing the
earliest and the latest firing times of t1 the last time both t1 and t2 were
enabled (through the paths leading to the aggregate).

Before we formally define the TAG and illustrate how the attributes of an ag-
gregate are computed dynamically, let us first formally define aggregates.

Definition 3 (Timed Aggregate). Let N = 〈P, T, Pre, Post, I〉 be a TPN.
A timed aggregate associated with N is a tuple a = (m,E,Meet), where:

– m is a marking
– E = {〈t, αt, βt〉 | t ∈ Enable(m), αt ∈ N∧βt ∈ N∪{+∞}} is a set of enabled

transitions each asssociated with two time values.
– Meet is a matrix s.t. ∀t, t′ ∈ Enable(m), Meet(t, t′) = 〈α, β〉 where α (resp.
β) represents the earliest (resp. latest) firing time of t the last time t and t′
are both enabled before reaching the aggregate a.

As for the states of a TTS, the attributes of an aggregate a are denoted
by a.m, a.E and a.Meet. Moreover, a.Meet(t, t′).α (resp. a.Meet(t, t′).β) is de-
noted by a.αm(t,t′)

t (resp. a.βm(t,t′)
t), or simply αm(t,t′)

t (resp. βm(t,t′)
t) when the

corresponding aggregate is clear from the context. We use also αm(t,t′) (resp.
βm(t,t′)) to denote αm(t,t′)

t (resp. βm(t,t′)
t) when the involved transition t is clear

from the context.
The E attribute of an aggregate a allows to compute the minimum and the

maximum time the system can elapse when its current state is within a. The
following predicates (δ and ∆) compute these information for a given aggregate.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 39

Definition 4 (Minimum and maximum stay times). Let a = 〈m,E〉 be an
aggregate, the minimum and maximum time the system can stay at a are denoted
by δ(a) and ∆(a) respectively, and are defined by the two following predicates:

– δ(a) = min〈t,αt,βt〉∈E(αt)
– ∆(a) = max〈t,αt,βt〉∈E(βt)

The minimum (resp. maximum) stay time δ(a) (res. ∆(a)) of an aggregate a
allows to encapsulate the continuous transition relation within a.

Given an aggregate a = 〈m,E〉 and an enabled transition t (i.e., 〈t, αt, βt〉 ∈
E), two primordial issues must be achieved to define the semantics of the TAG:
(1) is t fireable from a?, and (2) if it is the case, how do we obtain the successor
aggregate by firing t from a. In the following, we answer these issues.

Definition 5. Let a = 〈m,E,Meet〉 be an aggregate and let 〈t, αt, βt〉 ∈ E.
Then, t is fireable at a, denoted by a t , iff ∀〈t′, αt′ , βt′〉 ∈ E, αm(t,t′)

t ≤ βm(t′,t)
t′

A transition t is fireable at an aggregate a iff there is no transition t′, that is
enabled by a, whose latest firing time was strictly smaller than the earliest firing
time of t the last time both transitions were enabled.

Now that the firability condition is formally defined, the following definition
computes the successor aggregate obtained by the firing of a given transition. In
this definition, the notion of newly (and oldly) enabled transitions is extended
to aggregates as follows: ↑ (a, t) =↑ (a.m, t) and ↓ (a, t) =↓ (a.m, t) for each
transition t enabled by a.m

Definition 6. Let a = 〈m,E,Meet〉 be an aggregate and let 〈t, αt, βt〉 ∈ E.
Assume that t is fireable at a (following Definition 5). The aggregate a′ =

〈m′, E′,Meet′〉 obtained by firing t from a, denoted by a t a′, is obtained as
follows:

1. m′ = m− Pre(t) + Post(t)
2. E′ = E′1 ∪ E′2, where:
• E′1 =

⋃
t′∈↑(a,t){〈t′, t′min, t

′
max〉}

• E′2 =
⋃
t′∈↓(a,t){〈t′, α′t′ , β′t′〉} where:

– α′t′ = αt′ − SCR(a, t′), where SCR(a, t′) =
Max(0, (Mint′′∈Enable(a)(Min(βm(t′,t′′), βm(t′′,t′))− (α

m(t′,t′′)
t′ − αt′))

– β′t′ = βt′ −Max(0, (α
m(t,t′)
t − (β

m(t′,t)
t′ − βt′))

• ∀(〈t1, α1, β1〉, 〈t2, α2, β2〉) ∈ E′ × E′

Meet′(t1, t2) =





[t1min
, t1max

] if t1 ∈↑ (a, t)
[α1, β1] if t1 ∈↓ (a, t) ∧ t2 ∈↑ (a, t)
Meet(t1, t2) if t1 ∈↓ (a, t) ∧ t2 ∈↓ (a, t).

The computation of a successor a′ of an aggregate a by the firing of a transition
t is guided by the following intuition: If ↓ (a, t) 6= ∅, then the more the system
can remain at a, the less it can remain at a′ and vice versa. Otherwise, the time
elapsed within a′ is independent from the time elapsed within a. Thus, given a

40 PNSE’14 – Petri Nets and Software Engineering

transition t′ enabled by a′, two cases are considered: if t′ is newly enabled, then
its earliest and latest firing times are statically obtained by t′min and t′max respec-
tively. Otherwise, the more one can remain at a, the less will be the necessary
wait time at a′ before firing t′. The function SCR (Still Can Remain) allows to
compute the maximum remaining time at a under the hypothesis that, since t′
became enabled, it remains the maximum time at each encountered aggregate
before reaching a (note that this is different from ∆(a)). Thus SCR(a, t′) is ob-
tained by the following reasoning: given a transition t′′ that is enabled by a, it
is clear that since the last time t′ and t′′ became both enabled, the maximum
elapsed time can not be greater than Min(βm(t′,t′′), βm(t′′,t′)) (because of the
STS semantics which is used in this paper). The maximum time the system can
remain at a is then obtained by subtracting from this quantity the time that is
already spent during the path leading to a (i.e., (αm(t′,t′′)

t′ − αt′)). By analyzing
all the transitions enabled by a the function SCR takes the minimum values in
order to not violate the STS semantics rule. Similarly, the latest firing time of
t′ corresponds to the situation where, between the last time t and t′ were both
enabled and the current aggregate a, each fired transition is fired as soon as pos-
sible. Each time a transition is fired, its earliest firing time is subtracted from
the latest firing time of the old transitions. However, if the quantity of time that
must be subtracted from the latest firing time of t′ has already been subtracted
in between, then the latest firing time of t′ at a′ is the same latest firing time of
t′ at the aggregate a.

Concerning the Meet attribute, given two transitions t1 and t2 that are
enabled at a′, the value of Meet(t1, t2) is simply obtained by considering the
membership of these transitions to ↑ (a, t) and to ↓ (a, t). Finally, by considering
that ∞−∞ = 0, the previous definition allows to handle transitions having an
unbounded latest firing time.

p1 p2

t1[1; 2] t2[1; 1]

p1 p2

t1[0; 1] t2[2; 3]

p1 p2 p3

t1[1; 1] t2[2; 2] t3[1; 1]

p1 p2

t1[1; 2] t2[2;∞]

Fig. 1. Four TPN Examples

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 41

Now, we are ready to formally define the TAG associated with a marked
TPN N . It is a labeled transition system where nodes are timed aggregates.
It has an initial aggregate, a set of actions (the set of transitions of N) and
a transition relation. The initial aggregate is easily computed by considering
static information of the TPN while the transition relation is directly obtained
by Definition 5 and Definition 6.

Definition 7 (Timed Aggregate Graph). Let N = 〈P, T,Pre,Post , I,m0〉
be a TPN. The TAG associated with N is a tuple G = 〈A, T, a0, δ〉 where:

1. A is a set of timed aggregates;
2. a0 = 〈m0, h0〉 is the initial timed aggregate s.t.:

(a) m0 is the initial marking of N .
(b) E0 = {〈t, tmin, tmax〉 | t ∈ Enable(m0)}
(c) ∀t, t ∈ Enable(a), Meet(t, t′) = [tmin, tmax]

3. δ ⊆ A× T ×A is the transition relation such that:
∀a ∈ A, ∀t ∈ T , (a, t, a′) ∈ δ iff a t a′

Since each transition having an unbounded static latest firing time will al-
ways maintain the same latest firing time at each aggregate where it is enabled,
one can prove that the number of aggregates of a TAG is bounded when the cor-
responding TPN is bounded. Indeed, given a reachable marking m, the number
of different aggregates having m as marking can be bounded by the number of
possible values of its attributes. This number is finite because of the following
facts: (1) if the number of the transitions that are enabled by m is e, there are
2|e| possible subsets of old transitions; (2) for a given subset of old transitions
o, the number of possible arrangements of the old transitions regarding the en-
abling time is at most equal to | o |! (the 2n elements corresponding to the
orderings where two or more old transitions became enabled at the same time
are not considered); (3) given an arrangement t1 ≤ t2 ≤ · · · ≤ t|o|, the number
of possible values of αm(t1,t2)

t1 is at most equel to
∑t1min
i=0 (t1max

− i+1). Similarly,
the possible values of αm(t2,t3)

t2 is equal to
∑t2min
i=0 (t2max − i + 1), etc. Thus, the

number of the possible different values of the matrix Meet, for this particular
arrangement, is obtained by Π |o|j=2

∑tj−1min
i=0 (tj−1max

− i+1); (4) for each enabled
transition t (with tmax 6= ∞), there are at most

∑tmin

i=0 (tmax − i + 1) different
intervals that can represent the earliest and latest firing times associated with t
in a given aggregate (i.e., αt and βt). When tmax = ∞, the number of possible
time intervals associated with t is tmin + 1.

Figure 2 illustrates the TAGs corresponding to the TPNs of Figure 1. In
the three first TAGs, the marking associated with each aggregate is omitted
(it is the same as the initial one). The second column of the tables gives the
dynamic earliest and latest firing times of the enabled transitions (i.e., t1, t2
and t3 respectively). For sake of readability of the figures, the Meet attribute is
omitted.

Although the four models of Figure 1 are quite simple, they are representative
enough to explain the TAG construction. Indeed, in the first one the transitions

42 PNSE’14 – Petri Nets and Software Engineering

intervals overlap, while the case of disjoint intervals is considered through the
second and the third models. Finally, the fourth model illustrates the case of
an unbounded latest firing time. More significant examples are considered in
Section 6.

aggregate E
a0 {〈1, 2〉, 〈1, 1〉}
a1 {〈1, 2〉, 〈0, 0〉}
a2 {〈0, 1〉, 〈1, 1〉}
a3 {〈1, 2〉, 〈0, 1〉}
a4 {〈0, 2〉, 〈1, 1〉}
a5 {〈0, 0〉, 〈1, 1〉}

a0

a1

a2

a3

a4

a5t1 t2

t2

t1

t2

t2

t1
t1

t2

t1

aggregate E
a0 {〈0, 1〉, 〈2, 3〉}
a1 {〈0, 1〉, 〈1, 3〉}
a2 {〈0, 0〉, 〈2, 3〉}
a3 {〈0, 1〉, 〈0, 3〉}

a0

a1

a2 a3

t1

t2

t1

t1 t2

t1

aggregate E
a0 {〈1, 1〉, 〈2, 2〉, 〈1, 1〉}
a1 {〈0, 0〉, 〈1, 1〉, 〈1, 1〉}
a2 {〈1, 1〉}, 〈1, 1〉, 〈1, 1〉
a3 {〈0, 0〉, 〈0, 0〉, 〈1, 1〉}
a4 {〈0, 0〉, 〈2, 2〉, 〈1, 1〉}
a5 {〈1, 1〉, 〈0, 0〉, 〈1, 1〉}
a6 {〈0, 0〉, 〈2, 2〉, 〈0, 0〉}
a7 {〈1, 1〉, 〈2, 2〉, 〈0, 0〉}
a8 {〈1, 1〉, 〈0, 0〉, 〈0, 0〉}
a9 {〈1, 1〉, 〈1, 1〉, 〈0, 0〉}

a0

a1

a4

a9

a5

a2

a3

a6

a8

a7

t1

t3

t1

t1

t3

t2

t1

t2

t1

t2

t3

t1

t3

t2

t3

t3

aggregate marking E
a0 (1,1) {〈1, 2〉, 〈2,∞〉}
a1 (1,0) {〈0, 0〉}
a2 (1,0) {〈1, 2〉}
a3 (1,1) {〈1, 2〉, 〈0,∞〉}
a4 (1,0) {〈0, 2〉}

a0

a1

a2

a3

a4

t2 t1

t1

t2t1
t1

t1

Fig. 2. TAGs associated with TPNs of Figure 1

3.2 Preservation Results

In this section, we establish the main result of our approach: The TAG is an
exact representation of the reachability state space of a TPN. In fact, for each
path in the TPN (resp. in the corresponding TAG) it is possible to find a path in
the TAG (resp. TPN) involving the same sequence of transitions and where the
time elapsed within a given state is between the minimum and the maximum
stay time of the corresponding aggregate.

Theorem 1. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the TAG associated
with N . Then ∀π = m0

(d1,t1)−→ m1
(d2,t2)−→ . . .

(dn,tn)−→ mn
dn+1−→, with di ∈ R≥0, for i =

1 . . . n+1, ∃π = a0
t1−→a1−→ . . . tn−→an s.t. ∀i = 0 . . . n, di+1 ≤ ∆(ai), mi = ai.m

and ∀i = 1 . . . n, di ≥ αi−1ti .

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 43

Proof. Let π = m0
(d1,t1)−→ m1

(d2,t2)−→ . . .
(dn,tn)−→ mn

dn+1−→ be a path ofN , with di ∈ R≥0,
for i = 1 . . . n + 1. Given a path a0−→a1 . . . , we denote by αit (res. βit), for
i = 0 . . . , the dynamic earliest firing time (resp. latest firing time) of a transition
t enabled by an aggregate ai.

Let us prove by induction on the length of π the existence of a path π in the
TAG satisfying the conditions of Theorem 1.

– | π |= 0: Obvious since m0 = a0.m (by construction) and since d1 is less or
equal to mint∈Enable(m0) tmax which is exactly the value of ∆(a0).

– | π |= 1 i.e., π = m0
(d1,t1)−→ m1

d2−→. It is clear that α0t1
≤ d1 ≤ ∆(a0). The fact

that t1 is fireable at m0 implies that it is at a0 (∀t ∈ Enable(m0), t1min
≤

tmax) and its firing leads to the aggregate a1 satisfying a1.m = m1. Let
us assume that d2 > ∆(a1) and let tm be the transition that is enabled
at a1 and which has the smallest latest firing time i.e., β1tm = ∆(a1). If
tm is newly enabled at a1 then d2 should clearly be greater or equal to
∆(a1). If tm ∈↓ (a0, t1) then β1tm = tmmax − t1min . Since d1 ≥ t1min , then
tmmax

− t1min
≥ tmmax

− d1. The fact that d2 > β1tm would imply that
d1 + d2 > tmmax

which is contradictory with the STS semantics. Thus d2 ≤
∆(a1).

– Assume that for any path π s.t. | π |≤ n, there exists a path in the
TAG with the same trace and satisfying the above conditions. Let π =

m0
(d1,t1)−→ m1

(d2,t2)−→ . . .
(dn,tn)−→ mn

(dn+1,tn+1)−→ mn+1
dn+2−→ be a path of length n+ 1.

Let π = a0
t1−→a1 t2−→ . . . tn−→an be the path in the TAG associated with the

n-length prefix of π (by the induction hypothesis). Then dn+1 ≤ ∆(an).
Let us demonstrate that dn+1 ≥ αnn+1 : It is clear that this is the case
when tn+1 ∈↑ (an, tn+1. If tn+1 ∈↓ (an, tn+1, let LastNewi(t) be the func-
tion that returns the greatest integer, smaller than (or equal to) i, such
that t ∈↑ (al−1, tl). If such a value does not exist, then t became enabled,
for the last time, at the initial aggregate a0 and the function returns 0.
Let k = LastNewi(tn+1), then αnn+1

= tn+1min
− ∑n−1

i=k SCR(ai, tn+1).
The STS semantics implies that

∑n−1
i=k SCR(ai, tn+1) ≥

∑n−1
i=k di+1 Thus

tn+1min
−∑n−1

i=k SCR(ai, tn+1) ≥ tn+1min
−∑n−1

i=k di+1, and dn+1 > αntn+1

would means that
∑n
i=k di+1 < tn+1min

which would prevent the firing of
tn+1 at mn. Thus, dn+1 ≤ αntn+1

. Let us show now that tn+1 is fireable at
an. Assume the opposite, this would imply that there exists a transition t
enabled by an such that αm(tn+1,t) > βm(t,tn+1). Let LastNewn(tn+1) = l,
LastNewn(t) = k, and let us consider the three following cases:
1. l = k, then βm(t,tn+1) = tmax and αm(tn+1,t) = tnmin

and the fact that
tnmin > tmax would prevent tn+1 from being fireable at mn which is not
the case. Thus, tn+1 is fireable at an as well.

2. l < k. In this case, αm(tn+1,t) = tn+1min
− ∑k−1

j=l SCR(aj , tn+1) and
βm(t,tn+1) = tmax. Again, the STS semantics implies that

∑k−1
i=l SCR(ai,

tn+1) ≥
∑k−1
i=l di+1. Thus, tn+1min

−∑k−1
i=l SCR(ai, tn+1) ≤ tn+1min

−∑k−1
i=l di+1, and αm(tn+1,t) > tmax would means that

∑k
i=l di+1 < tn+1min

44 PNSE’14 – Petri Nets and Software Engineering

which would prevent the firing of tn+1 atmn. Thus, αm(tn+1,t) ≤ βm(t,tn+1)

and tn+1 is necessarily fireable at an.
3. l > k. In this case, αm(tn+1,t) = tn+1min

and βm(t,tn+1) = tmax −∑l−1
i=kMax(0, (αm(ti+1,t)−(βm(t,ti+1)−βit)). Knowing that

∑l−1
i=kMax(0,

(αm(ti+1,t) − (βm(t,ti+1) − βit)) ≤
∑l−1
i=k di+1 (otherwise, the time spent

between k and some i ≤ l is smaller than αm(ti,t), which is contradic-
tory with the recurrence hypothesis), tmax −

∑l−1
i=kMax(0, (αm(ti+1,t) −

(βm(t,ti+1) − βit)) ≥ tmax −
∑l−1
i=k di+1. Thus, if tn+1min

> βm(t,tn+1)

then tn+1min
> tmax−

∑l−1
i=k di+1 which prevent the firing of tn+1 at mn

(before firing t) which is not true. Thus, tn+1 is fireable at an.
Let us now demonstrate that dn+2 ≤ ∆(an+1). Assume the opposite,
and let tm be the transition enabled by an+1 which has the small-
est latest firing time i.e. βn+1tm

= ∆(an+1). It is clear that if tm ∈↑
(an, tn+1) then dn+2 ≤ ∆(an+1). Otherwise, if tm ∈↓ (an, tn+1) and
k = LastNewn+1(tm) then βn+1tm

= tmmax −
∑n
i=kMax(0, (αm(ti+1,tm)

Again, since
∑n
i=k di+1 ≥

∑n
i=kMax(0, (αm(ti+1,tm), then βn+1tm

≤
tmmax

−∑n
i=k di+1, and the fact that dn+1 > βn+1tm

would imply that
dn+2 +

∑n
i=k di+1 > tmmax

which is not allowed by the STS semantics.
Thus, dn+2 ≤ ∆(an+1).

Theorem 2. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the TAG associated
with N . Then, for any path π = a0

t1−→a1−→ . . . tn−→an in the TAG, there exists
a run π = m0

(d1,t1)−→ m1−→ . . .
(dn,tn)−→ mn in N , s.t. ∀i = 0 . . . n, mi = ai.m,

∀i = 1 . . . n, αi−1ti) ≤ di ≤ ∆(ai−1), and ∀d ∈ R≥0, mn
d−→⇔ d ≤ ∆(an)

Proof. Let π = a0
t1−→a1−→ . . . tn−→an. We denote by αit (res. βit) the dynamic

earliest firing time (resp. the dynamic latest firing time) of a transition t at
aggregate ai, for i ∈ {0, . . . , n − 1}. Let us demonstrate that the path π =

m0
(d1,t1)−→ m1−→ . . .

(dn,tn)−→ mn obtained by the following algorithm satisfies the
requirement. The function LastNewi(t) returns the greatest integer l, smaller
than i, such that t ∈↑ (al−1, tl). If such a value does not exist, then t became
enabled, for the last time, at the initial aggregate a0 and the function returns
0. We propose to proceed by construction and built a path π satisfying the
Theorem 2. We use the following algorithm to compute a set of delays di, for
i = 1 . . . n and prove that the a0.m

(d1,t1)−→ a1.m−→ . . .
(dn,tn)−→ an.m is a run of the

TPN associated with the TAG.
Input: an abstract path π = a0

t1−→a1−→ . . . tn−→an
Output: a concrete path π = m0

(d1,t1)−→ m1−→ . . .
(dn,tn)−→ mn

begin
1 ∀i = 1 . . . n
2 di ← αi−1ti
3 ∀i = n− 1 . . . 1
4 k = LastNewi(ti+1)

5 If(
∑i−1
j=k dj+1 < ti+1min

)

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 45

6 ∀k ≤ j < i

7 dj+1 =Max(dj+1, αjti+1
− αj+1ti+1

)

8 If(
∑i−1
j=k dj+1 > ti+1max

)

9 ∀k ≤ j < i

10 dj+1 =Min(dj+1, αjti+1
− αj+1ti+1

)

11 ∀t ∈ Enable(ai.m)

12 l = LastNewi(t)

13 If((k > l) ∧ (tmax −
∑k−1
j=l dj+1 < ti+1min

))

14 ∀l ≤ j < k

15 dj+1 =Min(dj+1, αjt − αj+1t)

end
The intuition of the above algorithm is to build a concrete path π guided

by the abstract path π. π is built by traversing π by backtracking. Initially
(lines 1 − 2), the stay time at each marking is set to the minimum i.e., as
soon as the desired transition is fireable. Then, starting from the last aggregate,
each time a transition ti+1 is fired from an aggregate ai (for i = 1 . . . n), the
firability conditions are ensured by (possibly) changing the time that is elapsed
before reaching ai. Roughly speaking, two conditions must be satisfied in order
to make the transition ti+1 fireable from ai (i.e., ai.m): (1) The first condition
is that the elapsed time, since ti+1 became enabled for the last time, belongs
to the interval [ti+1min

, ti+1max
] while the second condition (2), is that there is

no transition t enabled by ai that prevents the firing of ti+1. The only way for
the last condition to be satisfied is that t has been enabled (for the lat time)
before ti+1 and the elapsed time between the moment t became enabled and
ti+1 became enabled is strictly greater than tmax − ti+1min

. The first condition
is treated at lines 5 − 10: If the elapsed time since ti+1 has been enabled for
the last time and the current state (ai.m) is strictly smaller than ti+1min

(lines
5 − 7) then it must be increased without exceeding ti+1max

. This is ensured by
the fact that, by construction of the TAG,

∑i−1
j=k(αjti+1

− αj+1ti+1
) = Ti+1min

and
∑i−1
j=k(αjt − αj+1t) ≤ ti+1max

for any transition t ∈↓ (ai−1, ti). Now, the
elapsed time since the last time ti+1 became enabled can exceed ti+1max

. This
can occur if, in order to ensure the firing of some transition tj (for j > i+1) this
time has been increased by the algorithm (lines 5−7). Thus, one has to decrease
this time while maintaining the firability of the transition tj . This is ensured by
lines 8 − 10. The last condition that could prevent ti+1 from being fireable at
ai. is that condition (2) is violated: the time elapsed between the moment some
transition t, enabled before, ti+1, and the moment ti+1 became enabled is bigger
than tmax− ti+1min

. This can happen when the firing of some transition tj , with
j > i + 1, involved the increase of this quantity of time. This case is treated at
lines 11− 15, by fixing this problem while maintaining the future firability of tj .

Thus, the algorithm ensures the construction of a run of the TPN associated
with the TAG that has the same trace. It is clear that the values of di, for
i = 1 . . . n, respects the conditions of Theorem 2. Now, Theorem 1 ensures that
if mn

d−→, for some d ∈ R≥0, then d ≤ ∆(an). Finally, given d ∈ R≥0 s.t.,

46 PNSE’14 – Petri Nets and Software Engineering

d ≤ ∆(an), the algorithm used to build π implies that the involved markings are
reached as soon as possible. By construction of the TAG, ∆(an) is the maximum
time the system can stay at mn.

Using the above results one can use the TAG associated with a TPN in order
to analyse both event and state based properties. In particular, we can check
whether a given marking (resp. transition) is reachable (resp. is fireable) before
(or after) some time.

4 Checking Time Reachability Properties

Our ultimate goal is to be able, by browsing the TAG associated with a TPN,
to check timed reachability properties. For instance, we might be interested in
checking whether some state-based property ϕ is satisfied within a time interval
[d,D), with d ∈ N and D ∈ (N ∪ {∞}), starting from the initial marking. The
following usual reachability properties belong to this category.

1. ∃♦[d;D]ϕ : There exists a path starting from the initial state, consuming be-
tween d and D time units and leading to a state that satisfies ϕ.

2. ∀�[d;D]ϕ : For all paths starting from the initial state, all the states, that
are reached after d and before D time units, satisfy ϕ.

3. ∀♦[d;D]ϕ : For all paths starting from the initial state, there exists a state in
the path, reached after d and before D time units that satisfies ϕ.

4. ∃�[d;D]ϕ : There exists a path from the initial state where all the states,
that are reached after d and before D time units, satisfy ϕ.

For the verification of time properties, an abstraction-based approach should
allow the computation of the minimum and maximum elapsed time over any
path. In the following, we establish that the TAG allows such a computation.

Definition 8. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the correspond-
ing TAG. Let π = a0

t1−→a1−→ . . . tn−→an be a path in G. For each aggregate ai
(for i = 0 . . . n), MinATπ(ai) (resp. MaxATπ(ai)) denotes the minimum (resp.
maximum) elapsed time between a0 and ai. In particular, MinAT (a0) := 0 and
MaxAT (a0) := ∆(a0).

Proposition 1. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the corresponding
TAG. Let π = a0

t1−→a1−→ . . . tn−→an be a path in G. We denote by αit (resp.
βit) the dynamic earliest (resp. latest) firing time of a transition t at aggregate
ai, for i = 1 . . . n. Then, ∀i = 1 . . . n, the following holds:

– MinATπ(ai) =MinATπ(ai−1) + αi−1ti
– MaxATπ(ai) =MaxAT (ai−1) +Mint∈Enable(ai)SCR(ai, t)

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 47

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

a0

d

D

temps

Region1

MaxAT < d

Region2

MaxAT ≥ d
MinAT ≤ D
|= ϕ?

Region3

MinAT > D

Fig. 3. Reachability analysis on the TAG

Using the previous proposition, one can browse the TAG graph and compute
the minimum and maximum bounds of the elapsed time of the current path
on-the-fly. If a path of the TAG is considered as a counterexample for some time
reachability property, one can use the algorithm given in the proof of Theorem 2
in order to build a concrete counterexample. Here we do not give the detailed
algorithms for checking reachability properties on-the-fly, but we give the main
intuition. The TAG is represented as a tree which is partitioned into three re-
gions (see. Figure 3). The first region (Region1) contains the aggregates that
are reachable strictly before d time units. The second region (Region2) contains
the aggregates that are reachable between d and D time units and the last re-
gion contains the aggregates that are reachable strictly after D time units. In
case D = ∞ Region3 is empty. By doing so, the verification algorithms behave
as follows: only aggregates belonging to Region2 are analyzed with respect to
ϕ. Region1 must be explored in order to compute the maximal and minimum
access time of the traversed aggregates, but Region3 is never explored. In fact,
as soon as an aggregate is proved to belong to Region3 the exploration of the
current path is stopped. Furthermore, one has to check for a particular kind of
Zeno behavior: if a cycle involving only aggregates whose minimal and maximal
access times are equal, then the exploration of the current branch is stopped.

For instance checking the formula number 1 is reduced to the search of an
aggregate a in Region2 that satisfies ϕ. As soon as such an aggregate is reached
the checking algorithm stops the exploration and returns true. When, all the
aggregates of Region2 are explored (none satisfies ϕ) the checking algorithm
returns false. Dually, the formula number 2 is proved to be unsatisfied as soon as
an aggregate in Region2 that do not satisfy ϕ is reached. When all the aggregates
of Region2 are explored (each satisfies ϕ) the checking algorithm returns true.

48 PNSE’14 – Petri Nets and Software Engineering

Checking formulae number 3 and 4 is slightly more complicated. In fact,
checking formula number 3 is reduced to check if, along any path in Region2,
there exists at least one aggregate satisfying ϕ. As soon as a path in Region2 is
completely explored without encountering an aggregate satisfying ϕ, the explo-
ration is stopped and the checking algorithm returns false. Otherwise, it returns
true. Finally, checking formula 4 is reduced to check that there exists a path
in Region2 such that all the aggregates belonging to this path satisfy ϕ. This
formula is proved to be true as soon as such a path is found. Otherwise, when
all the paths of Region2 are explored (none satisfies the desired property), the
checking algorithm returns false.

5 Related works

This section reviews the most known techniques, proposed in the literature,
that abstract and analyse the state space of real-time systems described by
means of TPN. Abstraction techniques aim at constructing, by removing some
irrelevant details, a contraction of the state space of the model, which preserves
properties of interest. The existing abstraction approaches mainly differ in the
states agglomeration criteria, the characterization of states and state classes
(interval states or clock states), the kind of preserved properties.

The States Class Graph (SCG) [3] was the first method of state space repre-
sentation adapted to TPNs. A class (m,D) is associated with a marking m and
a time domain D represented by a set of inequalities over variables. The vari-
ables represented in the SCG are the firing time intervals of enabled transitions.
The SCG allows for the verification of some TPN properties like reachability,
boundness. However, it preserves the linear time properties only. To address this
limitation, a refinement of the method was proposed in [24], in the form of a
graph called Atomic States Class Graph (ASCG). The authors use a cutting of
state class by adding linear constraints so that each state of an atomic class has
a successor in all the following classes. With this improvement, they are able to
verify CTL∗ properties on TPN, but with the limitation that the time intervals
of transitions are bounded. A new approach for the construction of atomic classes
was proposed in [4] and allows the verification of CTL∗ without restriction on
time intervals. The state class approach is implemented in a software tool called
TINA [5].

The Zones Based Graph (ZBG) [10] is an other approach allowing to abstract
the TPN state space. This approach is inspired by the Region Graph (RG) [1]
technique, initially introduced for timed automata. In practice, the number of
regions is too large for an effective analysis, thus, the regions are grouped into
a set of zones. A zone is a convex union of regions and can be represented by a
DBM (Difference Bound Matrix) [8]. In [10], the clocks of transitions are directly
encoded within the zones. This allows to verify temporal and quantitative prop-
erties but not CTL∗ properties. As for timed automata, a disadvantage of the
method is the necessary recourse to approximation methods (k-approximation
or kx-approximation) in the case where the infinity is used in the bounds of time

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 49

intervals. Lime and Roux also used TPNs to model system behavior [17]. They
used the state class approach to build a timed automaton that preserves the be-
havior of the TPN using as less clock variables as possible. The resulting model
is then verified using the UPPAAL tool [16]. However, even though UPPAAL
can answer about quantitative temporal properties, it can only verify a subset of
TCTL. Adding a new transition to measure time elapse was proposed in [6] to
perform TCTL model-checking in TPNs. Using this transition, TCTL formulae
are translated into CTL formulae. Then a ZBG for TPN is refined leading to a
graph called Atomic Zone Based Graph (AZBG) that preserves CTL properties.

Unlike the TAG, in all existing approaches, the time information does not
appear explicitly in nodes which leads to additional and costly calculations such
as: the manipulation of DBM to encode the zones (for zones based approaches)
and the classes (for state-class based approaches), the approximations to counter
the problem of unbounded transitions, conversion of graphs to timed automata
(using UPPAAL) to model check properties (etc). In our work the time infor-
mation is encoded within the aggregates allowing to check time properties just
by browsing the graph, which has a significant impact on the construction com-
plexity. The encoding of the timing information in the aggregates is such that
the minimum and maximum elapsed time in every path of the TAG can be
computed.

6 Experimental results

The efficiency of the verification of timed reachability properties is closely linked
with the size of the explored structure to achieve this verification. Thus, it was
important to first check that the TAG is a suitable/reduced abstraction before
performing verification on it. Our approach for building TAG-TPN was imple-
mented in a prototype tool (written in C++), and used for experiments in order
to validate the size of the graphs generated by the approach (note that the pro-
totype was not optimized for time efficiency yet, therefore no timing figures are
given in this section). All results reported in this section have been obtained
on a Mac-os with 2 gigahertz Intel with 8 gigabytes of RAM. The implemented
prototype allowed us to have first comparison with existing approaches with re-
spect to the size of obtained graphs. This section is dedicated to report, compare
and discuss the experimental results obtained with three approaches: SCG, ZBG
and TAG-TPN. Notice that we used the ROMEO tool to build both SCGs and
ZBGs. The built versions preserve Linear-time Temporal Logic (LTL) properties.
We tested our approach on several TPN models and we report here the obtained
results for three well known examples of parametric TPN models.

The considered models are: (1) a TPN representing a composition of pro-
ducer/consumer models by fusion of a single buffer (of size 5) [12], (2) the second
example (adapted from [19]) is the Fischer’s protocol for mutual exclusion, and
(3) the last is the train crossing example [4].

Table1 reports the results obtained with the SCG, the ZBG and the TAG-
TPN approaches, in terms of graph size number of nodes/number of edges).

50 PNSE’14 – Petri Nets and Software Engineering

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)
Nb. prod/cons TPN model of producer/consumer
1 34 / 56 34 / 56 34 / 56
2 748 / 2460 593 / 1 922 740 / 2438
3 4604 / 21891 3240 / 15200 4553 / 21443
4 14086 / 83375 9504 / 56038 13878 / 80646
5 31657 / 217423 20877 / 145037 30990 / 207024
6 61162 / 471254 39306 / 311304 60425 / 449523
7 107236 / 907 708 67224 / 594795 106101 / 856050
Nb. processes Fischer protocol
1 4 / 4 4 / 4 4 / 4
2 18 / 29 19 / 32 20 / 32
3 65 / 146 66 / 153 74 / 165
4 220 / 623 221 / 652 248 / 712
5 727 / 2536 728 / 2 615 802 / 2825
6 2378 / 9154 2379 / 10098 2564 / 10728
7 7737 / 24744 7738 / 37961 8178 / 39697
8 25080 / 102242 25081 / 139768 26096 / 144304
Nb. processes Train crossing
1 11 / 1 4 11 / 1 4 11 / 14
2 123 / 218 114 / 200 123 / 218
3 3101 / 7754 2817 / 6944 2879 / 7280
4 134501 / 436896 122290 / 391244 105360 / 354270

Table 1. Experimentation results

The obtained preliminary results show that the size of the TAG is comparable
to the size of the graphs obtained with the ZBG and the SCG approaches.
The TAG achieves better performances than both SCG and ZBG for the train
crossing example, while it is slightly worse for the Fischer’s protocol and performs
similarly to SCG but worse than ZBG for the producer/consumer example.

This is an encouraging result because of the following reasons: The TAG
allows for checking timed properties while the SCG approach do not. Also, it
can be used for the verification of event-based timed properties while the ZBG
approach do not. An other difference consists in the fact that the verification of
timed properties can be achieved directly on the TAG, without any synchroni-
sation with an additional automaton (representing the formula to be checked),
nor any prior step of translation to timed automata. Moreover, using the algo-
rithm given in the proof of Theorem 2, and in the prospect of using the TAG
in order to check timed properties, one can exhibit (e.g., from a counterexam-
ple abstract path in the TAG) an explicit run involving the time spent at each
reached marking. Finally, we claim that the TAG is a suitable abstraction for
further reductions, especially the partial order reduction which is based on the
exploitation of the independency between the TPN transitions. The third exam-

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 51

ple of Figure 2 is a typical illustration of the gain one could have by applying
such a reduction.

7 Conclusion

We proposed a new symbolic graph for the abstraction of the TPN state space.
The proposed graph, called TAG, produces a finite representation of the bounded
TPN behavior and allows for analyzing of timed reachability properties. Unlike,
the existing approaches, our abstraction can be directly useful to check timed
logic properties. We think that our approach is more understandable than the
SCG and the ZBG approaches (the two main approaches for TPNs analysis since
three decades) and easily implementable. Another feature of our approach is that
each path of the TAG can be matched with a concrete path of the TPN model
where the elapsed time at each encountered state is exhibited.

Our ultimate goal is to use the TAG traversal algorithm for the verification
of timed reachability properties expressed in the TCTL logic. Several issues have
to be explored in the future: We first have to improve our implementation so
that time consumption criterion can be taken into account in our comparison
to existing tools. We should also, carry out additional experimentations (using
more significant use cases) to better understand the limits of our approach and
to better compare the TAG technique to the existing approaches. Second, we
believe that partial order reduction techniques can be used to reduce the size
of the TAG while preserving time properties but without necessarily preserving
all the paths of the underlying TPN. Finally, two challenging perspectives can
be considered in the future: (1) the design and the implementation of model
checking algorithms for verification of TCTL formulae, and (2), the extension of
our approach to timed automata.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

2. B. Berthomieu and M. Diaz. Modeling and Verification of Time Dependent Systems
Using Time Petri Nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

3. B. Berthomieu and M. Menasche. An Enumerative Approach for Analyzing Time
Petri Nets. In IFIP Congress, pages 41–46, 1983.

4. B. Berthomieu and F. Vernadat. State Class Constructions for Branching Anal-
ysis of Time Petri Nets. In TACAS 2003, volume 2619 of LNCS, pages 442–457.
Springer, 2003.

5. B. Berthomieu and F. Vernadat. Time Petri Nets Analysis with TINA. In QEST,
pages 123–124, 2006.

6. H. Boucheneb, G. Gardey, and O. H. Roux. TCTL Model Checking of Time Petri
Nets. J. Log. Comput., 19(6):1509–1540, 2009.

7. M. Boyer and O. H. Roux. Comparison of the Expressiveness of Arc, Place and
Transition Time Petri Nets. In ICATPN 2007, volume 4546 of LNCS, pages 63–82.
Springer, 2007.

52 PNSE’14 – Petri Nets and Software Engineering

8. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, pages 197–212. Springer-Verlag, 1990.

9. G. Gardey, D. Lime, M. Magnin, and O. (h. Roux. Roméo: A Tool for Analyzing
time Petri nets. In In Proc. CAVÕ05, vol. 3576 of LNCS, pages 418–423. Springer,
2005.

10. G. Gardey, O. H. Roux, and O. F. Roux. Using Zone Graph Method for Computing
the State Space of a Time Petri Net. In FORMATS 2003, volume 2791 of LNCS,
pages 246–259. Springer, 2003.

11. R. Hadjidj and H. Boucheneb. Improving state class constructions for CTL* model
checking of time Petri nets. STTT, 10(2):167–184, 2008.

12. R. Hadjidj and H. Boucheneb. On-the-fly TCTL model checking for time Petri
nets. Theor. Comput. Sci., 410(42):4241–4261, 2009.

13. K. Klai, N. Aber, and L. Petrucci. To appear in a new approach to abstract
reachability state space of time petri nets. In To appear in 20th International
Symposium on Temporal Representation and Reasoning, TIME 2013, 2013.

14. K. Klai, N. Aber, and L. Petrucci. Verification of reachability properties for time
petri nets. In Reachability Problems - 7th International Workshop, RP 2013, vol-
ume 8169 of Lecture Notes in Computer Science, pages 159–170. Springer, 2013.

15. K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems. In
FCT ’95, volume 965 of LNCS, pages 62–88. Springer, 1995.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL: Status and Developments. In
CAV, pages 456–459, 1997.

17. D. Lime and O. H. Roux. Model Checking of Time Petri Nets Using the State
Class Timed Automaton. Discrete Event Dynamic Systems, 16(2):179–205, 2006.

18. P. M. Merlin and D. J. Farber. Recoverability of modular systems. Operating
Systems Review, 9(3):51–56, 1975.

19. W. Penczek, A. Pólrola, and A. Zbrzezny. SAT-Based (Parametric) Reachability
for a Class of Distributed Time Petri Nets. T. Petri Nets and Other Models of
Concurrency, 4:72–97, 2010.

20. C. A. Petri. Concepts of net theory. In MFCS’73. Mathematical Institute of the
Slovak Academy of Sciences, 1973.

21. M. Pezzè and M. Young. Time Petri Nets: A Primer Introduction. In Tutorial at the
Multi-Workshop on Formal Methods in Performance Evaluation and Applications,
1999.

22. C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri
nets. Technical report, Cambridge, MA, USA, 1974.

23. J. Sifakis. Use of Petri nets for performance evaluation. Acta Cybern., 4:185–202,
1980.

24. T. Yoneda and H. Ryuba. CTL model checking of time Petri nets using geometric
regions. 1998.

K. Klai: On-The-Fly Model Checking of Times Properties on TPN 53

54 PNSE’14 – Petri Nets and Software Engineering

SMT-based Abstract Temporal Planning?

Artur Niewiadomski1 and Wojciech Penczek1,2

1 ICS, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
artur.niewiadomski@uph.edu.pl

2 ICS, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland
penczek@ipipan.waw.pl

Abstract. An abstract planning is the first phase of the web service
composition in the Planics framework. A user query specifies the initial
and the expected state of a plan in request. The paper extends Planics
with a module for temporal planning, by extending the user query with
an LTLk

−X formula specifying temporal aspects of world transformations
in a plan. Our solution comes together with an example, an implemen-
tation, and experimental results.

Keywords: Web Service Composition, SMT, Abstract Planning, Temporal Plan-
ning, LTL

1 Introduction

Web service composition within Service-Oriented Architecture (SOA) [2] is still
attracting a lot of interest, being a subject of many theoretical and practical
approaches. The main idea consists in dealing with independent (software) com-
ponents available via well-defined interfaces. As typically a simple web service
does not satisfy the user objective, a composition is investigated in order to
make the user fully satisfied. An automatic composition of Web services aims at
relieving the user of a manual preparation of detailed execution plans, matching
services to each other, and choosing optimal providers for all the components.
The problem of finding such a satisfactory composition is NP-hard and well
known in the literature as the Web Service Composition Problem (WSCP) [2, 1,
21]. There are many various approaches to solve WSCP [14, 16], some of them
we discuss in the next section.

In this paper, we follow the approach of the system Planics [8, 9], which has
been inspired by [1]. The main assumption is that all the web services in the
domain of interest as well as the objects which are processed by the services, can
be strictly classified in a hierarchy of classes, organised in an ontology. Another
key idea consists in dividing planning into several stages. The first phase, called
the abstract planning, deals with classes of services, where each class represents
a set of real-world services. This phase has been implemented in Planics using
? This work has been supported by the National Science Centre under the grant No.
2011/01/B/ST6/01477.

two approaches: one based on a translation to SMT-solvers [17] and another one
exploiting genetic algorithms [22]. The second phase, called concrete planning,
deals with concrete services. Thus, while the first phase produces an abstract
plan, it becomes a concrete plan in the second phase. Such an approach enables
to reduce dramatically the number of concrete services to be considered as they
are already eliminated in the abstract planning phase. This paper focuses on the
abstract planning problem, but extends it to so called temporal planning. This
extension together with the experimental results is the main contribution of the
paper. The main idea behind this approach consists in providing the user with a
possibility to specify not only the first and the expected state of a plan in request,
but also to specify temporal aspects of state transformations in a plan. To this
aim we introduce two general types of atomic properties for writing a temporal
formula, namely propositions and level constraints. The propositions are used to
describe (intermediate) states of a plan in terms of existence (or non-existence)
of objects and abstract values of object attributes. The level constraints, built
over a special set of objects, are used for influencing a service ordering within
solutions. However, in order to express such restrictions the user has to rely on
some knowledge about the planning domain. In order to get this knowledge, the
planner can be first run without temporal constraints and then these restrictions
can be added after a non-temporal planning results have been obtained.

We propose a novel approach based on applying SMT-solvers. Contrary to
a number of other approaches, we focus not only on searching for a single plan,
but we attempt to find all significantly different plans. We start with defining
the abstract planning problem (APP, for short). Then, we present our original
approach to APP based on a compact representation of abstract plans by mul-
tisets of service types. We introduce the language of LTLk−X for specifying the
temporal aspects of the user query. This approach is combined with a reduction
to a task for an SMT-solver. The encoding of blocking formulas allows for prun-
ing the search space with many sequences which use the same multiset of service
types in some plan already generated. Moreover, we give details of our algo-
rithms and their implementations that are followed by experimental results. To
the best of our knowledge, the above approach is novel, and as our experiments
show it is also very promising.

The rest of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 deals with the abstract planning problem. In Section 4 the
temporal planning is presented. An example of an abstract temporal planning is
shown in Section 5. Section 6 discusses the implementation and the experimen-
tal results of our planning system. The last section summarizes this paper and
discusses a further work.

2 Related Work

A classification matrix aimed at the influence on the effort of Web service compo-
sition is presented in [14]. According to [14], situation calculus [6], Petri nets [11],
theorem proving [20], and model checking [23] among others belongs to AI plan-

56 PNSE’14 – Petri Nets and Software Engineering

ning. A composition method closest to ours based on SMT is presented in [16],
where the authors reduce WSCP to a reachability problem of a state-transition
system. The problem is encoded by a propositional formula and tested for satis-
fiability using a SAT-solver. This approach makes use of an ontology describing
a hierarchy of types and deals with an inheritance relation. However, we consider
also the states of the objects, while [16] deals with their types only. Moreover,
among other differences, we use a multiset-based SMT encoding instead of SAT.

Most of the applications of SMT in the domain of WSC is related to the
automatic verification and testing. For example, a message race detection prob-
lem is investigated in [10], the paper [4] takes advantage of symbolic testing and
execution techniques in order to check behavioural conformance of WS-BPEL
specifications, while [15] exploits SMT to verification of WS-BPEL specifications
against business rules.

Recently, there have also appeared papers dealing with temporal logics in
the context of WSC. Bersani et al. in [5] present a formal verification technique
for an extension of LTL that allows the users to include constraints on integer
variables in formulas. This technique is applied to the substitutability problem
for conversational services. The paper [13] deals with the problem of automatic
service discovery and composition. The authors characterize the behaviour of a
service in terms of a finite state machine, specify the user’s requirement by an
LTL formula, and provide a translation of the problem defined to SAT. However,
the paper does not specify precisely experimental results and such important
details as, e.g., the number of services under consideration. An efficient appli-
cation of the authors method is reported for plans of length up to 10 only. The
authors of [3] address the issue of verifying whether a composite Web services
design meets some desirable properties in terms of deadlock freedom, safety, and
reachability. The authors report on automatic translation procedures from the
automata-based design models to the input language of the NuSMV verification
tool. The properties to be verified can be expressed as LTL or CTL formulae.

Searching for plans meeting temporal restrictions is also a topic of interest of
a broad planning community. The PDDL language [12] has been also extended
with LTL-like modal operators, but for planning automata-based methods are
used instead of SMT-based symbolic ones.

3 Abstract Planning

This section introduces APP as the first stage of WSCP in the Planics frame-
work. First, the Planics ontology is presented. Next, we provide some basic
definitions and explain the main goals of APP.

3.1 Planics Ontology

The OWL language [19] is used as the Planics ontology format. The concepts
are organized in an inheritance tree of classes, all derived from the base class -
Thing. There are 3 children of Thing: Artifact, Stamp, and Service (Fig. 1).

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 57

Thing

Artifact Stamp Service

Fig. 1. The base classes in Planics ontology

The branch of classes rooted at Artifact is composed of the types of the
objects, which the services operate on. Each object consists of a number of
attributes, whereas an attribute consists of a name and a type. Note that the
types of the attributes are irrelevant in the abstract planning phase as they are
not used by the planner. The values of the attributes of an object determine
its state, but in the abstract planning it is enough to know only whether an
attribute does have some value (i.e., is set), or it does not (i.e., it is null). The
Stamp class and its descendants define special-purpose objects, often useful in
constructing a user query, and in the planning process. A stamp is a specific type
aimed at a confirmation of the service execution. The specialized descendants
of the Service class can produce the stamp being an instance of any subtype
of Stamp and describing additional execution features. Note that each service
produces exactly one confirmation object. The classes derived from Artifact and
Stamp are called the object types.

Each class derived from Service, called a service type, stands for a description
of a set of real-world services. It contains a formalized information about their
activities. A service type affects a set of objects and transforms them into a new
set of objects. The detailed information about this transformation is contained
in the attributes of a service type: the sets in, inout, and out, and the Boolean
formulas pre and post (pre and post, for short). These sets enumerate the objects,
which are processed by the service. The objects of the in set are read-only,
i.e., they are passed unchanged to the next world. Each object of inout can be
modified - the service can change some values of its attributes. The objects of
out are produced by the service.

3.2 Basic definitions

Let I denote the set of all identifiers used as the type names, the objects, and the
attributes. In APP we deal with abstract values only, the types of the attributes
are irrelevant, and we identify the attributes with their names. Moreover, we
denote the set of all attributes by A, where A ⊂ I. An object type is a pair
(t, Attr), where t ∈ I, and Attr ⊆ A. That is, an object type consists of the type
name and a set of the attributes. By P we mean a set of all object types.

Example 1. Consider the following exemplary ontology containing in addition to
Thing also the class Artifact and Stamp. The class Artifact corresponds to the
object type (Artifact, {id}) (the only attribute is an identifier) while the class

58 PNSE’14 – Petri Nets and Software Engineering

Stamp corresponds to the object type (Stamp, {serviceClass, serviceId, level}),
introducing the attributes describing the service generating the stamp, and the
position of this service in an execution sequence we consider.

We define also a transitive, irreflexive, and antisymmetric inheritance relation
Ext ⊆ P×P, such that

(
(t1, A1), (t2, A2)

)
∈ Ext iff t1 6= t2 and A1 ⊆ A2. That

is, a subtype contains all the attributes of a base type and optionally introduces
more attributes. An object o is a pair o = (id, type), where id ∈ I and type ∈ P.
By type(o) we denote the type of o. The set of all objects is denoted by O.
Amongst all the objects we distinguish between the artifacts (the instances of
the Artifact type) and the stamps (the instances of the Stamp type). The set of
all the stamps is denoted by ST, where ST ⊆ O. Moreover, we define the function
attr : O 7−→ 2A returning the set of all attributes for each object of O.

Service types and user queries. The service types available for composition are
defined in the ontology by service type specifications. The user goal is provided
in a form of a user query specification, which is then extended by a temporal
formula. Before APP, all the specifications are reduced to sets of objects and
abstract formulas over them. An abstract formula over a set of objects O
and their attributes is a DNF formula without negations, i.e., the disjunction of
clauses, referred to as abstract clauses. Every abstract clause is the conjunction
of literals, specifying abstract values of object attributes using the functions
isSet and isNull. In the abstract formulas used in APP, we assume that no
abstract clause contains both isSet(o.a) and isNull(o.a), for the same o ∈ O
and a ∈ attr(o). For example (isSet(o.a) ∧ isSet(o.b)) ∨ isNull(o.a) is a correct
abstract formula. The syntax of the specifications of the user queries and of the
service types is the same and it is defined below.

Definition 1. A specification is a 5-tuple (in, inout, out, pre, post), where in,
inout, out are pairwise disjoint sets of objects, and pre is an abstract formula
defined over objects from in ∪ inout, while post is an abstract formula defined
over objects from in ∪ inout ∪ out.

A user query specification q or a service type specification s is denoted by
specx = (inx, inoutx, outx, prex, postx), where x ∈ {q, s}, resp. In order to for-
mally define the user queries and the service types, which are interpretations
of their specifications, we need to define the notions of valuation functions and
worlds.

Definition 2. Let ϕ =
∨
i=1..n αi be an abstract formula. A valuation of

the attributes over αi is the partial function vαi
:
⋃
o∈O{o} × attr(o) 7−→

{true, false}, where:

• vαi
(o, a)= true if isSet(o.a) is a literal of αi, and

• vαi
(o, a)=false if isNull(o.a) is a literal of αi, and

• vαi
(o, a) is undefined, otherwise.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 59

We define the restriction of a valuation function vαi to a set of objects O ⊂ O
as vαi

(O) = vαi

∣∣⋃
o∈O{o}×attr(o)

. The undefined values appear when the inter-
preted abstract formula does not specify abstract values of some attributes,
which is a typical case in the WSC domain. The undefined values are used also
for representing families of total valuation functions. Next, for a partial valua-
tion function f , by total(f) we denote the family of the total valuation functions
on the same domain, which are consistent with f , i.e., agree on the values de-
fined of f . Moreover, we define a family of the valuation functions Vϕ over the
abstract formula ϕ as the union of the sets of the consistent valuation functions
over every abstract clause αi, i.e., Vϕ =

⋃n
i=1 total(vαi

). The restriction of the
family of functions Vϕ to a set of objects O and their attributes is defined as
Vϕ(O) =

⋃n
i=1 total(vαi(O)).

Definition 3. A world w is a pair (Ow, vw), where Ow ⊆ O and vw = v(Ow)
is a total valuation function equal to some valuation function v restricted to Ow.
The size of w, denoted by |w| is equal to |Ow|.

That is, a world represents a state of a set of objects, where each attribute is
either set or null. By a sub-world of w we mean a world built from a subset of
Ow and vw restricted to the objects from the chosen subset. Moreover, a pair
consisting of a set of objects and a family of total valuation functions defines a set
of worlds. That is, if V = {v1, . . . , vn} is a family of total valuation functions and
O ⊆ O is a set of objects, then

(
O,V(O)

)
means the set {

(
O, vi(O)

)
| 1 ≤ i ≤ n},

for n ∈ N. Finally, the set of all worlds is denoted by W.
Now, we are in a position to define a service type and a (basic) user query

as an interpretation of its specification. In the next section the user query is
extended to a temporal version.

Definition 4. Let specx = (inx, inoutx, outx, prex, postx) be a user query or a
service type specification, where x ∈ {q, s}, resp. An interpretation of specx is a
pair of world sets x = (W x

pre,W
x
post), where:

– W x
pre =

(
inx ∪ inoutx,Vxpre

)
, where Vxpre is the family of the valuation func-

tions over prex,
– W x

post =
(
inx∪inoutx∪outx,Vxpost

)
, where Vxpost is the family of the valuation

functions over postx.

An interpretation of a user query (service type) specification is called simply a
user query (service type, resp.).

For a service type (W s
pre,W

s
post), W s

pre is called the input world set, while W s
post

- the output world set. The set of all the service types defined in the ontology is
denoted by S. For a user query (W q

pre,W
q
post),W q

pre is called the initial world set,
whileW q

post - the expected world set, and denoted byW q
init andW

q
exp, respectively.

Abstract Planning Overview. The main goal of APP is to find a composition
of service types satisfying a user query, which specifies some initial and some
expected worlds as well as some temporal aspects of world transformations.

60 PNSE’14 – Petri Nets and Software Engineering

Intuitively, an initial world contains the objects owned by the user, whereas
an expected world consists of the objects required to be the result of the service
composition. To formalize it, we need several auxiliary concepts.

Let o, o′ ∈ O and v and v′ be valuation functions. We say that v′(o′) is
compatible with v(o), denoted by v′(o′)�objv(o), iff the types of both objects
are the same, or the type of o′ is a subtype of type of o, i.e., type(o) = type(o′)
or (type(o′), type(o)) ∈ Ext, and for all attributes of o, we have that v′ agrees
with v, i.e., ∀a∈attr(o)v′(o′, a) = v(o, a). Intuitively, an object of a richer type (o′)
is compatible with the one of the base type (o), provided that the valuations of
all common attributes are equal.

Let w = (O, v), w′ = (O′, v′) be worlds. We say that the world w′ is compati-
ble with the world w, denoted by w′�wrlw, iff there exists a one-to-one mapping
map : O 7−→ O′ such that ∀o∈Ov′(map(o))�objv(o). Intuitively, w′ is compat-
ible with w if both of them contain the same number of objects and for each
object from w there exists a compatible object in w′. The world w′ is called sub-
compatible with the world w, denoted by w′�swrlw iff there exists a sub-world
of w′ compatible with w.

World transformations. One of the fundamental concepts in our approach con-
cerns a world transformation. A world w, called a world before, can be trans-
formed by a service type s, having specification specs, if w is sub-compatible
with some input world of s. The result of such a transformation is a world w′,
called a world after, in which the objects of outs appear, and, as well as the
objects of inouts, they are in the states consistent with some output world of s.
The other objects of w do not change their states. In a general case, there may
exist a number of worlds possible to obtain after a transformation of a given
world by a given service type, because more than one sub-world of w can be
compatible with an input world of s. Therefore, we introduce a context function,
which provides a strict mapping between objects from the worlds before and
after, and the objects from the input and output worlds of a service type s.

Definition 5. A context function ctxsO : ins ∪ inouts ∪ outs 7−→ O is an
injection, which for a given service type s and a set of objects O assigns an
object from O to each object from ins, inouts, and outs.

Now, we can define a world transformation.

Definition 6. Let w, w′ ∈W be worlds, called a world before and a world after,
respectively, and s = (W s

pre,W
s
post) be a service type. Assume that w = (O, v),

w′ = (O′, v′), where O ⊆ O′ ⊆ O, and v, v′ are valuation functions. Let ctxsO′

be a context function, and the sets IN , IO, OU be the ctxsO′ images of the sets
ins, inouts, and outs, respect., i.e., IN = ctxsO′

(
ins
)
, IO = ctxsO′

(
inouts

)
, and

OU = ctxsO′
(
outs

)
. Moreover, let IN, IO ⊆ (O ∩O′) and OU = (O′ \O).

We say that a service type s transforms the world w into w′ in the context

ctxsO′ , denoted by w
s,ctxs

O′→ w′, if for some vspre ∈ Vspre and vspost ∈ Vspost, all the
following conditions hold:

1.
(
IN, v(IN)

)
�wrl

(
ins, v

s
pre(ins)

)
,

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 61

2. (IO, v(IO))�wrl
(
inouts, v

s
pre(inouts)

)
,

3. (IO, v′(IO))�wrl
(
inouts, v

s
post(inouts)

)
,

4. (OU, v′(OU))�wrl
(
outs, v

s
post(outs)

)
,

5. ∀o∈(O\IO) ∀a∈attr(o) v(o, a) = v′(o, a).

Intuitively, (1) the world before contains a sub-world built over IN , which is
compatible with a sub-world of some input world of the service type s, built
over the objects from ins. (2) The world before contains a sub-world built over
IO, which is compatible with a sub-world of the input world of the service type
s, built over the objects from inouts. (3) After the transformation the state of
objects from IO is consistent with posts. (4) The objects produced during the
transformation (OU) are in a state consistent with posts. (5) The objects from
IN and the objects not involved in the transformation do not change their states.

In the standard way we extend a world transformation to a sequence of world
transformations seq. We say that a world w0 is transformed by the sequence seq
into a world wn, denoted by w0

seq wn, iff there exists a sequence of worlds

ρ = (w0, w1, . . . , wn) such that ∀1≤i≤n wi−1
si,ctx

si
Oi→ wi = (Oi, vi) for some vi.

Then, the sequence seq = (s1, . . . , sn) is called a transformation sequence and ρ
is called a world sequence.

Having the transformation sequences defined, we introduce the concept of
user query solutions or simply solutions, in order to define a plan.

Definition 7. Let seq be a transformation sequence, q = (W q
init,W

q
exp) be a

user query. We say that seq is a solution of q, if for w ∈W q
init and some world

w′ such that w seq w′, we have w′�swrlwqexp, for some wqexp ∈ W q
exp. The world

sequence corresponding to seq is called a world solution. The set of all the (world)
solutions of the user query q is denoted by QS(q) (WS(q), resp.).

Intuitively, by a solution of q we mean any transformation sequence transforming
some initial world of q to a world sub-compatible to some expected world of q.

Plans. Basing on the definition of a solution to the user query q, we can now
define the concept of an (abstract) plan, by which we mean a non-empty set of
solutions of q. We define a plan as an equivalence class of the solutions, which
do not differ in the service types used. The idea is that we do not want to distin-
guish between solutions composed of the same service types, which differ only in
the ordering of their occurrences or in their contexts. So we group them into the
same class. There are clearly two motivations behind that. Firstly, the user is
typically not interested in obtaining many very similar solutions. Secondly, from
the efficiency point of view, the number of equivalence classes can be exponen-
tially smaller than the number of the solutions. Thus, two user query solutions
are equivalent if they consist of the same number of the same service types,
regardless of the contexts.

Definition 8. Let seq ∈ QS(q) be a solution of some user query q. An abstract
plan is a set of all the solutions equivalent to seq, denoted by [seq]∼.

62 PNSE’14 – Petri Nets and Software Engineering

It is important to notice that all the solutions within an abstract plan are built
over the same multiset of service types, so a plan is denoted using a multiset
notation, e.g., the plan [2S+4T +3R] consists of 2 services S, 4 services T , and
3 services R.

In order to give the user a possibility to specify not only the initial and
expected states of a solution, we extend the user query with an LTLk−X formula
ϕ specifying temporal aspects of world transformations in a solution. Then, the
temporal solutions are these solutions for which the world sequences satisfy ϕ.
This is formally introduced in the next section.

4 Temporal Abstract Planning

In this section we extend the user query by an LTLk−X temporal formula and a
solution to a temporal solution by requiring the temporal formula to be satisfied.
The choice of linear time temporal logic is quite natural since our user query
solutions are defined as sequences of worlds. The reason for disallowing a direct
use of the operator X (by removing it from the syntax) is twofold. Firstly, we
still aim at not distinguishing sequences which differ only in the ordering of
independent service types. Secondly, if the user wants to introduce the order on
two consequtive service types he can use formulas involving level constraints. On
the other hand our language and the temporal planning method can be easily
extended with the operator X.

We start with defining the set of propositional variables, the level constraints,
and then the syntax and the semantics of LTLk−X .

4.1 Propositional variables

Let o ∈ O be an object, a ∈ attr(o). The set of propositional variables PV =
{pEx(o),pSet(o.a),pNull(o.a) | o ∈ O, a ∈ attr(o)}. Intuitively, pEx(o) holds
in each world, where the object o exists, pSet(o.a) holds in each world, where
the object o exists and the attribute a is set, and pNull(o.a) holds in each world,
where the object o exists and the attribute a is null.

In addition to PV we use also the set of level constraints LC over the stamps
ST, defined by the following grammar:

lc ::= lexp ∼ lexp (1)
lexp ::= c | s.level | lexp⊕ lexp

where s ∈ ST, c ∈ Z, ⊕ ∈ {+,−, ·, /,%}, ∼ ∈ {≤, <,=, >,≥}, and /,% stand
for integer division and modulus, respectively.

Intuitively, s.level < c holds in each world, where the stamp s exists and the
value of its level is smaller than c.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 63

4.2 Syntax of LTLk
−X

The LTLk−X formulae are defined by the following grammar:

ϕ ::= p | ¬p | lc | ¬lc | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕU<kϕ | ϕR<kϕ.

where p ∈ PV , lc ∈ LC, and k ∈ N.
Observe that we assume that the LTLk−X formulae are given in the negation

normal form (NNF), in which the negation can be only applied to the propo-
sitional variables and the level constraints. The temporal modalities U<k and
R<k are named as usual k-restricted until and release, respectively. Intuitively,
ϕU<kψ means that eventually, but in less than k steps, ψ holds and always ear-
lier ϕ holds. The formula ϕR<kψ expresses that either for the next k − 1 states
ψ holds or in less than k steps, ϕ holds and always earlier ψ holds.
The derived basic temporal modalities are defined as follows: F<kϕ

def
= trueU<kϕ

and G<kϕ
def
= falseR<kϕ.

4.3 Semantics of LTLk
−X

We start with defining models over the world solutions, which are finite sequences
of worlds.

Definition 9. A model is a pair M = (ρ, Vρ), where ρ = (w0, w1, . . . , wn) is a
world solution with wi = (Oi, vi) for 0 ≤ i ≤ n, and Vρ :

⋃n
i=0{wi} × ST −→

N ∪ {∞} is the function over the worlds of ρ valuating the expressions of the
form stamp.level, defined as follows:

– Vρ(wi, s.level) =∞ if s 6∈ Oi,
– Vρ(wi, s.level) = 0 if s ∈ O0,
– Vρ(wi, s.level) = j if s ∈ Oj and s 6∈ Oj−1, for some 1 ≤ j ≤ i.

The intuition behind the definition of Vρ is as follows. If a stamp s is not an
element of a world w, then the value of s.level in w does not exist, and this is
denoted by ∞. If a stamp s is an element of the world w0, then the value of
s.level is 0 in all the worlds. If wj is the world, where s appears for the first
time, then the value of s.level is equal to j in wj as well as in all further worlds.

Before defining the semantics of LTLk−X we extend the stamp.level valuation
function Vρ from ST to the level expressions as follows:

– Vρ(wi, c) = c,
– Vρ(wi, lexp ⊕ lexp′) = Vρ(wi, lexp) ⊕ Vρ(wi, lexp′) if Vρ(wi, lexp) 6= ∞ 6=
Vρ(wi, lexp

′),
– Vρ(wi, lexp⊕ lexp′) =∞ if Vρ(wi, lexp) =∞ or Vρ(wi, lexp′) =∞,

We say that an LTLk−X formula ϕ is true in M = (ρ, Vρ) (in symbols M |= ϕ)
iff w0 |= ϕ, where for m ≤ n we have:

– wm |= pEx(o) iff o ∈ Om.

64 PNSE’14 – Petri Nets and Software Engineering

– wm |= pSet(o.a) iff o ∈ Om and vm(o, a) = true,
– wm |= pNull(o.a) iff o ∈ Om and vm(o, a) = false,
– wm |= ¬p iff wm 6|= p, for p ∈ PV ,
– wm |= (lexp ∼ lexp′) iff Vρ(w(m), lexp) ∼ Vρ(wm, lexp′) and

Vρ(wm, lexp) 6=∞ 6= Vρ(wm, lexp
′),

– wm |= ¬lc iff wm 6|= lc, for lc ∈ LC,
– wm |= ϕ ∧ ψ iff wm |= ϕ and wm |= ψ,
– wm |= ϕ ∨ ψ iff wm |= ϕ or wm |= ψ,
– wm |= ϕU<kψ iff (∃min(m+k,n)>l≥m)(wl |= ψ and (∀m≤j<l)wj |= ϕ),
– wm |= ϕR<kψ iff (∀min(m+k,n)>l≥m) wl |= ψ) or

(∃min(m+k,n)>l≥m)(wl |= ϕ and (∀m≤j≤l)wj |= ψ).

The semantics of the propositions follows their definitions, for the level con-
straints the semantics is based on the valuation function Vρ, whereas for the
temporal operators the semantics is quite standard. Note that we interpret our
language over finite sequences as the solutions we are dealing with are finite.

Now, by a temporal query we mean a query (as defined in the former section)
extended with an LTLk−X formula ϕ. The temporal solutions are these solutions
for which the world sequences satisfy ϕ. A temporal plan is an equivalence class
of the temporal solutions, defined over the same multiset of services.

5 Example of Temporal Abstract Planning

This section contains an example showing how the abstract temporal planning
can be used in practice for a given ontology and user (temporal) queries.

BuildingMaterials

Boards Nails

Artifact

Ware ConstructionPaintableArtifact

ColoredWare Arbour

Thing

Stamp Service

PriceStamp Building

WoodBuilding WoodBuildingLuxHouse

Selling Transport Select Painting

Paint

Fig. 2. Example ontology

Consider the ontology depicted in Fig. 2. In the Artifact branch one can see
several types of objects, like, e.g., Arbour (the main point of interest of this ex-
ample), which is a subclass of Ware, PaintableArtifact, and Construction. At
the left hand side the Service branch and its subclasses are located. The service
Select (St) is able to search any Ware, Selling (Sg) allows to purchase it, while
Transport (T) can be used to change its location. The Painting (P) service
is able to change colour of any PaintableArtifact, but it needs to use some
Paint. The Building (B) service can be used to obtain some Construction, but

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 65

it needs BuildingMaterials. Finally, two subclasses of Building are specialized
in production of wooden constructions using the supplied boards and nails. The
services WoodBuilding (Wb) and WoodBuildingLux (Wbx) are similar, but
the latter also paints the product to the chosen colour using their own paint,
however for a higher price.

Assume the user wants to get a wooden arbour painted in blue. He formulates
the query as follows: in = inout = ∅, pre = true, out = {Arbour a}, post =
(a.colour = blue ∧ a.owner = Me ∧ a.location = MyAddress). The post
formula is automatically translated to its abstract form, that is (isSet(a.colour)
∧ isSet(a.owner) ∧ isSet(a.location)). The shortest plans are [St + Sg] and
[St + Sg + T]. The former satisfies the user query only if the Selling service is
located in a close proximity of the user’s address.

Assume that during the next planning steps (i.e., the offer collecting and
the concrete planning) those plans turn out to have no realization acceptable
by the user. Perhaps, there are no blue arbours in nearby shops or they are
too expensive. Then, the alternative plan is to buy and transport an arbour
in any colour, as well as some blue paint, and then use the Painting service:
[2St+2Sg+2T +P], where one triple of services (St, Sg, T) provides the arbour,
and the other a blue paint.

However, it could be the case that, e.g., the transport price of such a big
object like an arbour exceeds the budget. If so, the possible solution is to buy
boards, nails, and paint, transport them to the destination address, then to
assembly the components with an appropriate building service, and paint, finally.
This scenario is covered, for example, by the following plan: [3St+ 3Sg + 3T +
Wb+P], where the triples of services (St, Sg, T) provide and transport boards,
nails, and the paint.

Although, there are over eight hundred abstract plans of length from 2 to 11
satisfying the above user query, including these with multiple transportations of
the arbour, or painting it several times. In order to restrict the plans to more
specific ones, the user can refine the query demanding of specific types of ser-
vices to be present in the plan using stamps. Thus, for example, by adding the
following set of stamps to out: {Stamp t1, Stamp t2, Stamp t3} and extending
post by:

∧
i=1..3(ti.serviceClass instanceOf Transport), the number of possible

abstract plans (of length from 2 to 11) can be reduced below two hundred. Then,
if instead of buying a final product the user wants to buy and transport the com-
ponents, in order to build and paint the arbour, he can add two more stamps and
conditions to the query. That is, by adding to out the set {Stamp b, Stamp p},
and by extending post by the expression (∧ b.serviceClass instanceOf Building
∧ t3.serviceClass instanceOf Painting), one can reduce the number of result-
ing plans to 2 only: [3St+3Sg+3T +Wb+P] and [3St+3Sg+3T +Wbx+P].

However, even 2 abstract plans only can be realized in a number of different
ways, due to possible many transformation contexts, and the number of different
partial orders represented by a single abstract plan. If the user wants to further
reduce the number of possible plan realizations by interfering with an order of
services, he should specify some temporal restrictions. For example, if the user

66 PNSE’14 – Petri Nets and Software Engineering

wants to ensure that all the transports are executed before the building starts,
he can express it as a formula:

ϕ1 = F
(
(b.level > t1.level) ∧ (b.level > t2.level) ∧ (b.level > t3.level))

Moreover, if the intention of the user is to proceed with some service directly
after another one, for example, to start building just after the third transport,
one can express such a constraint as:

ϕ2 = F(b.level = t3.level + 1)

Moreover, using a temporal query the user can prevent some services from
occurring in the plan. For example, using the following formula:

ϕ3 = ¬pEx(a) U pNull(a.colour),

which means that just after the arbour has been produced, its colour is not set,
the user excludes the WoodBuildingLux service (which builds and paints the
arbour).

The other possibility of extending the user query by a temporal component
includes using the k-restricted versions of modal operators. For example, consider
the following formula:

ϕ4 = F<10(pEx(t1) ∧ pEx(t2) ∧ pEx(t3)),

which states that three transportations should be executed in the first nine steps
of the plan.

6 Implementation, Experiments, and Conclusions

In this section we sketch the implementation of the propositions and the level
constraints, and then we evaluate the efficiency of our tool using several scalable
benchmarks.

6.1 Implementation

The implementation of the propositions and the level constraints exploits our
symbolic representation of world sequences. The objects and the worlds are rep-
resented by sets of variables, which are first allocated in the memory of an
SMT-solver, and then used to build formulas mentioned in Section 4. The rep-
resentation of an object is called a symbolic object. It consists of an integer
variable representing the type of an object, called a type variable, and a number
of Boolean variables to represent the object attributes, called the attribute vari-
ables. In order to represent all types and identifiers as numbers, we introduce a
function num : A ∪ P ∪ S ∪ O 7−→ N, which with every attribute, object type,
service type, and object assigns a natural number.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 67

A symbolic world consists of a number of symbolic objects. Each symbolic
world is indexed by a natural number from 0 to n. Formally, the i-th symbolic
object from the j-th symbolic world is a tuple: oi,j = (ti,j ,ai,0,j , ...,ai,maxat−1,j),
where ti,j is the type variable, ai,x,j is the attribute variable for 0 ≤ x < maxat,
where maxat is the maximal number of the attribute variables needed to repre-
sent the object.

o
0,0

o
1,0

o
3,0

o
4,0

o
2,0

 s
1

Initial Final

inout
q

o
0,1

o
1,1

o
3,1

o
4,1

o
2,1

 s
2

w
0

w
1

o
5,1

o
6,1

o
0,1

o
1,1

in
q

out
s1

o
0,1

o
1,1

o
3,2

o
4,2

o
2,2

 s
n

w
2

o
5,2

o
6,2

o
0,2

o
1,2

o
7,2

o
8,2

out
s2

...

o
0,1

o
1,1

o
3,n

o
4,n

o
2,n

w
n

o
5,n

o
6,n

o
0,n

o
1,n

o
7,n

o
8,n

o
x-1,n

o
x,n

...
out

s1...sn

o
0,e

o
1,e

o
2,e

w
e

out
q

Expected

m
0,e

m
1,e

m
2,e

Fig. 3. Symbolic worlds of a transformation sequence

Note that actually a symbolic world represents a set of worlds, and only
a valuation of its variables makes it a single world. The j-th symbolic world
is denoted by wj , while the number of the symbolic objects in wj - by |wj |.
Note that the set of the initial worlds of the query q (W q

init) is represented by a
symbolic world w0. Fig. 3 shows subsequent symbolic worlds of a transformation
sequence.

One of the important features of our encoding is that for a given index of a
symbolic object i we are able to determine the step of a solution, in which the
object was produced. This is done by the function levq : N 7→ N, such that for a
given query q:

levq(i) =

{
0 for i < |w0|
b (i−|w0|)
maxout

c+ 1 for i ≥ |w0|
(2)

wheremaxout is the maximal number of the objects produced by a single service.
Another important feature of our encoding is that the objects of outq need

to be identified among the objects of the symbolic world wn (of indices greater
than |w0|). To this aim, we allocate a new symbolic world we (with e = n+ 1),
containing all the objects from outq. Note that the world we is not a part of a

68 PNSE’14 – Petri Nets and Software Engineering

world solution, but it provides a set of additional, helper variables. Finally, we
need a mapping between the objects from a final world wn produced during the
subsequent transformations and the objects from we. To this aim we allocate p
additional mapping variables in the symbolic world we, where p = |outq|. These
variables, denoted by m0,e, . . . ,mp−1,e, are intended to store the indices of the
objects from a final world, which are compatible with the objects encoded over
we. Thus, we encode the state of the expected worlds of the query q (W q

exp),
imposed by postq, using two sets of symbolic objects. The objects of inq∪ inoutq
are encoded directly over the (final) symbolic world wn. The state of the ob-
jects from outq are encoded over we, and since their indices are not known, all
possible mappings between objects from we and wn are considered, by encoding
a disjunction of equalities between objects from we and wn. See [18] for more
details.

The translation of the propositions defined over the objects and their at-
tributes of a user query q in a symbolic world wm (0 ≤ m ≤ n) is as follows:

[pEx(o)]m =





true, for o ∈ inq ∪ inoutq,
false, for o ∈ outq,m = 0,

levq(mnum(o),e) ≤ m, for o ∈ outq,m > 0.

(3)

That is, the objects from the initial world exist in all the subsequent worlds, the
objects from the out set do not exist in the world w0, and they appear in some
subsequent world. Then, since the index of the object o is stored as the value of
corresponding mapping variable mnum(o),e, we can determine if it exists in the
world wm using the levq function.

The proposition pSet(o.a) is encoded over the symbolic world wm as:

[pSet(o.a)]m = [pEx(o)]m ∧
{
aj,x,m, for o ∈ inq ∪ outq,∨|wm|−1
i=|w0| (mj,e = i ∧ ai,x,m), for o ∈ outq

(4)

where j = num(o) and x = num(a).
It follows from our symbolic representation that the indices of objects from

an initial world are known, and we can get the value of the appropriate attribute
variable directly. However, in the case of objects from outq we have to consider
all possible mappings between objects from we and wm. Note that the encoding
of the proposition pNull(o.a) over the symbolic world wm (i.e., [pNull(o.a)]m)
is very similar. The only change is the negation of ai,x,m in the above formula.

In order to encode the level constraints, we introduce a set of the special level
variables. That is, for every stamp s used in some level constraint we introduce
to the world we an additional integer variable li,e, where i = num(s), intended
to store the level value of the stamp s. The level value is assigned to li,e using
the following formula [bind(i)] := (li,e = levq(mi,e)) for i = num(s), where q
is a user query. Then, for every stamp s used in a level constraint we add the
corresponding [bind(num(s))] formula as an SMT assertion. Thus, the encoding
of the level constraints is as follows:

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 69

[lexp] =





c for lexp = c

li,e, for lexp = s.level, i = num(s)

[lexp′]⊕ [lexp′′] for lexp = lexp′ ⊕ lexp′′
(5)

The encoding of arithmetic operators is straightforward, since they are sup-
ported by theories built in SMT-solvers, like, e.g., Linear Integer Arithmetic or
Bitvector theory. In what follows, [ϕ]mn denotes the translation of the formula ϕ
at the state wm of the world sequence of length n+ 1.

Definition 10 (Translation of the LTLk−X formulae to SMT). Let ϕ be an
LTLk−X formula, (w0, . . . ,wn) be a sequence of symbolic worlds, and 0 ≤ m ≤ n.

• [p]
m
n := [p]m, for p ∈ PV ,

• [¬p]mn := ¬[p]m, for p ∈ PV ,
• [lexp′ ∼ lexp′′]mn := [lexp′] ∼ [lexp′′]

∧
s∈st(lexp′)[pEx(s)]m∧

s∈st(lexp′′)[pEx(s)]m,
• [¬lc]mn := ¬[lc]mn , for lc ∈ LC,
• [ϕ ∧ ψ]mn := [ϕ]

m
n ∧ [ψ]

m
n ,

• [ϕ ∨ ψ]mn := [ϕ]
m
n ∨ [ψ]

m
n ,

• [ϕU<kψ]
m
n :=

∨min(m+k,n)
i=m ([ψ]in ∧

∧i−1
j=m[ϕ]jn),

• [ϕR<kψ]
m
n :=

∧min(m+k,n)
i=m [ψ]in ∨

∨min(m+k,n)
i=m ([ϕ]in ∧

∧i
j=m[ψ]jn),

where st(lexp) returns the set of the stamps over which the expression lexp is
built.

Theorem 1. The encoding of the temporal query is correct.

Proof. This can be shown by induction on the length of a formula. Omitted here
because of lack of space3.

6.2 Experimental Results

In order to evaluate the efficiency of our approach we performed several exper-
iments using standard PC with 2GHz CPU and 8GB RAM, and Z3 [7] ver-
sion 4.3 as an SMT-solver. The results are summarized in Table 1. Using our
Ontology Generator (OG) we generated 15 ontologies, each of them consist-
ing of 150 object types and from 64 to 256 service types (the column named
n of Tab. 1). For each ontology a query has been generated in such a way
that it is satisfied by exactly 10 plans of length from 6 to 18 (the parameter
k). The queries demand at least two objects to be produced, and impose re-
strictions on (abstract) values of some of their attributes. A generated query
example is as follows: in = {Rjlbp rjlbp1}, inout = {Bozwd bozwd1}, out =
{Opufo opufo1, Ehxjb ehxjb2}, pre = isSet(bozwd1.avg) ∧ isSet(rjlbp1.ppw),
3 The full version of this paper is available at http://artur.ii.uph.edu.pl/pnse14ltl.pdf.

70 PNSE’14 – Petri Nets and Software Engineering

post = isSet(opufo1.epv) ∧ isNull(bozwd1.dyn) ∧ isSet(ehxjb2.zdv) ∧
isNull(ehxjb2.rxz) ∧ isSet(bozwd1.fsl).

First, we ran our planner for each ontology and each query instance without
a temporal query (column ψ1), in order to collect statistics concerning the time
needed to find the first plan (P1), all 10 plans (P10), as well as the total time
(column T) and the memory consumed (M) by the SMT-solver in order to find
all the plans and checking that no more plans of length k exist. We imposed the
time limit of 1000 seconds for the SMT-solver. Each time-out is reported in the
table by TO. It is easy to observe that during these experiments as many as 9
instances ran out of time.

Table 1. Experimental results

ψ1 = true ψ3 ψ4 ψ5

n k P1 P10 T M P1 P10 T M P1 P10 T M P1 P10 T M
[s] [s] [s] [MB] [s] [s] [s] [MB] [s] [s] [s] [MB] [s] [s] [s] [MB]

6 7.23 9.73 19.5 19.7 2.34 7.17 8.49 14.1 2.19 4.14 4.21 11.6 3.51 4.7 6.48 10.8
9 23.5 53.1 177 173 20.1 34.5 47.0 38.3 15.9 18.8 19.2 22.3 14.8 40.1 44.7 36.0

64 12 165 479 TO - 101 216 354 117 60.5 85.2 87.6 59.3 95.1 122 127 68.1
15 305 TO TO - 329 762 TO - 119 216 241 105 195 345 351 129
18 TO TO TO - TO TO TO - 461 TO TO - 604 TO TO -
6 16.0 28.1 55.7 42.7 9.75 19.8 22.6 21.3 7.68 10.1 10.2 16.8 10.9 12.7 15.1 16.3
9 53.1 94.9 270 250 55.5 98.2 104 44.7 21.8 34.0 34.2 31.0 38.1 54.7 62.6 44.9

128 12 136 677 TO - 134 428 474 96.3 76.8 99.9 102 61.9 93.1 114 117 47.9
15 TO TO TO - 456 780 TO - 116 199 202 86 183 258 263 79.8
18 TO TO TO - TO TO TO - 381 556 573 143 383 708 714 130
6 16.1 30.6 41.5 35.4 20.3 25.7 30.0 26.1 11.1 13.9 14.1 21.7 14.9 18.3 21 21.6
9 84.4 137 374 466 63.7 99.3 131 53.4 26.2 38.4 39.1 37.5 88.5 119 156 74.9

256 12 267 TO TO - 242 584 692 112 114 181 183 80.6 250 315 321 73.4
15 685 TO TO - 562 TO TO - 198 304 309 86.8 472 582 592 120
18 TO TO TO - TO TO TO - 574 919 937 137 942 TO TO -

The next experiments involve temporal queries using level constraints. To
this aim we extended the out set of the generated queries by the appropriate
stamp set. Moreover, the post formulas of the queries have been also extended
with the expression:

∧b k2 c
i=1(si.serviceClass instanceOf Ci), where si ∈ ST, while

Ci ∈ S are service types occurring in the solutions generated by OG.
Our second group of experiments involved the temporal formula ψ2:

ψ2 = F(

b k2 c−1∧

i=1

si.level < si+1.level),

which expresses that about a half of the stamps being effects of the solution
execution, should be produced in the given order. We do not present detailed

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 71

results, because they are in general comparable with the performance in the for-
mer experiments. Similarly, there are 9 time-outs, but the time and the memory
consumption varies a bit - for some cases the results are slightly better, while
for others are a little worse.

In the third group of the experiments we imposed stronger restrictions on
the possible service orders of the solutions using the following formula:

ψ3 = F(

b k2 c∧

i=1

si.level < i+ 2).

This formula still leaves a certain degree of freedom in a service ordering, how-
ever its encoding as an SMT-instance is more compact, since the constant values
are introduced in place of some level variables. Thus, probably, it is also easier
to solve. The results are summarized in the column ψ3 in Table 1. It is easy to
observe that the time and the memory consumption is significantly lower. More-
over, the number of time-outs dropped to 6. Thus, this is an example showing
an improvement in the planning efficiency using a temporal query.

Our next experiment involves the formula ψ4 specifying the strict ordering
of several services in the solution using stamp-based level constraints:

ψ4 = F(

b k2 c∧

i=1

si.level = i).

The analysis of the results (given in the column ψ4 of Table 1) indicates a
dramatic improvement of our planner efficiency, in terms of time and memory
consumption by the SMT-solver. Moreover, in this experiments group the plan-
ner has been able to terminate its computations in the given time limit for all
but one instances.

Finally, we want to confront the planner behaviour with other kind of tem-
poral formulae. Using the Until modality, we demand that one of the objects
from outq has to be produced no later than in the middle of the plan. Moreover,
knowing the structure of the generated queries, we impose that after the object
appears one of its attributes should already be set. This is expressed by the
following formula:

ψ5 = ¬pEx(o) U<d k2 e pSet(o.a)

where o ∈ outq, a ∈ attr(o), and the expression isSet(o.a) is not contradictory
with postq. The results has been summarised in column ψ5 of Table 1. It is easy
to observe that also this time the plans have been found faster and using less
memory than in the case when no temporal formula is involved.

7 Conclusions

In this paper we have applied the logic LTLk−X to specifying temporal queries
for temporal planning within our tool Planics. This is a quite natural extension

72 PNSE’14 – Petri Nets and Software Engineering

of our web service composition system, in which the user gets an opportunity to
specify more requirements on plans. These requirements are not only declarative
any more. The overall conclusion is that the more restrictive temporal query,
the more efficient planning, given the same ontology. Assuming that the more
restrictive temporal queries, the longer formulas expressing them, the above
conclusion shows a difference with model checking, where the complexity depends
exponentially on the length of an LTLk−X formula.

Our temporal planner is the first step towards giving the user even more
freedom by defining a so-called parametric approach. We aim at having a planner
which in addition to the current capabilities, could also suggest what extensions
to the ontology or services should be made in order to get better or unrealizable
plans so far. This is going to be a subject of our next paper.

References

1. S. Ambroszkiewicz. Entish: A language for describing data processing in open
distributed systems. Fundam. Inform., 60(1-4):41–66, 2004.

2. M. Bell. Introduction to Service-Oriented Modeling. John Wiley & Sons, 2008.
3. J. Bentahar, H. Yahyaoui, M. Kova, and Z. Maamar. Symbolic model checking

composite web services using operational and control behaviors. Expert Systems
with Applications, 40(2):508 – 522, 2013.

4. L. Bentakouk, P. Poizat, and F. Zaidi. Checking the behavioral conformance of
web services with symbolic testing and an SMT solver. In Tests and Proofs, volume
6706 of LNCS, pages 33–50. Springer, 2011.

5. M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-based
verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In SEFM, pages 244–254, 2010.

6. V. Chifu, I. Salomie, and E. St. Chifu. Fluent calculus-based web service composi-
tion - from OWL-S to fluent calculus. In Proc. of the 4th Int. Conf. on Intelligent
Computer Communication and Processing, pages 161 –168, 2008.

7. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS’08,
volume 4963 of LNCS, pages 337–340. Springer-Verlag, 2008.

8. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
and J. Skaruz. HarmonICS - a tool for composing medical services. In ZEUS,
pages 25–33, 2012.

9. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
M. Szreter, and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundam.
Inform., 112(1):47–71, 2011.

10. M. Elwakil, Z. Yang, L. Wang, and Q. Chen. Message race detection for web ser-
vices by an SMT-based analysis. In Proc. of the 7th Int. Conference on Autonomic
and Trusted Computing, ATC’10, pages 182–194. Springer, 2010.

11. V. Gehlot and K. Edupuganti. Use of colored Petri nets to model, analyze, and
evaluate service composition and orchestration. In System Sciences, 2009. HICSS
’09., pages 1 –8, jan. 2009.

12. A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos. Deterministic
planning in the fifth international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence, 173(5–6):619 – 668, 2009.
Advances in Automated Plan Generation.

A. Niewiadomski, W. Penczek.: SMT-based Abstract Temporal Planning 73

13. S. Hao and L. Zhang. Dynamic web services composition based on linear tem-
poral logic. In Information Science and Management Engineering (ISME), 2010
International Conference of, volume 1, pages 362–365, Aug 2010.

14. Z. Li, L. O’Brien, J. Keung, and X. Xu. Effort-oriented classification matrix of web
service composition. In Proc. of the Fifth International Conference on Internet and
Web Applications and Services, pages 357–362, 2010.

15. G. Monakova, O. Kopp, F. Leymann, S. Moser, and K. Schäfers. Verifying business
rules using an SMT solver for BPEL processes. In BPSC, pages 81–94, 2009.

16. W. Nam, H. Kil, and D. Lee. Type-aware web service composition using boolean
satisfiability solver. In Proc. of the CEC’08 and EEE’08, pages 331–334, 2008.

17. A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In Proc. of KEOD 2013 – International Conference on Knowledge
Engineering and Ontology Development, pages 123–131, September 2013.

18. A. Niewiadomski, W. Penczek, and A. Półrola. Abstract Planning in PlanICS
Ontology. An SMT-based Approach. Technical Report 1027, ICS PAS, 2012.

19. OWL 2 web ontology language document overview. http://www.w3.org/TR/owl2-
overwiew/, 2009.

20. J. Rao, P. Küngas, and M. Matskin. Composition of semantic web services using
linear logic theorem proving. Inf. Syst., 31(4):340–360, June 2006.

21. J. Rao and X. Su. A survey of automated web service composition methods. In
Proc. of SWSWPC’04, volume 3387 of LNCS, pages 43–54. Springer, 2004.

22. J. Skaruz, A. Niewiadomski, and W. Penczek. Automated abstract planning with
use of genetic algorithms. In GECCO (Companion), pages 129–130, 2013.

23. P. Traverso and M. Pistore. Automated composition of semantic web services into
executable processes. In The Semantic Web – ISWC 2004, volume 3298 of LNCS,
pages 380–394. 2004.

74 PNSE’14 – Petri Nets and Software Engineering

Kleene Theorems for Labelled Free Choice Nets

Ramchandra Phawade and Kamal Lodaya

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Abstract. In earlier work [LMP11], we showed that a graph-theoretic
condition called “structural cyclicity” enables us to extract syntax from a
conflict-equivalent product system of automata. In this paper we have a
“pairing” property in our syntax which allows us to connect to a broader
class of product systems, where the conflict-equivalence is not statically
fixed. These systems have been related to labelled free choice nets.

1 Introduction

Petri nets are an excellent visual representation of concurrency. But like any
graphical notation they are less amenable to syntax. For finite automata, Kleene’s
regular expressions provide us with a formalism where we can switch between the
graphical and the textual. For 1-bounded Petri nets, equivalent syntax has been
provided by Grabowski [Gra81], Garg and Ragunath [GR92] and other authors.
Here we place restrictions on this syntax in an effort to match the 1-bounded
labelled free choice nets, a very well-studied subclass [Hac72] with more effi-
cient analysis and algorithms [DE95]. It has been claimed that free choice nets
can be useful in business process modelling [SH96], but our motivation is more
conceptual than dictated by business concerns.

As is usual when dealing with subclasses, this turns out to be challenging.
We also follow the example of finite automata and work directly with labelled
nets, not relying on a renaming operator in the syntax. As in our earlier paper
[LMP11], we rely on an intermediate formalism, “direct” products of automata,
which are known to be weaker than 1-bounded nets [Zie87,Muk11]. There we
identified a subclass called FC-products, and a graph-theoretic property called
“structural cyclicity”, for which we presented an equivalent syntax which was
restricted to being without nested Kleene star operators.

The improvement in this paper is that on the system side we have an en-
larged subclass called FC-matching products. On the syntax side we drop
the structural cyclicity condition and do not place any restriction on the Kleene
stars, thus (unlike in our earlier paper) including all regular expressions. We do
have global restrictions. A “pairing” condition identifies synchronizations which
will take place at run-time. Assuming a communication alphabet {a, b, c}, the
expression (a + a + b)(a + c + c) the a’s in the two groups of parentheses will
be paired into different synchronizations. Correspondingly we have a “matching”
condition in the product systems. The matching condition produces free choice
nets (and the converse also holds). Our proofs go through a subclass where
communications are labelled with the place from which they are issued.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ be the set of all words over alphabet Σ,
including the empty word ε. A language over an alphabet Σ is a subset L ⊆ Σ∗.
The projection of a word w ∈ Σ∗ to a set ∆ ⊆ Σ, denoted as w↓∆, is defined by:

ε↓∆ = ε and (aσ)↓∆ =

{
a(σ↓∆) if a ∈ ∆,
σ↓∆ if a /∈ ∆.

Definition 1. Let Loc denote the set {1, 2, . . . , k}. A distribution of Σ over Loc
is a tuple of nonempty sets (Σ1, Σ2, . . . , Σk) with Σ =

⋃
1≤i≤kΣi. For each

action a ∈ Σ, its locations are the set loc(a) = {i | a ∈ Σi}. Actions a ∈ Σ such
that |loc(a)| = 1 are called local, otherwise they are called global.

A regular expression over alphabet Σi defining a nonempty language is given by:

s ::= a ∈ Σi|s1 · s2|s1 + s2|s∗1
As a measure of the size of an expression we will use wd(s) for its alphabetic
width—the total number of occurrences of letters of Σ in s. We will use syntactic
entities associated with regular expressions which are known since the time of
Brzozowski [Brz64], Mirkin [Mir66] and Antimirov [Ant96].

For each regular expression s over Σi, its initial actions form the set Init(s) =
{a | av ∈ Lang(s) and v ∈ Σ∗i } which can be defined syntactically. Similarly, we
can syntactically check whether the empty word ε ∈ Lang(s). Next we syntacti-
cally define derivatives [Ant96].

Definition 2. Given regular expression s and symbol a, the partial derivatives
of s wrt a, written Dera(s) are defined as follows.

Dera(b) = ∅ if a 6= b
Dera(a) = {ε}

Dera(s1 + s2) = Dera(s1) ∪Dera(s2)
Dera(s

∗
1) = Dera(s1) · s∗1

Dera(s1 · s2) =
{
Dera(s1) · s2 ∪Dera(s2) if ε ∈ Lang(s1)
Dera(s1) · s2 otherwise

Inductively Deraw(s) = Derw(Dera(s)).
The set of all derivatives Der(s) =

⋃

w∈Σ∗i

Derw(s).

We have the Antimirov derivatives Dera(ab+ ac) = {b, c} and Dera(a(b+ c)) =
{b + c}, whereas the Brzozowski a-derivative [Brz64] (which is used for con-
structing deterministic automata, but which we do not use in this paper) for
both expressions would be {b+ c}.

A derivative d of s with global a ∈ Init(d) is called an a-site of s. An
expression is said to have equal choice if for all a, its a-sites have the same
set of initial actions. For a set D of derivatives, we collect all initial actions to
form Init(D). We syntactically partition the a-sites of s, each set of the partition
containing those coming from a common source derivative, as follows.

76 PNSE’14 – Petri Nets and Software Engineering

Definition 3. For partitions X1, X2 with blocks D1, D2 containing elements
d1, d2 respectively, we use the notation (X1 ∪X2)[d/d1, d2] for the modified par-
tition ((X1 ∪X2) \ {D1, D2}) ∪ {(D1 ∪D2 ∪ {d}) \ {d1, d2}}.

Parta(b) = ∅ if a 6= b
Parta(a) = {{a}}

Parta(s1+s2) =
{
(Parta(s1) ∪ Parta(s2))[s1+s2/s1, s2] if a ∈ Init(s1+s2)
Parta(s1) ∪ Parta(s2) otherwise

Parta(s
∗
1) =

{
Parta(s1)[s

∗
1/s1] if a ∈ Init(s1)

Parta(s1) · s∗1 otherwise

Parta(s1 · s2) =
{
Parta(s1)[s1 · s2/s1] ∪ Parta(s2) if ε ∈ Lang(s1)
Parta(s1) · s2 ∪ Parta(s2) otherwise

The next definition and the following proposition identify the key property
of this partition of a-sites for this paper.

Definition 4. Given a set of derivatives D and an action a, define the pre-
fixes PrefDa (L) = {x | xay ∈ L,∃d ∈ Derx(L) ∩ D, ε ∈ Deray(d)}, suf-
fixes SufDa (L) = {y | xay ∈ L, x ∈ PrefDa (L)}, and the relativized language
LD = {xay | xay ∈ L,∃d ∈ Derx(L)∩D, ε ∈ Deray(d)}. We say that the deriva-
tives in set D a-bifurcate L if LD ∩ Σ∗aΣ∗ = PrefDa (L) a SufDa (L). If D is
the set of all derivatives, we say L is a-bifurcated.

Proposition 1. Every block D of the partition Parta(s) a-bifurcates Lang(s).

Proof. By induction on the definition. ut

Consider a regular expression s in the context of a distribution (Σ1, . . . , Σk),
so that some of the actions are global. The following properties of expressions
will be important in this paper, where the derivatives are taken for regular
expressions and also for the connected expressions defined in the next section.

Definition 5. If for all global actions a occurring in s, the partition Parta(s)
consists of a single block, then we say s has unique sites. It has determin-
istic global actions if for every global action a and every a-site d ∈ Der(s),
|Dera(d)| = 1. It has unique global actions if it has both these properties.

3 Connected Expressions over a Distribution

We have a simple syntax of connected expressions. The si can be any regular ex-
pressions (of any star-height), which is different from our earlier paper [LMP11].

e ::= 0|fsync(s1, s2, . . . , sk), si over Σi

When e = fsync(s1, s2, . . . , sk) and I ⊆ Σ, let the projection e↓I = Πi∈Isi.
For the connected expression 0, we have Lang(0) = ∅. For the connected

expression e = fsync(s1, s2, . . . , sk), its language is given by

Lang(e) = Lang(s1)‖Lang(s2)‖ . . . ‖Lang(sk),

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 77

where the synchronized shuffle L = L1‖ . . . ‖Lk is defined by

w ∈ L iff for all i ∈ {1, . . . , k}, w↓Σi
∈ Li.

The definitions of derivatives can be easily extended to connected expressions. 0
has no derivatives on any action. Given e = fsync(s1, s2, . . . , sk), its derivatives
are defined by induction using the derivatives of the si on action a:

Dera(e) = {fsync(r1, r2, . . . , rk) | ∀i ∈ loc(a), ri ∈ Dera(si); otherwise rj = sj}.

We will use the word derivative for expressions such as d = fsync(r1, r2, . . . , rk)
above (essentially tuples of derivatives of regular expressions), and d[i] for ri.
The number of derivatives can be exponential in k. Define Init(d) to be those
actions a such that Dera(d) is nonempty. If a ∈ Init(d) we call d an a-site.
The reachable derivatives are Der(e) = {d | d ∈ Derx(e), x ∈ Σ∗}. For example,
fsync(ab, ba) has derivatives other than the expression itself, but none of them
is reachable.

3.1 Properties of Connected Expressions

We now define some properties of connected expressions over a distribution.
These will ultimately lead us to construct free choice nets. All but the last
property are Ptime-checkable. The last property requires Pspace since it runs
over all reachable derivatives.

Definition 6. Let e = fsync(s1, s2, . . . , sk) be a connected expression over Σ.
For a global action a, an a-pairing is a subset of tuples Πi∈loc(a)Parta(si),
the projections of these tuples covering the a-sites in si, such that if a block
of Parta(sj), j ∈ loc(a) appears in one tuple of the pairing, it does not ap-
pear in another tuple. (For convenience we also write pairing(a) as a subset of
Πi∈loc(a)Der(si) which respects the partition.) We call pairing(a) equal choice if
for every tuple in the pairing, the derivatives in the tuple have equal choice.
We extend the definition to connected expressions. A derivative fsync(r1, . . . , rk)
is in pairing(a) if there is a tuple D ∈ pairing(a) such that ri ∈ D[i] for all i ∈
loc(a). For convenience we may write a derivative as an element of pairing(a).
Expression e is said to have (equal choice) pairing of actions if for all global
actions a, there exists an (equal choice) pairing(a). Expression e is said to be
consistent with a pairing of actions if every reachable a-site d ∈ Der(e) is
in pairing(a).

Example 1. Let (Σ1 = {a}, Σ2 = {a}). Expression fsync(aa, a) does not have a
pairing. The two a’s on the left are in different blocks of the partition and they
have to pair with one block on the right, which is not allowed.

Example 2. Let (Σ1 = {a}, Σ2 = {a, b, c, d, f}). In expression e = fsync(aa, bad+
caf) we have two blocks on the left and two blocks on the right, so we can have
a pairing. But e cannot be consistent with any pairing.

78 PNSE’14 – Petri Nets and Software Engineering

Example 3. Let (Σ1 = {a, c}, Σ2 = {b, c}), Σ3 = {a, b, c}). Consider this ex-
pression fsync((ac)∗, (bc)∗, (a(b+ c))∗). Individual regular expressions are r1 =
(ac)∗, r2 = (bc)∗ and r3 = (a(b + c))∗. Now we have r′1 = Dera(r1) = c(ac)∗

and Init(r′1) = {c}. For r3 we have, r′3 = Dera(r3) = (b + c)(a(b + c))∗ and
Init(r′3) = {b, c}. r′1 and r′3 do not have equal choice.

Proposition 2. For a connected expression e checking existence of a pairing of
actions and checking whether it is equal choice can be done in polynomial time,
checking consistency with a pairing of actions is in Pspace.

Proof. We have to visit each derivative of all the regular expressions to construct
the a-partitions for every a. We can record their initial actions. Maximum num-
ber of Antimirov derivatives of any regular expression s is at most wd(s) + 1
[Ant96]. There are k regular expressions in e. If the number of blocks in two a-
partitions is not the same, there cannot be an a-pairing, otherwise there always
exists an a-pairing. For an equal choice pairing, we have to count blocks whose
sets of initial actions are the same, this can be done in cubic time.

On the other hand, to check consistency with a pairing of actions, we have
to visit each reachable derivative, this can be done in Pspace. ut

4 Product Systems over a Distribution

Fix a distribution (Σ1, Σ2, . . . , Σk) of Σ. We define product systems over this.

Definition 7. A sequential system over a set of actions Σi is a tuple Ai =
〈Pi,→i, Gi, p

0
i 〉 where Pi are called places, Gi ⊆ Pi are final places, p0i ∈ Pi is

the initial place, and →i⊆ Pi ×Σi × Pi is a set of local moves.

Let →i
a denote the set of all a-labelled moves in the sequential system Ai.

A run of the sequential system Ai on word w is a sequence p0a1p1a2, . . . , anpn,
from set (Pi×Σi)∗Pi, such that p0 = p0i and for each j ∈ {1, . . . , n}, pj−1

aj−→ pj .
This run is said to be accepting if pn ∈ Gi. The sequential system Ai accepts word
w, if there is at least one accepting run of Ai on w. The language L = Lang(Ai)
of sequential system Ai is defined as L = {w ∈ Σi∗|w is accepted by Ai}.

Given a place p of Ai, we also define relativized languages and we will extend
this definition to product systems: Prefpa (L) = {x | xay ∈ L, p0

x−→ p
ay−→ Gi},

similarly Sufpa (L), Lp = {xay | xay ∈ L, p0
x−→ p

ay−→ Gi}. Say the place p
a-bifurcates L if Lp = Prefpa (L) a Suf

p
a (L).

Definition 8. Let Ai = 〈Pi,→i, Gi, p
0
i 〉 be a sequential system over alphabet Σi

for 1 ≤ i ≤ k. A product system A over the distribution Σ = (Σ1, . . . , Σk) is
a tuple 〈A1, . . . , Ak〉.

Let Πi∈LocPi be the set of product states of A. We use R[i] for the projec-
tion of a product state R in Ai, and R↓I for the projection to I ⊆ Loc. The
relativizations LR of a language L ⊆ Σ∗i consider projections to place R[i] in Ai.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 79

The initial product state of A is R0 = (p01, . . . , p
0
k), while G = Πi∈LocGi

denotes the final states of A.
Let ⇒a= Πi∈loc(a) →i

a. The set of global moves of A is ⇒=
⋃
a∈Σ ⇒a. Then

for a global move

g = 〈〈pl1 , a, p′l1〉, 〈pl2 , a, p′l2〉, . . . 〈plm , a, p′lm〉〉 ∈⇒a, loc(a) = {l1, l2, . . . , lm},
we write g[i] for 〈pi, a, p′i〉, the projection to Ai, i ∈ loc(a) and pre(a) for the
product states where such a move is enabled.

Please note that the set of product states as well as the global moves are not
explicitly provided when a product system is given as input to some algorithm.

4.1 Properties of Product Systems

The first property for a product system is modelled on the free choice property
of nets. It can be checked in Ptime by counting local moves with the same label.
We also define another stronger property.

Definition 9. For global a ∈ Σ, an a-matching is a subset of tuples Πi∈loc(a)Pi,
such that if a place p ∈ Pj , j ∈ loc(a) appears in one tuple, it does not appear
in another tuple. We say a product state R is in an a-matching if its projection
R↓loc(a) is in the matching.

A product system is said to have matching of labels if for all global a ∈ Σ,
there is an a-matching such that for i, j ∈ loc(a), 〈p, a, q〉 ∈→i, the pre-place p
is matched to a pre-place p′ such that 〈p′, a, q′〉 ∈→j and such that all pre-places
with a-transitions are covered by the tuples of the matching. A product system A
is said to have separation of labels if for all i ∈ Loc, if 〈p, a, p′〉, 〈q, a, q′〉 ∈→i

then p = q.

Proposition 3. Let A = 〈A1, . . . , Ak〉 be a product system over distribution
Σ = (Σ1, . . . , Σk). If A has separation of labels, then for every i and every global
action a, Li = Lang(Ai) is a-bifurcated. If A has matching of labels, then for
every i and every global action a,

Li ∩Σ∗i aΣ∗i =
⋃

R↓loc(a)∈matching(a)
PrefR[i]

a (Li) a Suf
R[i]
a (Li).

Proof. Let A be a product system as above with separation of labels. Let L(q)
be the set of words accepted starting from any place q in Ai. If Prefa(L(q))
is nonempty then L(q) is a-bifurcated, because the words containing a have to
pass through a unique place. When A has a matching of labels, since the places
R[i] appear in unique tuples, one can separately consider the places a-bifurcating
L(q) and the required property follows. ut

The next property is necessary for product systems to represent free choice
in equivalent nets. In our earlier paper [LMP11] we used the definition of an
FC-product below. The definition of FC-matching product is a generalization
since conflict-equivalence is not required for all a-moves uniformly but refined
into smaller equivalence classes depending on the matching.

80 PNSE’14 – Petri Nets and Software Engineering

Definition 10. In a product system, we say the local move 〈p, a, q1〉 ∈→i is
conflict-equivalent to the local move 〈p′, a, q′1〉 ∈→j, if for every other local
move 〈p, b, q2〉 ∈→i, there is a local move 〈p′, b, q′2〉 ∈→j and, conversely, for
moves from p′ there are moves from p. If the product system has a matching of
labels and we require this whenever p, p′ are related by the matching, we call the
matching conflict-equivalent. A system having a conflict-equivalent matching
is a weaker condition than the system being conflict-equivalent.

We call A = 〈A1, . . . , Ak〉 an FC-product if for every global action a ∈ Σ,
every a-labelled move in Ai is conflict-equivalent to every a-labelled move in Aj.
We call A an FC-matching product if it has a conflict-equivalent matching.

Checking that a system is an FC-product or an FC-matching product is in
Ptime because one makes a pass through all transitions with the same locations,
computing for each pre-place which partition it falls into.

Proposition 4. Let A be an FC-matching product system. For any i, if there
exist local moves 〈p, a, p′〉, 〈p, b, p′′〉 in →i, then loc(a) = loc(b).

Proof. Since p has an outgoing a-move, p belongs to some tuple of matching(a).
If j ∈ loc(a), then in this tuple there exists a state q ∈ Pj , which has an outgoing
a-move. Since A is an FC-matching product, matching(a) is conflict-equivalent.
And, as states p and q appear in a tuple ofmatching(a), these states are conflict-
equivalent. Therefore there exists a local move (q, b, q′) ∈→j . This implies that
j ∈ loc(b). ut

4.2 Language of a Product System

Now we describe runs of A over some word w by associating product states with
prefixes of w: the empty word is assigned initial product state R0, and for every
prefix va of w, if R is the product state reached after v and Q is reached after va
where, for all j ∈ loc(a), 〈R[j], a,Q[j]〉 ∈→j and for all j /∈ loc(a), R[j] = Q[j].
Let pre(a) = {R | ∃Q,R a−→ Q}.

A run is said to be accepting if the product state reached after w is in G. We
define the language Lang(A) of product system A, as the words on which the
product system has an accepting run.

We use the following characterization of direct product languages, which
appears in [MR02,Muk11].

Proposition 5. L = Lang(A) is the language of product system A = 〈A1, . . . ,
Ak〉 over distribution Σ iff

L = {w ∈ Σ∗ | ∀i ∈ {1, . . . , k}, ∃ui ∈ L such that w↓Σi
= ui↓Σi

}.
Further L = Lang(A1)‖ . . . ‖Lang(Ak).

The next definition is semantic, new to this paper and not easy to check (in
Pspace). If a system has separation of labels, the property obviously holds.

Definition 11. A run of A is said to be consistent with a matching of
labels if for all global actions a and every prefix of the run R0 v⇒R a⇒Q, the
pre-places R↓loc(a) are in the matching.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 81

5 Connected Expressions and Product Systems

In this section we prove the main theorems of the paper. To place them in context
of our earlier paper [LMP11], there we used a “structural cyclicity” condition
which allowed a run to be split into finite parts from the initial product state to
itself, since it was guaranteed to be repeated. The new idea in this paper is that
runs are split up using matchings which correspond to synchronizations, what
happens in between is not relevant for the connections across sequential systems.
Hence extending our syntax to allow full regular expressions for the sequential
systems does not affect the synchronization properties which are the main issue
we are addressing. In Section 6 we outline the connections to labelled free choice
nets which are detailed in another paper [PL14].

5.1 Synthesis of Systems from Expressions

We begin by constructing product automata for our syntactic entities. For regular
expressions, this is well known. We follow the construction of Antimirov, which
in polynomial time gives us a finite automaton of size O(wd(s)), using partial
derivatives as states.

Now we come to connected expressions, for which we will construct a product
of automata.

Lemma 1. Let e be a connected expression with unique global action sites. Then
there exists a product system A with separation of labels accepting Lang(e) as
its language. If e had equal choice, then A is conflict-equivalent.

Proof. Let e = fsync(s1, s2, . . . , sk). Then for each si, which is a regular expres-
sion, defined over some alphabet Σi, we produce a sequential system Ai over Σi,
using Antimirov’s derivatives, such that Lang(si) = Lang(Ai), ∀ i ∈ {1, . . . , k}.
Next we trim it—remove places not reachable from the initial place p0i and places
from where a final state is not reachable. Now, for each global action a, we quo-
tient Ai by merging all derivatives d such that a ∈ Init(d) into a single place.

Call the resulting automaton A′i. Let p be the merged place in A′i which is
now the source of all a-transitions. Clearly Lang(Ai) ⊆ Lang(A′i) since no paths
are removed, we show next that the inclusion in the other direction also holds,
using the unique global action sites condition.

Let a be a global action. Consider a word w = x1ax2 . . . axn in Lang(A′i),
where the factors x1, x2, . . . , xn do not contain the letter a. We wish to find
derivatives d0, d1, . . . , dn of Ai such that dn is a final place and for every j there
is a run dj

axj+1−−−−→ . . .
axn−−→ dn of Ai when j > 0, and d0

x1−→ ax2−−→ . . .
axn−−→ dn

when j = 0, which will show the desired inclusion.
We proceed from n downwards. For any place dn in G there is a run from dn

on ε ∈ Lang(dn) in Ai. Inductively assume we have dj such that there is a run
dj

axj+1−−−−→ . . .
axn−−→ dn of Ai, so xj+1axj+2 . . . axn is in Sufa(Lang(si)) since dj

is reachable from the initial place. Since there is a run p
axj−−→ p in A′i there are

derivatives dj−1, cj of e, such that there is a run dj−1
axj−−→ cj in Ai (when j = 1

82 PNSE’14 – Petri Nets and Software Engineering

we get d0
x1−→ c1 by this argument). Since cj quotients to p, it has an a-derivative

c such that c is inDeraxja(dj−1) (Derx0a(d0) when j = 1). Because dj−1 is reach-
able from the initial place by some v and because some final state is reachable
from c, vxj ∈ Prefa(Lang(si)) which is nonempty. By the unique global ac-
tion sites condition and Proposition 1, since xj+1 . . . axn is in Sufa(Lang(si)),
vaxjaxj+1 . . . axn is in Lang(si) and so xjaxj+1 . . . axn is in Sufa(Lang(si)).
This means that there is a run from some dj−1 on axjaxj+1 . . . axn ending in a
final state dn of Ai. So we have the induction hypothesis restored. If j = 1 we
get d0 which quotients to p0 and has a run on w to dn in G.

So we get a product system A′ = 〈A′1, A′2, . . . , A′k〉 defined over Σ. If the
expression had equal choice, this system is conflict-equivalent. Because of the
quotienting A′ has separation of labels.

w ∈ Lang(e) iff ∀i, w↓Σi
∈ Lang(si), by definition

iff ∀i, w↓Σi
∈ Lang(A′i)

iff w ∈ Lang(A′), by Proposition 5.

Theorem 1. Let e = fsync(s1, . . . , sk) be a connected expression over a distri-
bution Σ with a pairing of actions. Then there exists an FC-matching product
system A over Σ, accepting Lang(e). If the expression had deterministic sites,
the constructed product will have deterministic global actions. If the pairing was
equal choice, the matching is conflict-equivalent. If the expression is consistent
with the pairing, all runs of A will be consistent with the matching.

Proof. We first rewrite e to another expression e′, construct an automaton A′

for Lang(e′), and then change it to recover an automaton for Lang(e).
Consider global action a and tuple of blocks D = Πi∈loc(a)Di ⊆ pairing(a).

By Proposition 1 Di a-bifurcates Lang(si). We rename for all i in loc(a), the
occurrences of a in si which correspond to an a in Init(Di), by the new letter
aD. This is done for all global actions to obtain from e a new expression e′ =
fsync(s′1, . . . , s

′
k) over a distribution Σ′, where every s′i now has the unique sites

property. For any word w ∈ Lang(e), there is a well-defined word w′ ∈ Lang(e′).
By Lemma 1 we obtain an FC-product A′ with separation of labels for

Lang(e′). Say p(aD) is the pre-place for action aD in A′i. We change all the
〈p(aD), aD, q〉 transitions to 〈p(aD), a, q〉 in all the A′i to obtain an FC-product
A over the alphabet Σ. As w′ ∈ Lang(e′) = Lang(A′) is well-defined from w and,
as the renaming of transition labels does not remove any paths, w is in Lang(A).
Conversely, for every run on w accepted by A, because of the separation of la-
bels property, there is a well-defined run on w′ with the label of a transition
appropriately renamed depending on the source state, which is accepted by A′,
hence w′ is in Lang(e′). So renaming w′ to w gives a word in Lang(e). This
construction preserves determinism.

Now we refer to the pairing of actions in e. This defines for each global action
a and tuple of blocks of a-sites D, a relation between pre-places of aD-moves in
different components in the product A′. By the separation of labels property of
A′, the tuples in the relation are disjoint, that is, the relation is functional. So

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 83

for pre-places of a-moves in the product A we have a matching. If the pairing
was equal choice, the matching is conflict-equivalent.

If the expression e is consistent with the pairing, all reachable a-sites are
in the pairing, so we can partition Lang(e) ∩ Σ∗aΣ∗ using the partitions in
Parta(e). Letting D range over blocks of connected expressions, each block D
contributes a global action aD in the renaming, so we get an expression e′ such
that for every global action aD, we have the unique a-sites property. Applying
Lemma 1, we have the product system A′ with separation of labels. By Proposi-
tion 3, every Lang(A′i) is aD-bifurcated, and using the characterization of Propo-
sition 5, Lang(A′) ∩ (Σ′)∗aD(Σ′)∗ = PrefaD (Lang(A

′))aDSufaD (Lang(A
′)).

Since several actions aD are renamed to a and the corresponding tuples of pre-
places are recorded in the matching, by Proposition 3 and Proposition 5:

⋃

R∈matching(a)
PrefRa (Lang(A)) a SufRa (Lang(A)) ⊆ Lang(A) ∩Σ∗aΣ∗.

But this means that all runs of A are consistent with the matching. ut

5.2 Analysis of Expressions from Systems

Lemma 2. Let A be a FC-product system with separation of labels. Then we
can compute a connected expression for the language of A, where every regular
expression has unique sites. If the FC-product had deterministic global actions,
then so do the regular expressions in the computed expression. If the FC-product
was conflict-equivalent, the constructed expression has equal choice.

Proof. Let A = 〈A1, . . . , Ak〉 be an FC-product with separation of labels, where
Ai is a sequential system of A with places P , initial place p0 and final places G.
Kleene’s theorem gives us an expression si for the language of Ai. We claim the
required connected expression is fsync(s1, . . . , sk).

Consider global action a. By separation of labels there is a single state p in
Ai enabling a. For simplicity let us assume there is only one global action a
enabled at p. Let Q = P \ {p}. Let T be the set of transitions excluding the
a-actions enabled at p. We wish to decompose the expression si that we started
with into paths which go through p and paths which do not. Depending on
whether we have a sequential transition p a−→ p, or transitions p a−→ pj , pj 6= p,
or a combination of these two types, we obtain an expression with the same
language as si:

ep =
∑

f∈G
eTp0,f + eTp0,pe

∗
p,pe

Q
p,f ,

where the expression ep,p is given by one of the following refinements, for the
three cases considered above respectively:

(a+ eTp,p), or ((
∑

j

aeTpj ,p) + eTp,p), or (a+ (
∑

j

aeTpj ,p) + eTp,p).

84 PNSE’14 – Petri Nets and Software Engineering

The superscripts T,Q indicates that these expressions are derived, as in the
McNaughton-Yamada construction [MY60], for runs which only use the states Q
or transitions T . Whichever be the case, we note that we have an expression with
Da(ep) = {e∗p,peQp,f} as its singleton set of a-sites. If the system had deterministic
global actions, the a-site would have only had one a-derivative. This idea can be
easily extended to considering several global actions enabled at the same place,
by considering a different refinement of si taking into account the combined
possibilities. If the product system was conflict-equivalent, the a-sites are all
equal choice.

But the expression si could have been obtained by considering the place p
at an arbitrary point in the McNaughton-Yamada construction. Consider ep as
refining some intermediate expression s′i for the place p. The expression ep may
make copies of parts of s′i. This does not affect the deterministic global actions
property. For c 6= a the c-sites Dc(ep) are obtained as:

Dc(ep) =
⋃

f∈G
Dc(eTp0,f) ∪Dc(eTp0,p) ∪Dc(ep,p) · e∗p,p · eQp,f ∪Dc(eQp,f).

That is, Partc(ep) is preserved as a single block if it formed a single block in the
earlier expressions. Thus the expression si has the unique sites property. ut

Theorem 2. Let A be a FC-matching product system. Then we can compute a
connected expression for the language of A, where every regular expression has a
pairing of actions. If the FC-product had deterministic global actions, then so do
the regular expressions in the computed expression. If the matching was conflict-
equivalent the pairing is equal choice. If all runs of A were consistent with the
matching, the expression constructed will be consistent with the pairing.

Proof. Let A be a product system with a conflict-equivalent matching. Enumer-
ate the global actions a, b, Say the a-matching has n tuples.

We construct a new product system A′ where, for the places in the j’th
tuple of the a-matching, we change the label of the outgoing a-transitions to
aj ; similarly for the places in tuples of the b-matching; and so on. We now have
a new product system where the letter a of the alphabet has been replaced by
the set {a1, . . . , an}; the letter b has been replaced by another set; and so on,
obtaining a new distribution Σ′. By definition of a matching, the various labels
do not interfere with each other, so we have a matching with the new alphabet,
conflict-equivalent if the previous one was. Runs which were consistent with
the matching continue to be consistent with the new matching. Again by the
definition of matching, the new system A′ has separation of labels. Hence we
can apply Lemma 2.

From the lemma we get a connected expression e′ = fsync(s1, . . . , sk) for the
language of A′ over Σ′ where every regular expression has unique global action
sites. From the proof of the lemma we get for every sequential system A′i in the
product, for the global actions a1, . . . , an, tuples D′(aj) = Πi∈loc(a)D

′
i(a

j) which
are sites for aj in the expression si, for every j. Now substitute a for every letter
a1, . . . , an in the expression, each tuple D′ is isomorphic to a tuple D of sites

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 85

for a in e and the sites are disjoint from one another. We let pairing(a) be the
partition formed by these tuples. Do the same for b obtaining pairing(b). Repeat
this process until all the global actions have been dealt with. The result is an
expression e with pairing of actions. If the matching was conflict-equivalent, the
pairing has equal choice.

The runs of A have to use product states in pre(a) for global action a, define

L = Lang(A) ∩Σ∗aΣ∗ =
⋃

R∈pre(a)
PrefRa (Lang(A)) a SufRa (Lang(A)).

The renaming of transitions depends on the source state, so L is isomorphic to

L′ = Lang(A′)∩(
∑

j

(Σ′)∗aj(Σ′)∗) =
⋃

j=1,n

Prefaj (Lang(A
′))ajSufaj (Lang(A

′)).

Keeping Proposition 5 in our hands, the lemma ensures that Lang(A′) = Lang(e′)
and the expression e′ has unique aj-sites forming a block D′(j). Then L′ can
be written as

⋃

j=1,n

Pref
D′(j)
aj (Lang(e′))ajSufD

′(j)
aj (Lang(e′)). When we rename

the aj back to a we have a partition of pairing(a) into sets D such that

L =
⋃

D⊆pairing(a)
PrefDa (Lang(e)) a SufDa (Lang(e)).

If all runs of A were consistent with the matching, the product states in pre(a)
would all be in the matching, and we obtain that the expression e is consistent
with the pairing. ut

6 Nets

Definition 12. A labelled net N is a tuple (S, T, F, λ), where S is a set of places,
T is a set of transitions labelled by the function λ : T → Σ and F ⊆ (T × S) ∪
(S × T) is the flow relation. It will be convenient to define loc(t) = loc(λ(t)).

Elements of S ∪ T are called nodes of N . Given a node z of net N , set •z = {x |
(x, z) ∈ F} is called pre-set of z and z • = {x | (z, x) ∈ F} is called post-set of
z. Given a set Z of nodes of N , let •Z =

⋃
z∈Z

•z and Z • =
⋃
z∈Z z

•. We only
consider nets in which every transition has nonempty pre- and post-set.

Definition 13. Let N ′ = (S ∩ X,T ∩ X,F ∩ (X × X)) be a subnet of net
N = (S, T, F), generated by a nonempty set X of nodes of N . N ′ is called a
component of N if,

– For each place s of X, •s, s • ⊆ X (the pre- and post-sets are taken in N),
– For all transitions t ∈ T , we have |•t| = 1 = |t •| (N ′ is an S-net [DE95]),
– Under the flow relation, N ′ is connected.

86 PNSE’14 – Petri Nets and Software Engineering

A set C of components of net N is called S-cover for N , if every place of the
net belongs to some component of C. A net is covered by components if it has an
S-cover.

Note that our notion of component does not require strong connectedness
and so it is different from notion of S-component in [DE95], and therefore our
notion of S-cover also differs from theirs.

Fix a distribution (Σ1, Σ2, . . . , Σk) of Σ. The next definition appears in sev-
eral places for unlabelled nets, starting with [Hac72].

Definition 14. A labelled net N = (S, T, F, λ) is called S-decomposable if,
there exists an S-cover C for N , such that for each Ti = {λ−1(a) | a ∈ Σi}, there
exists Si such that the induced component (Si, Ti, Fi) is in C.

Now from S-decomposability we get an S-cover for net N , since there exist
subsets S1, S2, . . . , Sk of places S, such that S = S1∪S2∪. . . Sk and •Si∪S•i = Ti,
such that the subnet (Si, Ti, Fi) generated by Si and Ti is an S-net, where Fi is
the induced flow relation from Si and Ti.

6.1 Properties of Nets

Definition 15 ([DE95]). Let x be a node of a net N . The cluster of x, denoted
by [x], is the minimal set of nodes contaning x such that

– if a place s ∈ [x] then s• is included in [x], and
– if a transition t ∈ [x] then •t is included in [x].

A cluster C is called free choice (FC) if all transitions in C have the same pre-set.
A net is called free choice if all its clusters are free choice.

The next definitions will turn out to be the analogue to the separation of
labels property of product systems. It is checkable in linear time.

Definition 16. A labelled net N = (S, T, F, λ) is said to have the unique clus-
ter property (briefly, ucp) if ∀a ∈ Σ having |loc(a)| > 1, there exists at most
one cluster in which all transitions labelled a occur. It is deterministic for
synchronization if for every a, every cluster contains at most one a-labelled
transition.

6.2 Net Systems and their Languages

For our results we are only interested in 1-bounded (or condition/event) nets,
where a place is either marked or not marked. Hence we define a marking as a
function from the states of a net to {0, 1}.

A transition t is enabled in a markingM if all places in its pre-set are marked
byM . In such a case, t can be fired to yield the new markingM ′ = (M \•t)∪ t •.
We write this as M [t〉M ′ or M [λ(t)〉M ′.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 87

A firing sequence (finite or infinite) λ(t1)λ(t2) . . . is defined by composition,
from M0[t1〉M1[t2〉 . . . For every i ≤ j, we say that Mj is reachable from Mi. A
net system (N,M0) is live if, for every reachable markingM and every transition
t, there exists a marking M ′ reachable from M which enables t.

Definition 17. For a labelled net system (N,M0,G), its language is defined as
Lang(N,M0,G) = {λ(σ) ∈ Σ∗ | σ ∈ T ∗ and M0[σ〉M, for some M ∈ G}.

If a net (S, T, F, λ) is 1-bounded and S-decomposable then a marking can
be written as a k-tuple from its components S1 × S2 × . . . × Sk. It is known
[Zie87,Muk11] that if we do not enforce the “direct product” condition below we
get a larger subclass of languages.

Definition 18. An S-decomposable labelled net system (N,M0,G) is an
S-decomposable labelled net N = (S, T, F, λ) along with an initial marking M0

and a set of markings G ⊆ ℘(S), which is a direct product: if 〈q1, q2, . . . qk〉 ∈ G
and 〈q′1, q′2, . . . q′k〉 ∈ G then {q1, q′1} × {q2, q′2} × . . .× {qk, q′k} ⊆ G.

6.3 Product Systems to Nets

Given a product system A = 〈A1, A2, . . . , Ak〉 over distribution Σ, we can pro-
duce a net system (N = (S, T, F, λ),M0,G) as follows using a standard construc-
tion. When we construct nets from product systems with a conflict-equivalent
matching of labels with respect to which all runs are consistent, we can refine
the construction above to choose T ′ ⊆ T and get a free choice net.

Theorem 3 ([PL14]). Let (N,M0,G) be the net system constructed from prod-
uct system A above. Then N is an S-decomposable net with Lang(N,M0,G) =
Lang(A). Further, if A has deterministic global actions and all runs of A are
consistent with a conflict-equivalent matching of labels, we can choose T ′ ⊆ T
such that the subnet N ′ generated by T ′ is a free choice net with deterministic
synchronization and (N ′,M0,G) accepts the same language.

6.4 Nets to Product Systems

Even if a net is 1-bounded and S-decomposable each component need not have
only one token in it, but when we say that a 1-bounded net is S-decomposable we
assume that each component has one token. For live and 1-bounded free choice
nets, such S-covers can be guaranteed [DE95]. Now we can prove:

Theorem 4 ([PL14]). Let (N,M0,G) be a live, 1-bounded, S-decomposable la-
belled free choice net system with deterministic synchronization. Then one can
construct a product system A with deterministic global actions, which has a
conflict-equivalent matching of labels that all its runs are consistent with. Further
Lang(N,M0,G) = Lang(A).

88 PNSE’14 – Petri Nets and Software Engineering

7 Conclusion

In earlier work [LMP11], we showed that a graph-theoretic condition called
“structural cyclicity” enables us to extract syntax from a conflict-equivalent prod-
uct system. In the present work we have generalized this condition so that we can
deal with a larger class of product systems with a conflict-equivalent matching.
In our paper [PL14] we show a connection between free choice nets with deter-
ministic synchronization and product systems which have these properties along
with deterministic global actions. Thus we obtain a Kleene characterization for
the class of labelled free choice nets with deterministic synchronization.

Acknowledgements. We would like to thank the referees of the PNSE workshop
for urging us to improve the presentation of the proofs of the main theorems.
This led us to invent Definition 3 and correct the site properties in Definition 5.

References

[Ant96] Valentin Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comp. Sci., 155(2):291–319, 1996.

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–
494, 1964.

[DE95] Jörg Desel and Javier Esparza. Free choice Petri nets. Cambridge University
Press, New York, USA, 1995.

[GR92] Vijay K. Garg and M.T. Ragunath. Concurrent regular expressions and their
relationship to Petri nets. Theoret. Comp. Sci., 96(2):285–304, 1992.

[Gra81] Jan Grabowski. On partial languages. Fund. Inform., IV(2):427–498, 1981.
[Hac72] Michel Henri Théodore Hack. Analysis of production schemata by Petri nets.

Project Mac Report TR-94, MIT, 1972.
[LMP11] Kamal Lodaya, Madhavan Mukund, and Ramchandra Phawade. Kleene the-

orems for product systems. In Markus Holzer, Martin Kutrib, and Giovanni
Pighizzini, editors, Proc. 13th DCFS, Limburg, volume 6808 of LNCS, pages
235–247, 2011.

[Mir66] Boris G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engg. Cybern., 5:110–116, 1966.

[MR02] Swarup Mohalik and R. Ramanujam. Distributed automata in an assumption-
commitment framework. Sādhanā, 27, part 2:209–250, April 2002.

[Muk11] Madhavan Mukund. Automata on distributed alphabets. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, pages
257–288. World Scientific, 2011.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata. IEEE Trans. IRS, EC-9:39–47, 1960.

[PL14] Ramchandra Phawade and Kamal Lodaya. Direct product automaton repre-
sentation of labelled free choice nets. Submitted, 2014.

[SH96] Pablo A. Straub and L. Carlos Hurtado. Business process behaviour is (al-
most) free-choice. In Proc. CESA, Lille, pages 9–12. IEEE, 1996.

[Zie87] Wiesław Zielonka. Notes on finite asynchronous automata. Inform. Theor.
Appl., 21(2):99–135, 1987.

R. Phawade, K. Lodaya: Kleene Theorems for Labelled Free Choice Nets 89

90 PNSE’14 – Petri Nets and Software Engineering

Using Symbolic Techniques and Algebraic Petri
Nets to Model Check Security Protocols for Ad

Hoc Networks

Mihai Lica Pura and Didier Buchs

Centre Universitaire d’Informatique
University of Geneva
Carouge, Switzerland

Abstract. Petri nets have proved their effectiveness in modeling and
formal verification of a large number of applications: control systems,
communication protocols, application workflows, hardware design, etc.
In the present days, one important focus of computer science is on se-
curity and secure communications. The use of Petri nets for verifying
security properties is not a mature field due to a lack of convenient mod-
eling and verification capabilities. So far, in the Petri Net field there is
only the CPN tool that is mature enough for modeling using the colored
Petri nets formalism. Nevertheless verification cannot be performed on
large systems as CPN tool verification is based on an exhaustive way of
computing the semantics of a model. In this paper we present the use of
AlPiNA, another candidate for this task. AlPiNA is a symbolic model
checker that uses the formalism of algebraic Petri nets. We have used
it successfully for modeling ad hoc networks and for verifying security
protocols designed for this type of networks. As a case study and bench-
mark we have chosen the ARAN secure routing protocol. We managed to
find all the attacks that were already reported for this protocol. To our
knowledge this work is also the first successful attempt to use Petri nets
for model checking the security properties of ad hoc networks protocols.

Keywords: model checking, ad hoc networks, algebraic Petri Nets.

1 Introduction

Place/Transition nets are a modeling language that proved its effectiveness in
modeling a large variety of systems based on concurrent processes. Over the
years, the initial Petri net formalism was enriched in order to simplify the spec-
ification of more and more complex systems. Two of the applications targeted
were the model checking of security protocols and of the ad hoc network proto-
cols (but not ad hoc network security protocols). To the best of our knowledge,
model checking the security protocols specially designed for ad hoc networks has
not been reported yet.

There is no need to argue for the importance of security in computer sci-
ence, or for the need to prove the security properties of the protocols used in the

information systems. Ad hoc networks are a novel approach to assuring commu-
nications. The communications networks that are now in use are based on an
infrastructure composed of devices like switches, hubs, gateways, routers, and
so on. Ad hoc networks aim to assure communications without the use of any
infrastructure. In such networks there are no other devices, except the ones that
actually form it, and want to communicate. And they will also act as the in-
frastructure devices from a classical network, by routing the messages of all the
other nodes. Such a behavior is assured by specially designed ad hoc routing
protocols. These routing protocols and their possible attack schemes are more
complex than the ones of the other kinds of networks, so for their specification
a more powerful language is needed.

One of the enrichments of P/T nets dedicated specifically to data based
functionality is High Level Petri Nets (HLPN). In HLPN the tokens have different
types and these types are part of a many-sorted algebra ([1]). The possibility to
use other types than the usual black tokens made it possible to use HLPN in
modeling and verification of security protocols.

Colored Petri Nets (CPN) were the first concrete realization of HLPN that
were used for model checking security properties, because they were the first
one who was expressive enough for this ([2]). But besides CPN, there are other
implementations of HLPN. The difference between the different implementations
of HLPN stands in the way the many-sorted algebra is defined. In CPN the many-
sorted algebra is defined using the CPN ML language, which was built upon the
standard ML.

For modeling ad hoc networks we focus on the model checker AlPiNA ([3, 4]).
AlPiNA implements HLPN by algebraic Petri nets (APN), in which the colored
tokens are defined using algebraic abstract data types (AADT) ([1]). Like all
the other model checkers, the focus of AlPiNA is to handle the state explosion
problem in order to perform verification on real size system models. When using
HLPN, the state space explosion has one more dimension (the data) than in
the case of P/T nets. HLPN are more expressive and as a consequence, the
state space of a HLPN model is in general much bigger. AlPiNA addresses this
problem by using symbolic techniques based on several layers of Data Decision
Diagrams, Set Decision Diagrams and Sigma Decision Diagrams [1]. In addition,
some optimizations specific to the APN formalism (algebraic clustering, partial
algebraic unfolding) [5] are supported. The tool can be downloaded from [5].

We have successfully used AlPiNA for modeling ad hoc networks and for
model checking security protocols of ad hoc networks. From our studies, we have
seen some advantages that this tool has over the other tools used for these pur-
poses; in terms of modeling the protocol itself, as well as the possible attackers.
In this paper we will present the modeling of ad hoc networks and the verification
of ARAN (Authenticated Routing for Ad Hoc Networks [6]) security protocol
with APNs, and the advantages of AlPiNA for performing these tasks.

The rest of the paper is organized as follows. The second section presents the
use of Petri nets in literature for modeling ad hoc networks and verifying prop-
erties related to them. In the third section we describe the use of algebraic Petri

92 PNSE’14 – Petri Nets and Software Engineering

nets and AlPiNA for modeling ad hoc networks and the ARAN protocol. The
fourth section contains the presentation of our results regarding verification of
routing information correctness for ARAN. The last section contains conclusions
and our future work directions.

2 The Use of Petri nets in modeling ad hoc networks

Petri nets already proved their effectiveness in modeling ad hoc networks. So
far, researchers have used Fuzzy Petri nets, Stochastic Petri nets and Colored
Petri nets to model ad hoc networks. The purpose of these models was to obtain
qualitative or quantitative information about the behavior of applications and
protocols in the context of ad hoc networks. As far as we know, algebraic Petri
nets were never used so far to model ad hoc networks.

We will continue by presenting some of the latest published results concerning
the use of Petri nets in ad hoc networks research.

2.1 Modeling for Quantitative evaluation

The research presented in [7] uses Fuzzy Petri Nets for modeling and analyzing
the QoS dimension in order to evaluate how to manage congestion in wireless ad
hoc networks. The networks itself, the nodes, the communication protocol are
not actually modeled. In [8] Fuzzy Petri Nets are used to represent the multicast
routing in an ad hoc network and to calculate multicast trees. The authors only
model the topology of the network but not the actual routing protocol.

In [9] the authors present how to use Stochastic Petri Nets to model ad hoc
networks. An ad hoc network is modeled by a single node, for which a proper
amount of traffic is generated. By measuring how the node behaves under the
given traffic, using suitable metrics, some conclusions can be obtained regard-
ing a whole network with a given number of nodes like the modeled one. In
[10] Stochastic Petri Nets are used to model mobility of ad hoc networks, but
the actual ad hoc network is not modeled, neither the ad hoc routing, only an
application level protocol that takes into account the fact that the nodes are
moving between different geographic regions, and also the required performance
indices. Thus the authors are able to obtain quantitative data about the specified
performance indices.

The authors of [11] and [12] use Colored Petri Nets. They propose models for
the nodes of the network, for the routing protocol AODV (Ad Hoc On-Demand
Distance Vector Routing) [12] and DSR (Dynamic Source Routing) [11] and for
the behavior of the ad hoc network. The purpose of the modeling was to con-
duct a comparison between the two ad hoc routing protocols mentioned above,
from the point of view of their efficiency (number of generated overhead packets,
data packet delivery delay). In [13] Colored Petri Nets are used to model and
to compare another pair of routing protocols, AOMDV (Ad Hoc On-Demand
Multipath Distance Vector Routing) and DSR. In [14], Colored Petri Nets are
used to model and validate the specification of a multicast routing protocol for

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 93

ad hoc networks called DYMO (Dynamic MANET On-Demand). The properties
that the authors specify and verify are all related to the correctness of the pro-
tocol: establishments of routes, and correct processing of the routing messages.
By this work, the authors also found several ambiguities in the definition of the
protocol, which were taken into consideration in two revisions.

2.2 Modeling for Qualitative evaluation

From the point of view of model checking security protocols, Colored Petri nets
are the only type of Petri nets used for this purpose up to now. But as far as
we know, no Petri nets were used to model check the security protocols of ad
hoc networks. So our paper is the first presentation using algebraic Petri nets
to model ad hoc networks and to do model checking of security properties for
specific ad hoc network protocols.

For example, [2] and [15] present the work of using CPN to model check con-
fidentiality and authentication for TMN authenticated key exchange protocol.
In [16] CPN are used to verify the same security properties for Andrew secure
RPC protocol. In all these papers, the use of CPN helps to find attacks over the
considered protocols, and even some attacks that were previously unknown. So
this indicates the high potential of using these techniques for model checking ad
hoc network specific security protocols.

In the next sections, we will present the state of the art of modeling ad
hoc networks with the help of Petri nets. Modeling an ad hoc network implies
modeling the following elements: the nodes and the topology of the network.

2.3 Modeling the nodes

For modeling the nodes of an ad hoc network, a single approach was used by
all the researchers. The nodes were modeled by their behavior in the considered
protocol or application. The Petri net contains a single instance of a node’s
behavior. But this behavior is parameterized with the identity of a node. The
identities of the nodes, which are part of the considered network, are placed
inside a special place. When the state space is calculated, all these identities are
considered as executing the modeled behavior ([11]).

2.4 Modeling the topology

When modeling the topology of the ad hoc networks, two aspects should be
taken into consideration. The first one is how to model the actual topology of
the network at a given time. The second aspect is how to model the mobility
of the nodes which implies the modeling of the dynamicity of the topology.
Both of these aspects influence the modeling of the way messages travel through
the network. Based on the current topology, a message transmitted by a node
should only be received by the other nodes which are in the coverage area of the
transmitting node.

94 PNSE’14 – Petri Nets and Software Engineering

So far, researches have proposed three ways for modeling topology. We will
briefly present them in the following paragraphs.

In [11], [12] and [13] the network topology was modeled by an approximation
mechanism. Let us presume that the network has n nodes. When a node A
sends a broadcast message, it actually sends n-1 copies of the message to a place
that stores them in order to distribute them to the corresponding nodes. Based
on a probability that represents how many nodes are in the coverage area of
A, a certain number of these messages will be forwarded to other nodes, and
the remaining messages will be dropped. In the case of unicast messages, they
are sent only to the corresponding nodes. The authors of [12] call this model
a topology approximation mechanism and prove through simulation that it can
indeed mimic the mobility of a mobile ad hoc network (MANET).

In [14] the wireless mobile ad hoc network is modeled by two parts: a part
that handles the transmission of the packets, and another part that handles the
mobility of the nodes. The transmission of the packets is done based on the
current topology of the network, which is explicitly represented in the following
way: each node A has an adjacency list of nodes. Each node from this list is a
node that is in the coverage area of A, and thus can receive packets from it. Based
on the information from these lists, the transmission part of the model of the ad
hoc network sends the packets to the appropriate nodes. The mobility part of the
model is responsible with making modification to the topology. At the beginning
of the validation, there is an initial topology and also the possible topology
changes. Based on these changes, the mobility part modifies the topology as the
validation continues.

The authors of [17] and [18] use reconfigurable algebraic higher-order net
systems in order to model mobility for the ad hoc networks. The idea is to apply
graph transformation (rewriting of the model) to algebraic nets. That is, the net
gets reconfigured at run time in order to simulate the mobility of the nodes in
an ad hoc network. The modeling is abstracted from the network layer, and the
considered application is modeled in terms of work-flows.

3 Using Algebraic Petri Nets in Modeling Ad Hoc
Networks

3.1 Algebraic Petri nets definition

An APN is a HLPN where algebraic abstract data types are used. The structure
of the net is the structure of a Place/Transition net, but algebraic values are
used as tokens. Also, the transitions can have guards that are pairs of algebraic
terms that allow the firing of the respective transitions. In the following a sketch
of the model components are given, more details can be found in [1].

An algebraic Petri net specification is a 5-tuple
N − SPEC =< Spec, T, P,X,AX >, where:

– Spec =< Σ,X ′, E > is an algebraic specification extended in < [Σ], X ′, E >,
where [Σ] is a multiset over the signature Σ =< S,F > ([19]) such that:

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 95

• S is a finite set of sorts;
• F = (Fw,s)w∈S∗,s∈S is a (S∗ × S) sorted set of function names;

– T is the set of transition names;
– P is the set of place names and there is a function τ : P → S which associates

a sort to each place;
– X is a S-sorted set of variables;
– AX is a set of axioms and it will be defined below.

Given an algebraic Petri net specificationN−SPEC =< Spec, T, P,X,AX >,
an axiom in AX is a 4-tuple < t,Cond, In,Out > such that:

– t ∈ T is the transition name for which the axiom is defined;
– Cond ⊆ TΣ,X × TΣ,X is a set of equalities attached to the transition name t

for this axiom; Cond is satisfied if and only if all the equalities from the set
are satisfied;

– In = (Inp)p∈P is a P -sorted set of terms such that ∀p ∈ P, Inp ∈ (T[Σ],X)[τ(p)]
is the label of the arc from place p to transition t;

– Out = (Outp)p∈P is a P -sorted set of terms such that ∀p ∈ P,Outp ∈
(T[Σ],X)[τ(p)] is the label of the arc from transition t to place p.

In AlPiNA, the input of a transition is a set that can only contain variables
and closed terms [4]. However, this limitation has no effect over the complexity of
the systems that can be modeled and verified. It is just simplifying the complexity
of the computations.

In order to provide a semantics to a specification N − SPEC, we can define
the set of reachable states StN − SPEC(M) from a given marking M . In this
paper we do not need the precise definition; please consult [1] for more details.

3.2 Case study: ARAN secure routing protocol

In order to present our methodology for modeling ad hoc networks, we have taken
as case study the ARAN secure routing protocol. We have chosen it because it
is simple, well known and it is the state of the art regarding secure routing in
ad hoc networks. The purpose of ARAN is to provide a route path for any node
in the network. It is an implicit routing protocol, which means that it will not
respond with the whole path, but only with the identity of the next node in the
path. ARAN uses digital signatures to assure authentication and integrity for
the exchanged routing information.

ARAN uses two message types: route discovery and route response. Each
message is signed by its source node. As it travels to its destination, the signed
message is also cosigned by each intermediate node, after eliminating the signa-
ture of the previous intermediary, if it exists. Each node validates the received
message by validating the signature(s) from the message. If the signature(s) are
not valid, the message is discarded. Otherwise, the intermediary node broad-
casts the message, if it is a route discovery message, or unicast it, if it is a
route response message. When a route discovery message reaches destination,
the node will respond with a route response message. When a route response

96 PNSE’14 – Petri Nets and Software Engineering

reaches destination, the node will modify its routing table accordingly. Also, each
intermediary node that receives a routes response for a route discovery that he
processed, will also update its routing table. Each route from the routing table
has a given lifetime. When no traffic has occurred on an existing route for that
route’s lifetime, the route is deactivated. When data is received for an inactive
route, the corresponding note will demand the source node of the data to make
a new route request for the targeted destination node. So topology changes will
determine route inactivation in some nodes’ routing tables, which will further de-
termine new route requests for the destination. For more information regarding
the protocol, please consult [6].

The modeling of ARAN for the purpose of its verification implies the model-
ing of the following elements: the nodes, the ad hoc network, the adversary and
the protocol operation. The general model for ARAN is given in Fig. 1. We will
now continue with the presentation of all the parts of the model.

Nodekbehaviork
modelkaccordingkto
ARANkspecification

(Fig.k6)

Broadcast/
unicastkofk

messageskmodel
(Fig.k3)

Attacker
model
(Fig.k5)

Network
topologykmodel

Fig. 1. ARAN general model

3.3 Modeling the nodes

A node of the ad hoc network is modeled as a AADT Node. Each node has an
identity which is unique in the ad hoc network. Each node has also a routing
table and some other structures needed for the operation of the considered ad
hoc routing protocol. Because ARAN uses digital signatures, each node also has
a pair of public/private keys and a digital certificate. In addition, each node
knows the public key of the certification authority that issued his certificate.

Since all the nodes are identical, they all behave the same way. So in the actual
Petri net, all the nodes are placed inside the same place called Nodes collecting
identifiers of type Node. Here is the AADT Node in the case of ARAN:

Adt node
Sorts node;
Generators
node: Identity, RouteDiscoveryRequests, RouteDiscoveryRequests,

RoutingTable, Nonce, Certificate, PrivateKey,

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 97

PublicKey -> Node;
Operations
get_identity: Node -> Identity;
...
Axioms
get_identity(node($i, $rdr, $rp, $rt, $n, $c, $priv, $pub))=$i;
Variables
i : Identity;
...

All the elements used by the generator for the AADT Node, are other AADTs
that define (in this order): the identity of the node, a list with the route discovery
requests that were already broadcasted, a list with the route discovery responses
that were already forwarded, a lists with the routes, the current value for the
nonce used in the messages, the certificate of the node, the private key of the
node, and the public key of the certification authority that issues certificates for
the nodes.

3.4 Modeling the topology

An ad hoc network can be defined as a graph. We have assumed the connections
are bidirectional, so the graph is an undirected one. The nodes of the graph are
the nodes of the ad hoc network, and the arcs represent the fact that two nodes
can communicate directly through their wireless devices. So the topology of an
ad hoc network can be represented as a graph. We modeled it as the AADT
Topology, which is in fact a list of pairs of node identities, and represents the arc
list that defines the graph.

The actual topology is a variable of the type Topology. Its value can be given
in two different ways. Depending on the type of properties that will be verified,
the first or the second approach will be preferred. The first way is to give the
value explicitly. In this case, the model will represent the exact ad hoc network
that has that topology. For example, the topology of the ad hoc network given
in Fig. 2, will be defined by the next term:

cons(pairIdentityIdentity(i(i0), i^2(i0)),
cons(pairIdentityIdentity(i^2(i0), i(i0)),
cons(pairIdentityIdentity(i^2(i0), i^3(i0)),
cons(pairIdentityIdentity(i^3(i0), i^2(i0)),
cons(pairIdentityIdentity(i^3(i0), i^4(i0)),
cons(pairIdentityIdentity(i^4(i0), i^3(i0)),
cons(pairIdentityIdentity(i^3(i0), i^5(i0)),
cons(pairIdentityIdentity(i^5(i0), i^3(i0)), empty))))))))

The second way is to not assign any value to the variable. This way it will be
a free variable. Then, with the use of domain unfolding, AlPiNA will generate for
that variable all the possible values within a given range. We will next explain
how this works and the impact of such a choice.

98 PNSE’14 – Petri Nets and Software Engineering

i(i0)

i^2(i0)

i^3(i0)

i^5(i0)

i^4(i0)

Fig. 2. An example of an ad hoc network topology

3.5 Using unfolding to model topology

Unfolding is used for the verification process in order to let the user define the
part of the domain of a data type that will be taken into consideration when the
state space is computed. For example, in our model, the Identity AADT is used
for the identification of nodes. So when a certain operation must be done for
all the nodes in the network, that operation is parameterized with a variable of
type Identity for which no value is specified. Then the type Identity is unfolded
to the number of nodes in the network. As a result, prior to building the state
space, AlPiNA will unfold the Petri net by considering for that Identity variable
all the possible values, up to the number of nodes in the network. Let us show
how we can use this technique to model the topology of the ad hoc networks.

Topology AADT is actually a list of pairs of identities. Each pair of identities
represents a direct connection in the ad hoc network and it is defined by the
AADT PairIdentityIdentity. So the definition of the type Topology is based on
the type PairIdentityIdentity, which is based on the type Identity. As a result, in
order to unfold Topology, one needs to unfold also the other two types. Unfolding
of a data type is specified by the name of the type, and the limit that will be
considered for the domain. Here is an example of unfolding specification for
Topology and for its dependencies.

Identity : TOTAL;
PairIdentityIdentity : TOTAL;
Topology : 3;

The type Identity is unfolded to the number of nodes in the network; the type
PairIdentityIdentity is totally unfolded. That means that all the possible pairs
that can be created with the identities of the nodes in the network will be
taken into consideration. Topology is then unfolded to the desired depth. For
example, if the bound is set to 3, AlPiNA will take into consideration all the lists

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 99

with three pairs that can be constructed with the pairs obtained by unfolding
PairIdentityIdentity type. This way, we have actually defined all the topologies
that a network can have with the given number of nodes, and in which there are
three nodes which can communicate directly.

The number of topologies that will be taken into consideration in a non de-
terministic way through the above unfolding mechanism depends on the number
n of nodes in the network, and on the number m of direct connections between
them. This value represents the number of combinations of pairs that can be
formed with n identities, taken m at a time. As the values for n and m increase,
this value is rapidly increasing too. Unfortunately, the topology of the network
cannot be abstracted, nor parameterized because of the way message exchange
is done in wireless networks. In the case of a broadcast, the nodes which should
receive the message can be determined only from the topology. Likewise, in the
case of unicast or multicast, the topology is the only information regarding the
fact that a node should receive the message or not. In conclusion, the topologies
have to be taken into consideration explicitly.

Let us consider an example. If the ad hoc network has three nodes: A, B,
and C, it means that for Identity all these three values will be considered. Next,
because PairIdentityIdentity is totally unfolded, the following values will be con-
sidered for it: AB, AC, BA, BC, CA, and CB. As a result, Topology can have
the following values:

(1) {},
(2) {AB}, {AC}, {BA}, {BC}, {CA}, {CB},
(3) {AB, AC}, {AB, BA}, {AB, BC}, {AB, CA}, {AB, CB},
...,
(4) {AB, BA, BC}, {AB, BA, CA}, {AB, BA, CB},
...

With (1) we consider the topology in which none of the nodes have direct wireless
connections. With (2) we consider the possible topologies in which only two nodes
can communicate directly, the third one being outside the communication range
with each of the other two. With (3) we consider the possible topologies in which
there are two groups of two nodes which can reach each other. And with (4) we
consider all the topologies in which there are three groups of two nodes which
can communicate with each other.

If the same value is considered for the topology for a whole protocol run, it
means that after considering all these values, the protocol will be verified for
all the possible topologies for three nodes. When different values are consider
successively in the same protocol run, it means that the protocol is verified over
a dynamic topology. So because of the fact that the order in which each of these
values is considered is non deterministic, the verification will be made for all the
topologies and for all the possible node movements in each of the topologies.

Because it is a list, Topology is an infinite data type. So unfolding its entire
domain is impossible. But AlPiNA allows the partial unfolding up to a given
bound on the number of elements, as we explained above. It is important to
state that this second way of defining the topology of the network is particular

100 PNSE’14 – Petri Nets and Software Engineering

to AlPiNA and it works thanks to a special characteristic of the verification
algorithm called partial net unfolding. Partial net unfolding means that it is not
mandatory to unfold all the types, and the user can choose only the type that
it needed to be unfolded ([1]).

When the topology is defined as a closed term, AlPiNA will compute the state
space for the given algebraic Petri net N , starting from the initial marking. If
M0 is the initial marking, then the state space computed for a given topology
can be written as:

StN (M0).
When the topology is defined by unfolding, the algebraic Petri net is param-

eterized by a free variable of type Topology. If $tp is the name of this variable,
then the parameterized algebraic Petri net can be written as:

N($tp).
By unfolding, AlPiNA will instantiate the variable $tp with each of the possi-

ble values of the topology, as explained above, thus computing a set of algebraic
Petri nets, one for each value:

N = ∪x∈TΣ,TopologyN(x).
When computing the state space, AlPiNA will actually compute the set of

state spaces such that each state space corresponds to a value for the topology.
We can write this as follows:

StN (M0) = ∪x∈TΣ,TopologyStN(x)(M0).
As it will be presented in section 4, the security properties that we have

model checked with AlPiNA were expressed through an invariant property. In
order to check such a property, AlPiNA starts by computing the state space of
the algebraic Petri net provided as input. Then, it checks if the specified property
is true for each of the states. If it is, then the property holds for the model. If not,
the property does not hold for the model, and a counter-example is provided.

If the topology is defined as a closed term, checking a property for the model
implies checking the property for the state space computed for the corresponding
APN.

StN (M0) |= invariantproperty
If the topology is defined by unfolding, checking a property for all models

implies checking it for the set of state spaces generated by instantiating the
topology variable with all the possible values.

StN (M0) |= invariantproperty ⇔
∪x∈TΣ,Topology (StN (x)(M0) |= invariantproperty)
So we will check the invariant on all instances; finding a contradiction will

mean there is one topology that contradicts the invariant. If the invariant is sat-
isfied on the whole model it means that it is obviously satisfied in each instance.

3.6 Modeling the network

The message exchange in an ad hoc network has special characteristics, because
all the nodes act like routers. When a node transmits a message, it is received
only by the nodes which have a direct connection to that node. Then, each
of the nodes which received the message, processes it according to the routing

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 101

protocol, and then retransmits it. This process continues until the message gets
to the destination. Another aspect that must be taken into consideration is the
fact that messages can be of unicast or broadcast type. If a message is unicast,
it will be processed only by the node to which it is destined. If a message is
broadcast, it should be processed by all the nodes which can receive it directly
according to the topology of the network.

The messages transmitted by all the nodes are stored in the place called
Transmitted Packets (Fig. 3). The network processes the messages from this
place and then stores them in the place called Received Packets (Fig. 3), from
where the nodes can take them for processing and so on.

Received,Packets

Transmitted,Packets

Packet,is,Unicast Packet,is,Broadcast

$pkt $pkt

$pkt

get_sendto($pkt)b=i0 get_sendto($pkt)=i0&...

[packet(i0,i(i0),sign(...

[broadcast_to_unicast(get_router($pn),$pkt)]

Fig. 3. The model for the ad hoc network operation

In order to have in the High level Petri net model the behavior presented
above, we need to model accordingly two elements: the format of the messages
exchanged by the nodes and the network itself. Regarding the format of the
messages, besides the fields that a message has according to the considered rout-
ing protocol, we added two extra fields: a field that stores the identity of the
previous node that transmitted it (prev), and a field that represents the identity
of the node which should receive the message (next). If next field contains the
value i0, then it means that the message is broadcast. Otherwise the message is
unicast. The structure of the AADT Packet is provided in Fig. 4.

The modeling of the transmission/reception of a message is given in Fig. 3. All
the messages transmitted by the nodes are stored in the place called Transmitted
Packets. From here they are processed in order to provide the behavior explained
in the previous paragraph. First we check if the message is unicast or broadcast.
If it is unicast, no other processing is required (transition Packet is unicast) so
the message is placed in the Received Packets place from where the destination
node can pick it up for processing.

102 PNSE’14 – Petri Nets and Software Engineering

Identity
of the

node that
sent the
message

Identity of the
node that

should process
the message/

Broadcast
message

Signature(s)

Message type
(route discovery

request/route
discovery response) D

es
tin

at
io

n
no

de

N
on

ce
C

er
tif

ic
at

e(
s)

Fig. 4. The model for the ARAN messages

If the message is broadcast (transition Packet is broadcast), we search in
the topology for all the identities of the nodes which can receive the message
according to it, and we produce the same number of copies for the message, but
with the next field filled with the corresponding identity. To verify in the APN
if a certain node with identity i can receive a message, we search the variable of
type Topology if it contains a pair of identities formed by the identity stored in
prev and by i.

It is worth mentioning that this model of broadcast has an atomicity problem
caused by some limitations of the Petri nets. Unfortunately there is no better
way of modeling it with the current formalism. The problem is the fact that all
the copies of the broadcasted message should reach all the destination nodes at
the same time, as if they would be produced in the same transition. This is not
possible to model, so, as a result, given the non determinism of the Petri net,
other transition could be fired before all the copies reach the destination nodes.
This could be solved by an extension of the Petri net, as the one proposed in
[20]. The LLAMAS (Language for Advanced Modular Algebraic Systems) model
proposed here is based on the old ideas of CO-OPN and it uses synchronization
between the transitions in order to provide a better control of the atomicity. By
using such synchronization it would be possible to force the correct transmis-
sion of a broadcast message by preventing any other transition to fire before the
transition that handles the broadcast fires all the possible times. Such a mech-
anism will also have an impact over the combinatorial explosion by eliminating
possibilities that have no meaning in the real ad hoc networks.

3.7 Modeling the adversary

The model that we used for the adversary was the Dolev-Yao model ([21]). In this
model it is presumed that the adversary can perform the following operations:

– he can intercept all the messages transmitted in the network (1);
– he can generate new messages based on the knowledge he obtained from the

intercepted messages (2);
– he can transmit messages (without modifying them) in the name of any node

in the network (3);
– he can prevent a node from receiving a message that was meant for it, with

the purpose of sending it another message (4).

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 103

Due to the state space explosion problem, we were unable to fully implement
this kind of adversary in our model. We have only implemented attack types (1),
(3) and (4). To implement attack type (1), the adversary was modeled as having
access to all the messages exchanged in the network (places Transmitted Packets
and Received Packets in Fig. 3). Thus he can perform the following actions over
the messages: he can drop a message and thus preventing a node to receive it
(implementation of attack type (4)) with the purpose of replacing the dropped
message with another one, and he can retransmit a message (without modifying
it) to another node than the node it was meant for (attack type (3)).

Received)Packets

Transmitted)Packets

Replay)Attacks

$pkt

$id]=i0[change_sendto($id,$pkt)]

[trs_packet($pkt,$nd)] [packet(i0,i(i0),sign(...

Fig. 5. The model for the adversary

As a consequence, cryptographic security properties like authentication, con-
fidentiality and integrity cannot be checked. Correctness properties can be checked
and we will present how in section 4.

3.8 ARAN operation

When modeling ARAN, we have focused on the most important part of the
protocol which is the route discovery. As one can see from Fig. 6, the behav-
ior of a node that participates in a route discovery process was modeled with
two transitions. The transition REP Packet at source corresponds to the fact
that the node that initiated the route request receives the response message.
The transition Packet processing corresponds to all the other processing that a
node has to do: broadcast of a route request message by an intermediary node,
reception of the route request message by the targeted node, validation of the

104 PNSE’14 – Petri Nets and Software Engineering

digital signature(s) from the message, response to a route request message by
the destination node, and the unicast of a response to a route discovery mes-
sage. The actual behavior is implemented by axioms in the AADTs that define
the nodes, the messages, the certificates, and the cryptographic operations. The
conceptual difference between the two transitions is the presence of the place
called Witness Nodes I. The purpose of Witness Nodes I will be explained in
the following paragraph.

Nodes

Received.Packets

Witness.Nodes.I Witness.Nodes.S

Transmitted.PacketsPacket.Processing

REPPacket.at.Source

fnd

fnd

fpkt

fpkt

[node(i(i0),cons(pair...

[update_node_state(fpkt,fnd)]

[get_identity(fnd)]

[packet(i0,i(i0),sign(i...[trs_packet(fpkt,fnd)][verify_cnd(fpkt,fnd)]

[verify_cnd(fpkt,fnd)]

Fig. 6. The model for the node behavior in ARAN

4 Verification of security properties for ARAN

The security objectives of ARAN are to provide authentic and correct routing
information for the nodes that issue a route request. Thus, the security proper-
ties that have to be verified are authentication of the nodes which participate
in the route discovery, and integrity and correctness of the exchanged routing
information. ARAN was already modeled and verified using different tools, and
we will only cite the latest paper on the subject, [22]. ARAN is successful in
assuring authentication and integrity, but an intruder can disturb it by replay-
ing attacks and can propagate incorrect information about the topology of the
network. In order to validate our method of modeling using AlPiNA, we wanted
to see if we will obtain the same results as the ones already reported by previous
research.

The security property that we have verified is correctness of routing infor-
mation. Authentication and integrity were not considered for reasons explained
in section 3 and there are no known attacks against these objectives.

To present what correctness of routing information means, let us consider
the topology presented in Fig. 2. If i(i0) is the initiator node, and i^5(i0) is the

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 105

destination node, then the expected path between them that should be returned
by the protocol is: i(i0), i^2(i0), i^3(i0), and i^5(i0). In this case, we say that
the protocol provided correct routing information, if and only if for each route
discovery request made by node i(i0) for node i^5(i0), the protocol will always
return the above path. In all the other cases the routing information would not
be correct.

In order to verify routing information correctness, we reduced the model of
the intruder so that he will only use the possibility of replay attacks. Also, we
added to the Petri net the places Witness Nodes I, and Witness Nodes S. Their
role will be presented next. Each time an intermediary node along the routing
path from the source node to the destination node processes a message related
to the discovery process, its identity is stored in Witness Nodes I. The same
thing will happen for the destination node too: when it will respond to the route
discovery, its identity will be stored in Witness Nodes I. In the same manner,
when the source node, the node that initiated the route discovery request, will
receive the response from the destination node, its identity will be copied to the
place called Witness Node S.

In the initial marking of the Petri net, the place called Transmitted Packets
contains a route discovery message from node i(i0) for the destination i^5(i0).
The places Witness Nodes S and Witness Nodes I are empty. When generating
the state space of the model, the place Witness Nodes S will eventually contain
the identity of the source node i(i0). This will mean the protocol run has finished,
and the route to the destination was obtained. The identities of the nodes forming
the returned route will be in the place Witness Nodes I.

To verify the correctness of the routing information, we need to compare
the identities of the nodes from Witness Nodes I place with the identities of
the nodes from the actual path in the considered topology. Using the property
specification language available in AlPiNA, we have specified this property in
the following way: If the number of nodes in the place Witness Nodes S is equal
to one it implies that the number of nodes in the place Witness Nodes I is equal
to the number of nodes in the path from the considered topology. Here is the
specification of this property in AlPiNA’s property specification language:

(card($x in WitnessNodesS) = 1) =>
(card($y in WitnessNodesI) = value);

If the property holds when model checking is performed it means the protocol
provided correct routing information. Otherwise, the routing information is in-
correct and AlPiNA will display a counter-example: content for the place Witness
Nodes I that contains a different number of nodes. Based on this counter-example
we can reconstitute the attack performed by the intruder.

After performing the model checking we have seen that the protocol does not
always provide correct routing information, meaning that the intruder was able
to mount an attack on it (in concordance with [22]).

Returning to the example we have considered when explaining how the ver-
ification is done, when model checking the protocol for this topology, the place

106 PNSE’14 – Petri Nets and Software Engineering

Witness Nodes I, contains {i^2(i0)}, or {i^3(i0)}, or {i^5(i0)}, or {i^2(i0),
i^3(i0), i^5(i0)}. Only the last value for Witness Nodes I corresponds to a cor-
rect run of the protocol. The other values represent incorrect routing information
that the intruder manages to propagate in the network by replaying attacks. For
example, if place Witness Nodes I contains {i^5(i0)}, it means that the intruder
managed to replay the route discovery message sent by i(i0) to i^5(i0), and pre-
vented node i^2(i0) from receiving it. In this way i^5(i0) believes it has a direct
connection with A, and responds accordingly. The intruder does the same with
the route response message from i^5(i0).

Table 1. Quantitative information

0.95

Tool)name
Tool-s)performance)for)ARAN

AlPiNA

AVISPA

Number of nodes Time (s) No)of)
states

4)(all)nodes)attacked)

5)(all)nodes)attacked)

6)(all)nodes)attacked)

7)(6)nodes)attacked)

8)(5)nodes)attacked)

9)(5)nodes)attacked)

10)(5)nodes)attacked)

4

5

3.70

80.82

110.95

20.22

32.92

44.06

0.05

0.07

436

4655

77239

79131

11637

15500

19363

-

-

The table above presents quantitative information regarding the verification
of routing information correctness, as previously described, in comparison with
another model checker called AVISPA, used in [22], where the authors reported
the same verification results as we have. The variable of the runs is the number
of nodes, besides the adversary, in the topology of the ad hoc network that is
taken into consideration. For some of the cases, the tool was unable to compute
the state space for all the possible attacks. So we limited the number of nodes
which were attacked to some maximum value, which is provided in the table
between parentheses, in the same cell as the number of nodes.

AVISPA uses an on-the-fly model checking technique in which attacks are
searched for without a prior computation of the whole state space. On the con-
trary, AlPiNA first computes the entire state space in a symbolic manner, and
only then makes the search for attacks. As a consequence, the values provided
for AVISPA represent the time of finding the replaying attack for the consid-
ered specification, while in the case of AlPiNA, the time column represents the
time of computing the entire state space of the considered model. These values
cannot be directly compared, but they reveal the fact that AlPiNA is capable of

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 107

handling the whole state space of the specifications verified with AVISPA, but
with the limitation explained above. AlPiNA is capable of handling state spaces
of 1-2 millions of states, but in this case, because of the atomicity problem pre-
sented at the end of subsection 3.6, starting with 7 nodes, all being attacked,
the size of the state spaces goes directly to more millions of states than AlPiNA
can handle. This is the reason of using these limitations and also the reason for
the fact that the biggest size of the state space in the table is a little less then
80000.

In [22], the authors state they were unable to check the protocol for more
than four and five nodes respectively, because of the state space explosion. But
using AlPiNA, we managed to model check the protocol for 10 nodes.

5 Conclusions and Future Work

In this paper we have presented the use of algebraic Petri nets for modeling
ad hoc networks and for verifying correctness properties for security protocols
specially designed for this type of networks, with the use of AlPiNA, a symbolic
model checker based on APNs. As far as we know this is the first report of using
Petri nets for verifying security properties of the protocols designed for ad hoc
networks.

As one can see from the figures we have provided, the Petri net that models
the ad hoc network and the security protocol is very simple and clear and has a
very small number of places. For example, the model for ARAN has six places.
The heavy part of the model is represented by the AADTs that were defined.
Thus AlPiNA combines the powerful symbolic model checking with the easy to
use APN formalism, providing a good user experience, but also with the ability
to master state space explosion.

The limitation of our approach refers to the fact that fabrication attacks
were not considered. Fabrication refers to the ability of the intruder to create
and send new messages, based on what he previously learned from the network.
Our model for the adversary is capable of using the messages he learned from the
network, but cannot create new messages. Because it is a symbolic model checker,
when an attack is found, AlPiNA cannot provide attack traces. This makes
it very difficult to model fabrication attacks, because of the lack of feedback
from the tool. But we plan to address this limitation by developing a technique
for inversing transitions in an APN, and thus providing attack traces and the
necessary feedback.

The model and the verification performed for ARAN secure routing protocol
discovered all the attacks that were previously reported for this protocol. This
proves the validity of the method, but most importantly, it proves that AlPiNA
can be used with success for verifying security protocols.

As future work, we have proposed to perform a quantitative comparison be-
tween CPN Tools and AlPiNA in order to see the actual performance improve-
ment brought by the latter. Also we will work on proposing an extension to the
current APN model, that will be more adequate to the modeling of distributed

108 PNSE’14 – Petri Nets and Software Engineering

protocols, in general, and which, in particular, will be capable of handling broad-
cast and similar operations in a correct manner. Another future work direction
is to modify the modeling of the topology, such that equivalent topologies will
be eliminated from the verification, thus reducing the state space and increasing
the performance of the model checking.

References

1. Steve Patrick Hostettler, High-level Petri net model checking: the symbolic way,
PhD thesis, University of Geneva, 2011.

2. Yongyuth Permpoontanalarp, Panupong Sornkhom, A New Colored Petri Net
Methodology for the Security Analysis of Cryptographic Protocols, in The 10th
Workshop and Tutorial on Practical Use of Colored Petri Nets and the CPN Tools,
Denmark, pp. 81-100. 2009.

3. Didier Buchs, Steve Hostettler, Alexis Marechal, Matteo Risoldi, Alpina: A symbolic
model checker, Applications and Theory of Petri Nets, pp. 287-296, 2010.

4. Steve Patrick Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, Didier
Buchs, High-Level Petri Net Model Checking with AlPiNA, Fundamenta Informati-
cae, IOS Press, Amsterdam, The Netherlands, vol. 113, no. 3-4, August 2011, ISSN,
0169-2968, pp. 229-264, 2011.

5. AlPiNA tool web page, http://alpina.unige.ch/, the 23 of December 2013.
6. Kimaya Sanzgiri, Bridget Dahill, A Secure Routing Protocol for Ad Hoc Networks,

Proceedings of the 10th IEEE International Conference on Network Protocols, pp.
78-87, 2002.

7. L. Khoukhi, S. Cherkaui, Intelligent Solution for Congestion Control in Wireless Ad
hoc Networks, in WONS 2006: Third Annual Conference on Wireless On-demand
Network Systems and Services, pp. 10-19. 2006.

8. Tzu-Chiang Chiang, Zueh-Min Huang, Multicast Routing Representation in Ad Hoc
Networks Using Fuzzy Petri Nets, Proceedings of the 18th International Conference
on Advanced Information Networking and Application, vol. 2, pp. 420, 2004.

9. Congzhe Zhang, Mengchu Zhou, A Stochastic Petri Net Approach to Modeling and
Analysis of Ad Hoc Network, in Proceedings of the International Conference on
Information Technology: Research and Education, pp. 152-156, 2003.

10. Marco Beccuti, Massimiliano De Pierro, Andras Horvath, Adam Horvath, Karoly
Farkas, A Mean Field Based Methodology for Modeling Mobility in Ad Hoc Net-
works, in Vehicular Technology Conference (VTC Spring), 2011, IEEE 73rd, pp.
1-5, 2011.

11. Piyush Prasad, Baltej Singh, Asish Kumar Sahoo, Validation of Routing Protocol
for Mobile Ad Hoc Networks using Colored Petri Nets, bachelor thesis, National
Institute of Technology, Rourkela, 2009.

12. Chaoyue Xiong, Tadao Murata, Jeffery Tsai, Modeling and Simulation of Routing
Protocol for Mobile Ad Hoc Networks using Colored Petri Nets, Proceedings of the
Conference on Application and Theory of Petri Nets: Formal Methods in Software
Engineering and De-fence Systems, vol. 12, pp. 145-153, 2002.

13. Mohammad Ali Jabraeil Jamali, Tahere Khosravi, Validation of Ad Hoc On-
demand Multipath Distance Vector Using Colored Petri Nets, International Confer-
ence on Computer and Software Modeling, Singapore, vol. 14, pp. 29-34, 2011.

M. Pura, D. Buchs: Using Symbolic Techniques and Algebraic Petri Nets 109

14. Kristian L. Espensen, Mads K. Kjeldsen, Lars M. Kristensen, Modeling and Initial
Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks, Appli-
cations and Theory of Petri Nets: 29 International Conference, Lecture Notes in
Computer Science Volume 5062, pp. 152-170, 2008.

15. Yongyuth Permpoontanalarp, Apichai Changkhanak, Security Analysis of the
TMN Protocol by Using Colored Petri Nets: On-the-fly Trace Generation Method
and Homomorphic Property, the 8th International Joint Conference on Computer
Science and Software Engineering (JCSSE), pp. 63-68, 2011.

16. Yang Xu, Modeling and Analysis of Security Protocols Using Colored Petri Nets,
Journal of Computers, vol. 6, no. 1, pp. 19-27, 2011.

17. Ulrike Golas, Kathrin Hoffman, Hartmut Ehrig, Alexander Rein, Julia Padberg,
Functional Analysis of Algebraic Higher-Order Net Systems with Applications to
Mobile Ad-Hoc Networks, Bulletin of the EATCS, no. 101, pp.148-160, June 2010.

18. J. Padberg, H. Ehrig, L. Ribeiro, Formal Modeling and Analysis of flexible Pro-
cesses in mobile ad-hoc networks, Bulletin of the EATCS, pp. 128-132, 2007.

19. Hartmut Ehrig, Bernd Mahr, Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics, Monographs in Theoretical Computer Science, An EATCS
Series, Springer, 1985.

20. Alexis Ayar Marechal Marin, Unifying the syntax and semantics of modular ex-
tensions of Petri nets, PhD thesis, University of Geneva, 2013.

21. Danny Dolev, Andrew Yao, On the Security of Public Key Protocols, IEEE Trans-
actions on Information Theory, vol. IT-29, nr.2, pp. 198–208, 1983.

22. Davide Benetti, Massimo Merro, Luca Vigano, Model Checking Ad Hoc Network
Routing Protocols: ARAN vs. endairA, The 8th IEEE International Conference on
Software Engineering and Formal Methods (SEFM), pp. 191-202, 2010.

110 PNSE’14 – Petri Nets and Software Engineering

Part III

PNSE’14: Short Presentations

Morphisms on Marked Graphs

Luca Bernardinello, Lucia Pomello, and Stefano Scaccabarozzi

Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli studi di Milano - Bicocca,

Viale Sarca, 336 - Edificio U14 - I-20126 Milano, Italia
luca.bernardinello@unimib.it

Abstract. Many kinds of morphisms on Petri nets have been defined
and studied. They can be used as formal techniques supporting refine-
ment/abstraction of models. In this paper we introduce a new notion
of morphism on marked graphs, a class of Petri nets used for the rep-
resentation of systems having deterministic behavior. Such morphisms
can indeed be used to represent a form of abstraction on marked graphs,
consisting in folding cycles and identifying chains. We will then prove
that systems joined by these morphisms show behavioral similarities.

Keywords: Petri nets, marked graphs, morphisms, model abstraction,
preservation of behavioral properties

1 Introduction

When working on concurrent and distributed systems, the dimensions and com-
plexity of a model may lead to difficulties in the analysis of its features and
properties. For this reason it is useful to have formal techniques allowing the
decomposition of the entire model into separate modules which can be studied
separately, then being recomposed maintaining their properties. Another way to
reduce the dimension and complexity of a model is to use a multilevel approach
to its analysis: we start working on a very abstract version of the model, then
proceed through different levels of refinement by adding details to the model.

In order to obtain such functionalities we can use morphisms on Petri nets. In
the literature (see, for example, [1], [2], [3], [4] and [5]) several kinds of morphism
on different classes of Petri nets have been introduced. In this paper we propose
a new definition of morphism on marked graphs, a class of Petri nets often
used for representing systems having deterministic behavior. These so called
F -morphisms and the subclass of F̂ -morphisms constitute a formal instrument
which can be used to obtain a kind of abstraction of marked graphs.

Some kinds of morphisms defined in the literature, such as α-morphisms ([5]),
allow to collapse part of the initial model on a single place or a single transition
in order to obtain the abstract system. Differently, F̂ -morphisms map places on
single places and transitions on single transitions, preserving the environment
of each mapped element. Instead of collapsing portions of the detailed model
into a single element, the abstraction is here obtained by “folding” cycles and

identifying chains and cycles. Both these elements still remain in the reduced
model.

Such kind of abstraction preserves the behavior of the mapped part of the
original system. This means that, whenever we apply a F̂ -morphism on a system,
all the sequences of actions executable in the reduced version can be found in
the original model.

In the last part of this paper, an analysis of preserved and reflected behavioral
properties and invariants of marked graphs joined by F̂ -morphisms is performed.

In the next section, basic definitions related to Petri nets and their unfoldings
are recalled. In Section 3 F - and F̂ -morphisms are introduced together with
their main features. Then the relationship between the unfoldings of two marked
graphs joined by a F̂ -morphism is explicated. Section 4 shows the results of the
analysis of behavioral and structural properties preserved and reflected by F̂ -
morphisms. The paper is closed by a short concluding section.

2 Preliminary definitions

In this section we recall basic definitions about marked graph theory and unfold-
ings. These notions will be used in the next chapters to study important aspects
of F -morphisms.

2.1 Petri nets

We first start introducing the notion of net as seen in [6], with some adjustements.

Definition 1. A net is a triple N = (S, T, F), where

– S is a set of places,
– T is a set of transitions such that S ∩ T = ∅,
– F is a set of directed arcs (flow relation), F ⊆ (S × T) ∪ (T × S).

All places and transitions are said to be elements of N . A net is finite if the
set of elements is finite.

For an element x of S ∪ T , its pre-set is defined by

•x = {y ∈ S ∪ T | (y, x) ∈ F}

while its post-set is defined by

x• = {y ∈ S ∪ T | (x, y) ∈ F}.

A directed path (path for short) in a net N is a nonempty sequence x0 . . . xk
satisfying xi ∈ x•i−1 for each i (1 ≤ i ≤ k). We say that this path leads from x0
to xk. The net is strongly connected if for each two elements x and y there exists
a directed path leading from x to y.

An undirected path is a nonempty sequence x0 . . . xk of elements satisfying
xi ∈ •xi−1 ∪ x•i−1 for each i (1 ≤ i ≤ k). Such undirected path leads from x0 to

114 PNSE’14 – Petri Nets and Software Engineering

xk. The net is weakly connected if, for each two elements x and y, there exists
an undirected path leading from x to y. In this paper, we will call connected a
weakly connected net.

A directed circuit is a directed path x0 . . . xkx0 such that, for each i, j ∈ N,
i, j ≤ k, i 6= j, xi 6= xj holds.

The states of a Petri net are defined by its markings. State changes are caused
by the occurrences of transitions. A marking of a net N = (S, T, F) is a mapping
M : S → N. A place s ∈ S is marked by a marking M if M(s) > 0.

A transition t is enabled at a marking M if M marks every place in •t. Then
t can occur. Its occurrence transforms M into the marking M ′, defined for each
place s as

M ′(s) =





M(s)− 1 if s ∈ •t \ t•,
M(s) + 1 if s ∈ t• \ •t,
M(s) otherwise.

In this case we writeM t−→M ′. Notice that a place in •t∩t• is marked whenever t
is enabled but does not change its token count by the occurrence of t. A marking
is called dead if it enables no transition of N . A net N together with an initial
marking M0 constitutes a Petri Net System (also called place/transition system),
denoted (N,M0).

LetM be a marking of a net. A finite sequence t1 . . . tk of transitions is called
a finite occurrence sequence, enabled atM , if there are markingsM1, . . . ,Mk such
that

M
t1−→M1

t2−→ . . .
tk−→Mk.

In this case we write M ω−→ Mk, where ω = t1 . . . tk. The empty sequence E is
enabled at any marking M and satisfies M E−→ M . A marking M ′ is said to be
reachable from a marking M if there exists a finite occurrence sequence ω such
that M ω−→M ′.

In this paper we will mainly work on a particular kind of Petri nets, the
marked graphs.

Definition 2. A Petri net N = (S, T, F,M0) is a marked graph if, for every
s ∈ S, |•s| ≤ 1 and |s•| ≤ 1.

2.2 Behavioral properties

The presence of an initial marking M0 allows to identify the behavior of the
Petri net system (N,M0), defined as the set of all markings reachable from M0

together with the set of occurences of each transition which make the global
state of the system change.

Properties of a net depending on the initial marking are known as behavioral
properties of the net. We now introduce some behavioral properties ([7]) which
will be used in the next sections.

L. Bernardinello et al.: Morphisms on Marked Graphs 115

Definition 3. A Petri net (N,M0) is said to be k-bounded or simply bounded
if the number of tokens in each place does not exceed a finite number k for any
marking reachable from M0, i.e., M(s) ≤ k for every place s and every reachable
marking M . (N,M0) is said to be safe if it is 1-bounded.

While boundedness implies the presence of a finite number of global states
for a finite net, liveness ensures that every event can potentially occur in the
future.

Definition 4. A Petri net (N,M0) is said to be live (or equivalently M0 is
said to be a live marking for N) if, no matter which marking has been reached
from M0, it is possible to ultimately fire any transition of the net by progressing
through some further firing sequence.

2.3 Incidence matrix and structural invariants

Definitions recalled in this section are taken from [7], with some adaptations.

Definition 5. Let (N,M0) be a Petri net with n transitions and m places. Its
incidence matrix A = [aij] is an m × n matrix of integers and its typical entry
is given by

aij = a+ij − a−ij
where a+ij = 1 if there is an arc of N going from transition j to its post-condition
i, otherwise a+ij = 0, while a−ij = 1 if there is an arc to transition j from its
pre-condition i, otherwise a−ij = 0.

Some properties of a Petri net can be studied through the incidence matrix
and its invariants. A S-invariant associates weights to places in a way such that
the weighted sum of tokens is the same in all reachable markings.

Definition 6. Let N be a net and let A be its incidence matrix. A vector I :
S → Z is a S-invariant for N iff it is a solution of: IA = 0.

T-invariants allow to identify possible cyclic behaviors in a Petri net.

Definition 7. Let N be a net and let A be its incidence matrix. A vector J :
T → Z is a T-invariant for N iff it is a solution of: AJT = 0.

2.4 Branching processes and unfoldings

The behavior of a Petri net N can be represented in different ways. One of these
is to use the so called unfolding of N . In order to understand what the unfolding
of a net is, we first need to introduce some formal definitions. The theoretical
notions we will relate in this subsection are all taken from [7]. From now on, we
will only consider Petri nets such that, for every transition t, •t and t• are finite
sets and, moreover, we assume them to be nonempty. Furthermore, we do not
allow more than one token on a place in the initial marking. Such constraints do
not result too restrictive with respect to the behavior of the studied systems.

116 PNSE’14 – Petri Nets and Software Engineering

Definition 8. Let N = (S, T, F,M0) be a Petri net. For x, y ∈ S ∪ T we say
that x precedes y if there is a (possibly empty) directed path from x to y in N .
N is finitary if for every y ∈ S ∪ T the set {x ∈ S ∪ T | x precedes y} is finite.

The relation precedes defines a partial order on S ∪ T , and Min(N) is the
set of minimal elements of that partial order. We now introduce the notion of
conflict.

Definition 9. Let N = (S, T, F,M0) be a Petri net. For x1, x2 ∈ S ∪ T , x1 and
x2 are in conflict, denoted x1 # x2, if there exist distinct transitions t1, t2 ∈ T
such that •t1 ∩ •t2 6= ∅ and ti precedes xi, for i = 1, 2. For x ∈ S ∪ T , x is in
self-conflict if x # x.

The concept of conflict is used to define occurrence net.

Definition 10. An occurrence net is a finitary acyclic net N = (S, T, F,M0)
such that

– for every s ∈ S, |•s| ≤ 1,
– no transition t ∈ T is in self-conflict, and
– M0 = Min(N).

We now define a particular kind of morphism called “folding” in [8]. Intu-
itively, a homomorphism from net N1 to net N2 formalizes the fact that N1 can
be folded onto a part of N2, or, in other words, that N1 can be obtained by
partially unfolding a part of N2.

Definition 11. Let Ni = (Si, Ti, Fi,M
i
0) be nets, i = 1, 2. A homomorphism

from N1 to N2 is a mapping h : S1 ∪ T1 → S2 ∪ T2 such that

– h(S1) ⊆ S2 and h(T1) ⊆ T2,
– for every t ∈ T1, the restriction of h to •t is a bijection between •t and •h(t),

and similarly for t• and h(t)•, and
– the restriction of h to M1

0 is a bijection between M1
0 and M2

0 .

The notions of homomorphism and occurrence net are necessary to formally
define branching processes.

Definition 12. Let N = (S, T, F,M0) be a net. A branching process of N is
a pair (N ′, π), where N ′ = (S′, T ′, F ′,M ′0) is an occurrence net and π is a
homomorphism from N ′ to N , such that, for every t1, t2 ∈ T , if •t1 = •t2 and
π(t1) = π(t2), then t1 = t2.

In [9], a notion of homomorphism between branching processes of the same
net N is also defined. Injective homomorphisms define a partial order for the
branching processes of N , called approximation. The set of the isomorphism
classes of the branching processes of N , together with approximation, form a
complete lattice. The least upper bound of such lattice is the unfolding of N .

L. Bernardinello et al.: Morphisms on Marked Graphs 117

3 A new class of morphisms on marked graphs

In this section we introduce a new kind of morphism on marked graphs, the
F -morphisms. We will then focus on a subclass of such morphisms, the F̂ -
morphisms, analysing some interesting features of theirs. Finally, we will study
the relationship between the unfoldings of two marked graphs joined by a F̂ -
morphism. In this paper we only consider a particular kind of marked graphs.

Remark From now on, we only consider connected marked graphs without
self-loops.

It is now possible to introduce the main notion of this work.

Definition 13. Let Ni = (Si, Ti, Fi,M
i
0), i = 1, 2, be two marked graphs. A

F -morphism from N1 to N2 is a pair (σ, τ), where σ : S1 → S2 and τ : T1 → T2
are partial surjective functions, such that:

– if τ(t1) is undefined, then σ(•t1) = ∅ = σ(t•1),
– if τ(t1) = t2, then the restriction of σ to •t1 is an injective and surjective

partial function from •t1 to •t2 and, similarly, the restriction of σ to t•1 is
an injective and surjective partial function from t•1 to t•2,

– for every s′ ∈ S2

M2
0 (s
′) =

∑

s∈σ−1(s′)

M1
0 (s).

We define the composition of two F -morphisms (σ1, τ1) : N1 → N2 and
(σ2, τ2) : N2 → N3 by using the notion of composition of functions, i.e., (σ1, τ1)◦
(σ2, τ2) = (σ2 ◦ σ1, τ2 ◦ τ1) : N1 → N3. F -morphisms are closed by composition.

Theorem 1. Let Ni = (Si, Ti, Fi,M
i
0) be marked graphs for i = 1, . . . , 3. Let

(σi, τi), i = 1, 2, be F -morphisms from Ni to Ni+1. The function (σ, τ) : N1 →
N3, where σ = σ2 ◦ σ1 and τ = τ2 ◦ τ1 is a F -morphism.

This theorem is proved in [10]. The identity function 1N = (idS , idT) is a F -
morphism, where idS : S → S and idT : T → T are the total identity functions.
The composition is associative. Hence, the family of F -morphisms, together with
marked graphs, form a category which takes the name of Marked Graph System,
denotedMGS.

With these morphisms we allow to map chains on cycles, as shown in Figure
1, representing an example of F -morphism from N1 to N2. The labels suggest
the arrows of the morphism. Notice that the cardinality of the pre-images of the
elements labelled by 1, b and 2 of N2 is one, while the place labelled by ac has
two elements in its pre-image.

By adding a further constraint to the definition of F -morphisms, we get a
subclass of morphisms which preserve cycles and chains.

Definition 14. Let Ni = (Si, Ti, Fi,M
i
0) be marked graphs for i = 1, 2. A F̂ -

morphism from N1 to N2 is a F -morphism (σ, τ) with the following restriction:

118 PNSE’14 – Petri Nets and Software Engineering

Fig. 1

– for all s1 ∈ S1 such that σ(s1) = s2, the restriction of τ to •s1 is a bijection
from •s1 to •s2 and, similarly, the restriction of τ to s•1 is a bijection from
s•1 to s•2.

It is easy to see that F̂ -morphisms are closed by composition. In fact, since
we already know that a F̂ -morphism (σ, τ) is a F -morphism, it is sufficient to
prove that the additional constraint that characterizes F̂ -morphisms is preserved
by composition. We prove it simply by observing that the composition of two
bijections is also a bijection.

The example in Figure 1 shows a F -morphism (σ, τ) which is not a F̂ -
morphism: let s1 be the place of N1 labelled with c and let σ(s1) = s2 (therefore,
s2 is the place of N2 labelled with ac). The restriction of τ to s•1 is not a bijection
from s•1 to s•2, in fact we have that s•1 = ∅ 6= s•2.

In Figure 2 three examples of F̂ -morphisms are shown: the first two of them,
((σ1, τ1) : N1 → N2 and (σ2, τ2) : N3 → N4, respectively, Figure 2a and Figure
2b), allow us to observe that, using F̂ -morphisms, it is possible to compress cy-
cles and to identify chains; in the last one, ((σ3, τ3) : N5 → N6, Figure 2c), an
identification of cycles is represented.

Let us now compare F̂ -morphisms with another kind of morphisms defined
in [2], N -morphisms, corresponding to a kind of partial simulation. We want
to do this since we will later show that we can always find a N -morphism be-
tween the unfoldings of two marked graphs joined by a F̂ -morphism. First of all,
N -morphisms are defined on elementary net systems, while F̂ -morphisms are
defined on marked graphs. N -morphisms define a relation between the places
of the joined systems, such that its inverse is a partial function. Differently,
F̂ -morphisms allow two places to have the same image. Furthermore, for F̂ -
morphisms the mapping between events is surjective, while N -morphisms do
not require such constraint. The last main difference is that, if two places s and
s′ of different elementary net systems are joined by a N -morphism, s belongs to
the initial case of the first system if and only if s′ is in the initial case of the
second one, whereas whith F̂ -morphism a place of the starting system contain-

L. Bernardinello et al.: Morphisms on Marked Graphs 119

(a)

(b)

(c)

Fig. 2

120 PNSE’14 – Petri Nets and Software Engineering

ing no tokens in the initial marking can be mapped on a place containing tokens.

We now show some interesting features of F̂ -morphisms.

Theorem 2. Let Ni = (Si, Ti, Fi,M
i
0) be marked graphs, for i = 1, 2, joined

by a F̂ -morphism (σ, τ) : N1 → N2. Let A1 and A2 be the incidence ma-
trices of, respectively, N1 and N2. Let s′ ∈ S2 be a place of N2 such that
σ−1(s′) = {s1, s2, . . . , sn}. For every transition t ∈ T1 such that τ(t) is defined,
the following equation holds:

n∑

i=1

A1(si, t) = A2(s
′, τ(t)). (1)

Proof. In order to prove the theorem, we need to compare the incidence matrices
of N1 and N2. Let Ai, i = 1, 2, be the incidence matrices of, respectively, N1 and
N2. Because of the structure of a marked graph, it is possible to say that every
row of Ai contain one 1 or -1 value or both of them, while the remaining entries of
that row contain 0 values. Let us now consider n distinct places s1, . . . , sn of N1,
such that σ(si) = s′, 1 ≤ i ≤ n. For each si ∈ σ−1(s′), if |•si| = 1 we denote tpre
the input transition of |si| and, similarly, if |s•i | = 1, we denote tpost the input
transition of |si|. So, if such entries exist, A1(si, tpre) = 1 and A1(si, tpost) =

−1. For definition of F̂ -morphism, A2(s
′, τ(tpre)) = 1 and A2(s

′, τ(tpost)) =
−1. Furthermore, since we consider marked graphs without self-loops and σ
defines an injective and surjective partial function between the pre-conditions of
transitions joined by τ , for each sj ∈ σ−1(s′), j 6= i, we have A1(sj , tpre) = 0 and
A1(sj , tpost) = 0. This proof about one generic s′ place of N2 can be extended
to all the places of N2: so the theorem is proved.

The previous theorem allows us to introduce another interesting feature of
F̂ -morphisms. Intuitively, if two marked graphs N1 and N2 are joined by a F̂ -
morphism (σ, τ) : N1 → N2, the pre-images of any element of N2 contain the
same number n of elements.

Theorem 3. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be marked graphs and let

(σ, τ) : N1 → N2 be a F̂ -morphism. Every x ∈ P2 ∪ T2 has pre-image containing
the same number n of elements.

Proof. Let Ai, i = 1, 2, be the incidence matrices of, respectively, N1 and N2.
For every place s′ ∈ S2, if |σ−1(s′)| = n, then it is possible to find n dis-
tinct columns t1, . . . , tn of A1 such that A1(si, ti) = 1 or A1(si, ti) = −1, with
si ∈ σ−1(s′). Let t′ be the input or output transition of p′; it is easy to verify
that τ−1(t′) = {t1, . . . , tn}. This means that, if the pre-image of a place of N2

contains n elements, the pre-images of its input and output transitions also con-
tain n elements. We can extend this proof to every place of N2, thus proving the
theorem.

We call n the reduction factor of (σ, τ). The F̂ -morphism shown in Figure
2b has reduction factor 2, while the one in Figure 2c has reduction factor 3.

L. Bernardinello et al.: Morphisms on Marked Graphs 121

3.1 F̂ -morphisms and behavioral relationships

We now want to show the relationship between the behaviors of two marked
graphs joined by a F̂ -morphism. In this paper we assume that the behavior of
a system can be entirely described by means of its unfolding, according to the
definition given in [9]. For this reason, from now on, we will only consider marked
graphs with one technical restriction: in the initial marking there should not be
more than one token on each place.

Marked graphs are used to model deterministic systems. The absence of
choices in the behavior of deterministic systems can be used to observe that
the unfolding of a marked graph does not contain conflicts. In [9] the unfolding
of a net N is formally defined as a pair (N ′, π), where N ′ is an occurrence net and
π is a homomorphism from N ′ to N . An occurrence net containing no conflicts
is called causal net, which is an acyclic marked graph.

Let us now consider N -morphisms defined in [2] for elementary net systems,
and compared to F̂ -morphisms in the previous subsection. Causal nets, used to
represent the unfoldings of marked graphs, form a subclass of elementary net
systems. This allows us to explicit the relationship between the behaviors of two
marked graphs joined by a total F̂ -morphism.

Theorem 4. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be marked graphs joined by

a F̂ -morphism (σ, τ) : N1 → N2 and let (N ′1, π1) and (N ′2, π2) be, respectively,
the unfoldings of N1 and N2. Then, there exists a N -morphism (β, η) : N ′1 → N ′2
which makes the following diagram commute.

N1
σ,τ−−−−→ N2xπ1

xπ2

N ′1
β,η−−−−→ N ′2

In particular, β−1 is an injective partial function and, if (σ, τ) is total, (β, η) is
an isomorphism.

The proof of this theorem can be found in [10], together with the necessary
theoretical notions. Such proof uses an improved version of McMillan’s unfolding
algorithm (see [11]) with some modifications.

4 F̂ -morphisms and their properties

In this section we want to analyze some properties about liveness, boundedness,
safeness, S and T-invariants of two marked graphs N1 and N2, joined by a F̂ -
morphism (σ, τ) : N1 → N2. We will first analyze behavioral properties and then
structural invariants.

122 PNSE’14 – Petri Nets and Software Engineering

4.1 Analysis of behavioral properties

First of all, it is useful to observe that directed circuits are preserved by F̂ -
morphisms. Intuitively, this means that, given two marked graphs N1 and N2

and a F̂ -morphism (σ, τ) : N1 → N2, if γ = x1x2 . . . xkx1 is a directed circuit of
N1, xi ∈ S1 ∪ T1, (σ, τ) maps γ on a directed circuit of N2.

In [7] marked graphs are defined as Petri nets N = (S, T, F,M0) in which,
for each s ∈ S, it holds |•s| = |s•| = 1. Then, they prove that a marked graph N
is live iff the initial marking places at least one token on each directed circuit
in N . In this paper we consider a more general notion of marked graph: for each
place s we have |•s| ≤ 1 and |s•| ≤ 1. It is well known (for example, see [7])
that, given a marked graph N such that |•s| = 1 for each place s, N is live if
and only if the initial marking places at least one token on each directed circuit
in N .

(a)

(b)

Fig. 3

The previous remarks allow to prove that F̂ -morphisms preserve liveness.

Theorem 5. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be two marked graphs joined

by a F̂ -morphism (σ, τ) : N1 → N2. If N1 is live, then N2 is also live.

L. Bernardinello et al.: Morphisms on Marked Graphs 123

Generally, liveness is not reflected by F̂ -morphisms. In Figure 3a an example
of F̂ -morphism from N1 to N2 is shown. N2 is a live net, while N1 is not live:
transitions labelled with 5 and 6 are never enabled.

Since we proved that there is a N -morphism between the unfoldings of two
marked graphs joined by a F̂ -morphism, it is easy to observe that F̂ -morphisms
also preserve occurrence sequences.

Theorem 6. Let Ni = (Si, Ti, Fi,M
i
0), i = 1, 2, be two marked graphs joined by

a F̂ -morphism (σ, τ) : N1 → N2. Let ω = t1 . . . tk, be an occurrence sequence
of N1 enabled at the initial marking M1

0 . Therefore ω′ = τ(t1) . . . τ(t2) is an
occurrence sequence of N2 enabled at M2

0 .

From the definition of F̂ -morphism, it follows immediately that, if two marked
graphs N1 and N2 are joined by a F̂ -morphism (σ, τ) : N1 → N2, for each place
s of N2, the sum of the number of tokens placed by the initial marking of N1 in
the elements of the pre-image of s is equal to the number of tokens placed by
the initial marking of N2 in s. It is possible to extend this condition to every
reachable marking of the two systems.

Theorem 7. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be two marked graphs joined

by a F̂ -morphism (σ, τ) : N1 → N2. Let ω = t1 . . . tk be an occurrence sequence
of N1 enabled at M1

0 such that M1
0

ω−→ M . Then, ω′ = τ(t1) . . . τ(tk) is an

occurrence sequence of N2 enabled at M2
0 such that M2

0
ω′−→ M ′ and, for each

s′ ∈ S2, the following equation holds

M ′(s′) =
∑

s∈σ−1(s′)

M(s).

Using Theorem 7 it is easy to prove that boundedness is preserved by F̂ -
morphisms.

Theorem 8. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be two marked graphs joined

by a F̂ -morphism (σ, τ) : N1 → N2. If N1 is bounded, then N2 is also bounded.

So F̂ -morphisms preserve boundedness but, generally, they do not reflect it.
The F̂ -morphism from N1 to N2 represented in Figure 3a does not preserve
boundedness: N2 is a 1-bounded net, while in N1 the places labelled with e and
f can be filled with an infinite number of tokens.

Note that the reflection of boundedness is obtained if (σ, τ) is total.

Theorem 9. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be two marked graphs joined

by a F̂ -morphism (σ, τ) : N1 → N2 such that σ is total. If N2 is bounded, then
N1 is also bounded.

Proof. Each place of N1 is mapped on a place of N2. If N2 is bounded, by
theorem 7 it is easy to see that N1 is also bounded.

Notice that, in general, safeness (1-boundedness) is not preserved. Let us
consider the example shown in Figure 3b: there is a F̂ -morphism from N3 to N4

and, while N1 is a safe net, N2 is 2-bounded.

124 PNSE’14 – Petri Nets and Software Engineering

4.2 On structural invariants

We now focus on some properties about S and T-invariants of two marked graphs
N1 and N2 joined by a F̂ -morphism (σ, τ) : N1 → N2. It is possible to prove
that F̂ -morphisms reflect S-invariants. In order to obtain such result, we need
to order the rows of the incidence matrix A1 of N1 in the following way. Let A2

be the incidence matrix of N2 and let n be the reduction factor of (σ). Given
the first row of A2, representing the place s of N2, let us consider the n rows of
A1 corresponding to places of N1 mapped by σ on s. We will put such rows in
the first n positions of the matrix. The same procedure can be used to order the
remaining rows of A1. The rows corresponding to places not mapped by σ will
occupy the last positions of A1.

Fig. 4

Theorem 10. For i = 1, 2, let Ni = (Si, Ti, Fi,M
i
0) be two marked graphs joined

by a F̂ -morphism (σ, τ) : N1 → N2. Let A1, A2 and n be, respectively, the
incidence matrices of N1 and N2, ordered as seen before, and the reduction factor
of (σ, τ). If I2 = (α1α2 . . . αP), with αj ∈ N and P = |S2|, is a S-invariant for

L. Bernardinello et al.: Morphisms on Marked Graphs 125

N2, then

I1 = (

n times︷ ︸︸ ︷
α1α1 . . . α1

n times︷ ︸︸ ︷
α2α2 . . . α2 . . .

n times︷ ︸︸ ︷
αPαP . . . αP 0 . . . 0)

is a S-invariant for N1.

The previous theorem is proved in [10]. Let us now consider the F̂ -morphism
(σ, τ) : N1 → N2 shown in Figure 4, having reduction factor n = 2. The incidence
matrix of N1 is ordered as explained. I2 = (11) is a S-invariant for N2. The
corresponding S-invariant for N1 is built by taking n times each single value of
I2 as the first components and adding 0s in the remaining positions. Thus, we
obtain I1 = (1111000).

F̂ -morphisms reflect S-invariants but do not preserve them. The S-invariant
IA = (0100111) for N1 in Figure 4 can not be used to build a corresponding S-
invariant for N2. It is impossible to assign to each place of N2 the weight of the
elements of its pre-image. For example, let s be the place of N2 labelled with bd:
IA assigns a different weights to the elements of σ−1(s). IB , built by assigning
to each place of N2 the sum of the weights of the elements of its pre-image, is
not a S-invariant of N2.

Regarding T-invariants, we observe that, in marked graphs, an occurrence
sequence leads back to the initial marking if and only if it fires every transition
an equal number of times. Then, since F̂ -morphisms are surjective, by Theorem
7 they preserve T-invariants.

In general, T-invariants are not reflected by F̂ -morphisms. For instance, let
us consider the example in Figure 4. JT2 = (11) is a T-invariant for N2. For
each transition t of N2, we assign to the elements of its pre-image the weight
given by JT2 to t, and we use 0s for the other transitions of N1. So, we obtain
JT1 = (011110), which is not a T-invariant for N1.

5 Remarks and conclusions

We have introduced F - and F̂ -morphisms, new kinds of morphisms on marked
graphs, a basic class of Petri nets. These morphisms can be used as a formal
technique to deal with a kind of abstraction on marked graphs, consisting in the
folding of cycles and the identification of chains. We have also proved that the
unfoldings of two systems joined by a F̂ -morphism are joined by a N -morphism
(see [2]). We have finally shown that liveness, boundedness and T-invariants are
preserved by such morphisms, while S-invariants are reflected.

We now plan to define a new operation for the composition of marked graphs
driven by F̂ -morphisms mapping the components on a net which works as an
interface, similarly to what described in [12], [13] for N̂ -morphisms. We also
intend to extend the theory related to F -morphisms to other classes of Petri nets,
such as persistent, free choice and Place/Transition Petri nets, thus applying such
functions to systems having conflicts. Finally, we want to apply F̂ -morphisms
to models representing real systems having deterministic behavior (such as, for

126 PNSE’14 – Petri Nets and Software Engineering

example, manufacturing systems or cyclic processes) to formally analyze them
by using a step-by-step approach based on different levels of refinement of the
modelled system.

Acknowledgement.

This work was partially supported by MIUR and by MIUR-PRIN 2010/2011
grant ‘Automi e Linguaggi Formali: Aspetti Matematici e Applicativi’, code
H41J12000190001.

References

1. Desel, J., Merceron, A.: Vicinity respecting homomorphisms for abstracting system
requirements. Transactions on Petri Nets and Other Models of Concurrency 4
(2010) 1–20

2. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems.
Theor. Comput. Sci. 96(1) (1992) 3–33

3. Padberg, J., Urbásek, M.: Rule-based refinement of Petri nets: A survey. In
Ehrig, H., Reisig, W., Rozenberg, G., Weber, H., eds.: Petri Net Technology for
Communication-Based Systems. Volume 2472 of Lecture Notes in Computer Sci-
ence., Springer (2003) 161–196

4. Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Inf. Comput.
72(3) (1987) 197–238

5. Bernardinello, L., Mangioni, E., Pomello, L.: Local state refinement and composi-
tion of elementary net systems: An approach based on morphisms. T. Petri Nets
and Other Models of Concurrency 8 (2013) 48–70

6. Desel, J., Reisig, W.: Place/Transition Petri Nets. In Reisig, W., Rozenberg, G.,
eds.: Petri Nets. Volume 1491 of Lecture Notes in Computer Science., Springer
(1996) 122–173

7. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–580

8. Winskel, G.: Event structures. In Brauer, W., Reisig, W., Rozenberg, G., eds.: Ad-
vances in Petri Nets. Volume 255 of Lecture Notes in Computer Science., Springer
(1986) 325–392

9. Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28(6) (1991) 575–591
10. Bernardinello, L., Pomello, L., Scaccabarozzi, S.: Morphisms on Marked Graphs

(Extended Version). http://www.mc3.disco.unimib.it/pub/bps2014ext.pdf
(2014)

11. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20(3) (2002) 285–310

12. Bernardinello, L., Monticelli, E., Pomello, L.: On preserving structural and be-
havioural properties by composing net systems on interfaces. Fundam. Inform.
80(1-3) (2007) 31–47

13. Pomello, L., Bernardinello, L.: Formal tools for modular system development.
In Cortadella, J., Reisig, W., eds.: ICATPN. Volume 3099 of Lecture Notes in
Computer Science., Springer (2004) 77–96

L. Bernardinello et al.: Morphisms on Marked Graphs 127

128 PNSE’14 – Petri Nets and Software Engineering

A Petri Net Approach for Reusing and Adapting
Components with Atomic and non-atomic

Synchronisation

D. Dahmani1, M.C. Boukala1, and H. Montassir2

1 MOVEP, USTHB, Algiers.
dzaouche,mboukala@usthb.dz,

2 LIFC, Comp. Sci. Dept, Franche-Comté University
hmountassir@lifc.univ-fcomte.fr

Abstract. Composition of heterogeneous software components is re-
quired in many domains to build complex systems. However, such compo-
sitions raise mismatches between components. Software adaptation aims
at generating adaptors to correct mismatches between components to be
composed. In this paper, we propose a formal approach based on Petri
nets which relies on mapping rules to generate automatically adaptors
and check compatibilities of components. Our solution addresses both
signature and behaviour level and covers both asynchronous and syn-
chronous communication between components. State space of the Petri
model is used to localise mismatches.

Keywords: Interface automata, components reuse, components adaptation
Petri nets, synchronous and asynchronous communication.

1 Introduction

Component-based development aims at facilitating the construction of very com-
plex and huge applications by supporting the composition of simple building
existing modules, called components. The assembly of components offers a great
potential for reducing cost and time to build complex software systems and im-
proving system maintainability and flexibility. The reuse of a component and
substitution of an old component by a new one are very promising solution [8,
9].
A component is a software unit characterised by an interface which describes
the services offered or required by the component, without showing its imple-
mentation. In other terms, only information given by a component interface are
visible for the other components. Moreover, interfaces may describe component
information at signature level (method names and their types), behaviour or
protocol (scheduling of method calls) and method semantics.

A software component is generally developed independently and is subject to as-
sembly with other components, which have been designed separately, to create a
system. Normally ‘glue code’ is written to realise such assembly. Unfortunately,
components can be incompatible and cannot work together. Two components are
incompatible if some services requested by one component cannot be provided
by the other [1, 3]. The pessimistic approach considers two components compat-
ible if they can always work together. Whereas, in the optimistic approach two
components are compatible if they can be used together in at least one design [1].

Incompatibilities are identified: (i) at signature level coming from different
names of methods, types or parameters, (ii) at behaviour or protocol level as in-
compatible orderings of messages, and (iii) at semantic aspect concerning senses
of operations as the use of synonyms for messages or methods [3].

There exist some works aiming at working out mismatches of components
which remain incompatible, even in the optimistic approach. These works gener-
ally use adaptors, which are components that can be plugged between the mis-
matched components to convert the exchanged information causing mismatches.
For example, the approach proposed in [11] operates at the implementation level
by introducing data conversion services. Similarly, in [2, 7] smart data conversion
tools are deployed to resolve data format compatibility issues during workflow
composition.
Other works are based on formal methods such as interface automata, logic
formula and Petri nets which give formal description to software interface and
behaviour [3, 5].
In [4], an algorithm for adaptor construction based on interface automata is
proposed. Such adaptors operate at signature level and rely on mapping rules.
The adaptors are represented by interface automata which aim at converting
data between components according to mapping rules. However, the proposed
approach allows not atomic action synchronization, but doesn’t cover all possible
behaviours. In [3], manual adaptation contracts are used cutting off some incor-
rect behaviours. They propose two approaches based on interface automata and
Petri nets, respectively. However, unlike our approach, these works allow only
asynchronous communications. In [6] the behaviour of interacting components
is modelled by labelled Petri nets where labels represent requested and provided
services. The component models are composed in such a way that incompatibil-
ities are manifested as deadlocks in the composed model. In [13], OR-transition
Colored Petri Net is used to formalize and model components where transitions
can effectively represent the operations of the software component. Both [6]
and [13] focus more on component composition than on adaptation.
In our approach, we propose Petri net construction to check compatibilities of
components according to a set of matching rules without any behaviour restric-
tion. Contrary to [3], we deal with both synchronous and asynchronous commu-
nications. We use state graph of the Petri net model to localise mismatches.
This paper contains five sections. Section 2 is consecrated to describe interface
automata. The concept of mapping rules is given in section 3. In section 4, we

130 PNSE’14 – Petri Nets and Software Engineering

describe our component adaptation approach. Finally, we conclude and present
some perspectives.

2 Interface automata

Interface automata are introduced by L.Alfaro and T.Henzinger [1], to model
component interfaces. Input actions of an automaton model offered services by
the component, that means methods that can be called or reception of messages.
Whereas output actions are used to model method calls and message transmis-
sions. Internal actions represent hidden actions of the component. Moreover,
interface automata interact through the synchronisation of input and output
actions, while internal actions of concurrent automata are interleaved asyn-
chronously.

Definition 1 (Interface automaton)
An interface automaton A = 〈SA, S

init
A , ΣA, τA〉 where :

– SA is a finite set of states,
– Sinit

A ⊆ SA is a set of initial states. If Sinit
A = ∅ then A is empty,

– ΣA = ΣO
A ∪ΣI

A∪ΣH
A a disjoint union of output, input and internal actions,

– τA ⊆ SA × ΣA × SA.

The input or output actions of automaton A are called external actions de-
noted by Σext

A = ΣO
A ∪ ΣI

A. A is closed if it has only internal actions, that is
Σext

A = ∅; otherwise we say that A is open. Input, output and internal actions
are respectively labelled by the symbols ”?”, ”!” and ”; ”. An action a ∈ ΣA is
enabled at a state s ∈ SA if there is a step (s, a, s′) ∈ τA for some s′ ∈ SA.

Example 1 Fig. 1 depicts a model of remote accesses to a data base. This
example will be used throughout this paper. The system contains two compo-
nents Client and Server which have been designed separately. On the one hand,
Client issues an authentication message structured into a password (!pwd) and a
username (!uid). If Client is not authenticated by Server (!nAck and !errN), it
exits. Otherwise, Client loops on sending read or update requests. A read request
(!req) is followed by its parameters (!arg), then Client waits the result (?data).
An update request is an atomic action (!update). At any moment, Client can
exit (!exit).
On the other hand, when Server receives a username (?uid) followed by a pass-
word (?pwd), it either accepts the client access request (!ok) or denies it (!nOk).
Afterwards, Server becomes ready to receive a read or update requests. If it re-
ceives a read request (?query), it performs a local action (; readDB) and sends
the appropriate data (!data). Server can execute an update request (?update).
Figure 1.a depicts interface automaton Server. It is composed of six states
(s0, . . . s5), with state s0 being initial, and nine steps, for instance (s0, ?uid, s1).

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 131

Some arcs are dashed, they will be referred in section 4. The sets of input, output
and internal actions are given below:
- ΣO

Server ={ok, nOk, data},
- ΣI

Server = {uid, pwd, logout, query, update},
- ΣH

Server= {readDB}.

s0 s1 s2 s3 s4 s5
?uid ?pwd !ok ?query ; readDB

?uid ?pwd ?query ?update ?logout !data !ok !nOk

!data

?update

?logout

!nOk

(a) Server

s′0 s′1 s′2 s′3 s′4 s′5

s′6s′7

!pwd !uid ?ack !req !arg

!e
xi

t?n
A
ck

?errN

?data
!update

!uid !pwd !req !arg !exit ?data ?ack ?nAck ?errN

(b) Client

Fig. 1: Server and Client interface automata

2.1 Composition of interface automata

Let A1 and A2 two automata. An input action of one may coincide with a
corresponding output action of the other. Such an action is called a shared ac-
tion. We define the set shared(A1, A2) = (ΣI

A1
∩ ΣO

A2
) ∪ (ΣO

A1
∩ ΣI

A2
), e.g. set

Shared(Client, Server) = {uid, pwd, update, data}.
The composition of two interface automata is defined only if their actions are dis-
joint, except shared input and output ones. The two automata will synchronize
on shared actions, and asynchronously interleave all other actions [1].

132 PNSE’14 – Petri Nets and Software Engineering

Definition 2 (Composable automata)
Two interface automata A1 and A2 are composable iff

(ΣH
A1

∩ ΣA2 = ∅) ∧ (ΣH
A2

∩ ΣA1 = ∅) ∧ (ΣI
A1

∩ΣI
A2

= ∅) ∧ (ΣO
A1

∩ ΣO
A2

= ∅)

Definition 3 (Synchronous product)
If A1 and A2 are composable interface automata, their product A1 ⊗ A2 is the
interface automaton defined by:

1. SA1⊗A2 = SA1 × SA2 ,
2. Sint

A1⊗A2
= Sint

A1
× Sint

A2
,

3. ΣH
A1⊗A2

=(ΣH
A2

∪ΣH
A1

) ∪ shared(A1, A2),
4. ΣI

A1⊗A2
=(ΣI

A1
∪ΣI

A2
) \ shared(A1, A2),

5. ΣO
A1⊗A2

=(ΣO
A1

∪ΣO
A2

) \ shared(A1, A2),
6. τA1⊗A2 ={(v, u), a, (v′, u) | (v, a, v′) ∈ τA1 ∧ a 6∈ shared(A1, A2) ∧ u ∈ SA2}

∪ {(v, u), a, (v, u′) | (u, a, u′) ∈ τA2 ∧ a 6∈ shared(A1, A2) ∧ v ∈ SA1}
∪ {(v, u), a, (v′, u′) | (v, a, v′) ∈ τA1 ∧ (u, a, u′) ∈ τA2 ∧ a ∈ shared(A1, A2)}.

An action of Shared(A1, A2) is internal for A1 ⊗ A2. Moreover, any internal
action of A1 or A2 is also internal for A1 ⊗ A2 (3). The not shared input (resp.
output) actions of A1 or A2 are input (resp. output) ones for A1 ⊗ A2 (4, 5).
Each state of the product consists of a state of A1 together with a state of A2

(1). Each step of the product is either a joint shared action step or a non shared
action step in A1 or A2 (6).
In the product A1 ⊗ A2, one of the automata may produce an output action
that is an input action of the other automaton, but is not accepted. A state of
A1⊗A2 where this occurs is called an illegal state of the product. When A1⊗A2

contains illegal states, A1 and A2 can’t be composed in the pessimistic approach.
In the optimistic approach A1 and A2 can be composed provided that there is
an adequate environment which avoids illegal states [1].
The automata associated with Client and Server are composable since defini-
tion 2 holds. However, their synchronous product is empty, in fact (s0, s′0) is an
illegal state: Client sends password (!pwd) while Server requires a username
(?uid), causing a deadlock situation. Thus, Client and Server are incompatible.
As mentioned in the introduction, two incompatible components can be com-
posed provided that there exits an adaptor to convert the exchanged information
causing mismatches. In particular, mapping rules are used to adapt exchanged
action names between the components. Such rules may be given by designer. For
more details, we refer reader to [11].

3 Mapping rules for incompatible components

A mapping rule establishes correspondence between some actions of A1 and A2.
Each mapping rule of A1 and A2 associates an action of A1 with more actions
of A2 (one-for-more) or vice versa (more-for-one).

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 133

Definition 4 (Mapping rule)
A mapping rule of two composable interface automata A1 and A2 is a couple
(L1, L2) ∈ (2Σ

ext
A1 × 2Σ

ext
A2) such that (L1 ∪ L2) ∩ shared(A1, A2) = ∅ and if

|L1| > 1 (resp. |L2| > 1) then |L2| = 1 (resp. |L1| = 1).

A mapping Φ(A1, A2) of two composable interface automata A1 and A2 is a
set of mapping rules associated with A1 and A2.
We denote by ΣΦ(A1,A2) the set {a ∈ Σext

A1
∪ Σext

A2
|∃α ∈ Φ(A1, A2) s.t a ∈

Π1(α)∪Π2(α)}, with Π1(〈L1, L2〉) = L1 and Π2(〈L1, L2〉) = L2 are respectively
the projection on the first element and the second one of the couple 〈L1, L2〉.
Observe that each action of ΣΦ(A1,A2) is a source of mismatch situation between
A1 and A2.

Example 2 Consider again the components of example 1. In Client a read
request is structured into two parts (!req and !arg), whereas it is viewed as one
part (?query) in Server. A mapping rule is necessarily to map {!req, !arg} to
{?query}. The sets of mapping rules between Client and Server Φ(Client,Server)

and ΣΦ(Client,Server) are defined as follows:

– Φ(Client,Server) = {α1, α2, α3, α4} with :
α1 = ({!req, !arg}, {?query}),
α2 = ({?ack}, {!ok}),
α3 = ({?nAck, ?errN}, {!nOk}),
α4 = ({!exit}, {?logout})}

– ΣΦ(Client,Server) =
{req, arg, query, ack, ok, nAck, nOk, errN, exit, logout}

4 Towards Components Adaptation

In A1 ⊗ A2, the actions of ΣΦ(A1,A2) are interleaved asynchronously since they
are named differently in A1 and A2. In fact, A1 ⊗ A2 doesn’t deal with corre-
spondence between actions of ΣΦ(A1,A2). Moreover, the product A1⊗A2 doesn’t
accept shared actions which have incompatible ordering in A1 and A2. For in-
stance Client sends a password followed by a user name, whereas Server accepts
the last message and then the former one. It is obvious that A1 ⊗A2 cannot be
used to check the compatibility of A1 and A2. In this context, an adaptor com-
ponent, must be defined. Such an adaptor is mainly based on the set Φ(A1, A2)
and is a mediator between A1 and A2. It receives the output actions specified
in ΣΦ(A1,A2) from one automaton and sends the corresponding input actions to
the other. In case of incompatible ordering of shared actions, the adaptor works
out such situations by receiving, reordering and sending such actions to their
destination component.

134 PNSE’14 – Petri Nets and Software Engineering

Definition 5 (Adaptation of A1 and A2)
The automata A1 and A2 are adaptable according to Φ(A1, A2) if (i) A1 and
A2 are composable, (ii) Φ(A1, A2) is not empty and (iii) there is a non empty
automaton adaptor.

4.1 Petri Net Construction for Components Adaptation

Contrary to interface automata formalism, the Petri net model is well suited to
validate interactions between components, especially whenever events reordering
is required. In fact, Petri nets allow to store resources (e.g. messages) before their
use. In this paper, we use a Petri net model to adapt two interface automata
according to a set of mapping rules given by the user of the components. The
approach we propose consists of building a Petri net which mimics the compo-
nent interfaces. Furthermore, the Petri net also contains a set of transitions, one
per matching rule, which represent the adaptor component. More details will be
given below.

First, we give the basic definitions of a Petri net model. For more details, we
refer reader to [12, 10].

Definition 6 (Labeled Petri Net) A Petri net N is a tuple 〈P, T,W, λ〉 where
:

– P is a set of places,
– T is a set of transitions such that P ∩ T = ∅,
– W is the arc weight function defined from P × T ∪ T × P to N.
– λ is a label mapping defined from T to an alphabet set Σ ∪ {ǫ}.

A marking is a function M : P → N where M(p) denotes the number of tokens
at place p. The firing of a transition depends on enabling conditions.

Definition 7 (Enabling) A transition t is enabled in a marking M iff ∀ p ∈
P , M(p) ≥ W (p, t).

Definition 8 (Firing rule in a Marking) Let t be a transition enabled in a
marking M . Firing t yields a new marking M ′, ∀p ∈ P , M ′(p) = M(p) −
W (p, t) +W (t, p).

Definition 9 (State Space) A state space, denoted by S(N,M0), of a marked
labelled Petri net (N,M0) is an oriented graph of accessible markings starting
from M0. An arc M

t−→ M ′ of S(N,M0) means that M ′ is obtained by firing t
from M .

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 135

s

s′

; a(s,s′)

(a)

s

s′a

!a(s,s′)

(b)

s

s′

a

?as,s′

(c)

a1 an ...

a

α

...

(d)

a

a1 ... an

α

(e)

Fig. 2: Translation rules

The algorithm described below returns a marked labelled Petri net (N,M0)
composed of three parts dedicated for A1, A2 and a set of matching rules.
These parts are glued by mean of places which model communication chan-
nels and are associated with external actions of A1 and A2, i.e. the actions of
sets Shared(A1, A2) and ΣΦ(A1,A2).

For each state s (resp. external action a) of A1 and A2, the algorithm gener-
ates a corresponding place s (resp. a) in N . Furthermore, the places correspond-
ing to initial states of interface automata will be initially marked in N .

Fig. 2.a, 2.b and 2.c show how to translate steps of A1 and A2. The gray full
circles represent communication places. An internal action s

;a−→ s′ is represented
by a transition ; a(s,s′) which has an input place s and an output place s′ (Fig

2.a). An output action s
!a−→ s′ is represented by a transition !a(s,s′) which has

an input place s and two output places s′ and a. A firing of !a(s,s′) produces a
token in place a modelling an emission of a message a (see Fig 2.b). Fig 2.c gives
the translation of an input action s

?a−→ s′, here each firing of ?a(s,s′) models a
reception of a message a.

Fig. 2.d and 2.b show how to translate the mismatch rules. For each mis-
match rule α = ({!a}, {?a1, . . . , ?an}) of Φ(A1, A2), a transition α is added. The
input places of α are a1 . . . an and its output place is a. Each firing of α models
the receptions of a1 . . . an and the emission of a (see Fig 2.d). The same pattern
is applied for a rule α = ({?a1, . . . , ?an}, {!a}). Fig 2.e shows the translation
of a rule α = ({!a1, . . . , !an}, {?a}) or α = ({?a}, {!a1, . . . , !an}). In this case,
each firing of α models the reception of a and the emissions of a1 . . . an. These
transitions simulate the adaptor.
For analysis requirement (next section), transitions associated with mismatch
rules are labelled by the rule names and the others by the corresponding action
names.

Algorithm 1 BuildPetriNet
—————————————————————————
Inputs A1 = 〈S1, A1, I1, T1〉, A2 = 〈S2, A2, I2, T2〉 and Φ(A1, A2) a set
of rules
Output

136 PNSE’14 – Petri Nets and Software Engineering

A labelled Petri Net N =〈P, T,W, λ〉 and its initial marking M0

Initialization P =∅, T = ∅
Begin
// Generation of places corresponding to the states of A1 and A2

for each state s ∈ S1 ∪ S2 do
add a place s to P
If s ∈ Sinit

A1
∪ Sinit

A2
then M0(s) =1 else M0(s) =0

Endif
endfor
// Places simulating direct communication between A1 and A2

for each action a ∈ Shared(A1, A2) do
add a place a to P

endfor
// Places simulating indirect communication between A1 and A2

for each action a ∈ ΣΦ(A1,A2) do
add a place a to P

endfor
// Transitions simulating steps of A1 and A2

for each transition s1
δa−→ s2 ∈ T1 ∪ T2, (with δ ∈ {!, ?, ; })

add a transition δas1,s2 to T
λ(δas1,s2) = δa
add the arcs s1 → δas1,s2 and δas1,s2 → s2 to W
case:

δ =′!′ : add the arc !as1,s2 → a to W
δ =′?′ : add the arc a → ?as1,s2 to W

endcase
endfor
// Transitions simulating adaptor of A1 and A2

for each α ∈ Φ(A1, A2) do
add a transition α to T
λ(α) = α
case:

α ∈ {({!a}, {?a1, . . . , ?an}), ({{?a1, . . . , ?an}, {!a})} :
add the arcs ai → α, i ∈ 1 . . . n, and α → a to W,

α ∈ {({!a1, . . . , !an}, {?a}), ({?a}, {!a1, . . . , !an})}:
add the arcs a → α and α → ai, i ∈ 1 . . . n, to W

endcase
endfor
return (N,M0)
End

Fig. 3 gives a labelled and marked Petri net N associated with Client and
Server according to the set of rules Φ(Client, Server) (which are defined in
example 2). For sake of clarity, communication places are duplicated and tran-
sitions are represented by their labels. Moreover, transitions ?update, !update

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 137

s′0

!pwd

s′1
pwd

!uid

s′2

?ack

s′3

!req

uid
ack

req

s′4

!arg

arg

data

s′5

?data

!update

update

?nAck

s′7

?errN

errN

nAck
!exit

s′6

exit

s0

uid

?uid

s1

pwd

?pwd

s2

!ok
ok

s3

?query

query

s4

; readDB

data

s5

!data

?update

update

!nOk

nOk

!logout

logout

ok

ack

α1

req arg

query

α2

nOk

nAck errN

α3

exit

logout

α4

Fig. 3: A Petri net for adaptation of Server and Client

and place update are represented differently, a special attention will be accorded
to them in the next section. The left and right parts of the net are respec-
tively dedicated to Client and Server, they are glued by mean of communica-
tion places uid, pwd, update and data. These latter correspond to the actions
of Shared(Client, Server) and are used to simulate direct communications be-
tween Client and Server.
The lower part of the net represents the adaptor, it contains four transitions
α1, α2, α3 and α4, each one represents a rule of Φ(Client, Server). The commu-
nication places req, arg, query, ack, ok, nAck, nOk, errN , exit and logout are
used to link the three parts and correspond to the actions of ΣΦ(Client,Server).
Places s0 and s′0 are initially marked in N , they translate the initial places of
Client and Server automata.

138 PNSE’14 – Petri Nets and Software Engineering

4.2 Synchronisation Semantics between Components

At this level, the Petri net construction models only asynchronous communica-
tion between two components. Such kind of communication may be source of
incoherence as illustrated by the following scenario:

– Client: Authentication,
– Server: Okay message,
– Client: update request,
– Client: read request,
– Server: response for the read request,
– Server: data base update.

It is worth noting that the result of the read request may be incorrect. This
occurs whenever the required information is concerned by the update operation.
To work out this problem, Client and Server must synchronise on update ac-
tion. Therefore, we propose to enrich the Petri net construction to strengthen
synchronisation between transitions which are related to critical shared actions
(e.g. update action): (1) such transitions must be fired by pair (w.r.t some critical
action, one for an output step and the other for an input step). (2) The com-
munication places of critical external actions are not useful since here messages
are not stored. (3) The set of critical actions, denoted by Synch, is an input of
the algorithm. The set of transitions related to Synch is denoted by TSynch. For
instance, to avoid the previous scenario, action update is considered as critical,
so transitions !update and ?update must be fired simultaneously. Place update
is omitted, Sync = {update} and TSync = {?update, !update}.

4.3 Building and analysing state space

In order to model synchronous communication between components, transitions
of TSynch are fired by pair. Further conditions are necessary to fire simultane-
ously a pair of transitions t and t′ belonging to TSynch from a state s :

- λ(t) = δa and λ(t′) = δa.
- Both t and t′ are enabled in s.

As mentioned in the introduction, the compatibility control of components
is made by using the state graph. In order to do this, we adapt the notion of
illegal state for our approach. We use the classical definition [1] where an illegal
state indicates that some service is required by one component but cannot be
offered by the other one.

Definition 10 (Illegal state)
Let s be a state of S(N,M0), s is an illegal state if:
- s has no successor and contains at least a marked communication place,
- or there is an enabled transition t of Tsynch, with λ(t) = !a but no enabled
transition t′ with λ(t′) = ?a in s.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 139

The state graph of the marked Petri net shown in Fig. 3 contains no illegal
state, therefore Client and Server can be composed according to the set of rules
Φ(Client, Server).

Example 3

Consider again the example of Fig. 2 and let us omit the dashed arcs. The cor-
responding state graph contains two illegal states. Fig. 4 exhibits a particular
sequence of the state graph, containing the two illegal states (gray states):

1. In (s3s
′
3), transition !update is enabled but cannot be fired since transition

?update is not enabled within the state. This means that Client issues an
update request which is not assumed by Server at this state.

2. State (s3s
′
6, exit) has no successor in the state graph and a marked com-

munication place (exit). Such a mark means that Client has sent an exit
request which will not be covered by Server.

s0s′0 s0s′1, pwd s0s′2, pwd,uid s1s′2, pwd s2s′2 s3s′2, ok

s3s′6, logout s3s′6, exit s3s′3 s3s′2, ack

!pwd !uid ?uid ?pwd !ok

α1

?ack!exitα4

Fig. 4: A firing sequence

5 Conclusion

Software Adaptation is widely used for adapting incompatible components, viewed
as black boxes. In this paper, we have presented a Petri net construction for
software adaptation at signature and behavioural levels based on mapping rules.
These latter are used to express correspondence between actions of components.
The Petri net construction reflects the structure of component interface au-
tomata to assemble and their corresponding mapping rules. The proposed con-
struction is incremental, e.g. rules can be easily added or replaced. Our approach
allows both synchronous and asynchronous communications, unlike the other ap-
proaches referred in this paper. In our future work, we plane to extend our Petri
net construction to take into account adaptation of components with temporal
constraints.

140 PNSE’14 – Petri Nets and Software Engineering

References

1. L. Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), ACM, pages
109–120. Press, 2001.

2. S. Bowers and B. Ludascher. An ontology-driven framework for data transforma-
tion in scientific workflows. DATA INTEGRATION IN THE LIFE SCIENCES,
PROCEEDINGS, 2994:1–16, 2004.

3. C. Canal, P. Poizat, and G. Salaun. Model-based adaptation of behavioral mis-
matching components. IEEE Transactions on Software Engineering, 34(4):546–
563, 2008.

4. S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components behaviours
using interface automata. In SEAA’10, 36th Euromicro Conference on Software
Engineering and Advanced Applications, pages 119–122, Lille, France, September
2010. IEEE Computer Society Press.

5. S. Chouali, S. Mouelhi, and H. Mountassir. Adapting components using interface
automata strengthened by action semantics. In FoVeoos 2010, int. conf. on Formal
Verification of Object-oriented software, pages 7–21, Paris, France, June 2010.

6. D. C. Craig and W. M. Zuberek. Petri nets in modeling component behavior and
verifying component compatibility. In Int. Workshop on Petri Nets and Software
Engineering, in conjunction with the 28-th Int. Conf. on Applications and Theory
of Petri Nets and Other Models of Concurrency, 2007.

7. W. Kongdenfha, H.R. Motahari Nezhad, B. Benatallah, F. Casati, and R. Saint-
Paul. Mismatch patterns and adaptation aspects: A foundation for rapid develop-
ment of web service adapters. IEEE Transactions on Services Computing, 2(2):94–
107, 2009.

8. C.W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, June 1992.
9. L. Kung-Kiu and W. Zheng. Software component models. IEEE Transactions on

Software Engineering, 33(10):709–724, 2007.
10. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541–580, 1989.
11. H.R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.

Semi-automated adaptation of service interactions. In WWW, pages 993–1002,
2007.

12. W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer, 31 July 2013. 230 pages; ISBN 978-3-642-33277-7.

13. Yong Yu, Tong Li, Qing Liu, and Fei Dai. Modeling software component based
on extended colored petri net. In Ran Chen, editor, Intelligent Computing and
Information Science, volume 135 of Communications in Computer and Information
Science, pages 429–434. Springer Berlin Heidelberg, 2011.

D. Dahmani et al.: A Petri Net Approach for Reusing and Adapting 141

142 PNSE’14 – Petri Nets and Software Engineering

Observable Liveness

Jörg Desel1 and Görkem Kılınç1,2

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Germany
2 Universitá degli Studi di Milano-Bicocca, Italy

Abstract. Whereas the traditional liveness property for Petri nets guar-
antees that each transition can always occur again, observable liveness
requires that, from any reachable marking, each observable transition can
be forced to fire by choosing appropriate controllable transitions; hence
it is defined for Petri nets with distinguished observable and control-
lable transitions. We introduce observable liveness and show this new
notion generalizes liveness in the following sense: liveness of a net im-
plies observable liveness, provided the only conflicts that can appear are
between controllable transitions. This assumption refers to applications
where the uncontrollable part models a deterministic machine (or several
deterministic machines), whereas the user of the machine is modeled by
the controllable part and can behave arbitrarily.

1 Introduction

Liveness and boundedness have turned out to be the most prominent behavioral
properties of Petri nets – a Petri net is considered to behave well if it is live and
bounded. This claim is supported by many publications since decades, and in
particular by the nice correspondences between live and bounded behavior of a
Petri net and its structure, see e.g. [4, 11]. Nowadays workflow Petri nets receive
a particular interest, and with them the behavioral soundness property. However,
as shown in [16], soundness of workflow nets is identical to the combination of
liveness and boundedness of the net obtained by addition of a feedback place
(between the final and the initial transition) to a workflow net. This way, these
behavioral properties are also applied to models of processes, that have a start
and an end action.

This paper concentrates on liveness, but looks at yet another scenario: Petri
nets with transitions that can be observable or unobservable (silent transitions),
and can be controllable or not. These nets are inspired by Petri net applications
in control theory [8, 2], but can also be seen as a generalization of Petri nets
with silent transitions. We provide a notion of liveness which is tailored for Petri
nets with observable and controllable transitions, or for the systems modeled by
these nets. Observable liveness of a model of a software system (embedded or
not) with a user interface roughly means liveness from the user’s perspective.

The standard definition of liveness for traditional Petri nets reads as follows:

A transition t is live if, for each reachable marking m, there is a
marking m′ reachable from m that enables t. A net is live if all its
transitions are live.

We consider Petri net models of software systems where only some activities
are observable, and only a subset of these can be controlled by a user (like a vend-
ing machine, which has a user interface and an internal behavior). Our liveness
notion applies to such nets, which also have observable transitions and, among
them, controllable ones. This liveness notion still follows the idea that, no matter
which marking m was reached, an occurrence sequence can be constructed which
includes a given transition t. However, in contrast to the traditional definition,

– we only consider observable transitions t (i.e., if a transition cannot be ob-
served then we do not care about it),

– we assume that instead of constructing the entire sequence, we (i.e., the user)
can only control the net by choosing controllable transitions whenever they
are enabled, whereas the net is always free to fire uncontrollable transitions
arbitrarily. In particular, if a controllable transition is in conflict with an
uncontrollable one, the controllable one might fire but cannot be enforced
by the user.

This paper consists of two main parts with two different aims: In the first
part of the paper we motivate observable liveness notion for observable software
system models. The second part concentrates on the special case where the
uncontrollable part of the considered software system behaves deterministically,
that means conflict situation can only occur between two controllable transitions.
We show that liveness implies observable liveness if no uncontrollable part ever
is in conflict with any other transition. This assumption refers to applications
where the uncontrollable part models a deterministic machine, whereas the user
of the machine is modeled by the controllable part and can behave arbitrarily.

The paper is organized as follows. In Section 2, we introduce our setting
and illustrate a simple example. Section 3 is devoted to basic definitions. In
Section 4 , we introduce the notion of observable liveness. Section 5 discusses
some properties of the new notion and relate it with the traditional liveness.
Section 6 is devoted to the case of deterministic uncontrollable behavior. We
finish the paper with conclusions, related work and further ideas.

2 The Setting

When defining observable liveness, several design decisions had to be made. We
had a particular setting of a modeled system in mind, that motivated our choices.
This section aims at explicating this setting and motivating our design decisions.

The generic software system to be modeled consists of a machine (or several
machines), a user interface to this machine, and perhaps of activities and condi-
tions which do not belong to the machine. The user can observe and control all
activities outside the machine, he can neither control nor observe any activities
inside the machine. Concerning the user interface, there are activities that the
user can only observe but not control, whereas other interface activities might
be both observable and controllable.

144 PNSE’14 – Petri Nets and Software Engineering

One might argue that instead of activities, only local states of machines are
observable, for example a light which can be on or off. Then, instead of observing
this state, in our setting we observe the activities that cause the changes of the
state. In terms of nets, instead of observing a place, we observe the (occurrences
of) transitions in the pre- or post-set of the place.

Controllable activities can be those not connected to the machine or can be
activities of the interface. Whereas a controllable activity outside the machine is
clearly also observable, one might argue that this is not obvious for controllable
interface activities. In fact, if the activity can be caused by pressing a button,
the user cannot be sure that with every use of this button the activity takes
place. An additional prerequisite is that the activity is enabled by the machine,
whereas buttons can always be pressed. So we implicitly assume that the user
sees whether a controllable transition is enabled or not and can thus distinguish
activities from non-activities caused by buttons.

Assume that a user wants to enforce an observable activity a after some
previous run of the system. Then, depending on what he has observed so far,
he should have a strategy to control activities in such a way that eventually
he can observe a. By translating activities to transitions, the same holds for
the Petri net model. The strategy is formalized by a function that maps an
arbitrary sequence of observable transitions to a set of controllable transitions:
if a sequence was observed, then one of these controllable transitions can be
fired. Since the domain of this function is infinite in general, and its co-domain
finite (theoretically exponential in the number of controllable transitions, but
usually linear), different sequences are mapped to the same set. We assume that
the user can effectively compute this function by using, e.g., only a finite history
or an automata based approach. For generality of our approach, we nevertheless
consider a strategy an arbitrary function as above.

There might be states in which controllable activities and uncontrollable ones
are enabled, i.e., both the machinery and the user can do something. In such a
state, we cannot expect that the user is able to do his controllable activity first.
This means that, in case of competition between activities, the user does not
have control if not only controllable activities are involved.

For an observably live activity, we want that the user can enforce the oc-
currence of this activity. Therefore, we provide an appropriate behavioral model
of the net. Clearly, the user can only enforce any reaction from the machine if
the machine obeys some progress assumption: we do not consider runs in which
an uncontrollable transition is enabled, does not occur, and is not in conflict
with any other occurring transition. Progress is only assumed for controllable
transitions if they are persistently chosen by the response function and moreover
concurrent to uncontrollable ones.

Throughout the paper, a controllable transition is illustrated via a black
filled rectangle, an observable transition is illustrated by a bold rectangle, while
unobservable ones are drawn by not bold rectangles. The incoming and outgoing
arcs which are not connected to any place or transition are used when only a
part of a net is shown.

J. Desel, G. Kılınç: Observable Liveness 145

Fig. 1. An observably live net which represents a vending machine.

146 PNSE’14 – Petri Nets and Software Engineering

The example net shown in Fig. 1 models a vending machine with coffee and
tea options. The user can operate the machine by inserting a coin and using
three buttons (insert coin, choose coffee, choose tea and take money back are
controllable transitions). Using these controllers, the user can take coffee, take
tea or take his money back. The transitions coffee comes out, tea comes out and
money comes out are observable, and the user can always force these transitions
to occur by using the controllable ones. In other words, each of the observable
transitions in the net is observably live and so the entire net is observably live.
In case that there is no more coffee or tea, the machine needs a refill operation.
In this case the user has to wait until the refill operation is done. Regarding
the progress assumption, the refill operation will be done since refill coffee and
refill tea transitions will fire eventually, and they are not in conflict with any
transitions which can disable them. Note that the entire net is not live since the
unobservable part includes a transition which can only fire once (init machine).
However, this behavior does not affect our notion of observable liveness since
the observable transitions can still be forced to fire. Considering such a machine,
observable liveness is a useful notion to express the serviceability of a machine
via an interface. We can generalize this for models of all kinds of software systems
with a user interface. In this case, observable liveness expresses the liveness of a
software system from the user’s point of view.

3 Basic Definitions

An (initially marked) place/transition net N consists of a finite and non-empty
set of places P , a finite and non-empty set of transitions T with P ∩ T = ∅, a
set of arcs F ⊆ (P × T) ∪ (T × P) and an initial marking m0 : P → N. For a
place or transition x, we denote its pre-set by •x = {y ∈ P ∪ T | (y, x) ∈ F}.
Similarly, the post-set of x is denoted by x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A marking m is an arbitrary mapping m : P → N. It enables a transition t
if each place p ∈ •t satisfies m(p) > 0. If it enables t then t can fire, which leads
to the successor marking m′, defined by

m′(p) =




m(p) + 1 if p ∈ t•, p /∈ •t
m(p)− 1 if p ∈ •t, p /∈ t•
m(p) otherwise

We denote this by m t−→ m′.
The set of reachable markings of the net N , R(N), is the smallest set of

markings that contains the initial marking m0 and satisfies

[m ∈ R(N) ∧ m
t−→ m′] =⇒ m′ ∈ R(N).

The place/transition net is called bounded if R(N) is finite. Equivalently, it is
bounded if and only if there exists a bound b such that each marking m ∈ R(N)
satisfies for each place p: m(p) ≤ b. It is called 1-bounded if this condition holds
for b = 1.

J. Desel, G. Kılınç: Observable Liveness 147

If m1
t1−−→ m2

t2−−→ m3
t3−−→ m4 · · · , then t1 t2 t3 t4 . . . is called occurrence

sequence (enabled at marking m1). If an occurrence sequence σ is finite, i.e.
σ = t1 t2 . . . tn, then we write m1

σ−→ mn+1.
The place/transition net is live if, for each reachable marking m and each

transition t, there exists a marking m′ reachable from m that enables t. Equiv-
alently, it is live if and only if for each transition t and each finite occurrence
sequence σ enabled atm0 there exists a transition sequence τ such that στ t is an
occurrence sequence enabled at m0. Note that in order to append two sequences,
the left hand one is supposed to be finite. In turn, when writing στ we implicitly
express that σ is finite.

Transitions can be observable or non-observable, and they can be controllable
or non-controllable. We denote by O ⊆ T the set of observable transitions and
by C ⊆ O the set of controllable ones.

A place/transition net with observable and controllable transitions is called
observable place/transition net N = (P, T, F,m0, O,C). Given an occurrence
sequence σ of the place/transition net, its projection σ to the observable transi-
tions is called observable occurrence sequence. Conversely, a sequence t1 t2 t3 . . .
of observable transitions is an observable occurrence sequence if and only if
there are finite sequences σ0, σ1, σ2, . . . of unobservable transitions such that
σ0 t1 σ1 t2 σ2 t3 . . . is an occurrence sequence.

An infinite occurrence sequence t1 t2 t3 . . . enabled at some marking m is
called weakly unfair w.r.t. some transition t if, for some k ∈ N, t1 t2 . . . tk t
is enabled at m and, for each j > k, we have •tj ∩ •t = ∅ (after some finite
initial phase, t is persistently enabled and not in structural conflict with any
occurring transition). Notice that this definition is slightly weaker than the usual
definition of weak fairness which only demands that t is persistently enabled. The
occurrence sequence is weakly fair w.r.t. t if it is not weakly unfair w.r.t. t. By this
definition, every finite occurrence sequence is weakly fair w.r.t. to all transitions.

There are many different fairness notions for Petri nets (and previously for
other models). Our notion - often also called progress assumption - was first
mentioned in [12]. It is particularly obvious for partially ordered behavior notions
such as occurrence nets and can now be viewed as a standard notion.

4 Observable Liveness

In order to give the definition of observable liveness, we first stick to observ-
able liveness of a single transition, which apparently has to be observable, and
later define observable liveness of observable place/transition nets as observable
liveness of all observable transitions.

So consider a single observable transition t which might be moreover control-
lable or not. If the net reaches from the initial marking m0 a marking m by the
occurrence of an arbitrary occurrence sequence σ0, an agent wants to enforce
transition t by selecting appropriate controllable, enabled transitions. If this is
always (for each reachable marking m) possible, then we call t observably live.

148 PNSE’14 – Petri Nets and Software Engineering

From the marking m, the net first proceeds arbitrarily and autonomously,
i.e., some occurrence sequence σ1 without controllable transitions occur. This
sequence can be

a) finite and lead to a deadlock,
b) finite and lead to a marking that enables controllable and uncontrollable

transitions,
c) finite and lead to a marking that enables only controllable transitions,
d) or infinite.

For the infinite case we demand weakly fair behavior w.r.t. all uncontrollable
transitions, i.e. there is progress in all concurrent parts of the net.

For cases b) and c), the agent fires a controllable transition and then proceeds
as before with a next autonomous sequence σ2, and so on. This will lead to either
an infinite sequence σi, or eventually to case a) or case d).

Our liveness notion should express that – in case of observable liveness –
there always is (at least one) controllable transition after any sequence σi in
case c). To formalize this, (and to avoid an infinite alternation of ∀ and ∃) we
introduce a response function ϕ, which delivers a set of possible controllable
transitions as a response of the agent to the sequence observed so far. Notice
that an observed sequence does not determine the reached marking because
unobservable transitions might occur, changing the marking but not effecting
the observed sequence. In turn, different observed sequences might lead to the
same marking.

We call the transition t observably live if, for some such response function,
we eventually observe t in the sequence created this way.

More formally, the definition reads as follows:

Definition 1. Let ϕ : O∗ → 2C be a response function and let m0
σ0−−→ m be

an occurrence sequence. We call an occurrence sequence σ, enabled at marking
m, ϕ-maximal if it is either an infinite composition σ = σ1 t1 σ2 t2 σ3 t3 . . . or a
finite composition σ = σ1 t1σ2 t2 . . . σk tkµ, where k ≥ 0, satisfying the following:

a) All σi are finite and can be empty, µ is finite or infinite.
b) For each ti we have ti ∈ ϕ(σ0 σ1 t1 σ2 t2 . . . σi), i.e., ti is a response to the

sequence observed so far.
c) No σi contains a controllable transition (i ≥ 1), and the same holds for µ.

Only for the second variant:
d) µ is weakly fair w.r.t. all non-controllable transitions. µ is moreover weakly

fair w.r.t. all controllable transitions t satisfying t /∈ ϕ(σ0σ′) for only finitely
many prefixes σ′ofσ.

e) If µ is finite then all transitions enabled after σ are controllable and do not
belong to ϕ(σ0 σ) (this includes deadlocks).

Lemma 1. Assume that σ0 leads from m0 to a marking m and σ is a ϕ-maximal
occurrence sequence enabled at m. If σ = σ1 σ2 and m σ1−−→ m1, then σ2 is a
ϕ-maximal occurrence sequence enabled at m1.

J. Desel, G. Kılınç: Observable Liveness 149

Proof. The claim follows immediately from the definition of ϕ-maximal occur-
rence sequence. ut

Some comments: All σi in Definition 1 are finite and succeeded by a control-
lable transition, chosen by the response function. If we get stuck in a deadlock,
this is the case of a finite µ. We do not expect that after some σi only control-
lable transitions are enabled. Therefore, there might be situations where the user
can fire a controllable transition but also the net can proceed autonomously. If
liveness can only be enforced by passivity of the user in this case, the response
function yields the empty set for the observed sequence.

Fig. 2. Some example nets.

Figures 2.a, 2.b, and 2.c illustrate the weak fairness notion employed in our
definition of ϕ-maximal occurrence sequence.

In the net shown in Fig. 2.a., after the controlled occurrence of t1 the system
can choose between t2 and t4. It can even always prefer t2, and t4 never occurs.
Only strong fairness would imply that eventually t4 can be observed, but our
chosen notion of weak fairness does not. So t4 is not observably live.

In Fig. 2.b., the net of Fig. 2.a. is extended by a concurrent sequence. Our
weak fairness assumption implies that the left branch proceeds even if the right
stays in an infinite loop. So transition t3 is observably live.

Figure 2.c. illustrates the difference between our weak fairness and the one
usually used in the literature, e.g. [13]. We do not expect that t6 eventually occurs
although it remains enabled at each marking reached after the occurrence of t4.

150 PNSE’14 – Petri Nets and Software Engineering

However, since t5 and t6 share the input place p5 we do have a conflict here. So
again, t3 is observably live and t6 is not.

Fig. 3. Example nets.

In the net shown in Fig. 3.a, there is a conflict between t3 and t4. In this
situation, even if the response function ϕ tells us to fire t4 after t1, we cannot
be sure that t4 will stay enabled since the unobservable transition t3 might also
fire. Since we cannot force t4 to fire, t5 is not observably live.

Now we define observable liveness as follows:

Definition 2. An observable transition t of an observable place/transition net
is observably live if there is a response function ϕt : O

∗ → 2C such that, for
each m0

σ0−−→ m, each ϕt-maximal occurrence sequence enabled at m contains
an occurrence of t. An observable place/transition net is observably live if all its
observable transitions are observably live.

In this definition, “an occurrence of t" can be replaced by “infinitely many
occurrences of t", as in the definition of traditional liveness.

Theorem 1. An observable transition t of an observable place/transition net is
observably live if and only if there is a response function ϕt : O

∗ → 2C such
that, for each m0

σ0−−→ m, each ϕt-maximal occurrence sequence enabled at m
contains infinitely many occurrences of t.

Proof. Clearly we only have to prove⇒, because each occurrence sequence with
infinitely many occurrences of t has at least one t-occurrence.

J. Desel, G. Kılınç: Observable Liveness 151

So assume observable liveness of t, i.e., a response function ϕt : O
∗ → 2C

such that, for each m0
σ′
0−−→ m′, each ϕt-maximal occurrence sequence enabled

at m′ contains an occurrence of t (notice that we replaced σ0 by σ′0 and m by
m′).

Let m0
σ0−−→ m and let σ be a ϕt-maximal occurrence sequence enabled

at m. We have to show that σ contains infinitely many occurrences of t. By
assumption we know that σ contains at least one occurrence of t. Let σ1 be the
prefix of σ that ends after the first occurrence of t and let σ = σ1 σ2. Then
m0

σ0σ1−−−−→ m1 for some marking m1. This marking m1 enables the ϕt-maximal
occurrence sequence σ2 by Lemma 1. Again using the assumption, σ2 contains
an occurrence of t.

The arbitrary repetition of this argument yields arbitrarily many occurrences
of t in σ, whence this sequence must have infinitely many t-occurrences. ut

5 Properties and Relations with Traditional Liveness

In this section, we provide some properties of observable liveness and relations
to traditional liveness.

Lemma 2. For each response function ϕ and each m0
σ0−−→ m, there is a ϕ-

maximal occurrence sequence enabled at m.

Proof. In order to construct a ϕ-maximal occurrence sequence, we proceed it-
eratively. Assume that we constructed a finite sequence σ′, enabled at m, in
accordance with a), b) and c) of Def. 1 and let m σ′

−−→ m′. If m′ enables an
uncontrollable transition t or a controllable one which is in the current response
set ϕ(σ0σ′), then we append t to σ′. If there is more than one such candidate, we
choose the least recently chosen such transition in order to ensure weak fairness.

If this is not possible then all transitions enabled after σ′ are controllable and
do not belong to ϕ(σ0σ′), whence then σ′ is a ϕ-maximal occurrence sequence
by e) of Def. 1. ut

Proposition 1. Each observably live transition t is live.

Proof. Since t is an observably live transition there is a response function ϕt such
that for each m0

σ0−−→ m, each ϕt-maximal occurrence sequence enabled at m
includes t. By Lemma 2 there exists a ϕt-maximal occurrence sequence. This
implies that, for each reachable marking m, there exists an occurrence sequence
which enables t, and so t is live. ut

Corollary 1. An observably live net is live if all transitions are observable. ut

Notice that Cor. 1 does not hold without the assumption that all transitions
are observable. The net shown in Fig. 3.b is not live since t3 can never occur,
but it is observably live.

The converse of Prop. 1 does not hold in general. Figure 2.a, if t4 is assumed
to be connected to t1, shows a live net which is not observably live. However, if

152 PNSE’14 – Petri Nets and Software Engineering

all transitions are controllable then liveness of t implies its observable liveness,
as shown next:

Proposition 2. If O = C = T then observable liveness of a transition t coin-
cides with its liveness.

Proof. By Prop. 1, we only have to show the implication ⇐.
Assume that t is live. We have to show that there is a response function

ϕt : O
∗ → 2C such that, for each m0

σ0−−→ m, each ϕt-maximal occurrence
sequence enabled at m contains an occurrence of t. Since t is live, there exists
an occurrence sequence σ′ enabled at m such that t is enabled after σ′.

Let σ0 σ′ t = σ0σ′t = t1t2t3 . . . tk and m0
σ0σ

′t−−−−→ . We choose any response
function with ϕt(t1t2 . . . ti) = {ti+1} for i = 0, 1, . . . , k − 1. Since all transitions
are controllable, the unique ϕt-maximal occurrence sequence consists of only
controllable transitions. The σi (for i = 1, 2, 3, . . .) given in Def. 1 are thus
empty sequences, and so there is only one ϕt-maximal occurrence sequence for
each m. ut
Corollary 2. If O = C = T , then observable liveness of a net coincides with
liveness of the net. ut
Proposition 3. Assume that in an observable net there is an infinite and weakly
fair occurrence sequence σ without controllable transitions. Then each observable
transition which does not appear in σ infinitely often is not observably live.

Proof. Letm0
σ0−−→ m and assume that t is an observably live transition. There

is a response function ϕt such that each ϕt-maximal occurrence sequence enabled
at m contains an occurrence of t. So an infinite weakly fair occurrence sequence
without controllable transitions σ which is enabled at some marking m′ such
that m0

σ0−−→ m
σ′
−−→ m′

σ−→ has to include t to be observably live. Since
the sequence σ does not include any instance of t, t cannot be observably live.

ut
Corollary 3. If an observable net without controllable transitions has an infinite
and weakly fair occurrence sequence which does not include all the observable
transitions then the net is not observably live. ut

6 Deterministic Uncontrollable Behavior

As seen before, a live net is not necessarily observably live. The main reason
is that, for proving liveness, we can always choose an appropriate occurrence
sequence enabling some transition t whereas for observable liveness this choice
is only possible for controllable transitions (which are not in conflict with unob-
servable ones) and the net behaves arbitrarily elsewhere.

In this section, we show that the situation is different if the only choices
to be made are among controllable transitions. This is not an unrealistic set-
ting; the automated part of a system often behaves deterministically (but still
concurrently), whereas the user model might allow for alternatives.

J. Desel, G. Kılınç: Observable Liveness 153

Formally, deterministic behavior is given in terms of the conflict-free property,
to be defined next. Intuitively, a transition is conflict-free if it is never in conflict
with any other transition; if both are enabled then they are enabled concurrently.
Since “never" refers to reachable markings, the definition applies to a net with
an initial marking and its state space and not only to its structure. However,
each two transitions that are ever in conflict necessarily share an input place
which is thus forward branching. With concurrent behavior we mean that two
transitions do not compete for tokens. If a place carries more than one token,
one could argue that two transitions in its post-set still can occur concurrently
(see [17]). We take the stricter view that every two enabled transitions with a
common input place (which can carry one or more tokens) are considered in
conflict and not concurrent.

Definition 3. A Petri net is conflict-free w.r.t. a transition u if, for each reach-
able marking m enabling u, every other transition v enabled at m is concurrent
to u, i.e., •u ∩ •v = ∅.

Figure 3.c shows a net fragment which is conflict-free w.r.t. all its unob-
servable transitions. Notice that there is concurrency between these transitions.
Notice also that forward branching places are possible, provided every reachable
marking enables at most one output transition of a branching place. The follow-
ing lemma will be used frequently in the sequel. It follows immediately from the
occurrence rule.

Lemma 3. Assume two transitions u and v of a net, both enabled at some
marking m, such that •u ∩ •v = ∅. Then m enables u v as well as v u, and both
sequences lead to the same marking. ut

A well-known result for conflict-free nets [10] is given by the following lemma.
We provide a proof for the sake of self-containment, and since our lemma refers
to a single conflict-free transition only.

Lemma 4. If a Petri net is conflict-free w.r.t. a transition u, and some reach-
able marking m enables u as well as a sequence σ u where u does not appear in
σ, then m also enables the sequence u σ, and the occurrences of σ u and of u σ
lead to the same marking.

Proof. By induction on the length of σ.
Base: If σ is the empty sequence then nothing has to be shown.
Step: Assume σ = v σ′. We have u 6= v because u does not appear in σ. By

conflict-freeness w.r.t. u and since m enables both u and v, these transitions are
concurrent. Therefore, and by Lemma 3, m also enables the sequences v u and
v σ′ u. Let m v−→ m′.

The induction hypothesis can be applied to the marking m′, enabling u and
σ′ u, yielding the sequence u σ′ enabled at m′. So v u σ′ is enabled at m. Again
since u and v are concurrent and by Lemma 3, m also enables u v σ′, which is
identical with u σ.

154 PNSE’14 – Petri Nets and Software Engineering

Since each transition occurs in σ u and in u σ the same number of times,
and by the occurrence rule, the occurrences of these sequences lead to the same
marking. ut
Lemma 5. If a Petri net is conflict-free w.r.t. a transition u, and some reach-
able marking m enables u as well as a sequence σ where u does not appear in σ,
then m also enables the sequence σ u.

Proof. By induction on the length of σ.
Base: If σ is the empty sequence then nothing has to be shown.
Step: Assume σ = v σ′. We have u 6= v because u does not appear in σ. By

conflict-freeness w.r.t. u and since m enables both u and v, these transitions are
concurrent. Therefore, and by Lemma 3, m also enables the sequence v u. Let
m

v−→ m′.
The induction hypothesis can be applied to the marking m′, enabling u and

σ′, yielding the sequence σ′ u enabled at m′. So v σ′ u is enabled at m. We have
v σ′ = σ, which finishes the proof. ut

The following theorem constitutes the main result of this paper. It applies
only to nets where the only possible conflicts occur between controllable tran-
sitions, i.e., to nets which are conflict-free w.r.t. all uncontrollable transitions.
This rules out conflicts between two uncontrollable transitions as well as conflicts
between controllable and uncontrollable transitions.

As a preparation, we need a couple of definitions and lemmas.

Definition 4. An occurrence sequence σ enabled at a marking m is called min-
imal towards t, where t is a transition, if σ ends with t, contains no other
occurrence of t, and no transition in σ can be postponed, i.e., σ = σ′ t, t does
not occur in σ′, and σ cannot be divided as σ = µ′ u µ′′ for some transition u,
u 6= t, such that µ′ µ′′ is enabled at m, too.

A transition u can only occur if its input places carry tokens, and another tran-
sition v might have to occur before because it produces the token consumed by
u. We then call the occurrence of v a causal predecessor of the occurrence of u. A
minimal occurrence sequence towards a transition t contains one occurrence of t,
its causal predecessors, the predecessors of these predecessors etc., and nothing
else. In partially ordered runs, where causal dependence between transition oc-
currences is explicitly modeled by means of a partial order, this corresponds to
a run containing the occurrence of t and all transition occurrences that precede
t.

Definition 5. Given a sequence σ, any deletion (i.e, replacement by the empty
sequence) of elements in σ yields a subsequence of σ. Its complementary se-
quence is the sequence obtained from σ by deleting all elements that appear in
the subsequence.

This definition captures the case σ = σ′ σ′′ where σ′ is a subsequence and
σ′′ is its complementary sequence (and vice versa), but is more general. For
example, if σ = t1, t2, . . . , t2n, the sequence t1, t3, . . . , t2n−1 is a subsequence,
and t2, t4, . . . t2n its complementary sequence.

J. Desel, G. Kılınç: Observable Liveness 155

Lemma 6. Assume a conflict-free net with a reachable marking m, a transition
t and an occurrence sequence σ enabled at m that contains an occurrence of t.
Then there exists a subsequence σ′ of σ, enabled at m, which is minimal towards
t. Moreover, if σ′′ is the complementary subsequence, m enables σ′ σ′′.

Proof. Define µ as the prefix of σ which ends with the first occurrence of t, and
let µ be the rest of σ. Clearly, µ is finite.

Assume that µ can be divided as µ = µ′ u µ′′ such that µ′ µ′′ is enabled at
m and u does not occur in µ′′. By Lemma 5, we can shift u behind µ′′ and thus
obtain the sequence µ′ µ′′ u. Still t occurs only once, being the last transition in
µ′′.

If u1 is the rightmost transition (transition occurrence, respectively) in µ for
which such a division is possible, we obtain from µ µ the sequence µ′1 µ′′1 u1 µ.
Let µ2 = µ′1 µ

′′
1 . Now let u2 be the rightmost transition with the same property

for the sequence µ2 and let µ2 = µ′2 u2 µ
′′
2 . The same argument as above yields

the sequence µ′2 µ′′2 u2 u1µ. Exhaustive repetition of this procedure yields smaller
and smaller sequences µi to be considered and eventually the sequence

µ′k µ
′′
k uk uk−i . . . u1 µ

such that no further transition to be postponed can be found in µ′k µ
′′
k . So this

sequence is minimal towards t. By construction, it is a subsequence of σ, and
uk uk−i . . . u1 µ is the complementary subsequence. ut

Starting with the next lemma, we additionally require 1-boundedness, i.e.,
we assume that no reachable marking assigns more than one token to a place.

Lemma 7. Consider a 1-bounded and conflict-free Petri net with an arbitrary
transition t. All initially enabled occurrence sequences which are minimal towards
t lead to the same marking.

Proof. Consider two occurrence sequences µ1 and µ2, both enabled at the initial
marking, and both minimal towards t. We proceed by induction on the length
of µ1.

Base: The sequence µ1 has only one element if and only if µ1 = t. So then t
is initially enabled, and hence µ1 = µ2 = t.

Step: Assume that t is not initially enabled. We claim that there is an initially
enabled transition u which appears in µ1 as well as in µ2, i.e., µ1 = µ′1 u µ

′′
1 and

µ2 = µ′2 u µ
′′
2 . When this claim is proven, we know by conflict-freeness that

there are also initially enabled occurrence sequences uµ′1 µ′′1 and uµ′2 µ′′2 . By the
induction hypothesis applied to the (new initial) marking obtained by firing u
and to the sequences µ′1 µ′′1 and µ′2 µ′′2 , both sequences lead to the same marking,
and we are finished.

So it remains to prove the claim, that some initially enabled transition occurs
in µ1 and in µ2. We proceed indirectly and assume the contrary.

We again divide µ2 as µ′2 µ′′2 , now such that no transition of µ′2 occurs in
µ1 and the first transition in µ′′2 , say v, occurs in µ1. By assumption, v is not

156 PNSE’14 – Petri Nets and Software Engineering

initially enabled. The sequence µ′′2 is not empty because both µ1 and µ2 contain
t. We divide µ1 as µ′1 µ′′1 such that µ′′1 begins with the first occurrence of v in µ1.

Since v is not enabled initially, some place s ∈ •v is initially unmarked.
Since v is enabled after µ′1 and after µ′2, s carries a token after the occurrence
of µ′1 and after the occurrence of µ′2. By conflict-freeness and since the sets of
occurring transitions in µ′1 and µ′2 are disjoint, we can also fire both, i.e. µ′1 µ′2,
from the initial marking. This yields a marking with two tokens on the place s,
contradicting 1-boundedness. ut

The proof of the above lemma also shows that all minimal sequences towards
t have the same length, whence these sequences are exactly the sequences with
minimal length containing an occurrence of t.

Now we are ready for the main result: liveness of a 1-bounded net implies
observable liveness, provided the only conflict that can appear are between con-
trollable transitions. Although this result might seem obvious at first sight, its
proof is surprisingly involved. The core argument of the proof is that, in a live
Petri net, for each transition t, every reachable marking m enables an occurrence
sequence σm that includes an occurrence of t. If t is observable, then observable
liveness requires that we can force t to occur by only providing a suitable re-
sponse function ϕt which controls the behavior whenever there is a conflict. So
an obvious idea is to define ϕt in such a way that always the next transition
in σm is responded, if this transition is controllable. However, ϕt depends not
on markings, but on observed sequences. That means, instead of t the user only
knows the sequence of observable transitions of the initially enabled occurrence
sequence σ0 that leads to m. For this observed sequence, there might exist many
sequences including unobservable transitions, and hence many different reached
markings m, and so also many different occurrence sequences σm. Instead of the
unknown occurrence sequence σ0 we consider the set of all occurrence sequences
µ0 satisfying µ0 = σ0. Among these sequences we concentrate on the minimal
ones. We will show that, if the net is 1-bounded, all these minimal occurrence
sequences lead to the same marking which we call mσ0

. We will moreover show
that m, the marking reached by the occurrence of σ0 is reachable from mσ0

.
However, these results only hold for conflict-free nets, and our considered net is
not necessarily conflict-free. Since until now we only consider the behavior given
by the observed transitions of σ0, since all controllable transitions are observable
and since conflicts only appear among controllable transitions, we can transform
the considered net into a conflict-free one, without spoiling the relevant behavior.
By liveness (of the original net), mσ0

enables an occurrence sequence σ contain-
ing t. First, we look at the first observable transition in σ. Since there are no
conflicts, every occurrence sequence starting at mσ0 possessing a weak fairness
assumption eventually has to enable u. If u is controllable, it might be in conflict
with some other transition. In this case we set ϕt(σ0 = {u}) so that, if u is con-
trollable or not, also u eventually occurs. Fortunately, the distance between this
marking and a marking enabling t is smaller than the distance between m and a
marking enabling t, where distance is defined in terms of the number of needed
observable transitions to reach one marking from the other. So we can repeat the

J. Desel, G. Kılınç: Observable Liveness 157

above considerations, this way defining ϕt on the fly, until we eventually force t
to occur.

Theorem 2. If a 1-bounded observable Petri net, which is conflict-free w.r.t. all
uncontrollable transitions, is live, then it is observably live.

Proof. Consider a 1-bounded live observable Petri net which is conflict-free w.r.t.
all uncontrollable transitions. We have to prove observable liveness, i.e., observ-
able liveness of each observable transition t. So let t be an observable transition.
To show observable liveness of t, we have to provide a response function ϕt such
that, for each m0

σ0−−→ m, each ϕt-maximal occurrence sequence σ enabled at
m eventually contains t.

The considered net is only partially conflict-free, because there might be con-
flicts between controllable transitions. To be able to apply the previous lemmas,
we make the net conflict-free for a given initially enabled sequence µ0:

For each observable transition v we add a fresh place sv, and an arc from
sv to v. Then v can only occur when sv is marked. Now consider the sequence
µ0 = v1v2 . . . vk. For each transition vi in this sequence except the last (vk) we
add an arc from vi to svi+1 . The place sv1 gets an initial token, the other new
places remain unmarked initially.

By construction, every reachable marking of this extended net marks at most
one of the new places. Since each observable transition has such a place in its pre-
set, always at most one observable transition is enabled. Since conflicts are only
possible between controllable transitions and since each controllable transition is
observable, thus no conflict can appear. Therefore, this extended net is conflict-
free. By construction, the new initial marking enables µ0 in the extended net.

The following claim also refers to an arbitrary initially enabled occurrence
sequence µ0 and to the net extended with the places as mentioned above. It
generalizes Lemma 7:

Claim: All minimal occurrence sequences µ enabled at m0 which satisfy µ =
µ0 lead to the same marking.

Proof of Claim: by induction on the length of µ0.
Base: If µ0 is empty then the only minimal sequence µ satisfying µ = µ0 is

the empty sequence.
Step: Let µ1, µ2 be minimal occurrence sequences enabled atm0 which satisfy

µ1 = µ2 = σ0.
Let µ1 = u1 u2 . . . uk and let ui be the first observable transition in µ1.

Similarly, let µ2 = v1 v2 . . . vl. Then the first observable transition vj in µ2

satisfies ui = vj .
We apply Lemma 6 to both sequences and thus obtain minimal subsequences

towards ui (vj , respectively). By Lemma 7, both subsequences lead to the same
marking. The induction hypothesis applies to the two complementary sequences.
This ends the proof of the claim.

The unique (for a given µ0) marking reached by a minimal sequence µ sat-
isfying µ = µ0 will be called mµ0 in the sequel. Abusing notation, we call the
same marking of the original net also mµ0 , ignoring the additional places.

158 PNSE’14 – Petri Nets and Software Engineering

In the following, it will be useful to assume an arbitrary fixed total order
≺ on the set of observable transitions, i.e., if u and v are distinct observable
transitions then either u ≺ v or v ≺ u.

By liveness of the original net, for each initially enabled occurrence sequence
µ0 there exists (at least one) occurrence sequence µ′0 ending with t which is
enabled by mµ0

(in the original net). We assume that µ′0 has a minimal number
of observable transitions among all sequences with the above property, i.e., µ′0
has minimal length. Among these minimal sequences we assume moreover that
the first observable transition in µ′0 is minimal w.r.t. ≺.

Now we define ϕt as follows: For each initially enabled occurrence sequence
µ, we set ϕt(µ) = {u} if µ′ begins with u and u is controllable, and ϕt(µ) = ∅ if
µ′ begins with u and u is not controllable. Notice that µ′ contains t as its last
transition and is hence not empty.

We now come back to the core of this proof and consider an arbitrary initially
enabled occurrence sequence σ0 which leads to a marking m. We have to show
that each ϕt-maximal occurrence sequence enabled at m eventually contains t.

We consider a conflict-free variant of the net as before, but instead of consid-
ering only the sequence σ0 we add places according to the sequence σ0 ϕt(σ0),
i.e., we allow to fire the observable transition ϕt(σ0) after σ0.

We proceed by induction on the number of observable transitions in σ′0 (which
is defined above as an occurrence sequence ending with t enabled at mσ0

with a
minimal number of observable transitions).

Base: Assume that σ′0 = t. Then there is an occurrence sequence σ′0, enabled
at mσ0

which eventually contains t (and no other observable transition). Since
m is reachable from mσ0 by Lemma 6, for each ϕt-maximal occurrence sequence
enabled atm there is a suitable prefix yielding a ϕt-maximal occurrence sequence
from mσ0

. By conflict-freeness of the extended net and by weak fairness, each
ϕt-maximal occurrence sequence enabled at mσ0

eventually contains t. Hence
this holds in particular for those passing through m.

Step: Assume that σ′0 = u1 u2 . . . uk t, k ≥ 1. Arguing as in the Base case,
there is an occurrence sequence σ′0, enabled at mσ0

which eventually contains u1
(and no other observable transition). Since m is reachable from mσ0

by Lemma
6, for each ϕt-maximal occurrence sequence enabled at m there is a suitable
prefix yielding a ϕt-maximal occurrence sequence from mσ0 . By conflict-freeness
of the extended net and by weak fairness, each ϕt-maximal occurrence sequence
enabled at mσ0

eventually contains u1. Hence this holds in particular for those
passing m. So each ϕt-maximal occurrence sequence σ enabled at m can be
divided as σ1u1σ2 where σ2 is again ϕt-maximal, and σ2 is shorter than σ. By
the induction hypothesis, σ2 contains t, and therefore so does σ. ut

In Fig. 4, we see one net with a conflict and a conflict-free net. The net
shown in Fig. 4.a includes a conflict between a controllable transition and an
uncontrollable transition (which is also unobservable). Although the net is live,
since we cannot force t1 to fire, both t1 and t3 are not observably live and so the
net is not observably live. When the conflict in Fig. 4.a is resolved, we get the
net shown in Fig. 4.b which is both live and observably live.

J. Desel, G. Kılınç: Observable Liveness 159

Fig. 4. a: a net with a conflict, b: a conflict-free net, c: a net which is conflict-free
w.r.t. its uncontrollable transitions.

The net shown in Fig. 4.c is conflict-free w.r.t. all its uncontrollable tran-
sitions. Notice that there is a conflict between two controllable transitions t4
and t5. We can choose the related controllable transition in order to observe the
occurrence of any observable transitions. The only choice is ours to make, the
uncontrollable part of the machine behaves deterministically. This net is both
live and observably live.

7 Conclusion and Related Work

Petri nets are widely used in software engineering for modeling and verifying
software systems [3]. In this work, we provide a novel liveness notion which
expresses the serviceability of a software system via an interface.

We considered a variant of Petri nets with observable transitions, where an
observable transition can also be controllable. For further information about
controllability and observability in Petri nets and using Petri nets in control
theory, see [2, 15].

In analogy to the usual definition of liveness of a Petri net, we provided
a notion for observable liveness, which roughly means that a user can always
enforce the occurrence of any observable transition, only by stimulating the net
by choosing appropriate enabled controllable transition. Therefore it is necessary
to assume that also the uncontrollable part of a net proceeds, i.e., we assume

160 PNSE’14 – Petri Nets and Software Engineering

that the net behaves weakly fair. A similar notion, T -liveness, yet for different
motivations, is represented in [9]. One of the main differences is that only the
fully controllable and observable nets are considered.

In general, liveness does not imply observable liveness and neither the op-
posite direction holds. This paper proves that for 1-bounded Petri nets with
transitions that can be observable or additionally controllable, liveness implies
observable liveness, where the latter means that control can force every transi-
tion to fire eventually from an arbitrary reachable marking – provided the net
model behaves deterministically in its uncontrollable part. This control can only
select enabled controllable transitions and is based only on the sequence of tran-
sitions observed so far. This way the result generalizes the obvious observation,
that in a fully deterministic net a transition is live if and only if it eventually
fires.

A future consideration refers to possible generalizations of our result. It
clearly still holds when there is some limited nondeterminism in the uncon-
trolled part. For example, if two alternative uncontrollable transitions cause the
same marking transformation, the result is not spoiled. More generally, we aim
at defining an equivalence notion on nets, based on the respective observed be-
havior, which preserves observable liveness. Reduction rules, as defined e.g. in
[1], [6] and [4] but also in many other papers, could be applied to the uncon-
trollable part leading to simpler but equivalent nets. However, there are obvious
additional rules. For example, a rule that deletes a dead transition is sound w.r.t.
the equivalence because dead uncontrollable transitions do not contribute to the
observable liveness or non-liveness of the considered net.

As a future work, we plan to consider an automata approach for the im-
plementation of the response function. The domain of the response function is
defined infinite. In order to decide which controllable transitions can be fired
next, an arbitrary history of observed transitions has to be considered. Often, a
finite amount of the history is enough for this decision. If this is the case, an au-
tomata based approach can be used for the realization of the response function:
the response then only depends on a state (of finitely many) of this automaton.

Concerning behavior, each run has an alternation between free choices of the
machine (where in analysis all possibilities must be considered) and particular
choices of the user. Therefore, describing the behavior with AND/OR-trees seems
promising, maybe in combination with unfolding approaches. The partial order
view would have obvious advantages to capture the progress assumption (that
we called weak fairness) in a natural way [5, 14].

A final remark concerns the relation to Temporal Logics. Since liveness and all
reachability questions in traditional Petri nets use existential quantification on
paths (of the reachability graph), and therefore require Branching Time concepts,
our approach explicates reasons for desired activities, i.e., transition occurrences.
More precisely, as in the discussion of liveness in this paper, we distinguish
uncontrollable alternatives and controllable choices, to be able to express that a
certain activity (of a user) leads to the eventual occurrence of an event, no matter
how the uncontrollable activities behave (but assuming they do not refuse work

J. Desel, G. Kılınç: Observable Liveness 161

at all). This is clearly a Linear Time property. So, very roughly speaking, we
translate Branching Time properties to Linear Time properties, and at the same
time add details about controllability and observability to the system model.
Future work aims at these transformations not only in the context of liveness
properties but for arbitrary properties expressed by logical formulae. A related
work has been done by Haddad et al. in [7].

Acknowledgements

The authors thank to Lucia Pomello and Luca Bernardinello for their valuable
comments. This work was partially supported by MIUR and by MIUR - PRIN
2010/2011 grant ‘Automi e Linguaggi Formali: Aspetti Matematici e Applica-
tivi’, code H41J12000190001.

References

1. Gérard Berthelot. Transformations and decompositions of nets. In Wilfried Brauer,
Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume
254 of Lecture Notes in Computer Science, pages 359–376. Springer, 1986.

2. Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

3. Giovanni Denaro and Mauro Pezzè. Petri nets and software engineering. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency
and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 439–466.
Springer Berlin Heidelberg, 2004.

4. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge tracts in theoretical
computer science. Cambridge University Press, 1995.

5. Jörg Desel, Hans-Michael Hanisch, Gabriel Juhás, Robert Lorenz, and Christian
Neumair. A guide to modelling and control with modules of signal nets. In Hartmut
Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard
Schnieder, and Engelbert Westkämper, editors, SoftSpez Final Report, volume 3147
of Lecture Notes in Computer Science, pages 270–300. Springer, 2004.

6. Serge Haddad. A reduction theory for coloured nets. In Grzegorz Rozenberg,
editor, European Workshop on Applications and Theory in Petri Nets, volume 424
of Lecture Notes in Computer Science, pages 209–235. Springer, 1988.

7. Serge Haddad, Rolf Hennicker, and MikaelH. Møller. Specification of asynchronous
component systems with modal i/o-petri nets. In Martín Abadi and Alberto
Lluch Lafuente, editors, Trustworthy Global Computing, Lecture Notes in Com-
puter Science, pages 219–234. Springer International Publishing, 2014.

8. Lawrence E. Holloway, Bruce H. Krogh, and Alessandro Giua. A survey of petri net
methods for controlled discrete event systems. Discrete Event Dynamic Systems,
7(2):151–190, 1997.

9. Marian V. Iordache and Panos J. Antsaklis. Design of t-liveness enforcing super-
visors in petri nets. IEEE Trans. Automat. Contr., 48(11):1962–1974, 2003.

10. L. H. Landweber and E. L. Robertson. Properties of conflict-free and persistent
petri nets. J. ACM, 25(3):352–364, July 1978.

11. T. Murata. Petri nets: Properties, analysis and applications. In Proceedings of the
IEEE, volume 77, pages 541–580, April 1989.

162 PNSE’14 – Petri Nets and Software Engineering

12. Wolfgang Reisig. Partial order semantics versus interleaving semantics for csp-like
languages and its impact on fairness. In Proceedings of the 11th Colloquium on
Automata, Languages and Programming, pages 403–413, London, UK, UK, 1984.
Springer-Verlag.

13. Wolfgang Reisig. Elements of distributed algorithms: modeling and analysis with
Petri nets. Springer, 1998.

14. Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, 2013.

15. Manuel Silva. Half a century after carl adam petri’s ph.d. thesis: A perspective on
the field. Annual Reviews in Control, 37(2):191 – 219, 2013.

16. Wil M. P. van der Aalst. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

17. Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. On causal seman-
tics of petri nets. In Joost-Pieter Katoen and Barbara König, editors, CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 43–59. Springer, 2011.

J. Desel, G. Kılınç: Observable Liveness 163

164 PNSE’14 – Petri Nets and Software Engineering

Real-Time Property Specific Reduction for Time
Petri Net

Ning Ge Marc Pantel

LAAS-CNRS University of Toulouse, IRIT-CNRS
7 Avenue du Colonel Roche, Toulouse 2 Rue Charles Camichel, Toulouse

Ning.Ge@laas.fr Marc.Pantel@enseeiht.fr

Abstract. This paper presents a real-time property specific reduction
approach for Time Petri Net (TPN). It divides TPN models into sub-nets
of smaller size, and constructs an abstraction of reducible ones, which
exhibits the same property specific behavior, but has less transitions and
states. This directly reduces the amount of computation needed to gen-
erate the whole state space. This method adapts well to the verification
of real-time properties in asynchronous systems. It should be possible to
apply similar methods to other families of properties.

Keywords: Real-time property specific reduction, Time Petri net

1 Introduction

The key issue that prevents a wide application of model checking in the industry
is the scalability with respect to the size of the target system. A realistic sys-
tem usually has thousands and even millions of states and transitions. Although
a huge part of impossible firing sequences of transitions are eliminated during
the building of system’s behavior, the interleaving of all others is still a very
large number that will easily lead to combinatorial state space explosion. Clas-
sic verification methodologies usually encounter scalability issues very quickly
along with the growth of system scale, because they follow an implicit purpose:
many different kind of properties will be assessed relying on the same state space
graph (reachability graph). Indeed, once the reachability graph has been gen-
erated, it can be reused to verify different kinds of properties, just by revising
the assessed logic formulas. This consideration requires to build the reachability
graph preserving precise and sufficient information for the assessment of prop-
erties. The existing state space reduction methods, partial order reduction [1,
2], compositional reasoning [3, 4], symmetry [5, 6], abstraction techniques [7], on-
the-fly model checking [8, 9], etc., usually follow the same philosophy to produce
a complete state space that preserves the mandatory semantics. These generic
reduction methods have effectively improved the efficiency of model checking
techniques. But their improvement is becoming more and more difficult. We
thus might put aside the universality of the semantics expressed in the state
space graph, and take into account property specific reduction methods.

This work proposes a real-time property specific state space reduction ap-
proach for Time Petri Net (TPN). It divides the TPN model into sub-nets of

smaller size, and constructs an abstraction of reducible sub-nets, which exhibit
the same property specific behavior, but has less transitions and states. The
real-time property specific behavior (called real-time behavior for short in the
following parts) of TPN sub-nets is an abstraction of the whole state-transition
traces that only preserves real-time behaviors from the viewpoint of observa-
tions. This method adapts well to the verification of real-time properties in
asynchronous systems. It could be possible to apply similar methods to other
families of properties.

This paper is organized as follows: Section 2 presents some related works;
Section 3 introduces real-time properties and Time Petri Net; Section 4 gives
an overview of property specific reduction methods; Section 5 defines two real-
time behavior regularities for this work; Section 6 details the proposed reduction
method; Section 7 provides experimental results; Section 8 discusses the behavior
coverage issue; Section 9 gives some concluding remarks.

2 Related Works

Several existing works [10–13] defined reducible sub-net patterns for Petri nets,
Time Petri nets or Colored Petri nets, based on the idea of fusing redundant
places and transitions. They provide in fact simple behavior equivalent patterns.
The state space reduced by these patterns is rather limited.

The idea of our approach is similar to the partial order reduction [14, 2] and
the state space abstraction techniques applied in the TINA toolset.

The partial order reduction is usually used in asynchronous concurrent sys-
tems, where most of the activities in different processes are performed indepen-
dently, without a global synchronization. Its main idea is to construct a reduced
state class graph by analyzing the dependencies between the transitions and ex-
ploiting the commutativity of concurrently executed transitions, which result in
the same state when executed in different orders. A set of non-reducible transi-
tions are preserved in the reduced state class graph. The reduced behavior is a
subset of the behavior of the full state class graph. Compared to the partial order
reduction, the proposed property specific reduction exploits the commutativity
of TPN sub-nets, which result in the same property specific behavior.

The TINA toolset provides various state space abstractions for TPN when gen-
erating state class graphs, following the techniques proposed in [15, 9]. Depending
on the abstraction options, the construction can preserve the traces required by
the verification of markings, states, LTL, or ctl∗ properties. This work relies on
the state class graph preserving markings to verify the real-time properties in
TPN. Even with this highest abstraction, the state space still rapidly increases
along with system scale. Therefore, more abstract state class graphs dedicated
to one type of properties (in our case real-time properties) is needed.

166 PNSE’14 – Petri Nets and Software Engineering

3 Preliminaries

3.1 Time Petri Net

Time Petri nets [16] extends Petri Nets with timing constraints on the firing of
transitions. Here we use the formal definition of TPN from [17] to explain its
syntax and semantics.

Definition 1 (Time Petri Net). A Time Petri Net (TPN) T is a tuple
〈P, T, •(.), (.)•,M0, (α, β)〉, where:
– P = {p1, p2, ..., pm} is a finite set of places;
– T = {t1, t2, ..., tn} is a finite set of transitions;
– •(.) ∈ (NP)T is the backward incidence mapping;
– (.)• ∈ (NP)T is the forward incidence mapping;
– M0 ∈ NP is the initial marking;
– α ∈ (Q≥0)T and β ∈ (Q≥0 ∪ ∞)T are respectively the earliest and latest

firing time constraints for transitions.

Following the definition of enabledness in [18], a transition ti is enabled in a
marking M iff M ≥ •(ti) and α(ti) ≤ vi ≤ β(ti) (vi is the elapsed time since
ti was last enabled). There exist a global synchronized clock in the whole TPN,
and α(ti) and β(ti) correspond to the local clock of ti. The local clock of each
transition is reset to zero once the transition becomes enabled. The predicate
↑ Enabled(tk,M, ti) in the following equation is satisfied if tk is enabled by the
firing of transition ti from marking M , and false otherwise.

↑ Enabled(tk,M, ti) = (M−•(ti)+(ti)
• ≥ •(tk))∧((M−•(ti) <

•(tk))∨(tk = ti)) (1)

Time Petri Net is widely used to formally capture the temporal behavior of
concurrent real-time systems due to its easy-to-understand graphical notation
and the available analysis tools, such as TINA, INA, Roméo, etc.

3.2 Real-Time Property Verification

The safety and reliability of real-time systems strongly depend on the satisfaction
of its real-time requirements, in both qualitative and quantitative aspects.

Dwyer et al. initially proposed qualitative temporal property patterns for
finite-state verification in [19]. Konrad created in [20] mappings of quantitative
requirements into timed logics MTL, TCTL, and RTGIL, and defined a pattern tem-
plate to ease the reuse. From the viewpoint of property verification, the real-time
requirements expressed by Dwyer’s and Konrad’s patterns are not atomic. We
thus defined a minimal set of atomic patterns, which allows to specify the same
time requirements as Dwyer’s and Konrad’s patterns do, to ease the property
verification based on observers. We have defined 12 event-based and 4 state-based
observers and verified real-time requirements using the reachability assertions.
Some early results about the observer-based verification approach are presented
in [21, 22].

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 167

4 Approach Overview

Let’s first see an example benefiting from property specific reduction method.

Example 1 (Example of Property Specific Reduction). When generating the
reachability graph preserving markings for the TPN model in Fig. 1 by TINA,
it contains 177 states and 365 transitions. This system is identified as two
sub-nets A and B : A is the structure in dotted box, and B is the other parts. The
transition t4 is the only portal transition between A and B. From the viewpoint
of A through t4, A does not know the inner structure and inner behavior of B,
only two informations are observable: how many times t4 will be fired and the
time range for each firing occurrence of t4.

A

B

Figure 1. Example of Property Specific Reduction

We provide these informations based on the real-time property verification
method presented in the previous section. t4 is fired infinitely. The time ranges
for each firing occurrence are shown in Table 1. For each firing occurrence n
(n ∈ N) of t4, the time range [tmin

n , tmax
n] is [5 + 17(n − 1), 10 + 69(n − 1)].

The behavior regularity in this case is that, except the first occurrence, the time
difference between current occurrence and the previous one is always in [17, 69].

A sub-net B′ conforming to this regular pattern is constructed to replace
original sub-net B, as shown in Fig. 2. Sub-net A is kept as before. The reacha-
bility graph of the reduced TPN only contains 3 states and 3 transitions, but
exhibits the same real-time behavior as before from the viewpoint of A.

To summarize the main objective of this work from the above example, we
aim to find the regularity of the real-time behavior for the TPN sub-nets from
the viewpoint of observations. As we only observe TPN transitions, the real-time
behavior from the viewpoint of observed transitions concerns both the firing
occurrence times and the time range of each firing occurrence. A reducible sub-
net must be independent of its surrounding behavioral context. It means that

168 PNSE’14 – Petri Nets and Software Engineering

Occurrence Time [tmin
i , tmax

i] Time Diff [tmin
i − tmin

i−1 , tmax
i − tmax

i−1]
0 [0, 0] -
1 [5, 10] [5, 10]
2 [22, 79] [17, 69]
3 [39, 148] [17, 69]
...
n [5+17(n-1), 10+ 69(n-1)] [17, 69]

Table 1. Real-Time Behavior

t4

[5,10] p1

t1

[17,69] p2p0

t5

[0,0]p5

B'

A

Figure 2. Example Result of Behavioral Equivalence

whether it is "knocked out" from the system or not, it will exhibit exactly the
same behavior whenever it is measured, in terms of occurrence times of the portal
transition and its time range of each firing occurrence.

An overview of the approach is illustrated in Fig. 3. First, some reducible
sub-nets like A, B, and C are identified from the whole TPN model using the
Identification functions. These sub-nets contain either none incoming transition
and one unique outgoing transition such as A, denoted as one-way-out pattern; or
one incoming and one outgoing transitions such as B and C, denoted as generic
pattern. The regularity of real-time behaviors for each reducible sub-nets A, B
and C are searched using Reduction functions relying on observer-based property
verification method. If the regularity is founded, reduced sub-nets (A′, B′, and
C ′) are constructed to replace the original ones after their soundness is assessed
by the Refinement functions, which also rely on the observer-based property
verification method. As the one-way-out pattern and the generic pattern rely on
different identification functions but similar reduction and refinement functions,
for the page limit, we only develop our discussion based on the one-way-out
pattern.

5 Regularity of Real-Time Behavior

The regularity of real-time behavior depends on the characteristics of a system.
Fig. 4 illustrates two possible regularities of real-time behavior from the view-
point of observed transitions. The TPN in Fig.4 (a) has 3 sub-nets: A, B and C.
A (resp. B) has a unique portal transition TA (resp. TB) to C, and produces
tokens via TA (resp. TB) periodically or sporadically. From the viewpoint of C,

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 169

System

A

A'

B C

B' C'

Figure 3. Overview of Behavior Equivalence Approach

regardless the complex inner behaviors of the A and B, they can be seen as single
transitions that may fire regularly under a pattern to feed C by tokens. There
exists thus an opportunity to abstract and redefine this regularity to a reduced
TPN A′ (resp. B′) that may contains less states and transitions than the original
one.

B'

A

C

TA

C

[t1,t2]

[t3,t4]

….

[tm,tn]

B

[ti,tj]

[tp,tq]

….

[tx,ty]

A'

TB

(a) (b)

Figure 4. Reduction pattern

When the observation is performed on a TPN transition, the regularity of
its firing occurrence is either finite or infinite. The time range of each firing
occurrence can be measured using observers if the time ranges are bounded.

Fig. 4 (b) shows two kinds of possible regularity. Assume that we observe the
firing time of transitions TA and TB for each firing occurrence. The occurrence
of TA/TB can be either finite (A) or infinite (B). An infinity observer can be
added on a transition to check its infinity. Each occurrence Ti has a bounded
time range [tmin

i , tmax
i]. These ranges are derived by adding BCET (Best Case

Execution Time) and WCET (Worst Case Execution Time) observers on TA and
TB .

Finite Firing Occurrence If the occurrence is finite, the sub-net A can be
represented by a finite sequential section of transitions Tseq = {Ti} (i ∈ N)
with adapted time range [Ti.min, Ti.max], where Ti.min = tmin

i − tmin
i−1 , and

170 PNSE’14 – Petri Nets and Software Engineering

Ti.max = tmax
i − tmax

i−1 and tmin
0 = tmax

0 = 0. It is possible that the regularity
of A contains several control modes that lead to several branches with finite
sequential transitions.

Infinite Firing Occurrence If the occurrence is infinite, as we focus on finite-
state systems, the states in sub-net B must be finite. In other words, there must
exist a repeating pattern in B. Depending on system’s behavior, there are several
possible repeating patterns, such as single loop pattern, nested loop pattern, etc.
In this paper, we only discuss one of them: the pattern that is composed of an
eventual finite sequential section of transitions Tseq = {Ti} (i ∈ N) and a loop
section of transitions Tloop = {Tj} (j ∈ N). The other patterns are under study.
Therefore, for now, if the system does not behave the infinite regularity with an
eventual sequential section and a loop section, it is considered as non-reducible.

6 Real-Time Property Specific Reduction

The property specific state space reduction method follows three steps (func-
tions): identification, reduction and refinement, which rely on the real-time prop-
erty specification and observer-based verification approaches presented in [21,
22]. This section details the algorithms for the above functions for the one-way-
out pattern.

6.1 Identification Function for One-Way-Out Pattern

We first define a symbolic system to ease the discussion:

– t+ and t−: for a given transition t, represent respectively the outgoing and
incoming arcs of t.

– p+ and p−: for a given place p, represent respectively the outgoing and
incoming arcs of p.

– TR(N) and PR(N): for a given TPN N , represent respectively the sets of re-
ducible transitions and places.

We distinguish the reducible and non-reducible TPN structure. Non-reducible
elements include those structures directly associated with properties, including
observer structures, structures directly linked to observers and places/transitions
referred to by reachability assertions. The other parts are considered as reducible.

Before performing property specific reduction, some property-irrelevant
structures can be directly removed from the reducible net. They are the struc-
tures that have causality to the observers. The exact causality can be measured
using the reachability graph of the whole system. The paradox exists here: if
the whole reachability graph can be generated, we may not need any reduc-
tion method. Therefore, to ensure the safety of the removal, we rely on the
dependency analysis in TPN as a over-approximation. The detailed dependency
algorithm is trivial thus will not be presented here. Now assume the set of TR(N)

and PR(N) are available after the removal.

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 171

Identification function F(N) = <A, Tout> identifies, for a given TPN N , the
enclosed sub-net A that could be possibly reduced (necessary condition), and
the unique portal outgoing transition Tout:

– A is a connected graph, A ⊂ N , Tout ∈ A
– ∀p ∈ A, (p ∈ PR(N)) ∧ (p+ ⊂ A) ∧ (p− ⊂ A)
– ∀t ∈ A, (t ∈ TR(N)) ∧ (t− ⊂ A)
– (Tout ∈ A) ∧ (T+

out ∩A 6= ∅)

6.2 Reduction Function

Reduction function G(A, t) = <NS , NL> extracts, for a given sub-net A and
the outgoing portal transition t, the behavioral equivalent sequential section NS

for the finite cases, or an eventual sequential section NS and the loop section NL

for the infinite cases. It first checks the infinity of t in sub-net A using an infinity
observer. In both cases, the bounding time range [tmin

i , tmax
i] is measured using

predefined BCET and WCET observers for the ith firing occurrence of t.

Building Sequential Section In the finite case, there is only a sequential
section NS . The set of sequential transitions Tseq = {Ti} (i ∈ N) in NS is built
using [tmin

i , tmax
i]. Each transition Ti in Tseq is associated with a time range

[Ti.min, Ti.max]. The algorithm for building NS from A using the transition t is
described in Algo. 1. Initially, tmin

o and tmax
0 are set as 0.NS starts from an initial

place with one token. Whether ti has occurred is checked using tHasOcc(i)
function relying on an occurrence observer. For each occurrence (i) of fired t,
a pair of BCET and WCET observers are added to t in the sub-net A to compute
the tmin

i and tmax
i . Then the time range [Ti.min, Ti.max] is associated to the

transition Ti. Ti is added in NS , and an associated new place without token is
also added in NS .

Data: A, t
Result: NS

tmin
o := 0, tmax

0 := 0 ;
NS .add(new Place(1)) ;
i := o ;
while tHasOcc(i++) do

tmin
i := getOccBCET(A,t,i) ;
tmax
i := getOccWCET(A,t,i) ;
Ti.min = tmin

i − tmin
i−1 ;

Ti.max = tmax
i − tmax

i−1 ;
NS .add(Ti, new Place(0)) ;

end
Algorithm 1: Building Sequential Section

172 PNSE’14 – Petri Nets and Software Engineering

Building Loop Section In the infinite case, the key issue is to identify the
firing occurrence of t that divides the sequential section NS and the loop section
NL. The Algo. 2 is proposed to build the NS and NL sections by searching for the
loop starting transition (loopStartIndex) and the length of loop (loopLength).

Data: A, t, occThreshold, loopThreshold
Result: NS , NL

tmin
0 := 0, tmax

0 := 0 ;
NS .add(new Place(1)) ;
occ := 0 ;
while occ++ ≤ occThreshold do

tmin
occ := getOccBCET(A,t,occ); tmax

occ := getOccWCET(A,t,occ) ;
for loopStartIndex = 0; loopStartIndex < occ; loopStartIndex ++ do

for loopLength = 1; loopLength ≤ occ - loopStartIndex; loopLength ++
do

match : = 0 ;
for index = loopStartIndex; index ≤ occ - loopLength; index++ do

if isSame(<tmin
index, t

max
index>,

<tmin
index+loopLength, t

max
index+looplength>) then

match++ ;
end
else break;

end
if match ≥ loopThreshold then

for k = 1; k < loopStartIndex; k++ do
Tk.min = tmin

k − tmin
k−1 ; Tk.max = tmax

k − tmax
k−1 ;

NS .add(Tk, new Place(0)) ;
end
for k = loopStartIndex; k < loopStartIndex + loopLength; k++
do

Tk.min = tmin
k − tmin

k−1 ; Tk.max = tmax
k − tmax

k−1 ;
NL.add(Tk, new Place(0)) ;
NL.connect(lastPlace, TloopStartIndex) ;

end
return ;

end
end

end
end

Algorithm 2: Building Loop Section

As the firing occurrence of t is infinite, an occurrence bound value is pre-
defined as occThreshold to stop the algorithm. As the Identification function
F(N) uses necessary conditions, the identified sub-net A is considered as non-
reducible if the loop section cannot be found using occThreshold. Another bound
value loopThreshold judges whether the loopStartIndex and the loopLength are

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 173

found. If the loop pattern holds for loopThreshold times, it is considered that
this division of NS and NL is statistically correct. It is obvious that no matter
how big the loopThreshold is, the assurance cannot reach 100%, because the
loop execution is infinite. In order to make sure that the reduced net refines
exactly the same behavior as before, a pre-check (refinement function) must be
performed before accepting the reduced structure.

6.3 Refinement Function

The refinement function verifies the behavioral equivalence between the reduced
sub-net and the original one. Fig. 5 shows the principle of this function: com-
paring the time range of each firing occurrence between the nets B and B′. It is
realized by adding time interval observers between the transition TB in B and
the transitions Ti in B′. Although the firing occurrence is infinite, under the
repeating pattern, the number of Ti is finite. If the refinement fails, it means
the system does not fit the behavior regularity, and thus the reduction method
cannot be applied.

B'
[ti,tj]

[tp,tq]

….
[tx,ty]

T1

T2

Ti

B
TB

observer

check

occ1

occ2

occi

Figure 5. Refinement Function

It is possible that the observed time range do not fully refine the original
behavior because of possible "time holes" in this range. For example, a transition
can fire during [10,15] or [20,30], but never during]15,20[. If [10,30] is directly
used as the time range, the original real-time behavior of the system is extended.
Therefore a detailed observation must be introduced to detect the time holes.

For a given observed range [min, max] of transition T , at its ith occurrence,
the assertion checkk "exist Ti between k and k+1" will be checked for all min ≤
k < max. If checkk. If the check does not pass, the time range will be broken into
two sections: [min, k] and [k+1,max]. To be more general, if checkk1

, checkk2
, ...

checkkn do not pass, the final refined equivalent time ranges of this occurrence
will become [min, k1], [k1 + 1, k2], ..., [kn + 1, max]. Accordingly, the sequential
transition of the equivalent sub-net will be refined to a sub-structure which

174 PNSE’14 – Petri Nets and Software Engineering

contains branches representing all possible firing time range after removing those
impossible ranges. An example in Fig. 6 (a) shows that the transition T in the
reduced sub-net A exhibits a firing time range [t3, t4]. But there exists time
holes on this time range, and thus the real time behavior is [t3, t

′
3] ∪ [t′4, t4],

where t′3 < t′4. The transition T should be replaced by the sub-range structure
(grey part in Fig. 6 (b)).

C

[t1,t2]

[t3,t4]

….

A

C

[t1,t2]

[0,0]

….

A'

[0,0]

[t3,t3'] [t4',t4]

[tm,tn]

[tm,tn]

(a) (b)

T

Figure 6. Deal with Holes on Time Range

7 Experimental Results

To experiment the property specific reduction method, we use an avionic case
study investigated by M. Lauer et al. [23], which is a part of a flight manage-
ment system (FMS). The FMS consists of two units, a control display unit and a
computer unit. The control display unit provides human/machine interface for
data entry and information display. The computer unit provides both comput-
ing platform Integrated Modular Avionics (IMA) and various interfaces to other
avionics. The communication between modules is implemented by Avionic Full
DupleX(AFDX). FMS uses redundant implementation of its functions.

The latency requirement is assessed in the case study. It depends on the
functional chain in Fig. 7. At any time, the pilot can request some information
on a given waypoint. The KU1 (Keyboard and Cursor Control Unit) controls
the physical device used by the pilot to enter his requests. When KU1 receives a
request (req1), it broadcasts wpid1 and wpid2 to the Flight Managers FM1 and
FM2 respectively. The FMs manage the flight plan, i.e., the trajectory between
successive waypoints. When a request occurs, both query the NDB (Navigation
Database) by sending query1 (resp. query2) to retrieve the static information

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 175

on the waypoint such as the latitude and the longitude. The NDB separately
answers each FM by sending a message answer1 (resp. answer2) containing the
expected data. Upon reception of this message, each FM computes two comple-
mentary dynamic data: the distance to the waypoint, and the ETA (Estimated
Time of Arrival). These data (wpInfo1 and wpInfo2 resp.) are periodically
sent to respective MFDs (Multi Functional Display) which periodically elabo-
rate the pages to be displayed on the screens. The KU1, FMs, NDB , MFDs are
asynchronous functional modules.

FM1

FM2 NDB

KU1

FM2

MFD1FM1NDB

MFD2

req1

disp2

disp1

wpInfo2

wpInfo1

answer2

answer1

query2

query1
wpId1

wpId2

Figure 7. Functional Chain: Sporadic Response to Request

The latency requirement guarantees that the system responds quick enough
to a request. It corresponds to the time elapsed between pilot’s request (req1) and
the first occurrence of the display signal depending on req1 (disp1). Therefore,
the real-time property here is the worst case time (WCT) and best case time (BCT)
between req1 and the first occurrence of disp1 depending on req1.

We model the functional chain in TPN. The WCT and BCT observers are added
respectively to the TPN. A binary search algorithm is used to search for the
bound values. The computation results (verified under MacOS 10.6.8 with a
processor 2.4 GHz Intel Core 2 Duo) are shown in Table 2. The WCT (resp. BCT)
is 450.4 (reps. 75.2) ms. By applying the reduction approach, the state space
is significantly reduced. Take the WCT for example, compared to the verification
time 278.313 s before reduction, the verification time is reduced to 2.484 s.

Table 2. Real-Time Property Verification Results

Property Property
Value (ms)

State/Transition Number Execution Time (s)
Before Reduc. After Reduc. Before Reduc. After Reduc.

Latency
System N/A 9378/23250 N/A N/A N/A
WCT 450.4 67105/145024 9/10 278.313 2.484
BCT 75.2 11162/28922 8/9 43.781 3.719

To test the scalability, the functional chain is enlarged by increasing the
number of NDB . Each functional chain traverses P NDB , i.e. 2P +3 functions.

L1 =
req1−−−→ KU1

wpId1−−−−−→ FM1
query1−−−−−→ NDB1

query2−−−−−→ ...
queryP−1−−−−−−−→ NDBP−1

queryP−−−−−→ NDBP

answerP−−−−−−−→ NDBP−1

answerP−1−−−−−−−−−→ ...
answer2−−−−−−→ NDB1

answer1−−−−−−→ FM1
wpInfo1−−−−−−→ MFD1

disp1−−−−→
(2)

176 PNSE’14 – Petri Nets and Software Engineering

Before apply this reduction method, the state space begins to explode even
the NDB number is 2 under the test environment. By increasing P from 1 to 11,
we give out the state/transition number, reduction time, model checking (MC)
time and solving time after applying the reduction method in Table 3. The
reduction result is prominent. The solving time is almost linear with respect
to the system’s scale. This case study shows that after reduction, the explosive
systems can be analyzed, if the systems conform to the behavioral regularities.

Table 3. Scalability Test for Latency Property

NDB/Fun. State/Tran (after Red.) Reduction
Time (s)

MC Time (s) Solving Time (s)
WCT BCT WCT BCT WCT BCT

1/7 9/10 8/9 38.049 2.484 1.860 40.533 39,909
2/8 9/10 8/9 57.876 2.656 1.883 60.532 59,759
3/9 9/10 6/5 79.813 2.812 2.079 82.625 81,892
4/10 9/10 6/5 102.500 2.906 2.079 105.406 104,579
5/11 9/10 6/5 124.987 3.015 2.102 128.002 127,089
6/12 9/10 6/5 149.359 2.891 2.196 152.250 151,555
7/13 9/10 6/5 169.607 2.953 2.227 172.560 171,834
8/14 9/10 6/5 193.329 3.031 2.250 196.360 195,579
9/15 9/10 6/5 216.239 3.000 2.211 219.239 218,45
10/16 9/10 6/5 239.953 3.047 2.195 243.000 242,148
11/17 9/10 6/5 263.049 3.188 2.195 266.237 265,244

8 Computation Complexity & Applicability

This method turns the combination problem of O(N · M) into a divide-and-
conquer problem of O(tiden + n ·N +M ·N ′), where
– N is the state unfolding complexity of the target sub-net,
– M is the complexity of the other parts of the TPN,
– N ′ is the state unfolding complexity of the reduced sub-net, 1 ≤ N ′ ≤ N .

It is expected that 1 ≤ N ′ � N if the system conforms to the behavioral
regularity.

– tiden is the time for identification, it is O(N2
S), where NS is the number of

places and transitions in the TPN system.
– n is unfolding times of A by the reduction, refinement and cavity detection
• Finite case reduction: 2N4

B · Aobs, NB is the defined bound value of
occurrence times, Aobs is the unfolding time of A with observer.

• Infinite case reduction: 2N4
B · Aobs, NB is the defined bound value of

occurrence times.
• Refinement: (nS + nL) · Aobs, nS is the length of sequential section, nL

is the length of loop section.

• Cavity Detection:
nS+nL∑
i=1

(maxi −mini) ·Aobs

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 177

This method relies on the observers, it may thus take time to search for the
bound values of time ranges. In some cases, if the system does not conform to the
behavioral regularity, it can only be known after performing the reduction and
refinement methods. As our purpose is to reduce the state space of model check-
ing, the trade-off between computation time and the state space is acceptable,
except that the computation time is out of the predefined thread-hold value.
This is then an engineering problem.

9 Conclusion

This paper proposes a real-time property specific reduction approach for TPN
based model checking. We illustrate the reduction method for the one-way-out
pattern. More generic pattern with one incoming portal transition and one out-
going transition uses different identification function, but similar reduction and
refinement functions. This method makes the verification more scalable for sys-
tems conforming to some behavioral regularities. It makes a trade-off between
the state space and the solving time, and allows to verify large scale systems
that will easily encounter combinatorial explosion problem, especially for the
asynchronous real-time systems. The case study shows that after reduction, the
explosive systems can be analyzed, if the systems conform to the behavioral
regularities. The reduction and refinement functions rely on the real-time prop-
erty specification and observer-based verification approaches. For now, we have
defined two behavioral regularities for the finite and infinite firing occurrence,
and provided reduction methods for the pattern with an eventual sequential sec-
tion and a loop section. Other real-time behavioral regularities are under study.
Similar approaches can be studied to reduce the state space for verifying other
families of properties.

Acknowledgment

This work was funded by the FUI P and OpenETCS projects. We also wish to thank
Michaël Lauer and Frédéric Boniol for the sharing of the avionic case study.

References

1. Valmari, A.: A stubborn attack on state explosion. In: Computer-Aided Verifica-
tion, Springer (1991) 156–165

2. Godefroid, P., van Leeuwen, J., Hartmanis, J., Goos, G., Wolper, P.: Partial-
order methods for the verification of concurrent systems: an approach to the state-
explosion problem. Volume 1032. Springer Heidelberg (1996)

3. Misra, J., Chandy, K.M.: Proofs of networks of processes. Software Engineering,
IEEE Transactions on (4) (1981) 417–426

4. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 16(3) (1994) 843–871

178 PNSE’14 – Petri Nets and Software Engineering

5. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design 9(1-2) (1996) 77–104

6. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal methods in
system design 9(1-2) (1996) 105–131

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems (TOPLAS) 16(5) (1994)
1512–1542

8. Holzmann, G.: On-the-fly model checking. ACM Computing Surveys (CSUR)
28(4es) (1996) 120

9. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool tina - construction of abstract
state spaces for Petri nets and time Petri nets. International Journal of Production
Research 42(14) (2004) 2741–2756

10. Sloan, R.H., Buy, U.: Reduction rules for time Petri nets. Acta Informatica 33(7)
(1996) 687–706

11. Berthelot, G.: Transformations et analyse de réseaux de Petri: application au pro-
tocoles. Rapports de recherche / Université de Paris-Sud, Laboratoire de recherche
en informatique. LRI (1983)

12. Berthelot, G., et al.: Checking properties of nets using transformations. In: Ad-
vances in Petri Nets 1985. Springer (1986) 19–40

13. Haddad, S.: A reduction theory for coloured nets. In Rozenberg, G., ed.: Advances
in Petri Nets 1989. Volume 424 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (1990) 209–235

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT press (1999)
15. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of

time Petri nets. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer (2003) 442–457

16. Merlin, P., Farber, D.: Recoverability of communication protocols–implications of
a theoretical study. Communications, IEEE Transactions on 24(9) (1976) 1036 –
1043

17. Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed
automata. JSS 79(10) (October 2006) 1456–1468

18. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3) (March 1991) 259–273

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering. ICSE ’99, ACM (1999) 411–420

20. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th international conference on Software engineering, ACM (2005) 372–381

21. Ge, N., Pantel, M.: Time properties verification framework for UML-MARTE
safety critical real-time systems. In: Modelling Foundations and Applications.
Springer (2012) 352–367

22. Ge, N., Pantel, M., Crégut, X.: Formal specification and verification of task time
constraints for real-time systems. In: Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies. Springer (2012) 143–
157

23. Lauer, M.: Une méthode globale pour la vérification d’exigences temps réel -
Application à l’Avionique Modulaire Intégrée. PhD thesis, INPT (juin 2012)

N. Ge et al.: Real-Time Property Specific Reduction for Time Petri Net 179

180 PNSE’14 – Petri Nets and Software Engineering

Visual Language Plans - Formalization of a Pedagogical
Learnflow Modeling Language

Kerstin Irgang1 and Thomas Irgang2

1 Human-Centered Information Systems, Clausthal University of Technology,
kerstin.pfahler@tu-clausthal.de

2 Department of Software Engineering and Theory of Programming, Fernuniversität Hagen,
thomas.irgang@fernuni-hagen.de

Abstract. In this paper we present an approach to support selfregulated learn-
flows in the collaborative environment Metafora. In this environment students
construct Visual Language Plans. Those plans model workflows of learning ac-
tivities, which the students execute to solve complex learning scenarios across
different tools.
Visual Language plans were already used in the context of different pedagogical
studies but have no formal syntax or semantics, yet. In this paper, we present the
syntax of Visual Language Plans and develop a mapping from Visual Language
Plans to Petri net defining semantics. With the help of this semantics, the envi-
ronment can support the students executing their learnflows. If students execute
activities given in a Visual Language Plan which are not enabled in the corre-
sponding Petri net, feedback messages occur guiding the students. Students can
refine their Visual Language Plan during execution. If a plan changes the corre-
sponding Petri net model also changes. Analyzing the newly generated Petri net
model can help to uncover faulty states of the learnflow model.

1 Introduction

On the one hand, most schools and universities use traditional eLearning systems like
Moodle or Ilias. These eLearning systems, which work like Groupware systems in in-
dustry, support workflows and offer a lot of evaluation tools, but miss most of the Web
2.0 features and collaboration. On the other hand the students use interactive and col-
laborative Web 2.0 systems like Facebook or Twitter. New pedagogical approaches try
to close this gap and benefit from supporting collaboration between students.

The Metafora project [1] developed a Computer Supported Collaborative Learn-
ing (CSCL) system [2], which takes up the advantages of social networking technolo-
gies. The project was co-funded by the European Union under the 7th Framework Pro-
gram for R&D, with several partners on the technological and pedagogical side. In the
Metafora system, students between 12 to 16 years learn math and science in an enjoy-
able and selfregulated way, working collaboratively in groups of 3 to 6 members on
a complex challenge they have to solve. One aspect of the project was to developed a
so-called Visual Language [3] for planning and executing of learning activities. One of
the main goals of this language is to serve the Learning to learn together (L2L2) [4]
approach (see e.g. [5]). The publications [6,7] describe the L2L2 approach in detail.

In the Metafora system a group of students gets a challenge which they solve collab-
oratively. Therefore the students build a Visual Language Plan, consisting of different
cards and arcs. This plan describes and documents their approach to the challenge.
Teachers can create new challenges. A step of creating a challenge is to select the set
of available cards [8]. The Metafora system supports the students in modeling and ex-
ecuting their Visual Language Plan. When the students execute their plan they use it
to join collaborative instances of the used tools and document the current state of their
execution. When the students finished their plan they reflecting about their process with
the help of the plan. Figure 1 shows an example of a Visual Language Plan.

Fig. 1. An example of a Visual Language Plan.

The Visual Language Plans have a graphical representation and consists of nodes
and arcs. This nodes are cards. Different types of arcs connecting these cards. A card
represents a learning activity. Cards are in one of the three states idle, started or finished.
The Visual Language Plan depicted in Figure 1 was developed by students solving the
challenge The bouncing cannon ball [9]. The students see the bouncing of a cannon ball
and simulate how changing variables like angle and speed change the trace of the ball.
Students explore the phenomenon with the integrated, game-based domain tool PiKI
(Pirates of the Kinematics Island). In PiKI students fire cannon balls from a pirate ship
to an island trying to hit treasures. To solve the challenge the students create a plan and
follow it step by step. In case of the plan depicted in Figure 1 they start with exploring
the challenge by gathering for information on bouncing effects and brainstorming ideas.
Afterwards the students build a model with their ideas in the domain-tool PiKI. In the
next step, the students test their model with simulating and experimenting on it. De-
pending on the results of their test, the students rather go ahead directly to refining their
model, or looking for a new hypothesis on the effect of changing variables of the ball if
the test failed. Nevertheless, the students discuss their findings afterwards, by reflecting

182 PNSE’14 – Petri Nets and Software Engineering

on the previous results in PiKI. The students use the integrated, graphical discussion en-
vironment LASAD [10] for their discussion and make notes about the findings. Finally,
the students create a presentation and present their results to other groups.

Although the Visual Language is very intuitive, it does not have a formal syntax
or semantics. Both are essential requirements to support the students by modeling a
Visual Language Plan. The papers [5] and [11] introduce the core elements of the Visual
Language, but they give no construction rules. First syntactic rules were already defined
in [12]. Now, we fine grain and formalize the syntax of the Visual Language and develop
semantics rules. To define the semantics of a Visual Language Plan we give a mapping
to a Petri net and exploit the occurrence rule of Petri nets. There are other approaches
using Petri nets to model learnflows. The paper [13] considering the teacher as the
expert who models a learnflow which students execute. This approach already had the
advantage of an executable model, which allowed simulation and usage of a workflow
engine, but teachers did not accept it and the students did not understand the model. To
overcome this, the Metafora project developed Visual Language Plans as an intuitive
graphical representation for learnflows and examined it in classrooms with teachers and
students.

We organized the paper as follows. In Section 2, we give the required definitions
of Petri nets and in Section 3 we develop a mathematical founded syntax for Visual
Language Plans. Section 4 describes the mapping of Visual Language Plans to Petri
nets and Section 5 shows our use cases for the new semantics of Visual Language Plans.
In Section 6 we sum up our work.

2 Petri nets and their occurence rule

In this paper we use the following notations. With N0 we denote the non-negative inte-
gers, i.e. N0 = 0, 1, 2, . . . and with |S| we denote the cardinality for a finite set S. Petri
nets [14] are bipartite graphs of places and transitions which are a good tool to model
concurrent systems:

Definition 1 (Petri net). A Petri net is a 4-tupleN = (T, P, F,m0), where T is a finite
set of transitions, P is a finite set of places, F ⊆ (T × P) ∪ (P × T) is a finite set of
edges and m0 : P → N0 is a marking . The sets T and P are disjoint, i.e. T ∩ P = ∅.

In graphical representations, we draw the transitions as squares and the places as
circles. If an edge between a place and a transition exists, we draw an arrow. We show
the marking for a place with small dots drawn in that place. To define the semantics of
a Petri net, we use the preset and postset of a transition.

Definition 2 (Pre- and Postset). Given a Petri net N = (T, P, F,m0). The preset of a
node n ∈ (T ∪P) is the set •n := {n′ ∈ (T ∪P) | (n′, n) ∈ F}. The postset of a node
n ∈ (T ∪ P) is the set n• := {n′ ∈ (T ∪ P) | (n, n′) ∈ F}.

In a Petri net, enabled transition has only marked places in its preset. Only enabled
Transitions can occur. If a transition occurs the marking of the Petri net changes. The
transition consumes marks from its preset and produces new marks in its postset.

K. Irgang, Th. Irgang: Visual Language Plans 183

Definition 3 (Occurrence Rule for Petri nets). Given a Petri netN = (T, P, F,m). A
transition t ∈ T is enabled, iff for all places p ∈ •t : m(p) > 0 holds. The occurrence
of t yields the new marking m′ : P → N0. This marking is:

m′(p) :=




m(p)− 1 , if p ∈ •t and p 6∈ t•
m(p) + 1 , if p 6∈ •t and p ∈ t•
m(p) , else

3 Visual Language Plans

In this section we will introduce and explain the elements of Visual Language Plans.
During the Metafora project pedagogues and psychologists of the University of Exeter
developed this Visual Language Plans and pedagogues and teachers of the Hebrew Uni-
versity of Jerusalem and the National and Kapodistrian University of Athens evaluated
it. There are several pedagogical studies [15,16,17,18,19,20,21,22] using Visual Lan-
guage Plans, but none of these studies defines a consistent syntax for it. [5] presents an
overview of the used definitions of Visual Language Plans during the Metafora project.
The unpublished Guideline for the Visual Language [23] gives an informal description
of the syntax and we will formally define it in this section.

To solve Metafora challenges students build their own Visual Language Plan which
describes their approach to the problem. Such a Visual Language Plan consist of nodes
and different types of arcs. Nodes of a Visual Language Plan are cards. The meaning
of a card depends on their label and this label belongs to the Visual Language. At the
moment, the Visual Language has about 60 labels and it allows teachers to add further
labels. The Visual Language divides those labels into 7 disjoint categories and this
categories belong to different detail levels. We use the categories to define the syntax
and semantics of the Visual Language. The 7 categories of the Visual Language are
Activity Stage, Gate, Activity Process, Resource, Role, Attitude and Other.

Activity Stage Cards labeled with an Activity Stage model main steps. Some available
Activity Stage labels are explore, define questions and find hypothesis.

Gate Cards labeled with a Gate direct the control flow between cards labeled with an
Activity Stage. The Visual Language contains gates for and and xor.

Activity Process Cards labeled with an Activity Process model the actions which stu-
dents do. Some available Activity Process labels are simulate, discuss and make
notes. This cards model the activities required for solving a card labeled with an
Activity Stage.

Resource Cards labeled with a Resource label are links to persistent instances of mi-
croworlds and tools integrated in Metafora. For example, there are labels for the
physics pirate game PiKI, the algebraic pattern tool eXpresser and for the graphical
discussion environment LASAD [10].

Role Cards labeled with a Role annotate required roles for other cards. Some available
Role labels are note taker, evaluator and manager.

Attitude Cards labeled with an Attitude annotate required mind-sets. Some available
Attitude labels are rational, critical and creative.

184 PNSE’14 – Petri Nets and Software Engineering

Other Cards labeled with Other labels annotate domain specific information. At the
moment the only available Other labels are the generic labels text card and blank
card.

Fig. 2. Examples for cards labeled with labels of the different categories. From the left to the right
a card labeled with an Activity Stage label, a card labeled with a Gate label, a card labeled with
an Activity Process label, a card labeled with a Resource label, a card labeled with a Role label
and a card labeled with an Attitude label.

Figure 2 shows example cards. The category of a cards label is visible through the
size, style and coloring of the cards icon. The icons of cards labeled with an Activity
Stage are larger than other labels to visualize the higher granularity and importance
of these cards. To puzzle out the model, the students create labeled card instances and
connect it with each other. The students can use 4 different arcs to connect the cards.
These arcs are:

is next to The directed is next to relation, shown as red arc, models a time sequence
of cards. It connects cards labeled with an Activity Stage or a Gate to model the
abstract learnflow of a Visual Language Plan. It also orders cards within the set
of cards labeled with an Activity Process, within the set of cards labeled with a
Resource, within the set of cards labeled with a Role and within the set of cards
labeled with an Attitude.

is needed for The directed is needed for relation, shown as blue arc, models a time
sequence with propagation of resources. It connects cards labeled with an Activ-
ity Process, a Role, an Attitude or a Resource with cards labeled with an Activity
Process or an Activity Stage. If this relation ends with a card labeled with an Activ-
ity Stage the students must finish the other card before they finish the card labeled
with an Activity Stage. It also connects cards labeled with a Role or an Attitude
with cards labeled with a Role, an Attitude or a Resource and within the set of
cards labeled with a Resource.

is input for The directed is input for relation, shown as dashed green arc, combines
the meaning of the is next to and is needed for relations. It models propagation of
resources to later cards, e.g. for reflection. This relation connects cards labeled with
an Activity Process, a Role, an Attitude or a Resource.

is linked to The symmetric is linked to relation, shown as black line, models an undi-
rected relation between cards. It associates cards labeled with an Attitude or a Role

K. Irgang, Th. Irgang: Visual Language Plans 185

to cards modeling activities. This relation connects cards labeled with an Activity
Process, a Role, an Attitude or a Resource with each other or with cards labeled
with an Activity Stage. If it connects a card with a card label with an Activity
Stage the students must finish this card before they finish the card labeled with the
Activity Stage.

The collaborative web application Planning Tool implements the Visual Language
and is part of the Metafora system [2]. To solve a challenge students use the Planning
Tool and create a Visual Language Plan to model their approach. With the help of their
Visual Language Plan the students document their work and access persistent instances
of the used mircoworlds and tools. At the moment, we develop a tool which aims to
support the students in creating and executing their Visual Language Plan. Therefore,
we need a mathematical syntax for Visual Language Plans, based on the given descrip-
tion. To define this syntax, we first define a mathematical structure for Visual Language
Plans.

Definition 4 (Visual Language Plan Structure). A Visual Language Plan consists of
a finite set C of labeled cards and 4 relations.

The set C is the union of the pairwise disjoint sets CAS , CG, CAP , CRe, CRo, CAt

and CO, where CAS is a set of cards labeled with an Activity Stage, CG is a set of cards
labeled with a Gate, CAP is a set of cards labeled with an Activity Process, CRe is a
set of cards labeled with a Resource, CRo is a set of cards labeled with a Role, CAt is
a set of cards labeled with an Attitude and CO is a set of cards labeled with an Other
label. Further, the set CG is the union of the finite disjoint sets CGand−split

, CGand−join
,

CGxor−split
and CGxor−join

.
The 4 relations are a directed is next to relation Rnext ⊆ ((CAS ∪ CG)× (CAS ∪

CG)) ∪ (CAP × CAP) ∪ (CRe × CRe) ∪ (CRo × CRo) ∪ (CAt × CAt), a directed
is needed for relation Rneed ⊆ ((CAP ∪ CRo ∪ CAt ∪ CRe) × (CAS ∪ CAP)) ∪
((CRo ∪ CAt)× (CRo ∪ CAt ∪ CRe)) ∪ (CRe × CRe), a directed is input for relation
Rin ⊆ ((CAP ∪CRo ∪CAt ∪CRe)× (CAP ∪CRo ∪CAt ∪CRe)) and a symmetric is
linked to relation Rlink ⊆ (((C \ CG)× (C \ CG)) \ (CAS × CAS)).

A 4-tuple (C,Rnext, Rneed, Rin, Rlink) is called Visual Language Plan Structure.

This definition for the syntax of Visual Language Plans is incomplete. It allows
modeling splits and joins without using cards labeled with Gates and it does not enforce
that a Visual Language Plan is weakly connected. We extend this definition to get a
unique behavior of the model, avoid error-prone plans and enable validity checking.
Therefore, we need the preset and postset of cards.

Definition 5 (Pre- and Postset, Information Preset). Given a Visual Language Plan
Structure P = (C,Rnext, Rneed, Rin, Rlink). The preset of a card c ∈ C is the set of
cards •c := {c′ ∈ C | (c′, c) ∈ (Rnext ∪ Rneed)}. The postset of a card c ∈ C is the
set of cards c• := {c′ ∈ C | (c, c′) ∈ (Rnext ∪Rneed)}

The information preset ◦c := {c′ ∈ C | (c′, c) ∈ Rin} of a card c ∈ C is the preset
only considering the is input for relation.

We call a card labeled with an Activity Stage c ∈ CAS with no other card labeled
with an Activity Stage in its preset an initial card and a card labeled with an Activity

186 PNSE’14 – Petri Nets and Software Engineering

Stage c′ ∈ CAS with no other card labeled with an Activity Stage in its postset an
end card. To ensure a unique meaning, we demand that a Visual Language Plan fulfills
following properties:

Definition 6 (valid Visual Language Plan Structure). Given a Visual Language Plan
Structure P = (C,Rnext, Rneed, Rin, Rlink). We call P valid if it fulfills all the follow-
ing properties:

(I) A visual language plan has one initial card ci ∈ CAS , i.e. •ci ∩ CAS = ∅, and
one end card ce ∈ CAS , i.e. ce • ∩CAS = ∅. All other cards c ∈ CAS have one
incoming is next to arc and one outgoing is next to arc, i.e. for all other cards
c ∈ CAS \ {ci, ce} exist two unique cards c′, c′′ ∈ CAS such that (c′, c) ∈ Rnext

and (c, c′′) ∈ Rnext hold.
(II) All cards c ∈ CGand−split

∪ CGxor−split
have one incoming is next to arc and

two outgoing is next to arcs, i.e. for all c ∈ CGand−split
∪ CGxor−split

exist 3
unique cards c1, c2, c3 ∈ CAS ∪ CG, c2 6= c3, such that (c1, c) ∈ Rnext and
{(c, c2), (c, c3)} ⊂ Rnext hold.

(III) All cards c ∈ CGand−join
∪ CGxor−join

have two incoming is next to arcs and one
outgoing is next to arc, i.e. for all c ∈ CGand−join

∪CGxor−join
exist 3 unique cards

c1, c2, c3 ∈ CAS ∪ CG, c1 6= c2, such that {(c1, c), (c2, c)} ⊂ Rnext and (c, c3) ∈
Rnext hold.

(IV) The number of and splits is equal to the number of and joins, i.e. |CGand−split
| =

|CGand−join
|. The number of xor splits is equal to the number of xor joins, i.e.

|CGxor−split
| = |CGxor−join

|.

Property (I) ensures that a Visual Language Plan has a unique card labeled with an
Activity Stage as start for the execution and all properties together define a very strict
structure for the abstract learnflow model. They are implicit contained in the Guideline
for the Visual Language [23]. This restrictive structure for the low detail cards of a
Visual Language Plan supports the students while building their abstract model. The
students refine their abstract model with high detail cards afterwards. Property (IV)
ensures, together with the other properties, that every and-split is joined with an and-
join and every xor-split is joined with an xor-join. This is also a requirement given in
[23]. Because of the idea of refinement, we have to find for each card with high detail,
i.e. each card not labeled with an Activity Stage or Gate, a card labeled with an Activity
Stage. Therefore we need paths in a Visual Language Plan.

Definition 7 (Path in a Visual Language Plan). Given a Visual Language Plan Struc-
ture P = (C,Rnext, Rneed, Rin, Rlink) and a set of arcs A ⊆ Rnext ∪Rneed ∪Rin ∪
Rlink. A directed path in P within A from a card c1 ∈ C to a card cm ∈ C is a se-
quence σ = c1, . . . , cm of cards ci ∈ C such that for 1 ≤ i ≤ m − 1 : (ci, ci+1) ∈ A
holds. A undirected path in P within A from a card c1 ∈ C to a node cm ∈ C is a
sequence σ = c1, . . . , cm of cards ci ∈ C such that for 1 ≤ i ≤ m− 1 : (ci, ci+1) ∈ A
or (ci+1, ci) ∈ A holds.

In a Visual Language Plan, a card c ∈ CAS labeled with an Activity Stage is usually
refined with the help of other cards. Those other cards are direct or indirect connected to

K. Irgang, Th. Irgang: Visual Language Plans 187

c with is needed for or is linked to arcs. We call a card which refines a card labeled with
an Activity Stage a subordinated card. From the idea of refinement of cards follows that
a card can only be subordinate to one card labeled with an Activity Stage.

Definition 8 (Subordination). Given a valid Visual Language Plan Structure P =
(C,Rnext, Rneed, Rin, Rlink) and a card labeled with an Activity Stage c ∈ CAS . We
call the set of nodes S1,c := (•c \ CAS) ∪ {c∗ ∈ C | (c∗, c) ∈ Rlink} the set of first
order subordinated cards to c. A card c′ ∈ C is subordinated to c if a card c′′ ∈ S1,a

and a undirected path σ within Rnext ∪ Rneed ∪ Rlink from c′ to c′′ exist such that σ
does not contain the card c. Sc is the set of all subordinated nodes of c.

While executing a plan, students often need achievements from earlier stages to
solve later stages. They can use the is input for relation to propagate a resource to a
later card. This requires that they finished the earlier task before they can start the later
task. Further, we demand that the connected cards refine different cards labeled with an
Activity Stage.

Definition 9 (Visual Language Plan). Given a valid Visual Language Plan Structure
P = (C,Rnext, Rneed, Rin, Rlink). We call P a Visual Language Plan, if it fulfills all
the following properties:

(V) P is weakly connected, i.e. for each two cards c, c′ ∈ C exist an undirected path
within Rnext ∪Rneed ∪Rin ∪Rlink from c to c′′.

(VI) Each card not labeled with an Activity Stage or a Gate is subordinated to precisely
one card labeled with an Activity Stage, i.e. for all cards c ∈ C \ (CAS ∪ CG) a
unique card c′ ∈ CAS exist such that c ∈ Sc′ holds.

(VII) Each is input for arc connects cards which are subordinated to different cards la-
beled with an Activity Stage, i.e. for all (c1, c2) ∈ Rin, c1, c2 ∈ C, unique different
cards c′, c′′ ∈ CAS exist such that c1 ∈ Sc′ and c2 ∈ Sc′′ holds.

(VIII) The is next to, is needed for and is linked to relations only connect cards not labeled
with an Activity Stage which are subordinated to the same card labeled with an
Activity Stage, i.e. for each pair of cards c1, c2 ∈ C \ (CAS ∪ G) with (c1, c2) ∈
Rnext ∪Rneed ∪Rlink exist a card c ∈ CAS such that c1 ∈ Sc and c2 ∈ Sc holds.

4 Semantics of the visual language

In this section we will define the semantics of a Visual Language Plan with the help of
Petri nets. A card is in one of 3 states idle, started or done. A card shows its state with
its coloring. The coloring of an idle card is grey, the coloring of a started card is yellow
and the coloring of a finished card is green. Through this coloring, the students are able
to see what they did and what is next. This is important because most of the Metafora
challenges need more than 4 school lessons and include homework sessions. The set of
the state of all cards is the state of the plan. This state function maps the set of cards C
to {1, 2, 3}. With this notation 1 means idle, 2 means started and 3 means finished.

Definition 10 (State of a Visual Language Plan). Given a Visual Language Plan
P = (C, Rnext, Rneed, Rin, Rlink). The state of P is a function s : C → {1, 2, 3}.

188 PNSE’14 – Petri Nets and Software Engineering

We call a card c ∈ C idle iff s(c) = 1, started iff s(c) = 2 and finished iff s(c) = 3. We
call a Visual Language Plan finished, if its end card is finished.

In the Planning Tool, a card change its coloring if a student select this card as
started or finished. If a student select a card labeled with a Resource as started the
linked tool opens in a new Metafora tab. Still, Metafora does not clearly define the
semantics of a Visual Language Plan. The Planning Tool allows students to mark cards
as started or finished without checking any rules. At the moment, the semantics for
Visual Language Plans is only given as informal description [23]. To develop a Metafora
workflow engine, we need to analyze state changes of cards. Therefore, we require the
formal semantics of Visual Language Plans. We extracted the following execution rules
from the informal descriptions:

(a) Students must start a card before they can finish it.
(b) Students only can start a card if they have started all cards before that card.
(c) Students can finish a card if all they have finished all cards before that card.
(d) Students can only choose one path after a xor-gate.
(e) Students must solve both paths after an and-gate before they can finish the joining

and-gate.
(g) Students must start a card labeled with an Activity Stage before they start their

refining cards.
(h) Students must finish all refining cards of a card labeled with an Activity Stage

before they can finish the card labeled with an Activity Stage.
(i) For cards connected with the is input for relation, students can only start the succes-

sor if they finished the predecessor before.

These rules overlap and interfere. For example there is a clash of rule (b) and (d) for
the joining card of an xor-split. The meaning of before in rule (b) and (c) is different.
Through the different detail level of cards it depends on their neighborhood if they can
change their state. The occurrence rule for cards of a Visual Language Plan is a compli-
cated logical formula which is expensive to test. To avoid this, we decided to define the
semantics of a Visual Language Plan with the help of a Petri net. For our mapping, we
consider the starting and finishing of cards as events. In the Petri net to a Visual Lan-
guage Plan transitions represent this events. If we only consider the starting of cards,
the Petri net roughly looks like the Visual Language Plan. If we only consider the fin-
ishing of cards, the Petri net roughly looks like the Visual Language Plan, too. Places
and arcs which control the learnflow connect these parts. In the following we will give
step by step a mapping for a Visual Language Plan P = (C,Rnext, Rneed, Rin, Rlink)
to a Petri net N = (S, T, F,m0). The Petri net N defines the semantics of the plan P .
The following steps lead to the corresponding Petri net N :

Step 1: Choose a fixed enumeration for all cards c ∈ C, i.e. a bijection M : C →
N0, and add for each card c ∈ C two transitions tM(c),s and tM(c),f to the net N . For a
card c ∈ C, the transition tM(c),s represents the starting of c and the transition tM(c),f

represents the finishing of c. To make sure that the finishing event of a card can only
occur after the starting event, add for each card c ∈ C a place pM(c) between tM(c),s and
tM(c),f , i.e. add a place pM(c) and the two edges (tM(c),s, pM(c)) and (pM(c), tM(c),f)
to N . All places pM(c) are not marked, i.e. ∀pM(c) ∈ P : m0(pM(c)) = 0.

K. Irgang, Th. Irgang: Visual Language Plans 189

Figure 4 shows our enumeration for the example and Figure 3 shows the mapping
of a card c ∈ C to their event transitions.

7→

Fig. 3. Step 1: We map the card c withM(c) = 11 on two transitions t11,s and t11,f representing
their start and finish events and add a places p11.

Fig. 4. This figure shows the bijection M : C → N0 which we use for our example. For each
card c ∈ C we wrote the value M(c) on that card.

Step 2: To transfer the is next to relation, add for each arc (c, c′) ∈ Rnext a new
place pnext,M(c),M(c′),s between tM(c),s and tM(c′),s, i.e. add pnext,M(c),M(c′),s and
the edges (tM(c),s, pnext,M(c),M(c′),s) and (pnext,M(c),M(c′),s, tM(c′),s) toN . This en-
sures that the students can only start the succeeding card c′ if they started the preceding
card c before. Further, add for each arc (c, c′) ∈ Rnext a place pnext,M(c),M(c′),f be-
tween tM(c),f and tM(c′),f to the net, i.e. add pnext,M(c),M(c′),f and the edges (tM(c),f ,
pnext,M(c),M(c′),f) and (pnext,M(c),M(c′),f , tM(c′),f) toN . This ensures that the finish
event of the succeeding card can only occur if the finish event of the preceding card
already occurred.

Figure 5 shows the mapping of the is next to relation between cards labeled with an
Activity Stage.

190 PNSE’14 – Petri Nets and Software Engineering

7→

Fig. 5. Step 2: This figure shows how we map the is next to relation between the card c labeled
with exlpore, M(c) = 1, and the card c′ labeled with build model, M(c′) = 2, to the Petri net.
The place pnext,1,2,s make sure that c starts before c′. The place pnext,1,2,f make sure that c
finish before c′.

Step 3: If students use the is next to relation with an XOR split, they can only
start one successor card because of rule (d). To fulfill this rule we add for each card
c ∈ CGxor−join

a place pxor,M(c),s between the tM(c),s and the starting event transi-
tions for all cards labeled with an Activity Stage or a Gate in the postset of c, i.e. add
pxor,M(c),s, (tM(c),s, pxor,M(c),s) and for each card c′ ∈ c • ∩(CAS ∪ CG) an edge
(pxor,M(c),s, tM(c′),s) to N . Through pxor,M(c),s the places {pnext,M(c),M(c′),s | c′ ∈
c • ∩(CAS ∪ CG)} are superfluous and we removed it. If we would only want to ful-
fill rule (d) we could stop now but we want to keep the symmetry of the Petri net and
avoid useless marked places. Add pxor,M(c),f , (tM(c),s, pxor,M(c),f) and for each card
c′ ∈ c • ∩ (CAS ∪ CG) an edge (pxor,M(c),f , tM(c′),s) to N .

Figure 6 shows the result of this mapping of an xor-split.

7→

Fig. 6. Step 3: This figure shows the result of the mapping of an xor-split between the cards c
labeled with logic gate, M(c) = 9, the card c′ labeled with refine model, M(c′) = 4, and the
card c′′ labeled with find hypothesis, M(c′′) = 5, to the Petri net.

K. Irgang, Th. Irgang: Visual Language Plans 191

Step 4: If students use the is next to relation with a XOR join, they can choose
only one path. Due to property (III) there are two preceding cards before this XOR join.
Because of those two preceding cards, we added two places toN in Step 1. The students
can only execute one path before this XOR join. This cause a deadlock. To solve this
problem melt those two places into one place. For each card c ∈ CGxor−join

remove all
places {pnext,M(c′),M(c),s | c′ ∈ •c∩ (CAS ∪CG)} and add a place pxor,M(c),s, an arc
(pxor,M(c),s, tM(c),s) and arcs {(tM(c′),s, pxor,M(c),s | c′ ∈ •c ∩ (CAS ∪ CG)}. We
also do this for the finish event part of our net. For each card c ∈ CGxor−join

remove
all places {pnext,M(c′),M(c),f | c′ ∈ •c∩ (CAS ∪CG)} and add a place pxor,M(c),f , an
arc (pxor,M(c),f , tM(c),f) and arcs {(tM(c′),f , pxor,M(c),f | c′ ∈ •c ∩ (CAS ∪ CG)}.

Figure 7 shows the result of this mapping of an xor-join.

7→

Fig. 7. Step 4: This figure shows the result of the mapping of an xor-join between the cards c
labeled with convergence, M(c) = 10, and the cards c′ labeled with refine model, M(c′) = 4,
and c′′ labeled with refine model, M(c′′) = 6.

Step 5: To transfer the is needed for relation, add for each arc (c, c′) ∈ Rneed a
new place pneed,M(c),M(c′),s between tM(c),s and tM(c′),s, i.e. add pneed,M(c),M(c′),s

and the edges (tM(c),s, pneed,M(c),M(c′),s) and (pneed,M(c),M(c′),s, tM(c′),s) toN . This
ensures that students can only start the succeeding card c′ after they started the pre-
ceding card c. Further, add for each arc (c, c′) ∈ Rneed a place pneed,M(c),M(c′),f be-
tween tM(c),f and tM(c′),f to the net, i.e. add pneed,M(c),M(c′),f and the edges (tM(c),f ,
pneed,M(c),M(c′),f) and (pneed,M(c),M(c′),f , tM(c′),f) to N . This ensures that the fin-
ish event of the succeeding card can only occur if the finish event of the preceding card
already occurred.

This mapping is similar to the mapping of the is next to relation in Step 1.
Step 6: If students use the is needed for relation to model subordination, the places

added with the last step enforce that the starting events of the subordinated cards oc-
cur before the starting event of the card labeled with an Activity Stage can occur. This
is wrong and we remove those places, i.e. for each card c ∈ CAS remove all places
{pneed,M(c′),M(c),s | c′ ∈ Sc}. For each card c ∈ CAS , all to c subordinated cards are
only allowed to start after c. We enforce this by adding places between c and all to c sub-
ordinated cards, i.e. for each c ∈ CAS and each c′ ∈ Sc add a place psub,M(c),M(c′),s

192 PNSE’14 – Petri Nets and Software Engineering

and edges (tM(c),s, psub,M(c),M(c′),s) and (psub,M(c),M(c′),s, tM(c′),s). Rule (h) raise
the requirement that for each card c ∈ CAS all subordinated cards finish before the fin-
ish event of c can occur. We make this sure by adding places between the to c subordi-
nated cards and c, i.e. for each c ∈ CAS and each c′ ∈ Sc add a place psub,M(c),M(c′),f

and edges (psub,M(c),M(c′),f , tM(c),f) and (tM(c′),f , psub,M(c),M(c′),f).
Figure 8 shows the result of this step.

7→

Fig. 8. Step 6: This figure shows the mapping of subordination of the cards c′ labeled with gather
information, M(c) = 11, and c′′ labeled with brainstorm, M(c′′) = 12, to the card c labeled
with explore, M(c) = 1.

Step 7: To transfer the is input for relation, add for each arc (c, c′) ∈ Rin a new
place pin,M(c),M(c′) between tM(c),f and tM(c′),s, i.e. add pin,M(c),M(c′) and the edges
(tM(c),f , pin,M(c),M(c′)) and (pin,M(c),M(c′), tM(c′),s) to N . This ensures that the suc-
ceeding card c′ can only start after finishing the preceding card c.

Figure 9 shows the mapping of the is input for relation.

7→

Fig. 9. Step 7: This figure shows how we map the is input for relation between the card c labeled
with PiKI, M(c) = 23, and the card c′ labeled with reflect, M(c′) = 21, to the Petri net. The
place pin,23,21 make sure that the students finished c before they can start c′.

Step 8: Finally, two convenience places pinitial and pend are added. For the unique
initial card ci add a place pinitial and an edge (pinitial, tM(ci),s) withm0(pinitial) = 1.

K. Irgang, Th. Irgang: Visual Language Plans 193

The marking of the initial place pinitial is 1 if the students did not start executing the
Visual Language Plan P . For the unique end card ce add a place pend and an edge
(tM(ce),f , pend,) with m0(pinitial) = 0. The marking of this place is 1 if the students
finished the Visual Language Plan P .

The is linked to relation does not restrict starting or finishing of cards and we do not
need to translate it. The language L of this Petri netN is the language of P , i.e. for each
transition sequence σ ∈ L starting and finishing of cards according to this sequence is
valid for P with respect to the rules given above.

For our example Visual Language Plan we have chosen the mapping shown in Fig-
ure 4. Figure 10 shows the Petri net corresponding to this Visual Language Plan which
results from the mapping described above. The upper part of the net consists of the tran-
sitions which control the starting sequence of the cards labeled with an Activity Stage
and has a similar structure as the cards labeled with an Activity Stage in our example.
The starting of a card labeled with an Activity Stage enables the start event transitions
of their subordinated cards. The Petri net has more places than required and an algo-
rithm for deletion of implicit places could remove psub,3,14,s. It is difficult to decide if
a place is an implicit place and we need a fast mapping from the visual language plan
to the Petri net so we keep those places. The middle part of the Petri net models the
grey, yellow and green sequence. The place pin,23,21 for the is input for relation from
the PiKI card to the reflect card is also in the middle part. This is the only connection
form the lower part of the Petri net to its upper part. The finishing event of the refined
cards can only occur after the finishing event of all their refining cards.

194 PNSE’14 – Petri Nets and Software Engineering

Fig. 10. Petri net for our example. The upper and lower section contain the transitions for the yel-
low and green occurrence of the activity stage cards. The middle section comprises the transitions
for the refining cards.

K. Irgang, Th. Irgang: Visual Language Plans 195

5 Applications of the Visual Language

With the help of the formal syntax, shown in Section 3, we can automatically check if
a Visual Language Plan is valid while students are modeling it. The Metafora learnflow
engine we develop will listen to the logs of the Planning Tool, analyze the events done
by the students and send feedback messages to the students. It will send affirmative
feedback messages if the students fulfill desired properties, like refining cards labeled
with an Activity Stage. If the students violate syntactic rules it will send corrective
feedback messages. For example, this is the case if students connect cards labeled with
an Activity Stage with an is linked to relation. The feedback messages help the students
to create a meaningful and selfregulated learnflow model. Besides all this, we need the
formal definition of a syntax for Visual Language Plans to define a formal semantics.

The Petri net mapping for a Visual Language Plan, shown in Section 4, defines a
formal semantics for Visual Language Plans. The Metafora learnflow engine will cre-
ate the Petri net for each Visual Language Plan and use it to analyze the starting and
finishing events, done by students to generate helpful feedback messages. The feed-
back messages are affirmative, corrective or informative. The learnflow engine send an
affirmative feedback message if students respect the execution rules, e.g. if a student fin-
ished the card labeled with the Activity Stage explore. If students violate the execution
order of the Visual Language Plan it sends corrective feedback messages. For example,
if students start the card labeled with the Activity Stage test model before they start
the card labeled with the Activity Stage build model all students will get a corrective
feedback message telling them to build the model first. We use informative feedback
messages to tell students working on the same Visual Language Plan about meaning-
ful actions. If Bob and Alice work on the same Visual Language Plan the learnflow
engine will send Alice the informative feedback message ‘Bob finished build model.’
when Bob changes the state of the card labeled with the Activity Stage build model
to finished. With these feedback messages we intend to help the students planning and
executing their learnflow. We want to shorten the training phase and help the students
to concentrate on their learnflow instead of think about occurrence rules for cards. With
the help of informative feedback messages we try to help the students keeping track of
current state of their learnflow while they use microworlds.

In Metafora, our learnflow engine is not able to enforce the syntax or semantics
of a Visual Language Plan. Furthermore, the pedagogical case studies of the Metafora
project showed that the students often use their Visual Language Plan for reflecting
about their actions and rearrange specific elements to document how the learning ac-
tually took place. Reflection is one of the L2L2 behaviors which we support to grant
more flexibility on the students side and enable a tight engagement in the planning and
execution phases. To do this, we have to change a learnflow during the execution and
transfer a state from a Visual Language Plan to its Petri net. The changing of the learn-
flow or faulty starting and finishing of cards can cause an invalid state of the Visual
Language Plan. In case of a faulty state of the Visual Language Plan, a direct mapping
would cause a not reachable marking of the Petri net and result in unwanted behavior.

In the following we will describe an approach to transfer a state from a Visual Lan-
guage Plan to a marking of the corresponding Petri net which can handle faulty states
and calculates valuable information to generate useful feedback. In case of a faulty state

196 PNSE’14 – Petri Nets and Software Engineering

change of a card or a change of the learnflow model, we collect the state change events
which caused the current state of the Visual Language Plan. This means for a Visual
Language Plan P = (C,Rnext, Rneed, Rin, Rlink) with its state s : C → {1, 2, 3} and
the corresponding Petri netN = (S, T, F,m0) we calculate a setE of transitions which
occurred to reach this state. We do this by checking the state of each card c ∈ C and
get the transition set E = {tM(c),s ∈ T | c ∈ C ∧ s(c) ≥ 1} ∪ {tM(c),f ∈ T | c ∈
C ∧ s(c) = 2}. Next, we calculate for the net N a valid sequence σ of the transitions
contained in E by occurring all enabled transitions, adding them to σ and removing
them from E. We do this iterative until E is empty or has no more enabled transitions.
For Visual Language Plans, we can do this because we have the state information for
joining and splitting cards no conflicts can happen. Now, we have a maximal valid se-
quence σ of transitions of E, a subset E′ ⊆ E of faulty transitions and can easily get a
set A ⊆ T of enabled transitions. With this information we can tell the students about
the cards with faulty states by analyzing E′. We can recommend possible cards to the
students by analyzing A. Moreover, we can calculate a minimal sequence σ′, with pre-
fix σ, which enable all transitions t ∈ E′ and recommend steps leading to a valid state
of the Visual Language Plan with the help of σ′.

Figure 11 shows our example plan with annotations for the current state of the plan
and Figure 12 shows the corresponding Petri net to this plan with a marking correspond-
ing to the current state.

Fig. 11. This figure shows our example Visual Language Plan. For each card c ∈ C we wrote
value M(c) on that card. The cards’ states are visible trough the coloring of the cards and we
annotated the card with their color for print versions.

K. Irgang, Th. Irgang: Visual Language Plans 197

Fig. 12. This figure shows the Petri net for our example shown in Figure 11 with the marking for
the state of the plan.

198 PNSE’14 – Petri Nets and Software Engineering

If a student starts the card c labeled with present (M(c) = 22) the Metafora learn-
flow engine evaluates this event as occurrence of the not enabled transition t22,s. Be-
cause of this faulty state change, it calculates the sequence σ of transitions which cause
the marking of Figure 12, the set E = {t22,s} and the set A = {t21,f , t20,f , t19,f , t24,f ,
t8,s}. Now, it unfolds the Petri net with this marking and find the minimal sequence
σ′ = σ, t8,s. σ′ enable all transitions in E = {t22,s}. Finally, the learnflow engine
sends a feedback message recommending to start the card labeled with prepare presen-
tation.

6 Conclusion

The Metafora project developed the Visual Language Plans for learnflow modelling. Vi-
sual Language Plans support the pedagogy of L2L2. Metaora is a web-based computer
supported collaborative learning platform implementing this Visual Language Plans and
using Web 2.0 features. The Metafora project did not develop a formal syntax or seman-
tics for this Visual Language Plans.

We develop a Metafora learnflow engine for automatic support of students using
the Metafora system. In this paper we give an overview of Visual Language Plans for
modeling learnflows. Further, we extracted consistent rules for the syntax and seman-
tics of Visual Language Plans from the available publications and developed a formal
syntax and semantics for this plans. To define the semantics of Visual Language Plan
we presented a mapping to a Petri net.

The Metafora learnflow engine will analyze events done by students and support
them while planning and executing Visual Language Plans. With the syntax for Visual
Language Plans the Metafora learnflow engine can generate feedback messages sup-
porting the students in modeling their Visual Language Plan and with the semantics it
can generate feedback messages supporting the students while editing and executing
their plan. This feedback messages are affirmative, corrective or informative [12]. Fur-
thermore, the corresponding Petri net for a Visual Language Plan enables the Metafora
learnflow engine to recommend steps to the students for reaching a valid state.

References

1. Metafora: Project website. http://www.metafora-project.org/
2. Metafora: Demo System. https://www.metafora-project.de/
3. Metafora Glossary: Visual Language. http://static.metafora-project.de/

VisualLanguage.html
4. Metafora Glossary: Learning To Learn Together. http://static.

metafora-project.de/L2L2.html
5. Yang, Y., Wegerif, R., Dragon, T., Mavrikis, M., McLaren, B.M.: Learning how to learn to-

gether (L2L2): Developing tools to support an essential complex competence for the internet
age. In Rummel, N., Kapur, M., Nathan, M., Puntambekar, S., eds.: CSCL 2013 Conference
Proceedings. Volume 2., Madison, International Society of the Learning Sciences (2013)
193–196

6. Dragon, T., Mavrikis, M., McLaren, B.M., Harrer, A., Kynigos, C., Wegerif, R., Yang, Y.:
Metafora: A web-based platform for learning to learn together in science and mathematics.
Learning Technologies, IEEE Transactions on 6(3) (2013) 197–207

K. Irgang, Th. Irgang: Visual Language Plans 199

7. Mavrikis, M., Dragon, T., Yiannoutsou, N., McLaren, B.M.: Towards Supporting ‘Learn-
ing To Learn Together’ in the Metafora platform. Presented at the Intelligent Support for
Learning in Groups workshop at the 16th International Conference on Artificial Intelligence
in Education (AIED 2013) (2013)

8. Abdu, R., Schwarz, B.: “Metafora” and the fostering of collaborative mathematical prob-
lem solving. http://www.academia.edu/1784715/_Metafora_and_the_
fostering_of_collaborative_mathematical_problem_solving

9. Metafora: Challenge: The Bouncing Cannon Ball. http://static.
metafora-project.de/BouncingCannonBall.html

10. Humboldt Universität Berlin: LASAD. http://cses.informatik.hu-berlin.
de/research/details/lasad/

11. Metafora: Report D 2.1 - Visual Language for Learning Processes. http://data.
metafora-project.de/reportD2_1.pdf

12. Harrer, A., Pfahler, K., Lingnau, A.: Planning for Life-Educate Students to Plan: Syntactic
and Semantic Support of Planning Activities with a Visual Language. In Chen, N.S., Huang,
R., Kinshuk, Li, Y., Sampson, D.G., eds.: Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, Washington, IEEE, CPS (2013) 309–313

13. Bergenthum, R., Desel, J., Harrer, A., Mauser, S.: Learnflow mining. In Seehusen, S., Lucke,
U., Fischer, S., eds.: DeLFI 2008. Volume P-132 of LNI., Bonn, Geselschaft für Informatik
(2008) 269–280

14. Petri, C.A.: Kommunikation mit Automaten. Dissertation, Technische Hochschule Darm-
stadt (1962)

15. Smyrnaiou, Z., Moustaki, F., Yiannoutsou, N., Kynigos, C.: Interweaving meaning gener-
ation in science with learning to learn together processes using Web 2.0 tools. Themes in
Science and Technology Education 5(1-2) (2013) 27–44

16. Kynigos, C., Moustaki, F.: Designing tools to support group work skills for construction-
ist mathematical meaning generation. http://data.metafora-project.de/P12_
kynigos_moustaki.pdf (2013)

17. Daskolia, M., Yiannoutsou, N., Xenos, M., Kynigos, C.: Exploring Learning-to-learn-
together Processes within the Context of an Environmental Education Activity. In: Pro-
ceedings of The Ireland International Conference on Education - IICE-2012. (2012)

18. Abdu, R., DeGroot, R., Drachman, R.: Teacher’s Role in Computer Supported Collaborative
Learning. In: CHAIS conference. (2012) 1–6

19. Smyrnaiou, Z., Varypari, E., Tsouma, E.: Dialogical interactions concerning the scientific
content through face to face and distance communication using web 2 tools. In Pintó, R.,
López, V., Simarro, C., eds.: Computer Based Learning in Science Conference Proceedings
2012, Barcelona, CRECIM (2012) 117–125

20. Pifarré, M., Wegerif, R., Guiral, A., del Barrio, M.: Developing Technological and Pedagog-
ical Affordances to Support Collaborative Inquiry Science Processes. In Demetrios, S.G.,
Spector, M.J., Ifenthaler, D., Isaias, P., eds.: IADIS International Conference on Cognition
and Exploratory Learning in Digital Age, Lisbon, IADIS Press (2012) 139–147

21. Moustaki, F., Kynigos, C.: Meanings for 3d mathematics shaped by online group discussion.
In Kynigos, C., Clayson, J.E., Yiannoutsou, N., eds.: Constructionism 2012 Conference -
Theory, Practice and Impact, Athens, The Educational Technology Lab (2012) 174–183

22. Yiannoutsou, N., Kynigos, C.: Boundary Objects in Educational Design Research: designing
an intervention for learning how to learn in collectives with technologies that support collab-
oration and exploratory learning. In: Educational design research - Part B: Illustrative cases.
SLO, Enschede (2013) 357–381

23. Pfahler, K.: Guideline for the Visual Language. http://data.metafora-project.
de/VisualLanguageGuideline.pdf

200 PNSE’14 – Petri Nets and Software Engineering

Slicing High-level Petri Nets

Yasir Imtiaz Khan and Nicolas Guelfi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,nicolas.guelfi}@uni.lu

Abstract. High-level Petri nets (evolutions of low-level Petri nets) are
well suitable formalisms to represent complex data, which influence the
behavior of distributed, concurrent systems. However, usual verification
techniques such as model checking and testing remain an open challenge
for both (i.e., low-level and high-level Petri nets) because of the state
space explosion problem and test case selection. The contribution of this
paper is to propose a technique to improve the model checking and test-
ing of systems modeled using Algebraic Petri nets (a variant of high-level
petri nets). To achieve the objective, we propose different slicing algo-
rithms for Algebraic Petri nets. We argue that our slicing algorithms
significantly improve the state of the art related to slicing APNs and
can also be applied to low-level Petri nets with slight modifications. We
exemplify our proposed algorithms through a case study of a car crash
management system.

Key words: High-level Petri nets, Model checking, Testing, Slicing

1 Introduction

Petri nets are well known low-level formalism for modeling and verifying dis-
tributed, concurrent systems. The major drawback of low-level Petri nets for-
malism is their inability to represent complex data, which influences the be-
havior of a system. Various evolutions of low-level Petri nets (PNs) have been
created to raise the level of abstraction of PNs. Among others, high-level Petri
nets (HLPNs) raise the level of abstraction of PNs by using complex structured
data [17]. However, HLPN can be unfolded into a behaviourally equivalent PNs.

For the analysis of concurrent and distributed systems (including which are
modeled using PNs or HLPNs) model checking is a common approach, consisting
in verifying a property against all possible states of a system. However, model
checking remains an open challenge for both (PNs & HLPNs) because of the
state space explosion problem. As systems get moderately complex, completely
enumerating their states demands a growing amount of resources which, in some
cases, makes model checking impractical both in terms of time and memory
consumption [2,4,11,20]. This is particularly true for HLPN models, as the use
of complex data (with possibly large associated data domains) makes the number
of states grow very quickly.

An intense field of research is targeting to find ways to optimize model check-
ing, either by reducing the state space or by improving the performance of model
checkers. In recent years major advances have been made by either modularizing
the system or by reducing the states to consider (e.g., partial orders, symmetries).
The symbolic model checking partially overcomes this problem by encoding the
state space in a condensed way by using Decision Diagrams and has been suc-
cessfully applied to PNs [1, 2]. Among others, Petri net slicing (PN slicing) has
been successfully used to optimize model checking and testing [3,7,10,12–16,21].
PN slicing is a syntactic technique used to reduce a Petri net model based on
the given criteria. The given criteria refer to the point of interest for which the
Petri net model is analyzed. The sliced part constitutes only that part of the
Petri net model that may affect the anaylsis based on the criteria..

One limitation of the proposed slicing algorithms that are designed to im-
prove the model checking in the literature so far is that most of them are only
applicable to low-level Petri nets. Recently, an algorithm for slicing APNs has
been proposed [10]. We extend their proposal and introduced a new slicing algo-
rithm. By evaluating and comparing both algorithms, we showed that our slicing
algorithm significantly improves the model checking of APNs. Another limita-
tion of the proposed slicing algorithms that are designed to improve the testing
is that they are limited to low-level Petri nets. We define a slicing algorithm
for the first time in the context of testing for APNs. The objective is to reduce
the effort of generating large test input data by generating a smaller net. We
highlight the significant differences of different slicing constructions (designed
for improving model checking or testing) and their evaluations and applications
contexts. Our slicing algorithms can also be applied to low-level Petri nets with
some slight modifications.

The remaining part of the paper is structured as follows: in section 2, we
give formal definitions necessary for the understanding of proposed slicing al-
gorithms. In section 3, different slicing algorithms are presented together with
their informal and formal descriptions. In section 4, we discuss related work and
we give a comparison with existing approaches. A small case study from the
domain of crisis management system (a car crash management system) is taken
to exemplify the proposed slicing algorithms in section 5. An experimental eval-
uation of the proposed algorithms is performed in section 6. In section 7, we
draw conclusions and discuss future work.

2 Basic Definitions

Algebraic Petri nets are an evolution of low-level Petri nets. APNs have two
aspects, i.e., the control aspect, which is handled by a Petri net and the data as-
pect, which is handled by one or many algebraic abstract data types (AADTs) [5,
15,17,18] (Note: we refer the interested reader to [9] for the details on algebraic
specifications used in the formal definition of APNs for our work.) .

Definition 1. A marked Algebraic Petri Net APN =< SPEC,P, T, f, asg, cond,
λ,m0 > consist of

202 PNSE’14 – Petri Nets and Software Engineering

◦ an algebraic specification SPEC = (Σ,E), where signature Σ consists of
sorts S and operation symbols OP and E is a set of Σequations defining the
meaning of operations,
◦ P and T are finite and disjoint sets, called places and transitions, resp.,
◦ f ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,
◦ a sort assignment asg : P → S,
◦ a function, cond : T → Pfin(Σ − equation), assigning to each transition a

finite set of equational conditions.
◦ an arc inscription function λ assigning to every (p,t) or (t,p) in f a finite

multiset over TOP,asg(p), where TOP,asg(p) are algebraic terms (if used “closed”
(resp.free) terms to indicate if they are build with sorted variables closed or not),
◦ an initial marking m0 assigning a finite multiset over TOP,asg(p) to every

place p.

Definition 2. The preset of p ∈ P is •p = {t ∈ T |(t, p) ∈ f} and the postset
of p is p• = {t ∈ T |(p, t) ∈ f}. The pre and post sets of t ∈ T defined as: •t
= {p ∈ P |(p, t) ∈ f} and t• = {p ∈ P |(t, p) ∈ f}.

Definition 3. Let m and m′ two markings of APN and t a transition in T then
< m, t,m′ > is a valid firing triplet (denoted by m[t〉m′) iff

1) ∀p ∈• t | m(p) ≥ λ(p, t) (i.e., t is enabled by m).
2)∀p ∈ P | m′(p) = m(p)− λ(p, t) + λ(t, p).

3 Slicing Algorithms

PN slicing is a technique used to syntactically reduce a PN model in such a
way that at best the reduced PN model contains only those parts that may
influence the property the PN model is analyzed for. Considering a property over
a Petri net, we are interested to define a syntactically smaller net that could be
equivalent with respect to the satisfaction of the property of interest. To do so
the slicing technique starts by identifying the places directly concerned by the
property. Those places constitute the slicing criterion. The algorithm then keeps
all the transitions that create or consume tokens from the criterion places, plus
all the places that are pre-condition for those transitions. This step is iteratively
repeated for the latter places, until reaching a fixed point. Roughly, we can divide
PN slicing algorithms into two major classes, which are Static Slicing algorithms
and Dynamic Slicing algorithms. An algorithm is said to be static if the initial
markings of places are not considered for building the slice. Only a set of places
is considered as a slicing criterion. The Static Slicing algorithms starts from the
given criterion place and includes all the pre and post set of transitions together
with their incoming places. There may exist sequence of transitions in the sliced
net that are not fireable because their incoming places are initially empty and do
not get markings from any other way. An algorithm is said to be dynamic slicing
algorithm, if the initial markings of places are considered for building the slice.
The slicing criterion will utilize the available information of initial markings
and produce a smaller sliced net. For a given slicing criterion that consists of

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 203

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x

x x

y

x

yy

y

y

z

zz

B

C

E

D

F

G

Fig. 1. An example APN model (APNexample)

initial markings and a set of places for a PN model, we are interested to extract
a subnet with those places and transitions of PN model that can contribute to
change the marking of criterion place in any execution starting from the initial
marking. The sliced net will exclude sequence of transitions in the resultant slice
that are not fireable because their incoming places are not initially marked and
do not get markings from any other way.

One characteristic of APNs that makes them complex to slice is the use
of multiset of algebraic terms over the arcs. In principle, algebraic terms may
contain the variables. Even though, we want to reach a syntactically reduced net,
its reduction by slicing, needs to determine the possible ground substitutions of
these algebraic terms.

We follow [10] to partially unfold the APN first and then perform the slicing
on the unfolded APN. In general, unfolding generates all possible firing sequences
from the initial marking of the APN. The AlPiNA tool (a symbolic model checker
for Algebraic Petri nets) allows user to define partial algebraic unfolding and
presumed bounds for the infinite domains [1], using some aggressive strategies
for reducing the size of large data domains. The complete description of the
partial unfolding for APNs is out of the scope, for further details and description
about the partial unfolding used in our approach, we refer the interested reader
to follow [1, 10]. The Fig. 1 shows an APN model, all the places and variables
over the arcs are of sort naturals (defined in the algebraic specification of the
model, and representing the N set). Since the N domain is infinite (or anyway
extremely large even in its finite computer implementations), it is clear that it is
impractical to unfold this net by considering all possible bindings of the variables
to all possible values in N. However, given the initial marking of an APN and
its structure it is easy to see that none of the terms on the arcs (and none of
the tokens in the places) will ever assume any natural value above 3. For this
reason, following [1], we can set a presumed bound of 3 for the naturals data
type, greatly reducing the size of the data domain. By assuming this bound, the
unfolding technique in [1] proceeds in three steps. First, the data domains of the
variables are unfolded up to the presumed bound. Second, variable bindings are
computed, and only those are kept that satisfy the guards. Third, the computed

204 PNSE’14 – Petri Nets and Software Engineering

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t5
1,2

t5
1,3

t5
3,3

t5
1,1

[1]

C

G

t5
2,1

t5
2,2

t5
2,3

t5
3,1

t5
3,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]

t3
1,3

t3
1,2

t3
1,1

t3
2,1

t4
3

D

F

t3
3,1

t3
3,2

t3
3,3

t3
2,3

t3
2,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

t4
2

t4
1

2

1

2

3

1

1

1

2

2

2

3

3

1

2

3

1

2

3

1

2

3

3

Fig. 2. The unfolded example APN model (UnfoldedAPN)

bindings are used to instantiate a binding-specific version of the transition. The
resulting unfolded APN model of Fig.1 is shown in the Fig. 2. The transitions
arcs are indexed with the incoming and outgoing values of tokens.

3.1 Abstract Slicing on Unfolded APNs

Abstract slicing has been defined as a static slicing algorithm. The objective is to
improve the model checking of APNs. In the previous static algorithm proposed
for APNs, the notions of reading and non-reading transitions are applied to
generate a smaller sliced net. The basic idea of reading and no-reading transitions
was coined by Astrid Rakow in the context of PNs [16], and later adapted in
the context of APNs in [10]. Informally, the reading transitions are transitions
that are not subject to change the marking of a place. On the other hand the
non-reading transitions change the markings of a place (see Fig.3). To identify
a transition to be a reading or non-reading in a low-level or high-level Petri
nets, we compare the arcs inscriptions attached over the incoming and outgoing
arcs. Excluding reading transitions and including only non-reading transitions
reduces the slice size.

Definition 4. (Reading(resp.Non-reading) transitions of APN) Let t ∈
T be a transition in an unfolded APN. We call t a reading-transition iff its firing
does not change the marking of any place p ∈ (•t ∪ t•) , i.e., iff ∀p ∈ (•t ∪
t•), λ(p, t) = λ(t, p). Conversely, we call t a non-reading transition iff λ(p, t) 6=
λ(t, p).

We extend the existing slicing operators by introducing the notion of neutral
transitions and using them with the reading transitions. Informally, a neutral

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 205

transition consumes and produces the same token from its incoming place to an
outgoing place. The cardinality of incoming (resp.) outgoing arcs of a neutral
tranistion is strictly equal to one and the cardinality of outgoing arcs from an
incoming place of a neutral transition is equal to one as well.

Definition 5. (Neutral transitions of APN) Let t ∈ T be a transition in an
unfolded APN. We call t a neutral-transition iff it consumes token from a place
p ∈• t and produce the same token to p′ ∈ t•, i.e., t ∈ T ∧ ∃p∃p′/p ∈• t ∧ p′ ∈
t• ∧ |p•| = 1 ∧ |•t| = 1 ∧ |t•| = 1 ∧ λ(t, p) = λ(t, p′).

[]t1

2
P
2

[2]
2

P
1

t1[3]

3P
1

3

Neutral Transition Reading Transition

Fig. 3. Neutral and Reading transitions of Unfolded APN

Abstract Slicing Algorithm: The abstract slicing algorithm starts with an un-
folded APN and a slicing criterion Q ⊆ P containing criterion place(s). We build
a slice for an unfolded APN based on Q by applying the following algorithm:
Algorithm 1: Abstract slicing algorithm
AbsSlicing(〈SPEC,P, T, F, asg, cond, λ,m0〉, Q){
T ′ ← {t ∈ T/∃p ∈ Q ∧ t ∈ (•p ∪ p•) ∧ λ(p, t) 6= λ(t, p)};
P ′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ ((•p ∪ p•) \ T ′) ∧ λ(p, t) 6= λ(t, p)) do
P ′ ← P ′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| = 1 ∧ |t•| = 1 ∧ |p•| = 1
∧p 6∈ Q ∧ p′ 6∈ Q ∧ λ(p, t) = λ(t, p′)) do

m(p′)← m(p′) ∪m(p);
while (∃t′ ∈• p/t′ ∈ T ′) do

λ(p′•, p)← λ(p′•, p′) ∪ λ(t′, p);
end
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P ′ ← P ′ \ {p};

end
return 〈SPEC,P ′, T ′, F|P ′,T ′ , asg|P ′ , cond|T ′ , λ|P ′,T ′ ,m0|

P ′ 〉;
}

206 PNSE’14 – Petri Nets and Software Engineering

In the Abstract slicing algorithm, initially T ′ (representing transitions set of
the slice) contains a set of all the pre and post transitions of the given criterion
places. Only the non-reading transitions are added to T ′. P′(representing the
places set of the slice) contains all the preset places of the transitions in T ′.
The algorithm then iteratively adds other preset transitions together with their
preset places in the T ′ and P ′. Then the neutral transitions are identified and
their pre and post places are merged to one place together with their markings.

Considering the APN-Model shown in fig. 1, let us now apply our proposed
algorithm on two example properties (i.e., one from the class of safety properties
and one from liveness properties). Informally, we can define the properties:

ϕ1 : “The values of tokens inside place D are always smaller than 5”.
ϕ2 : “Eventually place D is not empty”.

Formally, we can specify both properties in the CTL as:
ϕ1 = AG(∀token ∈ m(D)/token < 5).
ϕ2 = AF(|m(D)| 6= ∅).
For both properties, the slicing criterion Q = {D}, as D is the only place

concerned by the properties. The resultant sliced net can be observed in fig.4,
which is smaller than the original unfolded net (shown in fig.2).

[1,2]

B

t2
1

t2
3

t2
2 [] t4

2

D
1

1

2

3

1

2

3

t4
3

t4
1

2

3

Sliced net for Property ϕ1 ϕ2and

Fig. 4. The sliced unfolded APNs (by applying abstract slicing)

Table 1. Comparison of number of states required to verify the property with and
without abstract slicing

Properties No of states required
without slicing

No of states required
with slicing

ϕ1 148 9

ϕ2 148 9

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 207

Let us compare the number of states required to verify the given property
without slicing and after applying abstract slicing. In the first column of Table.1,
number of states are given that are required to verify the property without slicing
and in the second column number of states are given to verify the property by
slicing.

The abstract slicing can be applied to low-level Petri nets with slight modi-
fications. The criteria to build abstract slice for both formalisms (i.e., Algebraic
Petri nets and low-level Petri nets) remain the same. In case of low-level Petri
nets, we do not unfold the net and the slice is built directly. The idea of including
non-reading transitions together with merging of places by identifying neutral
transitions remains the same for both formalisms. (Note: we refer the interested
reader to [9] for the proof of preservation of properties by applying the Abstract
slicing algorithm.)

Abstract Slicing on APN without unfolding : Abstract slicing extends
the previous proposal of APNs slicing by unfolding the APN and then slicing
the unfolded APN. One major criticism on abstract slicing and previous slicing
construction is the complexity of unfolding APNs. As discussed in the previ-
ous section, APNs are unfolded to identify the reading transitions(resp. neutral
transitions) such that a smaller sliced net can be obtained. We can avoid the
complexity of unfolding APNs and can perform slicing directly on APNs with a
slight trade-off. It is important to note that by applying abstract slicing directly
on APNs, the sliced net may end up with some reading transitions (resp.neutral
transitions) included. This is due to he fact that the arc inscriptions are syn-
tactically compared to identify reading transitions(resp. neutral transitions) in
slicing algorithm. In Fig.5, two reading transitions(resp. neutral transitions) can
be observed, abstract slicing will not consider the transition (shown in the right
side of the figure 5) as a reading transition(resp. neutral transitions). This is a
slight trade off to avoid the complexity of unfolding. It is a rare situation to
have syntactically non-reading transitions(resp. non-neutral transitions) which
are semantically reading transitions(resp. neutral transitions). The Abstract slic-
ing algorithm can be directly appliled to APNs without any change in the syntax.

3.2 Concerned Slicing

Concerned slicing algorithm has been defined as a dynamic slicing algorithm. The
objective is to extract a subnet with those places and transitions of the APN
model that can contribute to change the markings of a given criterion place in
any execution starting from the initial markings. Concerned slicing can be useful
in debugging. Consider for instance that the user is analyzing a particular trace
of the marked APN model (using a simulation tool) so that erroneous state is
reached.

The slicing criterion to build the concerned slice is different as compared
to the abstract slicing algorithm. In the concerned slicing algorithm, available

208 PNSE’14 – Petri Nets and Software Engineering

t1[1]

xP
1

y

Syntactically and semantically

reading transition

Syntactically non-reading but semantically

reading transition

t1[1]

xP
1

x

x=y

Syntactically and semantically

neutral transition

Syntactically non-neutral but semantically

neutral transition

t1[1]
x

P
1

x
x=y

[]

P
2

t1[1]
x

P
1

y
[]

P
2

Fig. 5. Syntactically reading (resp. neutral) and non-reading (resp. non-neutral) tran-
sitions of APNs

information about the initial markings is utilized and it is directly applied to
APNs instead of their unfoldings.

Algorithm 2: Concerned slicing algorithm
ConcernedSlicing(〈SPEC,P, T, F, asg, cond, λ,m0〉, Q){
T ′ ← ∅;
P ′ ← Q ;
while (•P 6= T ′) do

P ′ ← P ′ ∪• T ′ ;
T ′ ← T ′ ∪• P ′;

end
T ′′ ← {t ∈ T ′/m0[t〉};
P ′′ ← {p ∈ P ′/m0(p) > 0} ∪ T ′′• ;
Tdo ← {t ∈ T ′ \ T ′′/•t ⊆ P ′′};
while Tdo 6= ∅) do

P ′′ ← P ′′ ∪ T •do ;
T ′′ ← T ′′ ∪ Tdo ;
Tdo ← {t ∈ T ′ \ T ′′/•t ⊆ P ′′};

end
return 〈SPEC,P ′′, T ′′, F|P ′′,T ′′ , asg|P ′′ , cond|T ′′ , λ|P ′′,T ′′ ,m0|

P ′′ 〉;
}

Starting from the criterion place the algorithm iteratively include all the
incoming transitions together with their input places until reaching a fix point.
Then starting from the set of initially marked places set the algorithm proceeds
further by checking the enabled transitions. Then the post set of places are
included in the slice. The algorithm computes the paths that may be followed
by the tokens of the initial marking.

Considering the APN-Model shown in fig. 1, let us now take the place D
as criterion and apply our proposed algorithm on it. The resultant sliced APN-
Model is shown in the fig. 6. The test input data can be generated for the sliced
APN-model to observe which tokens are coming to the criterion place.

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 209

[]

A

x

[]

[1,2]

t1

[1,2]

t3

t2

x

x x

yy

z

B

E

D

Fig. 6. The sliced APN by applying concerned slicing

4 Related Work

The term slicing was coined by M.Weiser for the first time in the context of
program debugging [22]. According to Wieser proposal a program slice (ps) is a
reduced, executable program that can be obtained from a program p based on
the variables of interest and line number by removing statements such that ps
replicates part of the behavior of a program.

To explain the basic idea of program slicing according to Wieser [22], let us
consider an example program shown in the Fig.7. The Fig.7(a) shows a program
which requests a positive integer number n and computes the sum and the
product of the first n positive integer numbers. We take as slicing criterion a
line number and a set of variables, C = (line10, {product}).

The Fig.7(b) shows the sliced program that is obtained by tracing backwards
possible influences on the variables: In the line 7, product is multiplied by i, and
in the line 8, i is incremented too, so we need to keep all the instructions that
impact the value of i. As a result all the computations that do not contribute to
the final value of product have been sliced away (The interested reader can find
more details about the program slicing from [19,23]).

Fig. 7. An example program and sliced program w.r.t. given criterion

210 PNSE’14 – Petri Nets and Software Engineering

The first algorithm about Petri net slicing was presented by Chang et al [3].
They proposed an algorithm on Petri nets testing that slices out all sets of
paths, called concurrency sets, such that all paths within the same set should
be executed concurrently. Lee et al. proposed a Petri nets slicing approach to
partition huge place/transition net models into manageable modules such that
the partitioned model can be analyzed by compositional reachability analysis
technique [12]. Llorens et al. introduced two different techniques for dynamic
slicing of Petri nets [13]. In the first technique, the Petri net and an initial
marking is taken into account, but produces a slice w.r.t. any possibly firing
sequence. The second approach further reduces the computed slice by fixing
a particular firing sequence. Wangyang et al presented a backward dynamic
slicing algorithm [21]. The basic idea of the proposed algorithm is similar to the
algorithm proposed by Lloren et al, [13]. At first for both algorithms, a static
backward slice is computed for a given criterion place(s). Secondly, in the case
of Llorens et al a forward slice is computed for the complete Petri net model
whereas in the case of Wangyang et al, a forward slice is computed for the
resultant Petri net model obtained from the static backward slice.

Astrid Rakow developed two algorithms for slicing Petri nets i.e., CTL∗−X
slicing and Safety slicing in [16]. The key idea behind the construction is to
distinguish between reading and non-reading transitions. A reading transition
t ∈ T can not change the token count of a place p ∈ P while other transitions are
called non-reading transitions as they change the token acount. For the CTL∗−X
slicing, a subnet is built iteratively by taking all non-reading transitions of a place
P together with their input places, starting with the given criterion place. For
the Safety slicing a subnet is built by taking only transitions that increase token
count on the places in P and their input places. The CTL∗−X slicing algorithm
is fairly conservative. By assuming a very weak fairness assumption on Petri
net it approximates the temporal behavior quite accurately by preserving all
the CTL∗−X properties and for the safety slicing focus is on the preservation of
stutter-invariant linear safety properties only.

Khan et al presented a slicing technique for algebraic Petri nets [10]. They
argued that all the slicing constructions are limited to low-level Petri nets and
cannot be applied as it is to the high-level Petri nets. In order to be applied to
high-level Petri nets they need to be adapted to take into account the data types.
In algebraic Petri nets (APNs), terms may contain the variables over the arcs
from place to transitions (or transitions to places) or guard conditions. Authors
proposed to unfold the APN to know the ground substitutions of the variables.
They used a particular unfolding approach developed by the SMV group i.e.,
a partial unfolding [1]. Perhaps, the proposed approach is independent of any
unfolding approach. The algorithm proposed for slicing APNs starts by taking
an unfolded APN and the criterion places. We use the same strategy for defining
static slicing for algebraic Petri nets as proposed by khan et al in [10]. The major
difference between their and our slicing construction is that we use the neutral
transition together with reading transition to reduce the slice size (as discussed

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 211

in the section 3). We also introduce a notion of dynamic slicing for the first time
in the context of APNs.

5 Case Study

We took a small case study from the domain of crisis management systems (car
crash management system) for the experimental investigation of the proposed
slicing algorithms. In a car crash management system (CCMS); reports on a
car crash are received and validated, and a Superobserver (i.e., an emergency
response team) is assigned to manage each crash.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

assigncrisis
isvalidcrisis($sy=true)
& invalidsobs($sob,

getcrisistype($sy)=true)

[$sy] [assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport

[$ec]

[]
ExecutedCrisisReport

[rp($ec)]

[Fire, Fire,
Blockage,Blockage]

[sobs(YK,Fire)
sobs(NG,Blockage)]

[]

[]

[system(getcrisistype($sy),
 false)]ValdidatingCrisis

validatecrisis

[$vcs]

Fig. 8. Car crash APN model

The APN Model can be observed in Fig. 8, it represents the semantics of the
operation of a car crash management system. This behavioral model contains
labeled places and transitions. There are two tokens in the place Recording
Crisis Data that are Fire and Blockage. These tokens are used to mention
which type of data has been recorded. The input arc of transition sendcrisis
takes the cd variable as an input from the place Recording Crisis Data and
the output arc contains term system(cd) of sort sys (It is important to note
that for better readability, we omit $ symbol from the terms over the arcs). The
sendcrisis transition passes a recorded crisis to system for further operations.
All the recorded crises are sent for validation through sendcrisisforvalidation
transitions. Initially, every recoded crisis is set to false. The output arc of validat
ecrisis contains the system(getcrisistype(vcs),true) term which sends
validated crisis to system. The transition assigncrisis has two guards, the first
one is isvalid(sy)=true that enables to block invalid crisis reporting to be exe-
cuted for the mission and the second one is isvalid(sob,getcrisestype(sy))=

212 PNSE’14 – Petri Nets and Software Engineering

true which is used to block invalid Superobserver (a skilled person for han-
dling crisis situation) to execute the crisis mission. The Superobserver YK will
be assigned to handle Fire situation only. The transition assigncrisis con-
tains two input arcs with sob and sy variables and the output arc contains term
assigncrisis(sob,sy) of sort crisis. The output arc of transition sendreport
contains term rp(ec). This enables to send a report about the executed crisis
mission. We refer the interested reader to [6] for the algebraic specification of a
car crash management system.

An important safety threat, which we will take into an account in this case
study is that the invalid crisis reporting can be hazardous. The invalid crisis
reporting is the situation that results from a wrongly reported crisis. The exe-
cution of a crisis mission based on the wrong reporting can waste both human
and physical resources. In principle, it is essential to validate a crisis that it
is reported correctly. Another, important threat could be to see the number of
superobservers should not exceed from a certain limit. Informally, we can define
the properties:

Formally we can specify the properties as, let Crises be a set representing
recorded crisis in car crash management system. Let isvalid : Crises→ BOOL,
is a function used to validate the recorded crisis.

ϕ1 = AF(∀crisis ∈ System|isvalid(crisis) = true).

ϕ2 = AG(|SuperobserverReady| ≤ 2).

In contrast to generate the full state space for the verification of the properties
ϕ1 and ϕ2, we alleviate the state space by applying our proposed algorithm i.e.,
abstract slicing algorithm. For ϕ1andϕ2, the criterion places are System and
Superobserver Ready. The unfolded car crash APN model is shown in the Fig.
9. The abstract slicing algorithm takes an unfolded car crash APN model and
System (an input criterion place) as an input and iteratively builds the sliced net
for ϕ1. Respectively for ϕ2, the algorithm starts from Superobserver Ready(as
input criterion place) and builds the slice. The sliced unfolded car crash APN
models are shown in the Fig. 10, for the both prperties i.e., ϕ1 and ϕ2.

Let us compare the number of states required to verify the given property
without slicing and after applying abstract slicing. In the first column of Table.2,
the number of states are given that are required to verify the property without
slicing and in the second column the number of states are given to verify the
property by slicing.

Let us take a criterion place (i.e, System) from the car crash APN model
and apply our proposed concerned slicing algorithm to find which transitions
and places can contribute tokens to that place. It is important to note that, we
perform concerned slicing directly on the car crash APN model instead of the
unfolded car crash APN model (as discussed in the section 3). The sliced car
crash APN-model can be observed in the Fig.11.

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 213

Recording Crisis Data

[Fire,Fire,

Blockage,Blockage]

FireBlockage

sendcrisisBlockage sendcrisisFire

sendcrisisforvalidationBlockage

(Fire,true)

(Blockage,true) (Blockage,false)

sendcrisisforvalidationFire

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

FireBlockage

[]

System

[]

(Fire,false)

(Blockage,false)

(Fire,false)
ValidatingCrisis

Fire

assigncrisis(Fire,true),

(YK,Fire),((Fire,true),

(YK,Fire))
(Fire,true)

[sobs(Yk,Fire),so

bs(NG,Blockage)

]

(YK,Fire)

(NG,Blockage)

Superobserver Ready

assigncrisis(Blockage,true),

(NG,Blockage),

((Blockage,true),

(NG,Bloackage))

(Blockage,true) Blockage

[]

ExecutingCrisis

((Blockage,true), (NG,Blockage))

sendreport(Blockage,true),

(NG,Blockage),

((Blockage,true),

(NG,Bloackage))

sendreport(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

((Blockage,true), (NG,Blockage))
((Fire,true), (YK,Fire))

((Fire,false), (YK,Fire)) ((Blockage,false), (NG,Blockage))

sendreport(Blockage,false),

(NG,Blockage),

((Blockage,false),

(NG,Blockage))

sendreport(Fire,false),

(YK,Fire),((Fire,fale),

(YK,Fire))

[]

(Fire,false),(YK,Fire),

(Fire,false),(YK,Fire)

(Blockage,false),(NG,Blockage),

(Blockage,false),(NG,Blockage)

(Blockage,true),(NG,Blockage),

(Blockage,true),(NG,Blockage)
(Fire,true),(YK,Fire),

(Fire,true),(YK,Fire)

ExecutedCrisisReport

Fig. 9. The unfolded car crash APN model

214 PNSE’14 – Petri Nets and Software Engineering

Fire,Fire,Block

age,Blockage

System

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)

assigncrisis(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),

sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Sliced unfolded car crash APN model for ϕ2

Fire,Fire,Blockage,

Blockage

FireBlockage

sendcrisisFire
sendcrisisBlockage

Recording Crisis Data

System

FireBlockage

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)

assigncrisis(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),

sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Sliced unfolded car crash APN model for ϕ1

Fig. 10. Sliced unfolded car crash APN model (by applying Abstract slicing)

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 215

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

[$sy]

[$sy]

[Fire, Fire,
Blockage,Blockage]

[system(getcrisistype($sy),
 false)]ValdidatingCrisis

validatecrisis

[$vcs]

Fig. 11. Sliced car crash APN model (by applying concerned slicing)

6 Evaluation

In this section, we evaluate our abstract slicing algorithm and compare with
existing slicing construction for APNs (Note: We do not include concerned slicing
algorithm in the evaluation. As discussed in section 3, concerned slicing algorithm
is designed to improve the testing of APN for the first time. We only include
slicing algorithm that are designed to improve the model checking). We measure
the effect of slicing in terms of savings of the reachable state space, as the size of
the state space usually has a strong impact on time and space needed for model
checking.

To show that state space could be reduced for practically relevant properties.
We took some specific examples of temporal properties from the different case
studies. Instead of presenting properties for which our method the best one, it is
interesting to see where it gives an average or worst case results. Let us specify
the temporal properties that we are interested to verify on the given APN model.
(Note: we refer the interested reader to [8] for APN models of case studies used
in the evaluation).

For the Daily Routine of two Employees and Boss APN model, for example,
we are interested to verify that: “Boss has always meeting”. Formally, we can
specify the property:

ϕ1 = AG(NM 6= ∅), where “NM" represents a place not meeting.
For Simple Protocol, for example, we are interested to verify that: “All the

packets are transmitted eventually”. Formally, we can specify the property:
ϕ2 = AF(|PackTorec| = |PackTosend|), where “PackTosend and Pack-

Torec" represents places.

216 PNSE’14 – Petri Nets and Software Engineering

And for a Complaint Handling APN model, we are interested to verify: “All
the registered complaints are collected eventually”. Formally, we can specify the
property:

ϕ3 = AG(RecComp⇒ AFCompReg), where “RecComp" (resp. CompReg)
means “place RecComp (resp. CompReg) is not empty".

For an Insurance claim APN model an interesting property could be to verify
that: “Every accepted claim is settled”. Formally, we can specify the property:

ϕ4 = AG(AC ⇒ AFCS), where “AC" (resp. CS) means “place AC (resp.
CS) is not empty".

For a Customer support production system an interesting property could be
to verify that: “Number of requests are always less than 10 ”. Formally, we can
specify the property:

ϕ5 = AG(|Requests| < 10).
For a Producer Consumer APN model an interesting property could be to

verify that: “Buffer place is never empty”. Formally, we can specify the property:
ϕ6 = AG(|Buffer| > 0).

Table 2. Results with different properties concerning to APN models

System Property Tot.States APNslicing AbstractSlicing Reduction

Daily Routine of 2
Employees & Boss

ϕ1 80 5 3 96.25%

Simple Protocol ϕ2 21 21 9 57.143%

Complaint Handling ϕ3 2200 679 112 94.91%

A Customer support
Production system

ϕ4 471 171 91 80.68%

Insurance Claim ϕ5 889 121 49 94.48%

Producer Consumer ϕ6 372 372 372 0.0%

Let us study the results summarized in the table shown in Table. 2, the first
column represents the system under observation whereas the second column
refers to the property that we are interested to verify. In the third column,
total number of states is given based on the initial markings of places. In the
fourth column, number of states are given that are required to verify the given
property by applying APNslicing. In the fourth column, number of states that
are required to verify the given property by applying abstract slicing. The last
column represents the number of states that are reduced (in percentage) after
applying Abstract slicing algorithm.

We can draw the following conclusions from the evaluation results:

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 217

– Abstract slicing often reduces the slice size as compared to APNslicing slice
size. This is due to the inclusion of neutral transition together with read-
ing transitions. As a result number of states are reduced to verify the given
property, which is an improvement towards model checking. We can observe
Table. 2, a part for property ϕ2, there is always an improvement in the re-
duction of states. It is important to note that at worst the slice size obtained
after applying abstract slicing is equal to the slice size obtained by applying
APNslicing.

– Reduction can vary with respect to the net structure and markings of the
places (this is true for both abstract slicing and APNslicing). The slicing
refers to the part of a net that concerns to the property, remaining part may
have more places and transitions that increase the overall number of states.
If slicing removes parts of the net that expose highly concurrent behavior,
the savings may be huge and if the slicing removes dead parts of the net, in
which transitions are never enabled then there is no effect on the state space.

– It has been empirically proved that in general slicing produces best results
for work-flow nets in [10,16]. Our experiments also prove that for work-flow
nets abstract slicing produces better results.

– Abstract slicing algorithm is a linear time complex.

7 Conclusion and Future Work

In this work, we have presented two slicing algorithms (i.e., Abstract slicing and
Concerned slicing) to improve the verification of systems modeled in the Alge-
braic Petri nets. The Abstract slicing algorithm has been designed to improve the
model checking whereas the Concerned slicing has been designed to improve the
testing of APNs. Both the algorithms are linear time complex and significantly
improves the model checking and testing of APNs.

As a future work, we are targeting to define more refined slicing construc-
tions in the context of APNs and to implement a tool named SLAPn (i.e., slicing
algebraic Petri nets). The objective of SLAPn is to show the practical usability
of slicing by implementing the proposed slicing algorithms. The initial strategy
to implement SLAPn is to extend the AlPiNA (Algebraic Petri net analyzer) a
symbolic model checker. As discussed in the section 3, we are using the same
unfolding approach as AlPiNA. Certainly, this will help to reduce the implemen-
tation effort.

8 Acknowledgement

This work has been supported by the National Research Fund, Luxembourg,
Project RESIsTANT, ref.PHD-MARP-10.

218 PNSE’14 – Petri Nets and Software Engineering

References

1. D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: A symbolic model
checker. In J. Lilius and W. Penczek, editors, Applications and Theory of Petri
Nets, volume 6128 of Lecture Notes in Computer Science, pages 287–296. Springer
Berlin Heidelberg, 2010.

2. J. R. Burch, E. Clarke, K. L. McMillan, D. Dill, and L. J. Hwang. Symbolic model
checking: 1020 states and beyond. In Logic in Computer Science, 1990. LICS ’90,
Proceedings., Fifth Annual IEEE Symposium on e, pages 428–439, 1990.

3. J. Chang and D. J. Richardson. Static and dynamic specification slicing. In In
Proceedings of the Fourth Irvine Software Symposium, 1994.

4. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8:244–263, 1986.

5. K. Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties, volume 254 of Lecture
Notes in Computer Science, pages 248–299. Springer Berlin Heidelberg, 1987.

6. Y. I. Khan. A formal approach for engineering resilient car crash management
system. Technical Report TR-LASSY-12-05, University of Luxembourg, 2012.

7. Y. I. Khan. Optimizing verification of structurally evolving algebraic petri nets.
In V. K. A. Gorbenko, A. Romanovsky, editor, Software Engineering for Resilient
Systems, volume 8166 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013.

8. Y. I. Khan. Optmizing algebraic petri net model checking by slicing. Technical
Report TR-LASSY-13-02, University of Luxembourg, 2013.

9. Y. I. Khan. Slicing high-level petri nets. Technical Report TR-LASSY-14-03,
University of Luxembourg, 2014.

10. Y. I. Khan and M. Risoldi. Optimizing algebraic petri net model checking by slic-
ing. International Workshop on Modeling and Business Environments (ModBE’13,
associated with Petri Nets’13), 2013.

11. L. Lamport. What good is temporal logic. Information processing, 83:657–668,
1983.

12. W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach to
enhance petri net reachability analysis. Journal of Research Practices and Infor-
mation Technology, 32:131–143, 2000.

13. M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing techniques
for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–165, Dec. 2008.

14. A. Rakow. Slicing petri nets with an application to workflow verification. In
Proceedings of the 34th conference on Current trends in theory and practice of
computer science, SOFSEM’08, pages 436–447, Berlin, Heidelberg, 2008. Springer-
Verlag.

15. A. Rakow. Slicing and Reduction Techniques for Model Checking Petri Nets. PhD
thesis, University of Oldenburg, 2011.

16. A. Rakow. Safety slicing petri nets. In S. Haddad and L. Pomello, editors, Applica-
tion and Theory of Petri Nets, volume 7347 of Lecture Notes in Computer Science,
pages 268–287. Springer Berlin Heidelberg, 2012.

17. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

18. K. Schmidt. T–invariants of algebraic petri nets. Informatik– Bericht, 1994.

Y. I. Khan, N. Guelfi: Slicing High-level Petri Nets 219

19. F. Tip. A survey of program slicing techniques. JOURNAL OF PROGRAMMING
LANGUAGES, 3:121–189, 1995.

20. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course on
Petri Nets, pages 429–528, London, UK, UK, 1998. Springer-Verlag.

21. Y. Wangyang, Y. Chungang, D. Zhijun, and F. Xianwen. Extended and improved
slicing technologies for petri nets. High Technology Letters, 19(1), 2013.

22. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

23. B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

220 PNSE’14 – Petri Nets and Software Engineering

Performance Analysis of M/G/1 Retrial Queue
with Finite Source Population Using Markov

Regenerative Stochastic Petri Nets

Lyes Ikhlef1, Ouiza Lekadir2 and Djamil Aı̈ssani3

Research Unit LaMOS (Laboratories of Modelization and Optimization of Systems)
Bejaia University.

1ikhlefilyes@gmail.com
2ouizalekadir@gmail.com

3lamos bejaia@hotmail.com

Abstract. This paper aims to present an approach for modeling and
analyzing an M/G/1//2 retrial queue, using the MRSPN (Markov
Regenerative Stochastic Petri Nets) tool. The consideration of the re-
trials and finite source population introduce analytical difficulties. The
expressive power of the MRSPN formalism provides us with a detailed
modeling of retrial systems. In addition to this modeling, this formalism
gives us a qualitative and a quantitative analysis which allow us to obtain
the steady state performance indices. Indeed, some illustrative numerical
results will be given by using the software package Time Net.

Keywords: Markov Regenerative Process, Markov Regenerative Stochas-
tic Petri Nets, Retrial Systems, Steady State, Modeling, Performance
Evaluation.

1 Introduction

Retrial queueing systems have been extensively studied by several authors
including Kosten 1947, Wilkinson 1956, Cohen 1957. A survey work on the topic
has been written by Falin and Templeton [9]. An exhaustive bibliography is given
in Artalejo [5]. Recently, several papers were published for retrial systems [16,4].
These queueing models arise in many practical applications such as: computer
systems, communication systems, telephone systems, etc.
The main characteristic of retrial systems is that, an incoming customer having
found the server busy does not exit the system but it joins the orbit to repeat
its demand after a random period (see FIG. 1).
Generally, the analytical treatment of retrial systems is difficult to obtain. Tak-
ing into account the flow of the repeated calls complicate the structure of the
stochastic process corresponds to the retrial systems.
In order to evaluate the performances of these systems, a large number of differ-
ent approximating algorithms and approaches were proposed [11,18,19].

Fig. 1. Schematic diagram of retrial queue

Stochastic Petri Nets (SPN) are Petri nets in which each transition is associated
with an exponentially distributed random variable that expresses the delay from
the enabling condition to the firing of the transition. They are defined by Molloy
[12] then extended by A. Marson et al [8] to a class of generalized stochastic
Petri nets (GSPN) by allowing immediate transition. The underlying stochastic
process of SPN or GSPN is a continuous time Markov chain (CTMC). H.
Choi [6] introduced a new class called Markov regenerative stochastic Petri nets
(MRSPN), where a timed transition can fire according to an exponential or
any other general distribution function. The underlying stochastic process of
MRSPN is the Markov regenerative process (MRGP). With the restriction
at most one generally distributed timed transition is enabled in each marking.
The process subordinated in two regeneration time points is a continuous time
Markov chain.
The main advantages of an MRSPN are:

– Modeling and evaluating the performance of complex systems comprising
concurrency, synchronization, etc

– Providing automated generation and solution to discrete time Markov chains.
– Offering a qualitative and a quantitative analysis of systems.
– Existence of software tools developed within theMRSPN (Time Net, SHARP,

WebSPN, . . .)

Most studies in the literature deal with infinite customers source retrials queues.
However, in many practical situations, it is important to consider that the rate
of generation of new primary calls decreases as the number of customers in the
system increases. This can be done with the finite-source or quasi-random input
models. The Markovian GSPN is used by N. Gharbi [14,4] for analyzing an
retrial queue and Oliver [17] for studying an M/M/1//N queue with vacation.
In 1993 H. Choi [6,7] carries out the transient and steady state analysis of
MRSPN (non-Markovian GSPN), as example M/G/1/2/2 is analyzed. Re-
cently, the performance analysis of queueing systems M/G/1//N with different

222 PNSE’14 – Petri Nets and Software Engineering

vacation schemes is given by K.Ramanath and P.Lakshmi[10]. The structure of
the transition probability matrix P of the embedded Markov chain EMC re-
lated to M/G/1//N with retrial is not an M/G/1-type [13]. Unfortunately, for
such an EMC there is not a general solution and the matrix analytic method
(MAM) can not be applied for analyzing these processes. Our goal in this work,
is to exploit the features of MRSPN for modeling and performance analysis of
retrial queue M/G/1 with finite source population.
The remainder of this paper is organized as follows. In section 2, we introduce
the analysis technique proposed for MRSPN . In section 3, we describe the
MRSPN associated to the system M/G/1//N with retrial. In section 4 and 5
some performance measures are provided. Finally, the section 6 concludes the
paper.

2 Steady State Analysis of MRSPN

Different approaches and numerical techniques have been explored in the liter-
ature for dealing with non-Markovian GSPN , we quote:

– The approach of approximating the general distribution by phase type ex-
pansion [1]

– The approach based on Markov regenerative theory [6]
– The approach based on supplementary variable [3]

The analysis of MRSPN is based on the observation that the underlying stochas-
tic process {M(t), t ≥ 0} enjoys the absence of memory at certain instants of
time (t0, t1, t2, ...). This instants referred as regeneration points. An embedded
Markov chain (EMC) {Yn, n ≥ 0} can be defined at the regeneration points. An
analytical procedure for the derivation of expression for the steady state proba-
bility is proved in [6]. The conditionals probability necessary for the analysis of
a MRSPN are:

– The matrix K(t) is called global kernel given by Kij(t) = P{Y1 = j, t1 ≤
t/Y0 = i, i, j ∈ Ω}. It describes the process behavior immediately after the
next Markov regenerative point. (Ω is the set of state of tangible markings).

– The matrix E(t) is called the local kernel given by Eij(t) = P{Mt = j, t1 >
t/Y0 = i}. It is for the behavior between two Markov regeneration points.

When the EMC is finite and irreducible its steady state probability vector v
is obtained by the solution of the linear system equation: vP = v and v1 = 1.
Where the one-step transition probability matrix P of the EMC is derived
from the global kernel (P = lim

t→+∞
K(t)). The steady state distribution π =

(π1, π2, ...) of the MRGP can be obtained by: π =

∑
k∈Ω

vkαkj

∑
k∈Ω

vk
∑
l∈Ω

αkl
where αij =

∫∞
0
Eij(t)dt .

I. Lyes et al.: Performance Analysis of M/G/1 Retrial Queue 223

3 M/G/1//N with Retrials

We consider a single server retrial queue with finite population of size N . A
customer arrives from the source according to a poisson process with parameter
”λ”. When the server is idle the customer immediately occupies the service.
The service time distribution follows a general law with probability distribution
function F g(x). If the server is busy, the customer joins the orbit to repeat its
demand for service after an exponential time with parameter θ until it finds a free
server. FIG. 2 shows the MRSPN model describing the M/G/1//N queueing
system with retrial. In FIG. 2 thick black bar represents GEN transition, thick
white bars represent EXP transitions, thin bars represent immediate transitions.

Fig. 2. MRSPN for the M/G/1//N retrial queueing system.

The initial marking of the MRSPN is :

M1(M(p.sour),M(p.sys),M(p.serv),M(p.orb)) = M1(N, 0, 0, 0)

• The firing of timed transition t.arriv indicates the arrival of a customer in
source thus the place p.sys receives a token. The firing of t.arriv is marking
dependent, its firing rate is #(p.sour)λ.
• The immediate transition t.acc1 is enabled when the place p.sys contains at

least one token and p.serv contains no token (the server is free). The firing
of t.acc1 consists to destroy a token in place p.sys and builds a token in place
p.serv (this represents the fact that the customer has started its service and
the server is moved from the free state to the busy state).

224 PNSE’14 – Petri Nets and Software Engineering

• The firing of the timed transition t.serv consists to destroy a token in the
place p.serv and constructs a token in the place p.sour (the costumer has
completed its service). The server is moved from the busy state to the free
state. The firing policies of t.serv is the race with enabling memory.

• The immediate transition t.acc2 is enabled when the place p.sys and p.serv
contain a token (the server is busy). The firing of the transition t.acc2 con-
sists to destroy a token in p.sys and constructs a token in place p.orb (the
customer joins the orbit). The immediate transition t.acc1 has higher priority
than the immediate transition t.acc2.

• The firing of the timed transition t.ret consists to remove a token from place
p.orb and constructs a token in place p.sys. The firing of t.ret is marking
dependent, thus its firing rate is #(p.orb)λ.

4 Case of the M/G/1//2 retrial queueing system

In this section we consider the M/G/1//2 retrial queue. We obtain the reacha-
bility tree which describes all possible states of our MRSPN starting from the
initial marking M1 (see FIG. 3).

From this reachability tree, by marging the vanishing markings into their suc-
cessor tangible markings, we have obtained the state transition diagram of the
MRSPN depicted in FIG.2
In FIG.4 solid arcs indicate state transition by EXP transitions, dotted arcs
indicate state transitions by GEN transitions.
The infinitesimal generator matrix of the subordinated CTMC with respect to
transition t.serv is given by:

Q =



−2λ 2λ 0 0

0 −λ 0 λ
0 θ −(θ + λ) λ
0 0 0 0




Local kernel E(t) :

E(t) =



e−2λt 0 0 0

0 e−λt[1− F g(t)] 0 (1− e−λt)[1− F g(t)]
0 0 e−(θ+λ)t 0
0 0 1− F g(t) 0




Global kernel K(t) :

K(t) =




0 1− e−2λt 0 0∫ t
0
e−λxdF g(x) 0

∫ t
0

[1− e−λx]dF g(x) 0

0 θ
θ+λ

[1− e−(θ+λ)t] 0 λ
θ+λ

[1− e−(θ+λ)t]

0 0
∫ t
0
dF g(x) 0




I. Lyes et al.: Performance Analysis of M/G/1 Retrial Queue 225

Fig. 3. Reachability tree for the MRSPN of FIG. 2 (N = 2).

Fig. 4. Subordinated CTMC for the MRSPN of FIG.2 (N = 2).

Where the density function of the firing time of t.serv is given by hyperexpo-

nential distribution ”H2(1
3 ,

µ
2 , µ)”: fg(x) = 1

6µe
−1
2 µx + 2

3µe
−µx. The one-step

226 PNSE’14 – Petri Nets and Software Engineering

transition probability matrix P given by:

P =




0 1 0 0
1
3

µ(5λ+3µ)
(2λ+µ)(λ+µ)

0 2
3

λ(3λ+2µ)
(2λ+µ)(λ+µ)

0

0 θ
θ+λ

0 λ
θ+λ

0 0 1 0




The MRSPN depicted in FIG. 2 (N = 2), is bounded and admits M1 like home
state so it is ergodic.

We calculate the steady state probabilities by solving: vP = v and v1 = 1:

v1 =
1

2

θµ(5λ+ 3µ)

6θλ2 + 9θλµ+ 3θµ2 + 6λ3 + 4λ2µ
,

v2 =
3

2

θ(2λ+ µ)(λ+ µ)

6θλ2 + 9θλµ+ 3θµ2 + 6λ3 + 4λ2µ

v3 =
λ(θ + λ)(3λ+ 2µ)

6θλ2 + 9θλµ+ 3θµ2 + 6λ3 + 4λ2µ
,

v4 =
λ2(3λ+ 2µ)

6θλ2 + 9θλµ+ 3θµ2 + 6λ3 + 4λ2µ

α11 = 1
2λ , α22 = 2

3
3λ+2µ

(2λ+µ)(λ+µ) , α24 = 2
3

4λ2+3λµ
µ(2λ+µ)(λ+µ) , α33 = 1

α+λ , α44 = 4
3µ

The steady state probabilities: π = (π(2,0,0,0), π(1,0,1,0), π(1,0,0,1), π(0,0,1,1)) are
given by:

π(2,0,0,0) =
3θµ2(5λ+ 3µ)

39θµ2λ+ 9θµ3 + 48θλ3 + 72θλ2µ+ 68λ3µ+ 24λ2µ2 + 48λ4

π(1,0,1,0) =
12θλµ(3λ+ 2µ)

39θµ2λ+ 9θµ3 + 48θλ3 + 72θλ2µ+ 68λ3µ+ 24λ2µ2 + 48λ4

π(1,0,0,1) =
12λ2µ(3λ+ 2µ)

39θµ2λ+ 9θµ3 + 48θλ3 + 72θλ2µ+ 68λ3µ+ 24λ2µ2 + 48λ4

π(0,0,1,1) =
4λ2(12λ2 + 8λµ+ 12θλ+ 9θµ)

39θµ2λ+ 9θµ3 + 48θλ3 + 72θλ2µ+ 68λ3µ+ 24λ2µ2 + 48λ4

Having the steady state probabilities π = (π(2,0,0,0), π(1,0,1,0), π(1,0,0,1), π(0,0,1,1))
several performance characteristics of M/G/1//N with retrial can be derived:

– The effective arrival rate λe: λe = λ[1 + π(2,0,0,0) − π(0,0,1,1)]
– The mean number of customers in the orbit norb: norb = π(1,0,0,1) +π(0,0,1,1)
– The mean number of customers in the system ns: ns = 1−π(2,0,0,0)+π(0,0,1,1)
– The mean response time τ , from Little’s law: τ = ns

λe
=

1−π(2,0,0,0)+π(0,0,1,1)

λ[1+π(2,0,0,0)−π(0,0,1,1)]

I. Lyes et al.: Performance Analysis of M/G/1 Retrial Queue 227

Table 1. Performance measures for the MRSPN of FIG.2 (N = 2, λ = 0, 8, θ =
0, 2, µ = 1, 0).

Steady state probabilities Performance indices

π(2,0,0,0) 0, 0456482045 λe 0, 4403095383
π(1,0,1,0) 0, 0918181028 norb 0, 8625336928
π(1,0,0,1) 0, 3672724111 ns 1, 449613077
π(0,0,1,1) 0, 4952612817 τ 3, 292259083

5 Numerical Results

In this section we present some numerical results using the Time Net [10] (Timed
Net Evaluation Tool) software package which supports a class of non-markovian
GSPN . We illustrate the effect of the parameters on the main performance
characteristics. The model proposed was validated by the exact analytical results
of M/G/1//N without retrial, see Table 2.

Table 2. Validation of results.

Performance M/G/1//2 without retrial MRSPN associated to M/G/1//2
indices (λ = 0, 5 , Service U[0,5;1,0]) with retrial

(λ = 0, 5 , Service U[0,5;1,0], θ ' ∞)

λe 0, 69488 0, 69390
ns 0, 61022 0, 61218
τ 0, 87816 0, 88223

From the Table 2, when the retrial rate is very large, the performance indices
corresponding the MRSPN associated to M/G/1//2 queue with retrial are very
close to those obtained by M/G/1//2 queue without retrial.
For N = 25, λ = 0.1, θ = 0.25, we obtain the performance indices of our
MRSPN . Where λe, θe: respectively represents the effective customers arrival
rate and retrial rate. norb, ns: respectively represents the average number of cus-
tomers in orbit and in system. W , T : respectively represents the mean response
time in system and mean waiting time in the orbit, which are summarized in the
Table 3.
In Figure 5, 6 and 7 we give some graphical results in order to illustrate the way
in which the model is affected from the variation in the retrial rate and the size
of the source.
In FIG.5, we observe that the mean number of customers in the orbit decreases
as the retrial rate increases.

228 PNSE’14 – Petri Nets and Software Engineering

Table 3. Some performance measures for the MRSPN of FIG.2 (N = 25, λ = 0.1, θ =
0.25).

Performance indices Service Det(0, 8) Service U[0,5;1,0]

λe 0,9865245 1,0340604
θe 3,5863839 3,4709629
norb 14,3455359 13,8838515
ns 15,1347555 14,6593961

W 15,3414897 14,1765376

T 14,5414897 13,4265382

Fig. 5. Effect of retrial rate on mean number of customers in the orbit.

In FIG.6, we observe that mean response time of the system decreases as the
retrial rate increases.
In FIG.7, we observe that mean response time of the system increases as the size
of the source increases.

6 Conclusion

In this work a single server retrial queue M/G/1 with finite source population is
considered. We focused on how to exploit the features of MRSPN to cope with
the complexity of such system. The MRSPN approach allowed us to compute
efficiently exact performance measures. We have illustrated the functionality
of this approach with the example M/G/1//2 with retrial. Some performance

I. Lyes et al.: Performance Analysis of M/G/1 Retrial Queue 229

Fig. 6. Effect of retrial rate on mean response time in the system

Fig. 7. Effect of size of source on mean response time in the system

measures are carried out by the help of the software package Time Net. Our
future work aims at make generalization for any N (size of population) in order
to propose an algorithm for computing the transition matrix and performance
measures without generating the reachability graph. Also it may be interest-
ing to provide a more detailed study by including to the same model: vacation,
breakdown, etc.

230 PNSE’14 – Petri Nets and Software Engineering

References

1. A. Cumani. Esp: A package for the evaluation of stochastic Petri nets with
phase-type distributed transition times. In proceedings International Workshop
Timed Petri nets, pages 144-151, Torino (Italy), (1985). IEEE Computer Society
Press no. 674.

2. C.Ciardo, R.German, and C.Lindeman: A characterization of the stochastic process
underlying a stochastic petri nets. IEEE, Trans, 20,506-515(1994).

3. D.R. Cox: The analysis of non-markovian stochastic processes by the inclusion of
supplementary variables. Proceedings of the Cambridge Philosophical Society, 51:
433-440, (1955).

4. F. Zhang and Jinting Wang: Performance analysis of the retrial queues with finite
number of sources and service interruptions. Journal of the Korean Statistical Society
42 (2013) 117-131.

5. J. R. Artalejo: Accessible bibliography on retrial queues. Mathematical and com-
puter Modelling, 30: 1-6,(1999).

6. H. Choi, V.G.Kulkarni and K. Trivedi: Markov regenerative stochastic Petri nets.
Performance Evaluation, 20: 337-357, (1994).

7. H.Choi, V.G.Kulkarni and K.S.Trivedi: Markov Regenerative Stochastic Petri Nets.
IEEE trans. comput., 31(9): 913-917,(1982).

8. G. Chiola, M.A. Marsan, G.Balbo, and G.Conte: Generalized stochastic Petri nets,
a definition at the net level and its implications. IEEE trans. on software Eng.,19(2):
89-107,(1993).

9. G. I.Falin and J.G.C. Templeton: Retrial queues. Chapman and Hall, London, 1997.
10. K. Ramanath and P. Lakshmi: Modelling M/G/1 queueing systems with server

vacations using stochastic Petri nets, 22(2), pp.131-154(2006).
11. L. Berjdoudj and D. Aissani: Strong stability in retrial queues. Theor. Probability

and Math. Statis.,68,11-17,(2003)
12. M.K.Molloy: Performance analysis using stochastic Petri nets. IEEE trans. com-

put., 31(9):913-917,(1982)
13. M. Neuts: Structured Stochastic Matrices of M/G/1 Type and Their Applications,

Marcel Dekker, Inc., New York and Basel, 1989.
14. N.Gharbi and M.Ioualalen: Performance analysis of retrial queueing systems using

generalized stochastic petri nets. USTHB-Alger, Algérie.
15. N. Gharbi and C. Dutheillet: An algorithmic approach for analysis of finite-source

retrial systems with unreliable servers. Computers and Mathematics with Applica-
tions 62 (2011) 2535-2546.

16. O.Dudina , C. Kim and S.Dudin: Retrial queuing system with Markovian arrival
flow and phase-type service time distribution, Computers Industrial Engineering 66
(2013) 360-373.

17. Oliver C. and Kishor S: Stochastic Petri net analysis of finite population. J.C.
Baltzer A.G. Scientific Publishing Company, USA (1990).

18. S.N. Stepanov: Numerical methods of calculation for systems with repeated calls,
Nauka Moscow(1983).

19. T.Yang, M.J.M.Poser, J.G.C.Templeton and H.Li: An approximation for the
M/G/1 retrial queue with general retrials times, European Journal of Operational
Research, 76, 552-562,(1994).

20. TimeNET 4.0: A Software Tool for the Performability Evaluation with Stochas-
tic and Colored Petri Nets. User Manual. Armin Zimmermann and Michael Knoke
Technische Universität Berlin Real Time Systems and Robotics Group Faculty of EE
and CS Technical Report 2007/13 ISSN: 1436/9915, August (2007).

I. Lyes et al.: Performance Analysis of M/G/1 Retrial Queue 231

232 PNSE’14 – Petri Nets and Software Engineering

Petri Nets Based Approach for Modular
Verification of SysML Requirements on Activity

Diagrams

Messaoud Rahim1, Malika Boukala-Ioualalen2, and Ahmed Hammad1

1 FEMTO-ST Institute, UMR CNRS 6174, Besançon, France.
{Lastname.firstname}@femto-st.fr

2 MOVEP, Computer Science department, USTHB, Algiers, Algeria.
mioualalen@usthb.dz

Abstract. The validation of SysML specifications needs a complete
process for extracting, formalizing and verifying SysML requirements.
Within an overall approach which considers an automatic verification of
SysML designs by translating both requirement and behavioral diagrams,
this paper proposes a modular verification of SysML functional require-
ments on activity diagrams. The contribution of this paper is the proposi-
tion of a methodology guided by the relationships between requirements
and SysML activities for verifying complex systems with many compo-
nents. We propose a model-to-model transformation to automatically
derive from SysML activities a modular Petri net, then SysML require-
ments are formalized and verified using the derived Petri net modules. A
case study is presented to demonstrate the effectiveness of the proposed
approach.

Keywords: SysML, Activity Diagram, SysML Requirements, Require-
ments Formalization, Modular Verification, Petri nets

1 Introduction

Model-based systems engineering is becoming a promising solution to design
complex systems. SysML (SystemModeling Language) [1] is a standard modeling
language which has been proposed to specify systems that include heterogeneous
components. It covers four perspectives on system modeling : structure, behav-
ior, requirement, and parametric diagrams. Particularly, the SysML requirement
diagram is used for better organizing requirements at different levels of abstrac-
tion, allowing their representation as model elements, and showing explicitly
the various kinds of relationships between requirements and design elements [2].
However, one of the main challenge in system design is to ensure that a model
meets its requirements. To provide a validation of SysML specifications, exist-
ing approaches [3–5] propose to translate SysML behavioral models into formal
specification languages, then they verify temporal properties by using model-
checking techniques. These approaches ignore systems composition and do not
relate system requirements to design elements. The activity diagram is one of

SysML models used to specify the system behavior and where requirements can
be verified. Based on using the call behavior action concept, a modular design of
complex systems can be obtained by structuring its behaviour in many activi-
ties. This provides a compositional specification and enables modular analysis of
the specified systems [6]. Requirements can be expressed as properties to verify
by an activity diagram during its execution. Unfortunately, the need for formal
specifications of properties expressed using logics or automata is a major obsta-
cle for the adoption of formal verification techniques by SysML practitioners [7].
The contribution of this paper is the proposition of a methodology which provides
a modular verification of functional SysML requirements captured by activity
diagrams. It consists on: (1) performing a compositional translation from SysML
activity diagrams into modular Petri nets where modular PNML [8] is used as
target language. (2) proposing a new language (AcTRL : Activity Temporal Re-
quirement Language) to express functional requirements related to activities and
showing how AcTRL expressions can be automatically translated into properties
expressed as temporal logic formulas. Finally, (3) presenting a modular verifica-
tion algorithm. The compositional translation enables the modular verification
by considering the decomposition of activity diagrams into sub-activities and
the use of AcTRL avoids the specification of SysML requirements directly as
properties of the formal semantic model (Petri nets in our case).
This paper is organized as follows. Section 2 surveys related works. Section 3
presents related concepts. Section 4, introduces our overall methodology. In Sec-
tion 5, we present a compositional translation from SysML activities to modular
Petri nets. In Section 6, we define AcTRL and its grammar. An algorithm for
modular verification of requirements will be presented in section 7. In Section
8, we illustrate our approach by a case study. Finally, in Section 9, we conclude
and we outline future works.

2 Related Work

Ensuring the correctness of complex and critical systems needs automated ap-
proaches for verifying and validating their designs. In [3], authors propose to
derive for each SysML behavioral diagram a formal semantic model reflecting its
characteristics. In this work, requirements was expressed as temporal properties
on the formal semantic model which makes the verification process difficult for
SysML practitioners. Linhares et al [9] designed a process for verifying SysML
specification by considering block, activity and requirement diagrams and where
requirements must be expressed using Linear Temporal Logic(LTL). In [4], au-
thors propose TEPE, a graphical temporal property expression language based
on SysML parametric diagram to express system requirements. This work is
restricted to state machine diagrams. Regarding activity diagram, a symbolic
model checking was proposed in [10], where activity diagram is translated into
SMV and the NuSMV model checker was used to verify LTL properties. Data
flows were not considered in this work. In [11], the authors present a technique
to map the SysML activities to time Petri net for validating the requirements of

234 PNSE’14 – Petri Nets and Software Engineering

real-time systems with energy constraints. This work considers non functional
requirements. The work presented in [12] proposes a model-driven engineering
approach for simulating SysML activity diagram using Petri net and VHDL-
AMS. This work focuses on defining rules to translate SysML diagram elements
to Petri net specification but it does not consider compositional structure of
activity diagrams. To our knowledge, the present work is the first that consid-
ers a modular verification of SysML requirements by taking into account their
relations to activities.

3 Preliminaries

In this section, we present SysML requirement and activity diagrams as described
in the OMG standard [1]. In addition, we describe modular PNML language [8]
for representing modular Petri nets.

3.1 SysML requirement diagram

Requirements in SysML are defined in an informal way with an identifier and a
text. Requirement diagrams are used for specifying requirements and to depict
their hierarchy and the exiting relationships between them and other SysML
models. As depicted in Figure 1, the <<Verify>> relationship is a dependency
between a requirement and a test case that can determine whether a system
fulfills the requirement [1]. The <<deriveReqt>> relationship is a dependency
between two requirements. It is used to derive a requirement from another. Other
relationships exists, we refer to [1] for a detailed description.

Fig. 1: <<Verify>> and <<deriveReqt>> relationships in requirement diagram

In this paper, we exploit the <<Verify>> relationship, to determine the ac-
tivities which are used to verify requirements. We derive from functional require-
ments, more formal requirements described as properties about activity diagram

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 235

elements. For tractability purpose, the <<deriveReqt>> relationship will be
exploited to relate between natural text and the more formal requirements.

3.2 SysML activity diagram

In this section, we introduce only a brief description of the SysML activity dia-
gram and its elements, more details can be found in [1]. In SysML, an activity
is a formalism for describing behaviour that specifies the transformation of in-
puts to outputs through a controlled sequence of actions. The basic constructs
of an activity are actions and control nodes as illustrated in Figure 2. Actions
are the building blocks of activities, each action can accept inputs and produces
outputs, called tokens. These tokens can correspond to anything that flows such
as information or physical item (e.g., water, signal). Control nodes include fork,

Fig. 2: Activity diagram basic constructs

join, decision, merge, initial, activity final, and flow final.
A specific type of action is the call behavior action. A call behavior action per-
mits to invoke an activity when it starts, and passes the tokens from its input
pins to the input parameter nodes of the invoked activity. A call behavior ac-
tion terminates when its invoked activity reaches an activity final, or when the
action receives a control disable. The tokens on the output parameter nodes of
the activity are placed on the output pins of the action and a control token is
placed on each of the control outputs of the action.

3.3 PNML for Modular Peri nets

The Petri Net Markup Language (PNML) [13] is an interchange format for all
kinds of Petri nets. It is currently standardised by ISO/IEC JTC1/SC7 WG 19
as Part 2 of ISO/IEC 15909 [13]. The main features of PNML are its readability
which is guaranteed by its XML syntax, its universality to support different
Petri net type and its mutuality guaranteed by the use of common principals and
common notations [8]. To address real world systems which are too large to be
drawn on single page, the PNML provide a net type independent mechanism for
structuring large Petri nets. Two mechanisms are proposed, pages and modules.
The concept of pages is used with the concept of references to structure the nets

236 PNSE’14 – Petri Nets and Software Engineering

Fig. 3: Extract of the defined meta-model for the modular PNML

on several pages. It is used only for more convivial visual structure of the nets.
The concept of modules is supported by modular PNML. Modular PNML as
presented in [8] is an extension of the PNML to describe modular Petri nets. It is
proposed for defining Petri net modules and for constructing nets from different
instances of such modules. A Petri net module is defined as a Petri net with
an interface composed by imported and exported nodes. For the transformation
to perform in this work, we have extended the PNML (P/T Type) meta-model
to support a modular structure of Petri nets. The Figure 3 presents an extract
of Modular PNML meta-model which we have inspired from [8]. The presented
Modular PNML meta-model extends the core PNML meta-model to allow the
definition of modules (ModuleDef) and their instantiation (ModuleInst). Each
module includes an interface which contains import and export nodes. A module
instance assigns import nodes to reference nodes (ParmAssign) and can contains
a reference nodes from other instances(InstRefNode). More explanations can be
found in [8].

4 Overall methodology

In this section, we describe our methodology for verifying SysML requirements
on activity diagrams. First, the SysML designer creates requirement and activity
diagrams to specify the system. Then, he drives from functional requirements,
which are related to the activity diagram by a <<Verify>> relationship, tempo-
ral requirements described as properties about activity diagram elements. After
that, an automatic translation process is used to transform this SysML specifi-
cation into a formal specification. The SysML activity diagram is translated into

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 237

modular Petri net and temporal requirements into formal properties described
as temporal logic formulas. A Petri Net tool will be used to check if these re-
quirements are verified in the derived Petri net modules. The verification will
be guided by the existing <<Verify>> relationships between requirements and
activities. Finally, a feed back is given to the SysML designer to correct his spec-
ification. As our approach is modular, in the case of the non satisfaction of a
requirement, the generated feed back can give a more accurate indication about
the sub activity and the actions which are related to the design error. The Figure
4 summarizes the steps of our methodology.

Fig. 4: Overall methodology

5 From activity diagrams to modular Petri nets

In this section, we describe our translation of SysML activity diagrams into
modular PNML. We propose to use the activity diagram meta-model defined in
the TOPCASED tool [14] as source meta-model and the modular PNML meta-
model presented in Section 3.3 as target meta-model. Based on EMF(Eclipse
Modeling Framework) with Ecore meta meta-model and ATL language [15], the
transformations are defined as semantic and structural mappings based on the
respective meta-models. The target model of the transformation is a modular
Petri net described in modular PNML which preserve the structure and the
semantic of the source SysML activity diagram model.

238 PNSE’14 – Petri Nets and Software Engineering

5.1 Mapping the structure

The transformation must preserve the composite structure of the SysML activ-
ity diagram in the target Petri net model. When the SysML activity diagram
includes a call behavior actions to define composite activities, the derived Petri
net will be composed of modules. Each sub-activity is translated into Petri net
module.

The Figure 5 illustrates the derivation of the Petri net modular structure
according to the activity decomposition.

Fig. 5: The structure of the derived Petri net

We create a PNML document and Petri net only for the main activity dia-
gram. For a sub-activity, we create a Petri net module. The ATL rule used to
select the main activity is given below:

rule mainAct2mpnml {
from
d: ADUML!Activity(not (d.owner.oclIsTypeOf(ADUML!Activity)))
to
p : MPNML!PetriNetDoc (nets <- f, modulesDef <-
PNML!ModuleDef.allInstances()),
s: MPNML!Name(text <- d.name),
f: MPNML!PetriNet(name <- s)
.....

}

5.2 Translating SysML activity constructs

The translation of basic activity constructs is inspired from the work presented
in [5,6]. So, as we are interested to preserve the composite structure of the SysML
activity diagram, we have adapted this translations mainly for input and output
pins. The Figure 6 presents the used translation rules.

Translating call behavior actions Three principal steps are considered when
translating call behavior actions :

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 239

Fig. 6: Translation of basic SysML AD constructs

– Step 1: pass input flows from call behavior action to the called activity.
– Step 2: execute the called activity.
– Step 3: pass output flows from the called activity to the call behaviour action.

The mapping of a call behavior action A that invokes an activity Act with one
input and one output control flow, n input pins andm output pins is as presented
in Figure 7. The PNML code related to this translation includes definitions of

Fig. 7: Translation of call behavior action

transitions, places and arcs related to step 1 and step 3. It must also include
an instance of the Petri net module defined for the activity Act (see the next
section). This instance is defined like in the following listing :

<instance id="A_Act" ref=URI#Act>
<Paramassign parameter="ictparm" ref="ictpar"/>
<Paramassign parameter="iparm1" ref="ipar1"/>
......
<Paramassign parameter="iparmn" ref="iparn"/>
</instance>

We signal that the nodes octpar, opar1, opar2,oparn (step 3) are instance
reference places. They are defined in modular PNML like :

240 PNSE’14 – Petri Nets and Software Engineering

<InstRefPlace id="octpar" instance="A_Act" ref="octparm"/>
<InstRefPlace id="opar1" instance="A_Act" ref="oparm1"/>
.....
<InstRefPlace id="oparm" instance="A_Act" ref="oparmm"/>

5.3 Mapping Sub-Activities

As described in Section 5.1, sub-activities are translated into PNML modules.
Activity parameters are for accepting inputs to an activity and providing outputs
from it. An activity with input and output parameters is translated into PNML
module as illustrated in Figure 8. Input activity parameters are translated into

Fig. 8: Translation of Sub-activities

reference places. Output activity parameters are translated into places. The in-
terface of the PNML module is composed of import places and export places.
Import places are refereed by the reference places representing input activity pa-
rameters. Export places refer to places representing output activity parameters.

6 AcTRL: Activity Temporal Requirement language

As presented in Section 3.1, SysML requirements are described using an Id and
natural text. To address this limitation, we propose AcTRL(Activity temporal
requirement language) which can be used by SysML designers to express require-
ments to verify on activity diagrams. First, we define a high level representation
of the activity diagram operational semantic as states/transitions system. Then,
we define a set of predicate expressions which can be formulated about the states
of activity diagram elements. To express temporal requirements related to the
execution of an activity diagram, predicate expressions about activity elements
are temporally quantified using the property specification pattern system pro-
posed in [16].

6.1 Operational semantic of SysML activity diagram

During execution, at each instant, an activity has a specific state. This state
is defined among others by : the activity status (not started, started, finished),

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 241

the states of all its actions, the states of its input and output parameters and
the value of all the local variables used to express guards defined to control the
tokens flows. The state of an action is defined by : its status (active, not active),
the states of its incoming and outgoing control flows and the states of its input
and output pins. According to this description, the operational semantic of an
activity diagram can be represented by a high level states/transitions system as
depicted in Figure 9.

Fig. 9: Operational semantic of activity diagram

6.2 Predicate expressions about activity diagram elements

In this section, we present a sub-set of predicate expressions which can character-
ize the elements of an activity diagram during its execution. Let ActivityName
an activity, examples of such predicate expressions are :

1. If actionName is action from activity ActivityName, then
[ActivityName].[actionName].isActive() is a valid predicate expression. Its
value is True on a given state if actionName is on execution.

2. If actionName is action from activity ActivityName and ctlfName an in-
coming control flow of actionName, then
[actionName].incoming[ctlfName].isNotEmpty() is a valid predicate ex-
pression. The same expression can be defined for an output control flow.

3. If actionName is action from activity ActivityName and PinName is its
input pin, then
[actionName].input[PinName].isNotEmpty() is a valid predicate expres-
sion. The same expression can be defined for an output pin.

4. All the boolean OCL expressions about the objects manipulated in the ac-
tivity ActivityName are valid predicate expressions.

5. All the boolean expressions about the local variables used in ActivityName
are valid predicate expressions.

6. If actExp is a valid predicate expression, then not actExp is valid predicate
expression.

242 PNSE’14 – Petri Nets and Software Engineering

7. If actExp1, actExp2 are valid expressions, then actExp1 and actExp2 and
actExp1 or actExp2 are valid expressions.

6.3 Temporal expressions

The idea of property specification pattern system [16] is to allow users to con-
struct complex properties from basic, assuredly correct building blocks by pro-
viding generic specification patterns (left side of Figure 10) encoding certain
elementary properties: existence, absence, universality, bounded existence, prece-
dence (chains), and response (chains), each specialized for a set of different scopes
(right side of Figure 10) : globally, before R, after Q, between Q and R, after Q
until R.
Given an activity diagram, requirements about its execution are interpreted as

Fig. 10: Temporal pattern and scopes

properties over the states of its elements. These states can be characterized by
the predicate expressions defined above. The SysML designer derives from func-
tional requirements the elementary predicate expressions, then, he formalizes
requirements by quantifying the predicate expressions by the necessary patterns
and scopes to get temporal requirements about the activity execution. In the fol-
lowing, is given the grammar of the AcTRL (<Pred-exp> is predicate expression
as defined above):

<AcTRL>::= <pattern> <scope>
<pattern>::= always <Pred-exp>

| never <Pred-exp>
| eventually <Pred-exp>
| <Pred-exp> precededing <Pred-exp>
| <Pred-exp> following <Pred-exp>

<scopes> ::= globally
| before <Pred-exp>
| after <Pred-exp>
| between <Pred-exp> and <Pred-exp>
| after <Pred-exp> until <Pred-exp>

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 243

6.4 Translation into CTL/LTL formulas

Functional requirements described using AcTLR can automatically translated
into temporal logic formulas. A complete library is provided in [17], which pro-
pose translations into many formalisms (LTL, CTL, QREs, ...). So, we have to
give a semantic for the defined predicate expressions according to the transla-
tion of activity diagram into Petri nets. As example, we consider the following
predicate expression: [ActivityName].[actionName].isActive(), according to the
translation of an action (Figure 6) will be translated into (Marking(on_A) =<
1 >), a proposition which means : the place on_A contains the mark < 1 >.
As second example, the predicate expression [actionName].output[PinName]
.isNotEmpty(), according to the translation of output pins (Figure 6), will
be translated into (Marking(P_OutApin)! =<>), which means : the place
P_OutApin is marked.

7 Modular verification of requirements

Considering the compositional structure of activity diagrams can reduce the
spatial and temporal complexity of their verification by model-checking. In this
section, we propose an algorithm that guides the modular verification of SysML
requirements on activities. We consider the verification of functional SysML re-
quirements on a composite activity diagram where a set of call behavior actions is
used to call set of activities. The proposed modular verification concerns the sub-
activities and the composite activities according to their relations with SysML
requirements. We assume that all functional requirements related to activities
are expressed in AcTRL and depicted in a requirement diagram. By exploiting
the << verify >> relationships, we generate a set of associations Set-Req-act
containing all couples (ReqId, ActName), where ReqId is a requirement related
to the activity ActName by a << verify >> relationship.
When performing the translation of an activity diagram into a modular Petri
net, we generate a set of associations Set-ACT-PNM containing all couples (Act-
Name, PNMname), where PNMname is a Petri net module translated from the
activity ActName. When performing the translation of functional requirements
expressed in AcTRL into temporal logic formulas, we generate a set of associa-
tion Set-Req-LFor, which contains all couples (ReqId, lform), where Lform is a
temporal logic formula derived from the requirement ReqId.
The verification of requirements on activities is achieving according to the algo-
rithm 1. Changing the design of a sub-activity may influence the verification of a
requirement related to its main activity. For this reason, the requirements related
to a composite activity are verified after the validation of all the requirements
related to their sub-activities. The algorithm begins by verifying the require-
ments related to sub-activities, then it process the verification of requirements
related to composite activities until it reaches the main activity. The algorithm
has complexity depending on the complexity of the model-checking (the function
check()). It process N check; where N is the number of requirements.

244 PNSE’14 – Petri Nets and Software Engineering

Algorithm 1 Verify(ActName)
if (ActName does not contain call behavior actions) then

Foreach (couple (ReqId, ActName)∈ Set-Req-act
if ((ActName, PNMname)∈ Set-ACT-PNM and (ReqId, lform) ∈ Set-Req-LFor)
then

check (lform, PNMname);
end if
EndForeach

else
Foreach (sActName ∈ Sub-activities (ActName))
Verify(sActName);
EndForeach
Foreach (couple (ReqId, ActName)∈ Set-Req-act
if (ActName, PNMname)∈ Set-ACT-PNM and (ReqId, lform) ∈ Set-Req-LFor)
then

check (lform, PNMname);
end if
EndForeach

end if

8 Application : A Ticket Vending Machine case study

In this section, we consider a Ticket Vending Machine(TVM) case study to il-
lustrate our methodology. A TVM can be used to dispense tickets to passengers
at a railway station. The behavior of the machine is triggered by passengers
who need to buy a ticket. When passenger starts a session, TVM will request
trip information from commuter. Passengers use the front panel to specify their
boarding and destination place, details of passengers (number of adults and chil-
dren) and date of travel. Based on the provided trip info, TVM will calculate
payment due and display the fare for the requested ticket. Then, it requests pay-
ment options. Those options include payment by cash, or by credit or debit card.
After that, the passenger chooses a payment option and processes to payment.
After a success payment, the TVM prints and provides a ticket to passenger.
We specify the function of TVM by the activity diagram shown in Figure 11a.
The activity diagram describes a composite activity which calls another activi-
ties. As example, we present the "process payment" sub-activity in the Figure
11b.

We specify the requirements to verify by activities using requirement di-
agrams. As example, two requirements are presented in Figure 12. They are
expressed in AcTRL and related by a << verify >> relationship to activities.
In this diagram extract, Set-Req-act = {(DREQ1, TicketVending), (DREQ2,
Process Payment)}. From AcTRL expressions, we derive two logic formulas F1
and F2. As consequence, Set-Req-LFor = {(DREQ1, F1), (DREQ2, F2)}.

The activity diagram is translated into Petri net modules described in PNML.
The running of the implemented ATL rules produces a XMI serialisation of the
modular PNML document. The Figure 13 shows the structure of the derived

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 245

(a) A main activity diagram for TVM (b) A sub-activity representing the pay-
ment process

Fig. 11: Activities for TVM

Fig. 12: A requirement diagram for TVM that uses AcTRL

PNML document. As the SysML activity diagram contains three sub-activities,
the derived PNML document will be composed of a main Petri net and a Petri net
module for each sub-activity. The set Set-ACT-PNM contains (TicketVending,
Petri net TicketVending) and (Process Payment, Module ProcessPayment). By
applying the algorithm 1, F2 will be checked in "Module ProcessPayment" then
F2 will be checked in "Petri net TicketVending".

246 PNSE’14 – Petri Nets and Software Engineering

Fig. 13: Structure of the derived modular PNML

9 Conclusion and Future work

In this paper, we presented a methodology that proposes a modular verification
of SysML specifications. The proposed methodology considers both requirements
and activity diagrams. It consists on translating a composite activity diagram
into modular Petri net. Then, it proposes a formalization of requirements re-
lated to activities by the proposition of AcTRL, which can be used by SysML
designers and their expressions are translatable into temporal logics. Finally, an
algorithm is proposed to guide the modular verification of SysML requirements.
The translation from SysML activities to modular Petri net was fully automated
using model to model transformation with ATL language. To illustrate the ef-
fectiveness of the proposed methodology, a practical case study was given.
As future work, we plan to automatize the translation of AcTRL expressions
according to the translation of the activity diagram. Also, we plan to implement
our methodology into complete framework. By completing these tasks, a SysML
specification with requirements and activity diagram can be automatically veri-
fied using a Petri net tool. The next step will be the feedback of analysis results
and their interpretation on SysML models.

References

1. OMG: OMG Systems Modeling Language (OMG SysMLTM) Version 1.2. (2010)
downloadable from http://www.omg.org.

2. Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., Coq, T.: A SysML-based ap-
proach to traceability management and design slicing in support of safety certi-
fication: Framework, tool support, and case studies. Information and Software
Technology 54 (2012) 569 – 590

3. Debbabi, M., Hassaine, F., Jarraya, Y., Soeanu, A., Alawneh, L.: Verification and
Validation in Systems Engineering: Assessing UML/SysML Design Models. 1st
edn. Springer-Verlag New York, Inc., New York, NY, USA (2010)

M. Rahim et al.: Modular Verification of SysML Requirements on ADs 247

4. Knorreck, D., Apvrille, L., de Saqui-Sannes, P.: TEPE: a SysML language for time-
constrained property modeling and formal verification. ACM SIGSOFT Software
Engineering Notes 36 (2011) 1–8

5. Foures, D., Vincent, A., Pascal, J.: ACTIVITYDIAGRAM2PETRINET :
Transformation-Based Model In Accordance With The Omg SySML Specifications.
In: Proceedings of the Eurosis, The 2011 European Simulation and Modelling Con-
ference. (2011) 429–434

6. Rahim, M., Hammad, A., Ioulalen, M.: Modular and Distributed Verification of
SysML Activity Diagrams. In: MODELSWARD 2013, 1st Int. Conf. on Model-
Driven Engineering and Software Development, Barcelona, Spain. (2013) 202–205

7. Klein, F., Giese, H.: Joint structural and temporal property specification using
timed story scenario diagrams. In: Fundamental Approaches to Software Engi-
neering. Springer (2007) 185–199

8. Michael, W., Ekkart, K.: The Petri net markup language. In: Petri Net Technology
for Communication-Based Systems. Springer (2003) 124–144

9. Linhares, Marcos Vinicius and de Oliveira, Rômulo Silva and Farines, J-M and
Vernadat, François: Introducing the modeling and verification process in SysML.
In: Emerging Technologies and Factory Automation (ETFA) IEEE Conference,
IEEE (2007) 344–351

10. Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Transactions
on Software Engineering and Methodology (TOSEM) 15 (2006) 1–38

11. Andrade, E., Macie, P., Callou, G., Nogueira, B.: A Methodology for Mapping
SysML Activity Diagram to Time Petri Net for Requirement Validation of Em-
bedded Real-Time Systems with Energy Constraints. In: Third International Con-
ference on Digital Society, ICDS’09. (2009) 266–271

12. Foures, D., Albert, V., Pascal, J.C., Nketsa, A.: Automation of SysML activity
diagram simulation with model-driven engineering approach. In: Proceedings of
the 2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative
M&S Symposium. TMS/DEVS ’12, San Diego, CA, USA, Society for Computer
Simulation International (2012) 11:1–11:6

13. PNML.org: (Reference site for the implementation of Petri Net Markup Language
(PNML)) url : http://www.pnml.org.

14. Farail, P., Goutillet, P., Canals, A., Le Camus, C., Sciamma, D., Michel, P., Crégut,
X., Pantel, M.: The TOPCASED project: a toolkit in open source for critical
aeronautic systems design. Ingenieurs de l’Automobile (2006) 54–59

15. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: ATL-eclipse support for model
transformation. In: Proceedings of the Eclipse Technology eXchange workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France. Volume 66., Citeseer
(2006)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: Proceedings of the International Conference on
Software Engineering, IEEE (1999) 411–420

17. Alavi, H., Avrunin, G., Corbett, J., Dillon, L., Dwyer, M., Pasareanu, C.: (Speci-
fication Patterns) url: http://patterns.projects.cis.ksu.edu.

248 PNSE’14 – Petri Nets and Software Engineering

Compatibility Analysis of Time Open Workflow
Nets

Zohra Sbaï1, Kamel Barkaoui2, and Hanifa Boucheneb3

1 Université de Tunis El Manar,
Ecole Nationale d’Ingénieurs de Tunis,

BP. 37 Le Belvédère, 1002 Tunis, Tunisia
zohra.sbai@enit.rnu.tn

2 Conservatoire National des Arts et Métiers
292 rue Saint Martin, Paris Cedex 03, France

kamel.barkaoui@cnam.fr
3 Ecole Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville, Montréal, Québec, Canada
hanifa.boucheneb@polymtl.ca

Abstract. Because of their expressive power, Petri nets are widely used
in the context of concurrent and distributed systems. We study in this
paper a sub class of time Petri nets, named time open workflow nets
(ToWF-nets), used to interconnect time constrained business processes.
To interact correctly with each other, these processes have to be compat-
ible. This include not only composability of the involved processes but
also the correct execution of the overall composite system. In this con-
text, we suggest in this paper to study the compatibility of ToWF-nets
in different aspects and to provide a formal approach to characterize and
verify this property. This approach is based on qualitative and quantita-
tive analysis ensured by TCTL model checking.

Keywords: Time open workflow nets, Reachability analysis, Compati-
bility, TCTL

1 Introduction

The workflow technology has shown a great interest to be adopted within orga-
nizations or even inter organizations. A workflow is the result of the automation
of a business process, in whole or in part [35]. A business process consists of
a number of tasks and ensure all the conditions that determine their order. A
business process which involves different partner companies is said to be in-
ter organizational. Indeed, it is a specific representation for which coordination
mechanisms between activities, applications or participants can be managed by
a workflow management system (WfMS). The success of workflow technology
explains the fact that the number of emerging WfMS is growing fast. And there-
fore the need for effective mechanisms and tools for modeling and analysis of
workflow processes is crucial.

Open workflow nets (oWF-nets) form a sub class of Petri nets which is suc-
cessfully used to model workflow processes which communicate with other part-
ners via interfaces. This class is promisingly used in the context of Web services
orchestration and choreography. In fact each service in a composition is mod-
eled by a workflow net augmented by interface places used to communicate with
other services. In this way, one can guarantee the conversation between the pro-
cesses interacting with each other. The conversation considered here is involved
through the two well known behaviors: operational and control. An operational
behavior is a behavior specific to each partner according to its business logic. A
control behavior describes the general behavior of any process related to com-
posite Web services. While we focused in a previous work [33] on the verification
of oWF-nets, we propose in this paper to extend oWF-nets by modeling timing
constraints and to study their analysis.

Several time Petri nets extensions were proposed in the literature which dif-
fer in their semantics and their analysis techniques. We propose to adopt in this
work the time Petri nets, proposed by Merlin [31], in which transitions are la-
beled by intervals specifying the minimum and maximum delays of their firings.
We extend, therefore oWF-nets by associating with each transition a minimum
and maximum amount of time needed to its execution. The obtained model is
said to be time open workflow net (ToWF-net). We define formally this model
and present its semantics as well as the computation of its state space. The effi-
cient construction of the state space leads to efficient techniques of ToWF-nets
reachability analysis.

Dealing with time in inter organizational processes, we propose to study the
compatibility of the processes communicating together. This property is not only
related to the ability of processes to communicate (i.e. composability) but also to
the correct and deadlock-free execution of the composite process. In this context,
we propose to define compatibility classes of ToWF-nets and to emphasize a
method of their verification.

To verify ToWF-nets compatibility, we propose to use formal methods due
to their solid theoretical basis. More precisely, we present an analysis method
based on model checking of the studied properties. In fact, Model checking is
an automated verification technique for proving that a model satisfies a set
of properties specified in temporal logic. Given a concurrent system Σ and a
temporal logic formula ϕ, the model checking problem is to decide whether Σ
satisfies ϕ. Hence, we have to formulate in temporal logic the properties to be
verified. This kind of verification is situated at the design phase, allowing thus to
find design bugs as early as possible and therefore to reduce the cost of failures.
This, especially, permits us to check as early as possible if two or more processes
are compatible before their composition. We express the proposed compatibility
properties in Timed Computation Tree Logic (TCTL).

The rest of this paper is organized as follows. We propose in section 2 the
ToWF-nets to model inter organizational workflow processes with timing delays.
The same section presents the semantics of ToWF-nets in terms of states and
their evolution and exposes a case study. Section 3 is dedicated to present some

250 PNSE’14 – Petri Nets and Software Engineering

results of the reachability analysis of ToWF-nets. We focus in section 4 on the
verification of ToWF-nets compatibility. We begin with expressing the properties
in TCTL and then we present some experiments in Romeo model checker. Section
5 exhibits related work and finally section 6 concludes the paper and announces
future work.

2 Time open WorkFlow nets

In this section, we propose a new sub class of time Petri nets modeling workflow
processes with interface places used to communicate with other partners. To
begin with, we present a Petri nets modeling of communicating processes and
then we propose a time extension.

2.1 Petri nets modeling of communicating workflows

Nowadays, many organizations are implementing their business functionality
and outsource their services on the internet. Thus, the selection as well as inter
organizational and heterogeneous integration with efficiency and effectiveness of
Web services during the execution has become an important step in Web services
applications. In particular, if no service can meet the needs of the user, there
should be a possibility to combine existing services to meet the demands required
by the user. This trend has led to the notion of the composition of Web services.

In fact, the composition or aggregation of Web services is a process that
involves building new services or aggregates called composite services by assem-
bling existing services. The composite service is a value added service that can
be the distribution of basic services or composite ones.

This composition can be modeled by means of a Petri net class named open
workflow nets [25,33,29,30]. We model each involved process by an open workflow
net possessing interface places used to communicate with other processes. Thus
the conversation and interaction between the involved processes are guaranteed.
The communication considered here is entangled through operational and con-
trol behaviors. The operational behavior is a behavior specific to each partner
according to its business logic while the control behavior describes the general
behavior of any process related to composite Web services.

As mentioned above, open workflow nets are mainly an extension of workflow
nets (WF-nets) to model workflow processes which interact with other workflow
processes via interface places. Simple WF-nets [7]is a result of Petri nets’ ap-
plication to workflow management. The choice of Petri nets is based on their
formal semantics, expressiveness, graphical nature and the availability of Petri
nets based analysis techniques and tools.

A Petri net is a 4-tuple N = (P, T, F,W) where P and T are two finite non-
empty sets of places and transitions respectively, P∩T = ∅ , F ⊆ (P×T)∪(T×P)
is the flow relation, and W : (P × T)∪ (T × P)→ N is the weight function of N
satisfying W (x, y) = 0 ⇔ (x, y) /∈ F . If W (u) = 1 ∀u ∈ F then N is said to be
ordinary net and it is denoted by N = (P, T, F). For every node x ∈ P ∪ T , the

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 251

set of input nodes of x is defined by •x = {y|(y, x) ∈ F} and the set of output
nodes is denoted by x• = {y|(x, y) ∈ F}. We refer the reader to [8], for more
Petri nets notations used in this paper.

A Petri net which models a workflow process is said to be a WF-net [3]. An
ordinary Petri net N = (P, T, F) is a WF-net iff N has one source place i named
initial place (containing initially one token) and a sink place f named final place.
In addition to this characteristic, in a WF-net, every node n ∈ P ∪ T is on a
path from i to f .

For a composition, we propose to model each Web service by a WF-net
specifying the set of tasks to be performed and their routing. The conversation
between the different Web services is ensured by communication places used
for messages sending. We are thus using open WF-nets (oWF-nets) which gen-
eralizes the classical WF-nets by introducing interface places for asynchronous
communications with partners. Hence, we model a composition by a set of oWF-
nets communicating via interface places. These places connect only transitions
of different processes.

2.2 Time extension

When incorporating time constraints, different extensions of Petri nets were pro-
posed. In general, when the time constraints are specified by constants(durations),
the associated extension is said Timed Petri nets. This consider constant dura-
tions attached to places (P-Timed Petri nets) or transitions (T-Timed Petri
nets). When these constraints are specified by intervals (delays) specifying the
minimum and the maximum amounts of time needed for transitions’ firing, the
associated extension is called Time Petri nets. These intervals are attached to
places (P-Time Petri nets), transitions (T-Time Petri nets) or arcs (A-Time Petri
nets) leading thus to different extensions with variant semantics.

Petri nets form a powerful formalism for the expression of control flow in
business processes [2,19,18,16]. In addition, several studies [1,6,27,22] have shown
the importance of temporal reasoning in the specification of workflow systems.

In [27], the authors extend the simple WF-net presented by van der Aalst [3]
by associating with each transition an amount of time representing the duration
of the task it models. They propose a temporal extension of the WF-net, called
Time WF-net and scored TWF-net. Timing discipline adopted in the proposed
model announced that each enabled transition must start running immediately,
otherwise it will be disabled, and once started, this transition can not be delayed,
i.e. its duration should be respected. While this approach is strict in the fixed
duration required, time Workflow nets (TWF-nets) incorporate time constraints
of activities by associating to each transition an interval specifying its firing time
[12,15,27].

Since this time consideration is flexible and given that we are interested
by modeling the composition of workflow processes with time constraints, we
propose the time open workflow net model (ToWF-net). This model associates
a static time interval to each transition of an open workflow net to express the

252 PNSE’14 – Petri Nets and Software Engineering

execution time or delay of corresponding activity. The formal definition of a
ToWF-net model net is the following:

Definition 1 (ToWF-net)
A Time Open Workflow Net N is a tuple (P, T, F, FI, I, O) with:

• P is a set of places,
• T is a set of transitions,
• I is a set of places representing input interfaces which are responsible for
receiving messages from other services: •I = ∅.
• O is a set of places representing output interfaces that are responsible for
sending messages to other services: O• = ∅.
• I, O and P are disjoint. I and O connect transitions of different partners.
• F ⊆ ((P ∪ I)× T) ∪ (T × (P ∪O)) is the flow relation,
• FI : T → Q+×Q+∪{∞} is the function that associates with each transition
t ∈ T a static firing interval, i.e. FI(t) = [minFI(t),maxFI(t)] where
minFI(t) and maxFI(t) are rational numbers representing respectively the
minimal and maximal firing time,

The marking of N is a vector of NP such that for each place p ∈ P , M(p) is
the number of tokens in p. The initial marking of N is Mi knowing that Mp is
used to denote a marking for whichM(p) = 1 andM(q) = 0 ∀q ∈ (P∪I∪O)\{p}.

A transition t is said to be enabled in a marking M if the required tokens
are present in the input places of t. We denote by En(M) the set of all the
transitions enabled in the marking M . A transition t is said disabled by the
firing of t′ in M if it is enabled in M but it isn’t in M −• t′. When focusing of
newly enabled transitions after firing a transition t from M and leading to M ′,
we denote by NEn(M, t) the set of transitions enabled after this firing.

NEn(M, t) = {t′ ∈ En(M ′)|t′ = t ∨ ¬M ≥• t+• t′}.
When a transition t becomes enabled, its firing interval is set to its static firing

interval FI(t). The lower and upper bounds of FI(t) decrease synchronously
with time, until t is fired or disabled by another firing. t can fire, if the lower
bound of its firing interval reaches 0, but when upper bound of its firing interval
reaches 0, t must be fired without any additional delay (strong semantic). The
firing takes no time but may lead to another marking.

Let us define first the state of a ToWF-net and then the transition relation.

Definition 2 A state in a ToWF-net represents the state of the process modeled
with ToWF-net after the occurrence of an event. Formally, a state in a ToWF-
net is a pair (M, Int) where:

– M is a marking,
– Int is a firing interval function, Int : En(M)→ Q+×Q+∪{∞}. We denote
Int(t) = [minInt(t),maxInt(t)].

The initial state of a ToWF-net is (M0, Int0) where M0 = Mi (since in a
ToWF-net, only i contains initially one token) and Int0(t) = FI(t) ∀t ∈ En(M0)

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 253

Starting from the initial state (M0, Int0), the net evolves following the oc-
currence of events. An event corresponds to either a transition firing or a time
progression. Hence, the transition relation between a state s1 = (M1, Int1) and
s2 = (M2, Int2) is defined by t→ in case of a firing and by d→ in case of time
progression. The conditions and the computation of the resulting state after an
event occurrence are defined as follows:

1. s1
t→ s2 if and only if s2 is immediately reachable from s1 by firing the

transition t, i.e.
t ∈ En(M1) and minInt1(t) = 0,
M2 =M1 −• t+ t•, and

∀t′ ∈ En(M2), Int2(t′) =
{

FI(t′) ift′ ∈ NEn(M1, t)
Int1(t

′) otherwise

2. s1
d→ s2 ∀d ∈ R if and only if the state s2 is reachable from s1 by time

progression with d time units, i.e.
minInt1(t) + d ≤ maxFI(t),
M2 =M1, and
∀t ∈ En(M1), Int2(t) = [Max(0,minInt1(t)− d),maxInt1(t)− d]

Therefore, the semantics of a ToWF-net N is defined by a transition system
(S, s0,→) where S is the set of all the states reachable from the initial state s0
by the transition relation → defined above.

2.3 A case study

In order to illustrate the proposed ToWF-net, we propose to study the pro-
cess of awarding of pensions to handicapped persons. This process requires the
collaboration of three organizations:

• The prefecture which manages scholarships and grant of license to the dis-
abled.
• A medical entity that is responsible for negotiating the date of appointments

with patients and collecting the medical informations.
• The Town Hall which establishes certificates, births extracts, etc.

The allocation of pension process is seen as a collaboration between the
services offered by these organizations.

In fact, citizens with disabilities ask a government scholarship. To start the
process, citizens request the form corresponding to the prefecture. Once the cit-
izen receives the form, he fills it and sends it to the prefecture. The latter seeks
medical entity to consider disability that the citizen presents. Medical entity
subsequently contacts the citizen to negotiate with him about a date of ap-
pointment. Once an appointment is fixed, and after reviewing the citizen, the
entity establishes a medical examination report and forwards it to the prefec-
ture. Meanwhile, the prefecture asked the town hall to establish a certificate of
residence of the citizen. Once the certificate of residence and the medical report
is received, the prefecture makes the final decision.

254 PNSE’14 – Petri Nets and Software Engineering

The figure 1 shows a screenshot of this composition involving the four pro-
cesses relevant to the Applicant, the Prefecture, the Town Hall and the Medical
Unit.

These processes are interconnected with available interfaces that facilitate
communication and exchange of messages between them. These interfaces corre-
spond to places denoted by Isn (for input interfaces) and Osn (for output ones),
where s is the service number and n is the interface number in each category.
Note that each input interface place of a service has an equivalent output inter-
face of another service and this will guarantee the services communication. For
sake of clarity, in this example, the interfaces are given names which explain the
sequence of exchanged messages between partners.

The various services are forced to respect the different temporal properties
of each service, in what follows , we mention a few of them:

• Once the medical entity proposes dates for appointment to the citizen, it
must receive the confirmation within 24 hours.

• Once the application for the grant is received, the prefecture sends its final
decision to the citizen, after at least 49 hours and not more than 180 hours.

• The medical report may be sent to the prefecture after at least 24 hours and
up to 48 hours of sending the medical examination.

• The receipt of the result of the request is within 210 hours after sending the
request of the purse.

• Two hours is the maximum time to review a citizen in medical entity.
• The time of receipt of the certificate of residence and review of citizen ratio

is up to three hours.
• Negotiation of the appointment date between the citizen and the medical

entity runs for up to one hour.

We present in the following section the analysis of reachability of the Web
services composition modeled by ToWF-nets and we expose the case study reach-
ability analysis in the tool Romeo [21].

3 Reachability analysis of ToWF-nets

After the formal definition of ToWF-nets, we focus now on their reachability
analysis. This analysis is based on the efficient construction of the state space.

By analogy with the marking graph defined in the context of an ordinary
Petri net, we define a state space by a graph containing all accessible states of
a ToWF-net from the initial state. Therefore, to calculate the state space of a
ToWF-net, we must be able to calculate the reachable states by activating the
enabled transitions.

Definition 3 The state space of a ToWF-net has the following structure: SS =
(S,→, s0); where S is the set of nodes in form (M, Int) representing the reachable
states from the initial one s0 = (Mi, Int0) ; → represents the transition relation
which defines the evolution from one state to another.

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 255

Fig. 1. Modeling of the case study with ToWF-nets

256 PNSE’14 – Petri Nets and Software Engineering

S = {s|s0 ∗→ s} is the set of reachable states of the model, and ∗→ is the
reflexive and transitive closure of →.

The reachability analysis [12] in timed models (such as time extensions of
Petri nets as well as timed automata) is based in general on abstraction, which
preserves reachability properties. Such an abstraction for timed models, consists
in considering only one node for all states reachable from the same firing se-
quence while abstracting from their firing times. The grouped states, known as
state classes, are then considered modulo some equivalence relation preserving
properties of interest.

In return, the state class method is intended to provide a finite representation
of the infinite state space of any bounded time Petri net.

Technical classes produce for a large class of time nets a finite representation
of their behavior states, which allows a reachability analysis similar to that
permitted for Petri nets by the technique of marking graph.

The state classes can be represented by a marking and a firing domain.
Formally, a state class is a couple (M,D) where M is a marking and D is
characterized by a set of atomic constraints over the firing delays of enabled
transitions: minFI(t) ≤ t ≤ maxFI(t) ∀t ∈ En(M).

Note that the initial class coincides with the initial state of the network.
This initial class is (M0, D0) where M0 = Mi and D0 corresponds to the firing
domains of transitions enabled in M0.

All states within the same node share the same untimed information and the
union of their time domains is represented by a set of atomic constraints handled
efficiently by means of a Difference Bound Matrix (DBM) [32]. A DBM form a
system of linear inequalities which constrain single variables (v1...vn) and their
differences within limits identified by coefficients bij . This is formally expressed
as: {

vi − vj ≤ bij i, j ∈ [0..n], bij ∈ Q
v0 = 0

In terms of behavior, this state classes group preserves highly the states
traces, and thus the safety properties.

The computation of the state class graph is necessary at this point to per-
form the various reachability analysis. Among the abstractions proposed in the
literature [9], [10,36], we consider here the state class graph method [9] for its
advantage, over the others, which is the finiteness property for all bounded time
Petri nets (while using some approximations).

Romeo [21] is a software studio dedicated to time Petri nets analysis. It is
developed at IRCCyN by the Real-Time Systems Team. It performs analysis
on T-Time Petri nets and on one of their extensions to scheduling. We chose
Romeo because it performs, among other features, the computation of the State
Class Graph (SCG) and a graphical simulation of a T-Time Petri net. It is also
a model checker for a subclass of TCTL formulas.

Therefore, we used Romeo to generate the SCG of our case study. We begun
with composing the different services by superposing the interface places which
correspond to the same interface communication. We then simulated the overall

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 257

obtained net in Romeo. Figure 2 presents a snapshot of the case study analysis
conducted in Romeo and especially the beginning of the file generated by Romeo
and which contains the SCG.

Fig. 2. Analysis of the case study in Romeo

4 Compatibility analysis of ToWF-nets

The analysis of the state space is very significant to the extent that it can re-
veal important characteristics of the modeled system, about its structure and
dynamic behavior. However, for a more accurate verification, we should not be
limited to this type of checking rather another specific properties. Indeed, we
focus in this section on the formal verification of compatibility properties of
ToWF-nets. We propose to use model checking method to verify these proper-
ties since this method permits an exhaustive verification over all the possible
executions. Given a concurrent system Σ and a temporal logic formula ϕ, the
model checking problem is to decide whether Σ satisfies ϕ. Hence, we have to
formulate in temporal logic the properties to be verified.

258 PNSE’14 – Petri Nets and Software Engineering

4.1 Model checking TPN-TCTL

Real systems often have behaviors that depend on time. The ability to manip-
ulate and model the temporal dimension of the events that take place in the
real world is fundamental in many applications. These applications may involve
banking, medical, or multimedia applications. The variety of applications moti-
vate many recent studies that aim to integrate all the features necessary to take
into account the time during verification.

TCTL (Timed Computational Tree Logic) is a timed extension of the tem-
poral logic CTL. TCTL added to CTL a quantitative information on the delays
between actions. It is built from atomic propositions, logical connectors and
temporal operators (U, F, G, X, etc.). The TCTL temporal logic can be used to
check the properties of a time Petri net.

The syntax of TCTL formulas is inductively defined by:
ϕ ::= false | ¬ϕ | ϕ ∧ ϕ | A(ϕ UI ϕ)| E(ϕ UI ϕ)
where p denotes a proposition, ϕ denotes a formula and I = [a, b] or [a,∞[

with a ∈ N and b ∈ N.
A and E are temporal quantifiers over the set of executions. Aϕ announces

that all the executions from the current state satisfy the property ϕ. Eϕ states
that from the current state, there exists an execution which satisfies ϕ. Finally
ϕ UIψ means that the property ϕ is true until ψ is true, and ψ will be true in
the time interval I.

We can use other compositional temporal operators [5]: EFI ϕ = E(true UI

ϕ) (Possibility), EGI ϕ = ¬ AF I ¬ϕ (All locations along an execution), AFI

ϕ = A(true UI ϕ) (Locations along all executions), AGI ϕ = ¬ EF I ¬ϕ (All
locations along all executions).

Semantically, TCTL formulas are interpreted on states and execution paths of
a modelM = (S, V) where S is a transition system and V is a valuation function
that associates with each state the set of atomic propositions it satisfies. [26]

To interpret a TCTL formula on an execution path, we introduce the notion
of dense execution path. Let s ∈ S be a state of S, π(s) the set of all execution
paths starting from s, and ρ = s0

d0t0→ s1
d1t1→ s2... an execution path of s. The

dense path of the execution path ρ is the mapping ρ̂ : R+ → S defined by:
ρ̂(r) = si + δ such that r =

∑i−1
j=0 dj + δ, i ≥ 0 and 0 ≤ δ ≤ di.

The formal semantics of TCTL is given by the satisfaction relation defined
as follows:

– M , s 2 false,
– M , s � φ iff φ ∈ V (s),
– M , s � ¬ϕ iff M , s 2 ϕ,
– M , s � ϕ ∧ ψ iff M , s � ϕ and M , s � ψ,
– M , s � ∀(ϕ ∪I ψ) iff ∀ρ ∈ π(s) ∃r ∈ I, M , ρ̂(r) � ψ and
∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

– M , s � ∃(ϕ ∪I ψ) iff ∃ρ ∈ π(s) ∃r ∈ I, M , ρ̂(r) � ψ and
∀0 ≤ r′ ≤ r M , ρ̂(r′) � ϕ,

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 259

When interval I is omitted, its value is by default [0,∞[.
The Time Petri net model is said to satisfy a TCTL formula ϕ iff M, s0 � ϕ.
The logic TCTL allows writing temporal properties with a quantification of

the time. We chose this approach because it is decidable and PSPACE-complete
for bounded Petri nets [14].

The authors of [24] have gone further by defining a sub-class of TCTL for
time Petri nets in dense time, called TPN-TCTL. They proved the decidability
of model-checking of TPN-TCTL on Petri nets and showed that its complexity
is PSPACE.

Definition 4 The temporal logic TPN-TCTL is defined inductively by:
TPN-TCTL ::= false | ϕ | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ ⇒ ψ | EϕUIψ | AϕUIψ
| EGIϕ | AGIϕ | AFIϕ | EFIϕ | AG(φ1 ⇒ AF[0,d]φ2).

Where ϕ and ψ ∈ TPN-TCTL,
I = [a, b] or [a, b[with a ∈ N and b ∈ N ∪ {∞}.
φ1 and φ2 are propositions on markings.
∀G(φ1 ⇒ ∀F[0,d]φ2) means that from the current state, any occurrence of

marking φ1 is followed by an occurrence of marking φ2 less of d units of time
later.

Romeo permits a practical implementation of the verification of properties
described in TPN-TCTL. It is therefore possible to model check on the fly tem-
poral quantitative properties. That’s why we investigate in the following section
the TCTL expression of the compatibility property and hence its verification in
Romeo.

Before this, let us recall the notation used by Romeo to implement a TPN-
TCTL property:

TPN-TCTLRomeo = E(p)U [a, b](q) | A(p)U [a, b](q) | EF [a, b](p) | AF [a, b](p)
| EG[a, b](p) | AG[a, b](p) | EF [a, b](p) | (p)→ [0, b](q).

where p, q: GMEC; U : until; E: exists; A: forall; F : eventually; G: always;
→: response; a: integer; b integer or inf (to denote ∞).

GMEC = a∗M(i){+,−}b∗M(j){<,<=, >,>=,=}k | deadlock | bounded(k)
| p and q | p or q | p⇒ q | not p.

M : keyword (marking); deadlock, bounded: keywords; i, j:place indexes; a, b, k
:integers ; ∗,+,−, and, or,⇒, not: usual operators ; p, q: GMEC

The syntax (p)→ [0, b](q) denotes a leads to property meaning AG((p) imply
AE[0, b](q)). E.g. (p)→ [0, b](q) holds if and only if whenever p holds eventually
q will hold as well in [0, b] time units.

4.2 TCTL characterization of the compatibility property

From a behavioral point of view, two (or more) processes are said to be compat-
ible if they can interact correctly: this means that they can exchange the same
type of messages and the composite system does not suffer from the deadlock
problem. This leads us to distinguish between a syntactic compatibility which

260 PNSE’14 – Petri Nets and Software Engineering

concerns the verification of the interfaces conformance and a semantic compati-
bility which is related to check the absence of deadlocks. We investigate in this
paper the analysis of the semantic compatibility.

But before this, let us define the composite system obtained from the su-
perposition of a number of syntactically compatible ToWF-nets. The composed
system N of nbX ToWF-nets N1... NnbX consists of all ToWF-nets which share
interface places, i.e. every place of N which is an input interface of a WF-net
is also an output place of another WF-net in the composition. Trivially, N can
be seen as a time Petri net with nbX input places and nbX output places. The
initial marking of N is M0 =

∑nbX
s=1 is.

According to [11,20,28], the compatibility is closely related to the absence
of deadlock in the composite system. They considered that two oWF-nets are
compatible if they can reach their final states. In addition to this condition, we
characterize the compatibility in ToWF-nets by the timing constraints respect.

In this direction, we define three classes of compatibility:

• Partial compatibility: A composed system N is partially compatible if it is
deadlock-free.
• Total Compatibility: A composed system N is compatible if N is already

partially compatible and furthermore, it guarantees the proper termination.
• Perfect compatibility: A composed system is perfectly compatible if it verifies

the total compatibility as well as the deadline constraints.

We focus here on formulating the three types of compatibility properties: par-
tial compatibility, total compatibility and perfect compatibility. Let us consider
the following:

• nbX: is the number of processes;
• nbp: is the number of places in a given process;
• nbi: is the number of interface places available in a composition;
• is: is the input place of the process number s.
• fs: is the output place of the process number s.

– Partial compatibility

To assure its partial compatibility, we have to check the absence of deadlock
in a composition. The process is deadlock-free if there is a transition allowed
for any marking except the final marking Mfin in which all the final places fs
(s = 1..nbX) are marked. This property is expressed as follows:

∀M ∈ [M0〉, Mfin ∈ [M〉

In TCTL, the deadlock-freeness can be expressed as "for all the executions
from the initial state, no deadlock will be encountered until the final state is
reached". For the final state, it suffices to check if the final places are marked.
Hence, the expression of the partial compatibility in TCTL is given as follows:

AG[0,∞[((not MF) ⇒ not deadlock)

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 261

where deadlock is a proposition which returns true iff there is no enabled
transition from the current state; andMF is a proposition on the markingMfin

in which each final place contains at least one token.

MF =
nbX∧
s=1

M(fs) >= 1

Here we focus only on the arrival of tokens to final places and we don’t care
if the other places contains tokens or not.

– Total compatibility

Having expressed the partial compatibility, we focus here on the expression
of the property of proper termination in TCTL. This property allows the process
to complete its execution in any case, but at the time of termination, all places
of ToWF-nets must be empty except for the final places which must have one
token. Verifying the proper termination consists in checking the existence of a
marking M for which all places are empty except the output ones. The expression
of this property is given as follows:

∀M ∈ [M0〉 : M(fs) ≥ 1 ∀s ∈ {1, .., nbX} ⇒ M =
∑nbX

s=1 fs

In TCTL, this property (proper termination) is formulated as follows:

AF[0,∞[StrictMF

Where StrictMF is a proposition on the marking ensuring exactly one token
in each final place fs and no tokens in all the other places including the interface
places.

StrictMF =
nbX∧
s=1

(
nbip
∧

p=1
(M(p) = 0) ∧ (M(fs) = 1)) ∧ (

nbi∧
i=1
M(Ii) = 0)

In this definition, we used nbip to denote the number of places except the
final place for a process.

– Perfect compatibility

Here, we have to check the deadlock-freeness and the proper termination
taking into account the overall deadline constraint.

Let us consider that a process has to reach his final state in Tm time units.
The proper termination within this delay is expressed as follows:

AF[0,Tm] StrictMF

Hence, the perfect compatibility of a composition of ToWF-nets is ensured
iff:

– AG[0,Tm]((not MF) ⇒ not deadlock)
– AF[0,Tm] StrictMF

262 PNSE’14 – Petri Nets and Software Engineering

4.3 On the fly model checking of ToWF-nets composition

We report in this section some results related to the verification of compatibility
and soundness properties of the composition of ToWF-nets. This verification is
ensured by Romeo since it implements an on the fly model checking algorithm
of TPN-TCTL properties.

Let us study the simple composition of ToWF-nets of figure 3. One can easily
see that no deadlock will be encountered until the final places will be marked.
Hence the partial compatibility is satisfied as proven in figure 4. Nevertheless,
the execution of transitions T4 and T5 of the second process leads to two tokens
in the place f2; which leads to violate the property of total compatibility. Figure
5 shows the negative result for this property and draws a trace.

Fig. 3. A composition of ToWF-nets satisfying the partial compatibility but not the
total compatibility

Let us now return to the case study given in figure 1. In order to check the
partial compatibility of the involved processes, we formulate the correspondant
TCTL formula as follows :

AG[0, inf]((not (M(30) >= 1 and M(21) >= 1 and M(23) >= 1 and
M(28) >= 1)) ⇒ not deadlock)

Where 30, 21, 23 and 28 are the indexes associated by Romeo to respectively
the places f1, f4, f3 and f2.

Figure 6 draws a snapshot of a the verification of the partial compatibility
of the four processes involved in the composition. As we can see in the figure,
the result is true and hence the partial compatibility is ensured. The total com-
patibility characterized by the partial compatibility and the following formula is
also verified for this example:

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 263

AF [0, inf](M(30) = 1 and M(21) = 1 and M(23) = 1 and M(28) = 1 and
M(1) = 0 and M(1) = 0 and M(2) = 0 and M(3) = 0 and .. and M(36) = 0)

Fig. 4. Test of partial compatibility

Fig. 5. Test of total compatibility

264 PNSE’14 – Petri Nets and Software Engineering

The perfect compatibility ensuring a proper termination with deadlock free-
ness within 210 hours is also verified for the example. However if we suggest a
perfect compatibility in less than 210 hours, the result is "false".

Fig. 6. Model checking the partial compatibility of the case study with Romeo

5 Related work

Several works dealt with compatibility analysis of Web services modeled either
by open workflow nets or other formalisms. Wil M. P. van der Aalst and al.
[4] considered that two services are compatible if their interfaces are compatible
and if in addition the composition does not suffer from a deadlock. They also
formalized other concepts related to the compatibility as strategy and control-
lability.

Lucas Bordeaux and al. [11] studied the verification of compatibility of Web
services assuming that the messages exchanged are semantically of the same type
and have the same name. They based their work on labeled transition systems
(LTS) for the modeling of Web services. Three types of compatibility have been
defined: the opposite behavior, unspecified reception and absence of deadlock.

Marlon Dumas and al. [17] have classified the incompatibility of Web services
into two types: 1) Incompatibility of signatures (it occurs when a service request
an operation from another service which can’t provide it) and 2) Protocol in-
compatibility which occurs when a service A engages in a series of interactions

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 265

with a service B, but the order which undertakes the service A is not compatible
with the service B. hence, they focused on the incompatibility of protocols in
their article.

Wei Tan and al. [34] proposed an approach that checks interface compatibility
of Web services described by BPEL, and corrects these services if they are not
compatible. To do this, they modeled the composition by SWF-nets, a subclass
of CPN (Colored Petri Nets). Then they checked the compatibility of interfaces.

These works dealt with non timed processes while we focus on those aug-
mented by time information. Focusing on time constraints, Nawal Guermouche
and al. [23] proposed an approach that allows the automatic verification of the
compatibility taking into account their operations, the messages exchanged, the
data associated with messages and time constraints. To check the compatibility
of services using all of these properties, they proposed to extend the Web Services
Timed Transition System (WSTTS), while we chose to extend oWF-nets with
delays associated to activities. In addition, none of the approaches mentioned is
based on the formal verification of compatibility while we have used this method
in our approach. We mainly used the model checking formal method to check
the compatibility classes of ToWF-nets, witch shows a counter example in case
a property is violated allowing thus to recognize and correct the eventual errors
as early as possible.

6 Conclusion

Open workflow nets form a sub class of Petri nets which has been widely and
successfully used to model inter organizational business processes. In particular,
they successfully form a solid theoretical basis for modeling and analysis of Web
services composition. From a software engineering point of view, the construc-
tion of new services by composing existing ones raises a number of challenges.
The most important is the challenge to guarantee a correct interaction of inde-
pendent, communicating pieces of software. In deed, due to the message sending
nature of service interaction, many delicate errors might take place when several
services are put together (unreceived messages, deadlocks, contradictory behav-
iors, etc.). So far, it is necessary to ensure the proper functioning of each service
involved in the composition as well as their ability to be composed, their good
communication and the validity of their messages exchange.

In this context, we investigated in this paper the verification of open work-
flow nets compatibility as a main feature to ensure a correct composition and to
prevent eventual errors from occurring. In addition, we extended the oWF-nets
by timing constraints specifying the activities delays. For the proposed model
baptised Time oWF-net, we studied its semantics in terms of states evolution.
Then, we defined compatibility classes relative to ToWF-nets and emphasized a
formal method of their verification based on TCTL model checking. We finally
studied a case study in which four services interact with each other to reach a
common goal which is the awarding of pensions of handicapped persons. We con-
ducted a reachability analysis of this example in conformance with the method

266 PNSE’14 – Petri Nets and Software Engineering

we propose and we model checked some of the proposed properties with the time
Petri net analyser Romeo. We presented, in addition, a simple example with a
violated property in order to show the generation of a counter example.

As a perspective, we propose to study the parametric verification of ToWF-
nets. In deed, this supposes to treat ToWF-nets modeling concurrent instances
and thus the consistency of time properties is of great interest.

References

1. van der Aalst, W.: Interval timed coloured petri nets and their analysis. In: Pro-
ceedings of the 14th International Conference on Application and Theory of Petri
Nets, London, Springer-Verlag. pp. 453–472 (1993)

2. van der Aalst, W.: Three good reasons for using a petri-net-based workflow man-
agement system. In: International Working Conference on Information and Process
Integration in Enterprises (IPIC96). pp. 179–201 (1996)

3. van der Aalst, W.: Verification of workflow nets. In: ICATPN 97, LNCS, 1248
(1997)

4. van der Aalst, W., Arjan, J., Christian, S., Wolf, K.: Service interaction: Patterns,
formalization, and analysis. In: 9th International School on Formal Methods for
the design of Computer, Communication and Software Systems (2009)

5. Alur, R., Courchoubetis, C., Dill, D.: Model checking in dense real time. Informa-
tion and computation. 104, 2–34 (1993)

6. Atluri, V., Huang, W.: An authorization model for workflows. In: Proceedings of the
4th European Symposium on Research in Computer Security, London, Springer-
Verlag. pp. 44–64 (1996)

7. Barkaoui, K., Ben Ayed, R.: Uniform verification of workflow soundness. Transac-
tions of the Institute of Measurement and Control Journal. 31, 1–16 (2010)

8. Barkaoui, K., Ben Ayed, R., Sbaï, Z.: Workflow soundness verification based on
structure theory of petri nets. International Journal of Computing and Information
Sciences (IJCIS). 5(1), 51–61 (2007)

9. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time petri nets. IEEE Transactions on Software Engineering. 17(3) (1991)

10. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
time petri nets. In: TACAS 2003, volume 2619 of Lecture Notes in Computer
Science. pp. 442–457 (2003)

11. Bordeaux, L., Salaun, G., Berardi, D., Mecella, M.: When are two web services
compatible ? Sapienza University. 3324 (2005)

12. Boucheneb, H., Barkaoui, K.: Parametric verification of time workflow nets. In:
24th International Conference on Software Engineering (SEKE). pp. 375–380
(2012)

13. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in
reachability analysis of time petri nets. ACM Transactions in Embedded Com-
puting Systems (TECS). 12(1), 1–24 (2013)

14. Boucheneb, H., Gardey, G., Roux, O.: Tctl model-checking of time petri nets.
Journal of Logic and Computation. 19(6), 1509–1540 (2009)

15. Camerzan, I.: On soundness for time workflow nets. Computer Science Journal of
Moldova. 15(1), 74–87 (2007)

16. De Michelis, G., Ellis, C., Memmi, G.: In: Proceedings of the second Workshop
on Computer-Supported Cooperative Work, Petri nets and related formalisms,
Zaragoza, Spain (1994)

Z. Sbaï et al.: Compatibility Analysis of Time Open Workflow Nets 267

17. Dumas, M., Benatallah, B., Motahari Nezhad, H.: Web service protocols : Com-
patibility and adaptation. Institute of Electrical and Electronics Engineers. (2008)

18. Ellis, C., Keddara, K., Rozenberg, G.: Dynamic change within workflow systems.
In: Proceedings of conference on Organizational computing systems. pp. 10–21
(1995)

19. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. In: Applications and
Theory of Petri Nets. Lecture Notes in Computer Science, vol. 483, pp. 210–242.
Springer (1989)

20. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility verification for web
service choreography. In: Proceedings of IEEE International Conference on Web
Services. pp. 738–741 (2004)

21. Gardey, G., Lime, D., Magnin, M., Roux, O.: Romeo: A tool for time petri nets
analysis. In: Proceeding of 17th International Conference on Computer Aided Ver-
fication (CAV’05), volume 3576 of Lecture Notes in Computer Science. pp. 418–423
(2005)

22. Gou, H., Huang, B., Liu, W., Li, Y., Ren, S.: Modeling distributed business pro-
cesses of virtual enterprises based on the object-oriented approach and petri nets.
Systems Man and Cybernetics. 3 (2001)

23. Guermouche, N., Perrin, O., Ringeissen, C.: Timed specification for web services
compatibility analysis. Theoretical Computer Science. (2008)

24. Hadjidj, R., Boucheneb, H.: On-the-fly tctl model-checking for time petri nets.
Theoretical Computer Science. 410(42), 4241–4261 (2009)

25. Karsten, S.: Controllability of open workflow nets. In: EMISA. LNI, Bonner Köllen
Verlag. pp. 236–249 (2005)

26. Konur, S., Fisher, M., Schewe, S.: Combined model checking for temporal, proba-
bilistic, and real-time logics. Theoretical Computer Science. 503, 61–88 (2013)

27. Ling, S., Schmidt, H.: Time petri nets for workflow modelling and analysis. In:
IEEE International Conference on Systems, Man, and Cybernetics. pp. 3039–3044
(2000)

28. Martens, A.: On compatibility of web services. In: Petri Net Newsletter. pp. 12–20
(2003)

29. Martens, A.: Analyzing web service based business processes. In: Proceeding of In-
ternational Conference on Fundamental Approaches to Software Engineering, Part
of the European Joint Conferences on Theory and Practice of Software, Lecture
Notes in Computer Science vol. 3442, Springer-Verlag, (2005)

30. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the soa.
Annals of Mathematics, Computing and Teleinformatics 1(3), 35–43 (2005)

31. Merlin, P.M.: A study of the recoverability of computing systems. University of
California (1974)

32. Ridi, L., Torrini, J., Vicario, E.: Developing a scheduler with difference-bound
matrices and the floyd-warshall algorithm. IEEE SOFTWARE (2012)

33. Sbaï, Z., Barkaoui, K.: Vérification formelle des processus workflow - extension
aux workflows inter-organisationnels. Revue Ingénierie des Systèmes d’Information:
Ingénierie des systèmes collaboratifs. 18(5), 33–57 (2013)

34. Tan, W., Fan, Y., Zhou, M.: A petri net-based method for compatibility analysis
and composition of web services in business process execution language. IEEE T.
Automation Science and Engineering. 6(1), 94–106 (2009)

35. WFMC:Workflow management coalition terminology and glossary (wfmc-tc-1011).
Tech. Rep., Workflow Management Coalition, Brussals. (1999)

36. Yoneda, T., Ryuba, H.: Ctl model checking of time petri nets using geometric
regions. IEICE Transactions on Information and Systems. pp. 297–396 (1998)

268 PNSE’14 – Petri Nets and Software Engineering

Petra: A Tool for Analysing a Process Family

D.M.M. Schunselaar?, H.M.W. Verbeek?, W.M.P. van der Aalst?, and H.A.
Reijers?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl

Abstract. When looking for the best model, simulation is often used
for “what-if” analysis. The properties of a modelled process are explored
by repeatedly executing the model. Based on the outcomes, parts of
the model may be manually modified to improve the process. This is
iteratively done to obtain the model best suited to a user’s requirements.
In most cases, this is a labour-intensive and time-consuming task. To
improve on the state of the art, we propose a framework where the user
defines a space of possible process models with the use of a configurable
process model. A configurable process model is a compact representation
of a family of process models, i.e., a set of process models related to each
other. Within the framework, different tools can be used to automatically
compute characteristics of a model. We show that, when used on data
from multiple real-life models, our framework can find better models in
an automated way.

1 Introduction

Within the CoSeLoG project, we are cooperating with 10 Dutch municipalities.
Each of these municipalities has to provide the same set of services to their cit-
izens, but each may do so in its own way [1]. This “couleur locale” justifies that
there may be different solutions to realise a particular process. The union of
local variations for these services spans a solution space containing the process
models currently selected by municipalities (and possibly more). When a munic-
ipality wants to improve their process model, they can use the solution space to
find a better solution (process model) to replace their process model. In Fig. 1,
we illustrate the solution space spanned by interpolating between the different
process models from the municipalities A, B, and C. In [1], we have shown how
to obtain this solution space. This initial solution space lacks the explicit infor-
mation which of the models is the most desired one for an organisation (in Fig. 1
indicated by “?/?”). In this paper, we present Petra: A generic tool to explore
a space of possible models by repeatedly analysing elements of the space and
supporting the collection and comparison of analysis results. Using Petra, we
transform the initial solution space to a solution space with explicit information
? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

A

B C

A

B C

Petra

?/? −/+

?/? −−/+

?/? +/+

?/? −/−
?/? +/−

?/? ++/−

Fig. 1: Given a space of models spanned by a family of process models, we can
compute characteristics (2 in this example) for all the process models. These
characteristics can be used to find the “best” model.

about various aspects of the model, e.g., sojourn time, cost, and complexity (in
Fig. 1 indicated with “+/-”, “+/+”, etc.).

Some approaches exist for the problem at hand. Unfortunately, these ap-
proaches are either only existent on paper, or they are limited to a single tool
capable of computing a predetermined set of characteristics. Therefore, we in-
troduce Petra1, which stands for “Process model based Extensible Toolset for
Redesign and Analysis”. Petra is a generic and extensible framework. The so-
lution space it operates on is defined using configurable process models. The
values obtained from different analysis techniques are stored using properties.
By providing a generic interface, any analysis tool can be used in our framework
by implementing this interface.

Configurable process models are a compact representation for a family of
process models, i.e., a set of process models which are related to each other.
Different members of the family can be obtained by selecting different elements
(from a predetermined set of elements) to be removed. This selection is called a
configuration. This notion of configurable process models subsumes adjusting the
model with the use of XOR/OR gateways. For our configurable process models,
we use block-structured process models called Process Trees [2], which are a
generalisation of the formalism presented in [1]. Process Trees are specifically
developed within our project and all developed analysis techniques have been
designed for Process Trees.

The executable model obtained after configuring the configurable process
model is a model from the aforementioned solution space which one would like to
analyse. Using the aforementioned properties, we can annotate a process model
with analysis results. Properties are generic and can encode any analysis result
obtainable, e.g., sojourn time, costs, etc. Apart from analysis results, properties
are also used to encode run-time characteristics of a process model, e.g., the
arrival process of cases, work schedules of resources, and variable working speeds
of resources.

Since any analysis result can be encoded and we do not want to limit the
analysis power of Petra, we provide a generic tool interface. On this interface,
we provide a configured process model with relevant properties. The analysis

1 Petra is implemented as a ProM plugin http://www.processmining.org/

270 PNSE’14 – Petri Nets and Software Engineering

tools interacting with Petra are expected to, if required, make a transformation
from our Process Trees to the tool specific formalism. Conversions already exist
from Process Trees to classical Petri nets, BPMN, and YAWL for structural
analysis. When the tool finishes its analysis, we expect it to return a Process
Tree annotated with analysis results. We have used CPN Tools [3] as a first
example of an analysis tool in the context of Petra. We have selected CPN
Tools for 3 reasons; (1) it provides flexibility in defining the to-be-computed
characteristics, (2) by using Coloured Petri Nets, we can easily encode the more
advanced insights in resource behaviour, and (3) through Access/CPN [4], it is
possible to simulate all the models without human involvement.

Apart from providing the Petra framework and its implementation, we also
conducted a case study in which we applied our tool to the models from the
municipalities involved in the CoSeLoG project. In this case study, we have taken
models from two municipalities and transformed these into a configurable process
model. For each of the configured models in the solution space, we automatically
created a CPN model and simulated the CPN model to obtain time-related
information. Afterwards, we have enriched the analysed models with the output
of the simulation. This case study shows that our simulation models approach
reality and that we can find better models using Petra.

The remainder of this paper is organised as follows: Sect. 2 presents related
work. In Sect. 3, we present our high-level architecture, Process Trees, and the
properties currently used within our framework. The transformation of a Process
Tree with properties to a CPN model is presented in Sect. 4. After presenting
the key concepts of our framework, we use a case study to demonstrate the
applicability of Petra (Sect. 5). Finally, in Sect. 6, we present our conclusions
and sketch venues for extensions and research. A technical report supporting
this paper can be found in [2].

2 Related work

In this section, we will first elaborate on the techniques applicable to our prob-
lem setting. Afterwards, different techniques are discussed which reason on a
configurable process model to obtain a process model most desired by the user.
Finally, we briefly discuss the used formalism for Petra, as well as its limitations
and benefits relative to other formalisms.

2.1 Applicable techniques for our problem setting

In [5], an approach is presented that is based on configurable process models.
As far as we know, it is the approach most similar to ours. The configurable
process models that are used by it are modelled in Protos [5]. By converting the
configurable process model to a CPN model, the authors can use the same model
to analyse multiple variants of the same process model. The main limitation of
their approach is the fact that the focus is on the use of a single tool (CPN
Tools) which results in a non-extensible set of analysis results. Furthermore, the

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 271

resource model employed is rather simplistic (see [6], for an overview on the
importance of correctly modelling resources), i.e., all resources are available all
of the time. There is also no support for data, i.e., exclusive choices are chosen
randomly. Finally, with respect to determining soundness, state space analysis
has to be employed.

Another approach related to our approach is presented in [7]. On the existing
process model, process measures are computed. Afterwards, different applicable
best practices are evaluated and applied to obtain new process models. Finally,
on these process models, process measures are computed, the best-performing
process models are kept, and the steps are repeated. In [8], an implementation
is presented. However, the focus is on simulation and time-related information.
Furthermore, a single tool is selected for the analysis, prohibiting to gather
information not provided by this specific tool.

In [9], there is a direct dependency on process mining techniques to obtain the
process model as-is, and on enrichment of the process model with information
from the event log. After obtaining the enriched model, there is an iterative
approach of finding the malfunctioning parts of the process model, selecting
transformation from a database to be applied, generating process models for the
different redesign possibilities. The generated process models are stored, and, if
required, the aforementioned steps can be re-executed to change another part of
the process model. From all the generated process models, the best process model
is selected and returned to the user. However, it is unclear how the database of
redesigns is obtained, and it has not been implemented.

2.2 Configurable process models

In [10], a questionnaire-based approach is presented to deduce on a high level
the requirements a user poses on the best instantiation of a configurable process
model. This, in combination with functional requirements, results in an instan-
tiated process model closest to the user’s requirements. This approach does not
give any performance information, but it can be used beforehand to limit the
to-be-analysed solution space.

The Provop framework contains context-based configuration of the config-
urable process model [11]. Within the Provop framework, there are so-called
context rules which limit the configuration possibilities by including contextual
information. These context rules specify, for instance, that if the user requests
high quality, then certain other activities have to be included in the process
model. As with the approach in [10], the focus of this approach is not on collect-
ing performance information. Yet, it can be used to limit the solution space.

2.3 Process Trees and properties

Configurable process models have been defined for different modelling formalisms,
e.g., configurable EPC [12,13], configurable YAWL [14], configurable BPEL [14],
CoSeNets [1], and Process Trees [2]. The first 3 formalism are more expressive

272 PNSE’14 – Petri Nets and Software Engineering

than the latter two, i.e., the CoSeNets and Process Trees are a subclass of Free-
Choice Petri nets. However, with the first 3, explicit attention has to be paid to
the soundness [1] of the configured model. Furthermore, CoSeNets only focus on
control flow. Therefore, we use Process Trees as our formalism.

Process Trees are related to the RPST [15] in the sense that both are block-
structured. However, the RPST is used to convert non-block structured mod-
els into block-structured models and focusses on the control-flow perspective.
Furthermore, RPST can have so-called rigids which are non block-structured
fragments of the process model. These are not present in Process Trees.

Efforts have been made on enriching BPMN models with simulation infor-
mation by the WfMC standard BPSim [16]. However, we allow, amongst others,
for a richer resource model through supporting arousal-based working speeds.
Furthermore, BPSim is tailored towards simulation and thus abstracting from
non-simulation related information, e.g., compliance. We would like to be able to
encode this non-simulation related information as this might be of importance
for different analysis techniques. The properties are related to and inspired by
BPSim and a transformation from properties to BPSim has been made which
works in conjunction with the L-SIM tool from Lanner2.

3 Petra

In this section, we show the high-level architecture of Petra. We will also discuss
the lefthand side of Fig. 2, i.e., the process model and the properties used.

3.1 Architecture

The architecture of Petra, including the use of our sample, analysis tool, is
depicted in Fig. 2. In Petra, we have a family of process models defined by
a configurable process model from which we want to select the “best”. This is
2 http://www.lanner.com/en/l-sim.cfm

CPN Tools
100/20/37/0

200/40/10/0

70/80/15/0P E

A B C

A B C

A B

A C

A

A B C

A B

A C

A

30/40/5/0
?/?/?/?

?/?/?/?

?/?/?/?

?/?/?/?

Configurable Model Family of Process Models Family of Analysed Process ModelsAnalysis Tool

Fig. 2: In Petra, we start with a configurable process model which describes a
family of process models. Each of these models is analysed resulting in a family
of analysed process models.

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 273

subject to the exact requirements of the organisation. We extend every process
model with relevant properties computed using different tools, e.g., sojourn time,
queue time, costs, etc. After obtaining the relevant properties, we have a family
of analysed models. At a later stage, the user can, via different views on this
family of models, select the desired process model.

Petra consists of 3 key concepts: a family of process models, a set of prop-
erties, and a tool interface. We first elaborate on the properties and the tool
interface. Afterwards, the Process Trees are discussed, and the family of process
models last.

Properties Properties come in two different flavours; independent (facts), and
dependent (deduced from facts). By not limiting the framework to a fixed set
of properties, we keep our framework generic. Furthermore, properties can be
part of every construct, e.g., resources, data, etc. In this paper, we focus on an
often used quantitative measure namely time. But properties can also be used
to encode for instance the model complexity.

Tool interface To the analysis tool employed, we offer a Process Tree annotated
with properties on interface P . An analysis tool has to make a transformation
from the Process Tree with properties, to the tool-specific formalism or use one
of the currently available conversions, e.g., to classical Petri Nets or BPMN.
Afterwards, if the tool has finished its computations, the output of the tool has
to be transformed into dependent properties and the Process Tree should be
enriched with this information (interface E). The properties offered on interface
P can both be independent, and dependent. In our framework, we assume an
incremental approach, i.e., tools may only modify or add dependent properties
and are not allowed to remove (in)dependent properties. Since the amount of
possible models can be exponential in the amount of configuration points, we
require a tool to run automatically, i.e., without the need of human involvement.
Interface P can also be used to query properties of a tool, e.g., properties the
tool can compute (and for which nodes), and properties necessary for that.

3.2 Process Trees

Process Trees are block-structured process models, a subclass of Free-Choice
Petri nets, in which each block has a single entry and a single exit. A Process
Tree consists of 3 perspectives: control-flow, resource, and data. Next to this,
we have two extra perspectives to encode contextual information namely: envi-
ronment, and experiment. In Fig. 3, the different perspectives are depicted and
their relation to each other. Each of the perspectives contains a set of configura-
tion points with configuration options. In the remainder of this section, we deal
with each of the perspectives and their properties, and show the configuration
options.

Control-flow perspective The control-flow perspective consists of nodes, and di-
rected edges between these nodes which denotes the order of execution. Nodes

274 PNSE’14 – Petri Nets and Software Engineering

v1, v2

1

2

0

v1: 0.3

0.7

1

0.8

0.2

7

2

a

v2: 0.3

0.7

1

1 M Tu W Th F

r1

Environment

Data Control Flow Resource

Experiment

- Queueing: FiFo , LiFo
- Allocation: Push

- Replication length: 1000
- # Replications: 30 , 40 , 50

- Warm-up period: 500 , 1000 , 1500

arousal

speed

A

B C

[v1 == “1”] [v2 == “2”]

D E

Fig. 3: The different perspectives in a Process Tree.

come in two different flavours: tasks and blocks. Tasks are the units of work which
need to be executed, e.g., A in Fig. 3, and can be manual (with a resource) or
automatic. Blocks specify the causal relationship between its children, e.g., the
block with the arrow in Fig. 3 denotes a sequential execution. All the nodes are
depicted in Fig. 4 with their Petri net semantics3. Note that, we use some of the
notations for events in Petri nets from [17].

If there is an edge from a block to a node, then we say that this node is a child
of that block. We have a total order on the outgoing edges as for most blocks
the order has semantics, e.g., seq. In general, all nodes can have any number of
children excepts for the event (letter or clock), loopxor, and loopdef (see
Fig. 4). Finally, the set of nodes and edges forms a connected Directed Acyclic
Graph (DAG) with a single root node, i.e., a node without any incoming edges.
Process Trees are encoded as a DAG to minimise duplication of behaviour and
thus increasing maintainability.

There are three types of configuration options: (1) hiding, (2) blocking, and
(3) substitution. Substitution entails the option to replace a part of the pro-
cess model with a subprocess from a predetermined collection of subprocesses
(see [1]). Hiding, which is shown in Fig. 5 with the curved arrow, entails the op-
tion to abstract from a part of the process model by substituting the subprocess
with an automatic task, e.g., Fig. 5(b). Blocking, shown with a no-entry sign in
Fig. 5, denotes the option to prevent the flow of entering a part of the process
model, e.g., Fig. 5(a). Note that blocking has non-local effects, e.g., if a part of
a sequence is blocked, then the entire sequence becomes blocked.

In Fig. 5, the space of models is depicted ((a)-(d)) using hiding and blocking.
Figure 5(a) and (c), shows the configured model if we select blocking (note
that we have removed the xor as it is redundant), Fig. 5(b) and (c) shows the
configured model if hiding is selected and finally, Fig. 5(d) shows the configured
model when none of the configuration options is selected.
3 Note that, for many nodes, Fig. 4 shows the semantics for the case with only two
children. However, it is trivial to extend this to more children.

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 275

A A

Manual

Automatic

A Z

A Z

seq

A Z

and A

Z

A Z

xor
[gz][ga]

A

Z

[ga]

[gz ∨ ¬ga]

A Z

[gz][ga]
or A

Z

[ga ∧ ¬gz]

[¬ga ∧ gz]

[ga ∧ gz]

D R E

[gr]

loopxor

D

R

E

[gr] [¬gr]

X Xis shorthand notation for

A Z

def

D R E

loopdef

do redo exit

do redo exit

Fig. 4: The different nodes and their (abstract) Petri net semantics.

Data perspective The data perspective specifies which expressions are used for
the outgoing edges of a choice (between “[” and “]”), which variables are read and
written (line from A to v1 and to v2 in Fig. 3). Furthermore, we have variables
encoded as Markov chains denoting which values a variable might take, with
which probability it may take this value, and what the initial value is of a
variable. For instance, in Fig. 3 (left-hand side), the variable v1 has initial value
“0”, it may take the values “0”, “1”, and “2”, and it changes value according to the
probabilities on the edges.

Expressions reason over variables and values for those variables. They have
the following operators: conjunction, disjunction, and negation. Furthermore,
variables may be compared to values on equality and inequality.

On the outgoing edges of choice constructs, there is the option to select
an expression from a set of expressions. For variables, we can change which
nodes read/write this variable. Furthermore we have the following properties
for variables: we have the option to change the initial values, which values may
be taken, and whether an edge with a certain probability exists between two
values. In Fig. 6, the different possibilities are shown for removing a potential
value and removing an edge between two values for a variable. The family of data
perspectives is spanned by the cartesian product of the options for the variables
and expressions.

276 PNSE’14 – Petri Nets and Software Engineering

A

B C

[v1 == ”1”] [v2 == ”2”]

D E

A B

D E

A

D E

A

C

[v1 == ”1”] [v2 == ”2”]

D E

A

B C

[v1 == ”1”] [v2 == ”2”]

D E

Configurable control-flow perspective All possible configured control-flow perspectives

(a) (b)

(c) (d)

Fig. 5: An example family of control flows.

Resource perspective The resource perspective specifies which resource may exe-
cute which activity, e.g., in Fig. 3, we have a resource r1 and she may execute D
and E. Furthermore, the properties of the resource perspective specify (1) when
a resource is available to work on the process (closely related and inspired by [6]),
e.g., r1 is available on Monday morning and evening, but not on Friday, and (2)
how many resources there are of a particular kind. Finally, different working
speeds can be specified based on the busyness of a resource, this to model effects
such as the phenomenon described by the Yerkes-Dodson law of arousal [18]4.
For the work schedule, one can remove intervals in which the resource is available
to the process (Fig. 7 at the top). The number of resources is selected from a
predetermined set of values. Finally, the arousal based work speed offers the op-
tion to remove parts of the work speeds associated with the arousal levels (Fig. 7
at the bottom). The family of resource perspectives is spanned by the cartesian
product of the options for the work schedule, arousal based work speed, and
number of resources.

Environment perspective Currently, we only have the option to select the ar-
rival process (a property) for the environment perspective. The arrival process
specifies the distribution of arrivals of new cases to the process. Configuring the
arrival process entails selecting a distribution describing the arrival of cases.

Experiment perspective The experiment perspective consists of the simulation
property (Fig. 3 top left), which specifies the arguments for the simulation tool.
We can select a queuing principle, e.g., FiFo, and whether push or pull allocation
is used. Furthermore, we can set the warm-up period, replication length, and

4 The Yerkes-Dodson law of arousal describes the correlation between the arousal
(pressure) and the working speed of a person

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 277

1

2

0

v1

0.3

0.7

1

0.8

0.2

7

2

a
v2

0.3

0.7

1

1

1

2

0

0.3

0.7

0.8

0.2

7

2

a

0.3

0.7

1

1

(a)

(b)

7

a

1

1

1

2

0

0.3

0.7

1

0.8

0.2

(b)

(a)

1

All possible configured data perspectivesConfigurable data perspective

Fig. 6: Example families of Markov chains for variables v1 and v2.

M Tu W Th F

r1

M Tu W Th F M Tu W Th F(a) (b)

(a) (b)

Configurable resource perspective All possible configured resource perspectives

arousal

speed

arousal

speed

arousal

speed

Fig. 7: Example families of work schedules and work speeds for resource r1.

number of replications. For each of the arguments, a single value has to be
selected from a predetermined set of values.

The properties inside of the experiment perspective are not entirely inde-
pendent of the used tool, e.g., the simulation property uses concepts from the
simulation domain. When analysis techniques from another domain is used, there
should be a property with common concepts from that domain.

3.3 Solution space

The solution space of a Process Tree is spanned by the cartesian product of
possible selections of configuration options for the various configuration points
in the various perspectives. In case of Fig. 3, we have a total of 2304 = 2·4·4·4·18
possible models, i.e., 2 possibilities for the environment perspective, 4 for the data
perspective, 4 for the control-flow perspective, 4 for the resource perspective, and
18 for the experiment perspective. Petra is able to traverse this solution space
automatically irrespective of the used properties.

278 PNSE’14 – Petri Nets and Software Engineering

4 Sample tool: CPN Tools

In this section, we elaborate on the transformation of a configured Process Tree
to a CPN model. Since the implementation for controlling CPN Tools using
Access/CPN and parsing the output is relatively straightforward [2], we do not
elaborate on it here.

4.1 Transforming a Process Tree to a CPN model

Transforming a Process Tree to a CPN model is done along four perspectives:
control-flow, data, resources, and environment; the experiment perspective con-
sists mainly of controlling CPN Tools itself. Each of the four perspectives is
treated separately. Modifications that only impact on a single perspective also
only modify the CPN model in that perspective. Between different perspectives,
we have introduced the notion of a controller such that the perspectives can
communicate with each other. For example, the control-flow perspective uses
the allocation controller to signal that a resource is necessary.

Data perspective The transformation of the expressions in the Process Tree
is straightforward, i.e., we have a variable (vexpr) storing whether an expression
evaluated to true of false. A transition guarded with the expression itself is in
charge of updating vexpr based on the values of the variables in the expression
and based on the previous version of the expression.

Modelling the variables themselves is a bit more involved. When a new case
is started, the variable is initialised with the initial value. If a variable is written,
we determine the new value of a variable. Most notable for the variable is the
fact that we employ two different views on the variables: a control-flow view,
and a guard view. We made the distinction because the different views serve two
different purposes. For the control-flow view, it is irrelevant what the value of a
variable is but it is important to know whether an update has been performed.
For the guard view, it is important to know the exact value of a variable as these
are used to evaluate guards.

Resource perspective The resource perspective mainly comprises of the work
schedules of the resources. The number of resources available to the process is a
modification of the initial marking. The task controller computing the resource
arousal level and thus the duration of a task is discussed at the control-flow
perspective (the computation is in the task controller).

A work schedule is a list of reals denoting the length of the intervals of being
present and absent. An integer denotes at which index the schedule currently is,
and a timestamp denotes at what time the last change took place. For instance,
if we have (2, [11.3, 4.1, 7, 4], 15.4), the “2” denotes that we are at
index 2, i.e., the value “7”, the values between “[” and “]” are the encoding of
the work schedule (available, unavailable), and the “15.4” at the end denotes
the timestamp of the last change. Note that since CPN Tools does not allow

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 279

guards based on time5, we cannot directly use the time of the last change added
to the duration of the interval as a guard for a transition making a resource
(un)available to the process.

Control-flow perspective Within the control-flow perspective, certain parts
of the process model do not always contribute to a case. For instance, for an or
construct only the selected branches (at run-time) contribute. To prevent the
explicit modelling of all possible paths through the or, we have introduced the
notion of true/false tokens. If the true/false token is true, then that part of the
process contributes to the case; otherwise it does not [19].

To be able to cope with multiple cases, we add to each token the notion of
a case identifier. Furthermore, this means that transitions for synchronising a
subprocess, e.g., the parallel execution of a number of tasks, are now guarded
with the requirement that they can only synchronise if all the tokens have the
same identifier. With the aforementioned directed acyclic graph of the Process
Tree, we might have tokens with the same identifier but belonging to different
instantiations of the subprocess. To solve this issue, we unfold the directed acyclic
graph of the Process Tree into a tree prior to applying the transformation.

In order to obtain timing information from the simulation, we have extended
every token with a timestamp, duration, and performance information about
the sojourn time, processing time, queue time, and wait time. The timestamp
denotes when a token entered a subprocess rooted at the node. The duration
denotes the processing time for a task and is updated just before the tasks starts.
The duration of a task is computed by the controller of a task since the duration
is based on the task and the arousal level of the allocated resource. Finally, the
performance information is used to obtain information about subprocesses and
can be used to compute the performance characteristics of a node based on its
children. The sojourn time is the time from the start of a subprocess for a case
until the end of that subprocess, processing time is the total amount of time
resources spent working on a case within a subprocess, queue time is the total
amount of time a case waited for a resource in a subprocess, and wait time is
the time spend in synchronising parallel branches for a subprocess.

Nodes All nodes offer the same interface places to their parent in the CPN encod-
ing. The interface places offered to the parent are: scheduled , started , withdrawn,
and completed . Scheduled denotes that a subprocess may start. Started denotes
that a subprocess actually has started. Withdrawn is specifically for accommo-
dating events, in which case all events are scheduled at the same time and the
event that starts first withdraws the others. Finally, completed denotes that the
subprocess has finished its execution. The interface places are encoded using
fusion places in CPN Tools [3].

Connected to the interface places are some standard transitions. The with-
draw transition fires when a token is received on interface place withdrawn, and
5 Guards are only reevaluated when tokens are added/removed in the surrounding
places.

280 PNSE’14 – Petri Nets and Software Engineering

we have not started the execution of this subprocess. If the subprocess has al-
ready been started, then the withdrawn token is forwarded with high priority to
the children. By using priorities on the transitions, we guarantee that nothing
ordinary can happen between obtaining and forwarding the withdrawn token.
When a subprocess is scheduled with a true token, then first the init transition
is fired. The init transition is linked to another fusion place which forms a hook
for a controller to notice that a subprocess has been scheduled. Similar, we have
a final transition to consume the token after a controller has been notified on
the completion of this subprocess. Finally, there is a skip transition in case a
false token is received in the scheduled place.

Tasks As tasks do not have children, we cannot receive a withdraw token after
starting the task, i.e., we can only start the task after all unprocessed withdraw
tokens have been processed. In case we receive a true token, the task signals the
controller of this task being scheduled. As soon as the task is allowed to start,
a token is produced signalling that the initialisation has been finished, and the
task starts and signals its parent by producing a token on the started interface
place. Afterwards, the task signals the task controller that it needs a resource
and a duration for its work item. The task controller adds the work item to the
list of currently unallocated work items. As soon as a resource has been allocated
to a work item (by the allocation controller, which we explain later on), the task
controller notifies the task and determines the processing time for the task based
on the arousal level of the allocated resource. After the duration has elapsed, a
token is made available and the task can complete. During the completion of a
task, the used resource is released, the read and written variables are updated,
and the statistics of the task are computed.

The statistics for a task are computed as follows: The queue time is the
elapsed time between a token entering the task’s subprocess and the moment a
resource has been allocated to the work item. The processing time is the duration
of a task. The wait time for a task in isolation is 0 by definition. Finally, the
sojourn time is the sum of the queue time and the processing time, i.e., the total
time spent in the task subprocess.

Blocks Blocks have the same set of places exposed to their parent as a task
has, e.g., a block is also scheduled, and a block signals her parent that she
has completed. Dependent on the type of block, different children receive a true
token based on different information, e.g., in case of an and block all the children
receive a true token, in case of a xor block only the first child for which the
expression evaluates to true receives a true token, etc.

Due to space limitations, we show the transformation of the xor block and
the loopxor block. The reason for this is that the and, or, and def blocks
can be easily inferred from the xor block. In turn, the seq and loopdef blocks
can be easily inferred from the loopxor block. For the encoding of the event
block, we refer the reader to [2].

The most interesting part of the xor is in the selection of which children
should receive a true token and which should receive a false token. The relevant

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 281

if getStatus(token0)
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getWaitTimeSum((token0::token1::nil), getWaitTime(token))) else nil

if getStatus(token0)
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getQueueTimeSum((token0::token1::nil), getQueueTime(token))) else nil

if getStatus(token0)
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getProcessingTimeSum((token0::token1::nil), getProcessingTime(token))) else nil

if getStatus(token0)
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getSojournTimeMax((token0::token1::nil), getSojournTime(token))) else nil

token1

token0

token

token

token

token

token

token

updTimestampStatus(token,time(),not(getStatus(token1)))

token1

token

(caseId,rs,b)

(caseId,rs,b)

token

updTimestampStatus(token, time(), b)

updStatus(token, b)

token

(caseId,rs,b)

(caseId,rs,b)

token

token

token

token

token

setStatsTime(updTimestampStatus(token, time(), getStatus(token0)orelse getStatus(token1)), getSojournTimeMax((token0::token1::nil), getSojournTime(token)) + getSojournTime(token), getProcessingTimeSum((token0::token1::nil), getProcessingTime(token)) + getProcessingTime(token), getQueueTimeSum((token0::token1::nil), getQueueTime(token)) + getQueueTime(token), getWaitTimeSum((token0::token1::nil), getWaitTime(token)) + getWaitTime(token))token

updStatus(token, false)

token

token

token

token

token
token

token

XorXChild1Started

P_HIGH

XorXChild0Started

P_HIGH

XorXChild1Scheduled

caseId = getCaseId(token) andalso getCaseId(token) = getCaseId(token1)

XorXChild0Scheduled

caseId = getCaseId(token)

XorXNoWithdraw

P_HIGH

XorXComplete

match(token::token0::token1::nil)

XorXFinal

XorXInit

getStatus(token)

XorXSchedule

getStatus(token)

XorXSkip

not(getStatus(token))
XorXWithdraw

P_HIGHER

PCScheduleIn1
XorControllerCIn

CToken

PCScheduleOut1
XorControllerCOut

CToken

XorXChild0Selected

CToken

PBScheduleIn0
XorControllerBIn

CToken

PBScheduleOut0
XorControllerBOut

CToken

PExpr1
Expr1 CExpr

PExpr2
Expr2 CExpr

PXorXFinalised
183adaf7-20a1-4b68-98d4-21218b66cdffFinalisedCToken

PXorXFinalise
183adaf7-20a1-4b68-98d4-21218b66cdffFinaliseCToken

PXorXInitialised
183adaf7-20a1-4b68-98d4-21218b66cdffInitialisedCToken

PXorXInitialise
183adaf7-20a1-4b68-98d4-21218b66cdffInitialiseCToken

XorXBusy

CToken

PCCompleted1
0b157a75-927c-4945-8a6c-c49329dc50c7CompletedCToken

PCWithdrawn1
0b157a75-927c-4945-8a6c-c49329dc50c7WithdrawnCToken

PCStarted1
0b157a75-927c-4945-8a6c-c49329dc50c7StartedCToken

PCScheduled1
ScheduledC

CToken

PBCompleted0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eCompletedCToken

PBWithdrawn0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eWithdrawnCToken

PBStarted0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eStartedCToken

PBScheduled0
ScheduledB

CToken

StatsWaitTime
StatsWaitTime CStat

StatsSojournTime
StatsSojournTimeCStat

StatsProcTime
StatsProcTime CStat

StatsQueueTime
StatsQueueTimeCStat

PXorCompleted
183adaf7-20a1-4b68-98d4-21218b66cdffCompletedCToken

PXorWithdrawn
183adaf7-20a1-4b68-98d4-21218b66cdffWithdrawnCToken

PXorStarted
183adaf7-20a1-4b68-98d4-21218b66cdffStartedCToken

PXorScheduled
183adaf7-20a1-4b68-98d4-21218b66cdffScheduledCToken183adaf7-20a1-4b68-98d4-21218b66cdffScheduled

183adaf7-20a1-4b68-98d4-21218b66cdffStarted

183adaf7-20a1-4b68-98d4-21218b66cdffWithdrawn

183adaf7-20a1-4b68-98d4-21218b66cdffCompleted

StatsQueueTime

StatsProcTime

StatsSojournTime

StatsWaitTime

ScheduledB

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eStarted

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eWithdrawn

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eCompleted

ScheduledC

0b157a75-927c-4945-8a6c-c49329dc50c7Started

0b157a75-927c-4945-8a6c-c49329dc50c7Withdrawn

0b157a75-927c-4945-8a6c-c49329dc50c7Completed

183adaf7-20a1-4b68-98d4-21218b66cdffInitialise

183adaf7-20a1-4b68-98d4-21218b66cdffInitialised

183adaf7-20a1-4b68-98d4-21218b66cdffFinalise

183adaf7-20a1-4b68-98d4-21218b66cdffFinalised

Expr2

Expr1

XorControllerBOut

XorControllerBIn

XorControllerCOut

XorControllerCIn

Fig. 8: Fragment in xor dealing with guards.

part is depicted in Fig. 8. After the xor has been initialised and scheduled, the
xor signals the fragments corresponding to the guards in the data perspective
that it is going to schedule its children. After these fragments are done, the
expressions are evaluated in the order of the outgoing edges. If an expression
evaluates to true, then we forward a true token to the corresponding child and
all other children obtain a false token. We have a special case when all the
expressions evaluate to false. In that case, we forward, similar to YAWL [20], a
true token to the last child (instead of a false token).

For the statistics for the xor, we take the statistic of the child which received
a true token, i.e., we do not want non-executed subprocesses to interfere with
the statistics.

For the loopxor, the most interesting part is the iteration of the loop
(Fig. 9). If a loop is scheduled, we first schedule the do child of the loop. When
the do child has completed, we schedule both the redo child and the exit child.
Based on the guard of the redo child, we either send the true token to the redo
child or the exit child, the other will be send a false token. Note that we employ
a similar strategy as for the xor, i.e., if all guards are false then the exit child
receives a true token hence we only need to evaluate the guard of the redo child.
If the redo child has received the true token, we execute the do child again. If
the exit child received the true token, then we can exit the loop.

282 PNSE’14 – Petri Nets and Software Engineering

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getWaitTime(token2) - getWaitTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getQueueTime(token2) - getQueueTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getProcessingTime(token2) - getProcessingTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", time()-getTimestamp(token)) else nil

token2

token1

token

token

token

token
token

token0

updTimestampStatus(token0, time(), getStatus(token0) andalso b)

token0

token

token

token

token

token2

token2

setStatsTime(updTimestamp(token2, time()), getSojournTimeMax((token2::nil),
getSojournTime(token)) + getSojournTime(token), getProcessingTimeSum((token2::nil),
getProcessingTime(token)) + getProcessingTime(token), getQueueTimeSum((token2::nil),
getQueueTime(token)) + getQueueTime(token), getWaitTimeSum((token2::nil),
getWaitTime(token)) + getWaitTime(token))

token updStatus(token, false)

token

token

token

token

token

token token

(caseId, rs, b) (caseId, rs, b)

P_HIGH

P_HIGH

P_HIGH

ScheduleDo Redo

caseId = getCaseId(token0)

Exit

caseId = getCaseId(token0)

XorLoopDNoWithdraw

P_HIGH

XorLoopDFinal

getStatus(token)

getStatus(token)

XorLoopDSkip

not(getStatus(token))

XorLoopDWithdraw

P_HIGHER

ExitScheduleIn
LoopxorControllerExitInCToken

ExitScheduleOut
LoopxorControllerExitOutCToken

RedoScheduleIn
LoopxorControllerRedoInCToken

RedoScheduleOut
LoopxorControllerRedoOut

CToken

DoScheduleIn
LoopxorControllerDoInCToken

DoScheduleOut
LoopxorControllerDoOutCToken

PXorLoopDFinalised
4767fb17-d018-419b-a140-77c3efdec445FinalisedCToken

CToken

CToken CToken

CToken

NoExpression
NoExpression CExpr

CExpr

CToken

PCWithdrawn2
2362a173-2c05-4b5b-b6d9-26f6d65829ceWithdrawnCToken

PCStarted2
2362a173-2c05-4b5b-b6d9-26f6d65829ceStartedCToken

PCScheduled2
ExitScheduledCToken

CToken

PBWithdrawn1
81589419-e68c-47c8-b65d-47691ff7be5eWithdrawnCToken

PBStarted1
81589419-e68c-47c8-b65d-47691ff7be5eStartedCToken

PBScheduled1
RedoScheduledCToken

CToken

PAWithdrawn0
98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dWithdrawnCToken

PAStarted0
98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dStartedCToken

PAScheduled0
DoScheduledCToken

CStatCStatCStatCStat

PXorLoopCompleted
4767fb17-d018-419b-a140-77c3efdec445CompletedCToken

PXorLoopWithdrawn
4767fb17-d018-419b-a140-77c3efdec445WithdrawnCToken

PXorLoopStarted
4767fb17-d018-419b-a140-77c3efdec445StartedCToken

PXorLoopScheduled
4767fb17-d018-419b-a140-77c3efdec445ScheduledCToken4767fb17-d018-419b-a140-77c3efdec445Scheduled 4767fb17-d018-419b-a140-77c3efdec445Started 4767fb17-d018-419b-a140-77c3efdec445Withdrawn 4767fb17-d018-419b-a140-77c3efdec445Completed

DoScheduled

98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dStarted

98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dWithdrawn

RedoScheduled

81589419-e68c-47c8-b65d-47691ff7be5eStarted

81589419-e68c-47c8-b65d-47691ff7be5eWithdrawn

ExitScheduled

2362a173-2c05-4b5b-b6d9-26f6d65829ceStarted 2362a173-2c05-4b5b-b6d9-26f6d65829ceWithdrawn

NoExpression

4767fb17-d018-419b-a140-77c3efdec445Finalised

LoopxorControllerDoOut

LoopxorControllerDoIn LoopxorControllerRedoIn

LoopxorControllerExitOut

LoopxorControllerExitIn

LoopxorControllerRedoOut

PExpr1
Expr1Expr1(caseId, rs, b) (caseId, rs, b)

CExpr

Schedule

PXorLoopDInitialise
4767fb17-d018-419b-a140-77c3efdec445Initialise4767fb17-d018-419b-a140-77c3efdec445Initialise XorLoopDInit

XorLoopDChild0Started

PExpr2
3a4b0ecf-a44a-4b36-a807-84aea9302fd73a4b0ecf-a44a-4b36-a807-84aea9302fd7

XorLoopDChild1Started

XorLoopDChild2Started

token1

StatsQueueTime
StatsQueueTimeStatsQueueTime

StatsProcTime
StatsProcTimeStatsProcTime

StatsSojournTime
StatsSojournTimeStatsSojournTime

StatsWaitTime
StatsWaitTimeStatsWaitTime

PXorLoopDFinalise
4767fb17-d018-419b-a140-77c3efdec445Finalise4767fb17-d018-419b-a140-77c3efdec445Finalise

XorLoopDBusy

DoCompleted
DoCompletedDoCompleted

RedoCompleted
RedoCompletedRedoCompleted

not(getStatus(token2)) andalso getStatus(token1)

Complete

match(token::token2::nil) andalso not(getStatus(token1))
token2

PXorLoopDInitialised
4767fb17-d018-419b-a140-77c3efdec445Initialised4767fb17-d018-419b-a140-77c3efdec445Initialised

ExitCompleted
ExitCompletedExitCompleted

updTimestampStatus(token0, time(), getStatus(token0) andalso not(b))

Reschedule
updTimestamp(token1, time())

XorLoopDRedoExit
tokentoken

token

token

Fig. 9: Fragment in loopxor dealing with guards.

The statistics of the loopxor are stored in the token of the exit child. In the
tasks, we already increment the values for the different performance measures
and due to the fact that the children of the loopxor are sequential, e.g., do,
redo, do, and exit , there is no need to aggregate the values.

Environment Perspective The environment controller currently consists of
the arrival controller only. The arrival controller realises a token generator and
a token de-generator. The token generator generates new cases based on the
distribution of the arrival process. The token de-generator removes finished cases
from the model.

Extra Controllers A controller not belonging exclusively to any of the afore-
mentioned perspectives is the allocation controller . The allocation controller al-
locates work items to resources. It operates on the global list of work items,
which contains all cases waiting to be processed by an activity, and on the list
of currently available resources to the process. The allocation can either push or
pull items by taking either the work item or resource point of view. For instance,
if we take the resource point of view (pull), then the resource selects the work

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 283

item most desired by her. When taking the work item point of view (push), we
select the resource best fitting the work item.

5 Case study

We have taken the building permit process of two Dutch municipalities, MA

and MB , participating in the CoSeLoG project. Instead of simulating the entire
building permit process, we focus in particular on the “Bezwaar en Beroep”
(objection and appeal) subprocess6. This subprocess allows people to object and
appeal to the possible conferment7 of a building permit, and starts after the
municipality has published the disposal8 of a building permit, which gives people
the opportunity to object or appeal before the disposal becomes a conferment.
The disposal of a building permit means that the municipality agrees with the
building permit but it is not yet definitive, i.e., based on objections and appeals
the municipality may decide to disagree with the building permit.

In our case study, we want to show Petra can indeed analyse a family of
process models and find a better process model. From the municipality event
logs, we obtained the different perspectives for each of the municipalities. These
perspectives have been combined into a Process Tree using the aforementioned
configuration options. In order to verify that the perspectives were obtained
correctly, we first try to reproduce the behaviour recorded in the original logs
from the municipalities. This way we can verify that the perspectives are encoded
correctly.

Verifying perspectives The characteristics of the logs are listed in Table 1. The
log spans a time period of roughly 2 years. The log consists of create events and
of completed events, and every event has an executor associated with it. The
occurrences of the different event classes varies significantly. The least occurring
event class occurs just once, while the most occurring event class occurs 262 times
for MA and 451 times for MB . We only estimate processing times of activities
with at least 3 observations in the log, this to have somewhat reliable values for
the sojourn time of events whilst not disposing too many activities.

From the event logs, we have constructed Process Trees only consisting of the
control-flow perspectives. Since all the choices in the Process Tree are binary,
we use variables which with a certain probability are “0” or “1” denoting left and
right respectively.

Apart from the flow of the different cases, we also need to estimate the
resource behaviour. First, we estimated the work schedule of the resources. The
work schedule is estimated based on observations from the log. We have taken
the timestamps of all events and made the following assumptions; (1) people
work in shifts, (2) there is a morning shift and an afternoon shift, (3) as there
6 The case study data can be found at: https://svn.win.tue.nl/trac/prom/browser/
Documentation/Petra

7 Conferment means that a building permit is granted to the requester.
8 Disposal means that a building permit is about to be granted to the requester.

284 PNSE’14 – Petri Nets and Software Engineering

Table 1: The characteristics of the logs used in the case study
Characteristics Cases Events Event classes Resources
MA 302 586 15 5
MB 481 845 23 4

is no clear signal of breaks, we assume the shifts are consecutive, (4) if we have
at least one measurement in a shift, we assume that person is available for the
process during that whole shift, and finally, (5) we assume a weekly iteration,
e.g., if someone worked on a Monday, we assume she can work every Monday.

For the throughput times of the activities, we have used two sources of infor-
mation. First, by using alignments [21], we aligned the log to the earlier obtained
control-flow perspective in order to see where time is spent. Second, there is leg-
islation specifying legal time intervals, e.g., there is a legal limit within which
the municipality has to respond. Unfortunately, the law allows for exceptions
which are not observable in the log. To take the legal constraints into account,
we have explicitly added activities to model these time intervals, and where the
law is unclear, we have estimated the time interval. We have also analysed the
resource performance between resources when they are allowed to executed the
same activity. If there was a significant difference, we have encoded the sojourn
time per resource, else we estimated the same sojourn time for all the resources.
Furthermore, we have abstracted from outliers.

Using the aforementioned information, we were able to construct the simu-
lation models for both MA and MB . In the simulation, we used push allocation,
FiFo queues for the work items, a warmup period and replication length of
150, 000 steps in the simulator, and, we generated 30 replications for each.

Prior to comparing the simulation results to the logs, we first have to compute
the statistics of the log. Since the log can be seen as a single long replication, we
used batch means to be able to compute replications and to be able to compare
the log to the simulation results. See [22] for an overview of the batch means
method. Fig. 10 shows the results, where MA is shown left and MB is shown
right and times on the y-axis are in hours.

As one can clearly see, there is overlap in the box plots of the logs and the
simulations. Hence, we cannot conclude that our simulation model and reality
differ in an unacceptable manner.

Finding a better model After illustrating that the models used in Petra can
indeed mimic reality, we now combine the models from MA and MB into a single
Process Tree. This Process Tree is the union of MA and MB but allows for more
than just MA and MB . We want to use this combined Process Tree to improve
the sojourn time for MA by letting Petra automatically traverse the family of
process models.

Not all combinations make sense, e.g., MA will not hire the employees of
MB . Hence, we limit the configurability of the Process Tree. This means that we
take the characteristics of the employees of MB into account, e.g., work speed,

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 285

Fig. 10: Validation results.

Table 2: Case study results.
1 2 3 4 5 6 7 8

540 A A A B A B B B
630 A A B A B A B B
770 B A A B B A B A
Avg 1488.78 1572.48 1570.91 806.60 1496.11 1217.32 803.67 1224.50

Std. dev. 29.55 33.82 18.58 22.93 24.81 34.80 20.24 33.10

but do not put the employees of MB into the Process Tree. Furthermore, since
the building permit process is heavily subjective to legal requirements, there is
not much room to change what is done but there is room to change how it is
done. Therefore, we focus on the activities 540 Objection to disposal submitted ,
630 Appeal set , and 770 Establish decision phase original decree, since these
activities embody part of the significant difference between MA and MB , and
are related to how things are done.

With the focus on the activities 540 , 630 , and 770 , we have a solution
space of 8 models. After Petra traversed through the family of process models,
transformed these models to CPN models, simulated each of them, and enriched
the family of process models, we obtain the results (throughput times of the
entire process in hours) as in Table 2.

As one can see, working on the activities 540 and 770 in the same way as
MB can already significantly decrease the sojourn time for MA. Furthermore,
one can clearly see that changing 770 and 630 without changing 540 will not
yield any significant improvements. Finally, 630 does not have any significant
impact on the performance of the process.

6 Conclusion and future work

Using Petra, we can take a family of process models, as captured by a Process
Tree, traverse this family, and enrich every process model from this family with

286 PNSE’14 – Petri Nets and Software Engineering

KPIs using external analysis tool like CPN Tools. Based on these KPI values, a
process owner can then decide which process model suits her best.

Petra is generic and extensible. The genericity is achieved by not limiting our
set of performance indicators and set of properties. The extensibility is achieved
by allowing any tool to be used. Currently, we have two tools in our framework:
CPN Tools and L-SIM. Finally, the implementation of our framework has been
applied in a case study using the data from two municipalities resulting in an
improved model. The case study shows that it is indeed possible to obtain an
improved model. A technical report supporting this paper can be found at [2].

Our framework can be extended in various of directions. Currently, the sim-
ulation of each of the CPN models is a time-consuming task. Although Petra is
multi-threaded, in the experiments, simulating a single CPN model took around
3 days on a core of 2.80 GHz. Since simulation takes such a long time, we
would like to minimise the amount of Process Trees to be analysed. In our cur-
rent implementation, we naively iterate through all possible instantiations of the
configurable process model. This means that equivalent models, obtained by dif-
ferent configurations, are analysed multiple times. Defining equivalence classes
on configurations and taking these into account in the iteration through the
Process Trees could already result in a significant speed up. Another approach
to minimising the amount of to-be-analysed models, is to have knowledge be-
forehand on the performance measures a user wants to optimise. To exploit this
knowledge, we also want to have different (faster but imprecise) analysis tools in
our framework. This way it would be possible to obtain quick estimates in the
relevant measure to decide whether simulating the Process Tree will be worth-
while. Also, simulations could be aborted once it is clear that the model under
investigation will never be Pareto optimal. With the use of Petra, these things
can be easily incorporated without changing any of the aforementioned.

References

1. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.:
Creating Sound and Reversible Configurable Process Models Using CoSeNets. In
Abramowicz, W., Kriksciuniene, D., Sakalauskas, V., eds.: BIS. Volume 117 of
Lecture Notes in Business Information Processing., Springer (2012) 24–35

2. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Pe-
tra: Process model based Extensible Toolset for Redesign and Analysis. Technical
Report BPM Center Report BPM-14-01, BPMcenter.org (2014)

3. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

4. Westergaard, M.: Access/CPN 2.0: A High-Level Interface to Coloured Petri Net
Models. In Kristensen, L.M., Petrucci, L., eds.: Petri Nets. Volume 6709 of Lecture
Notes in Computer Science., Springer (2011) 328–337

5. Gottschalk, F., Aalst, W. M. P. van der, Jansen-Vullers, M.H., Verbeek, H.M.W.:
Protos2CPN: Using Colored Petri Nets for Configuring and Testing Business Pro-
cesses. International Journal on Software Tools for Technology Transfer 10(1)
(2008) 95–110

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 287

6. Aalst, W.M.P. van der, Nakatumba, J., Rozinat, A., Russell, N.: Business Process
Simulation. In Brocke, J., Rosemann, M., eds.: Handbook on Business Process
Management 1. International Handbooks on Information Systems. Springer Berlin
Heidelberg (2010) 313–338

7. Netjes, M., Mansar, S.L., Reijers, H.A., Aalst, W.M.P. van der: Performing Busi-
ness Process Redesign with Best Practices: An Evolutionary Approach. In Filipe,
J., Cordeiro, J., Cardoso, J., eds.: ICEIS (Selected Papers). Volume 12 of Lecture
Notes in Business Information Processing., Springer (2007) 199–211

8. Netjes, M., Reijers, H.A., Aalst, W.M.P. van der: The PrICE Tool Kit: Tool
Support for Process Improvement. (2010)

9. Essam, M.M., Mansar, S.L.: Towards a Software Framework for Automatic Busi-
ness Process Redesign. ACEEE International Journal on Communication 2(1)
(March 2011) 6

10. La Rosa, M., Lux, J., Seidel, S., Dumas, M., Hofstede, A.H.M. ter: Questionnaire-
driven Configuration of Reference Process Models. Advanced Information Systems
Engineering 4495 (2007) 424–438

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process
Models: The Provop Approach. Journal of Software Maintenance and Evolution:
Research and Practice 22(6-7) (November 2010) 519–546

12. Rosemann, M., Aalst, W.M.P. van der: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1) (2007) 1–23

13. La Rosa, M., Dumas, M., Hofstede, A.H.M. ter, Mendling, J.: Configurable multi-
perspective business process models. Inf. Syst. 36(2) (2011) 313–340

14. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University
of Technology, The Netherlands (2009)

15. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In
Dumas, M., Reichert, M., Shan, M.C., eds.: BPM. Volume 5240 of Lecture Notes
in Computer Science., Springer (2008) 100–115

16. Gagne, D., Shapiro, R.: BPSim 1.0. http://bpsim.org/specifications/1.0/WFMC-
BPSWG-2012-01.pdf (Feb 2013)

17. Aalst, W. M. P. van der, Hee, K. M. van: Workflow Management: Models, Methods,
and Systems. The MIT Press (January 2002)

18. Yerkes, R.M., Dodson, J.D.: The Relation of Strength of Stimulus to Rapidity of
Habit-Formation. Journal of Comparative Neurology and Psychology 18(5) (1908)
459–482

19. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR (September 1999)

20. Hofstede, A.H.M. ter, Aalst, W.M.P. van der, Adams, M., Russell, N., eds.: Modern
Business Process Automation: YAWL and its Support Environment. Springer
(2010)

21. Aalst, W.M.P. van der, Adriansyah, A., Dongen, B.F. van : Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182–192

22. Fishman, G.S.: Grouping Observations in Digital Simulation. Management Science
24(5) (1978) pp. 510–521

288 PNSE’14 – Petri Nets and Software Engineering

An Evaluation of Automated Code Generation
with the PetriCode Approach

Kent Inge Fagerland Simonsen1,2

1 Department of Computing, Bergen University College, Norway
Email: kifs@hib.no

2 DTU Compute, Technical University of Denmark, Denmark

Abstract. Automated code generation is an important element of model
driven development methodologies. We have previously proposed an ap-
proach for code generation based on Coloured Petri Net models anno-
tated with textual pragmatics for the network protocol domain. In this
paper, we present and evaluate three important properties of our ap-
proach: platform independence, code integratability, and code readabil-
ity. The evaluation shows that our approach can generate code for a wide
range of platforms which is integratable and readable.

1 Introduction

Coloured Petri Nets (CPNs) [5] is a general purpose formal modelling language
for concurrent systems based on Petri Nets and the Standard ML programming
language. CPNs and CPN Tools have been widely used to model and validate
network protocol models [6]. In previous works [14], we have proposed an ap-
proach to automatically generate network protocol implementations based on a
subclass of CPN models. We have implemented the approach in the PetriCode
tool [13]. In this approach, CPN models are annotated with syntactical annota-
tions called pragmatics that guide the code generation process and have no other
impact on the CPN model. Code is then generated based on the pragmatics and
code generation templates that are bound to each pragmatic through template
bindings. This paper presents an evaluation of the PetriCode code generation
approach and tool.

The four main objectives of our approach are: platform independence, code
integratability, code readability, and verifiability of the CPN models. The con-
tribution of this paper is an evaluation of the first three of these objectives.
In this study, we used the PetriCode [13] tool to evaluate our code generation
approach. Platform independence, i.e., the ability to generate code for several
platforms, is an important feature of our approach. For the purposes of this
study, a platform is a programming language and adjoining APIs. Being able to
generate protocol implementations for several platforms allows us to automati-
cally obtain implementations for many platforms based on the same underlying
CPN model. Platform independence also contributes to making sure that imple-
mentations for different platforms are interoperable. Another aspect is to have

models that are independent of platform specific details. Integrateability, i.e., the
ability to integrate generated code with third-party code, is important since the
protocols must be used by other software components written for the platform
under consideration (upwards integratability). It is also important to be able to
support different underlying libraries so that the generated code can be referred
to by other components (downwards integrateability). Readability is important
in order to gain confidence that the implementation of a protocol is as expected.
While being able to verify the formal protocol models also contribute to this,
inspecting and reviewing the final code further strengthens confidence in the
correctness of the implementations. The ability to manually inspect the gener-
ated code is useful since, in our approach, we only verify the model which is not
sufficient to remove local errors in the code.

The rest of this paper is organized as follows. Section 2 describes the ex-
ample protocol used throughout this paper, and illustrates the code generation
process for the Groovy platform. Section 3 evaluates platform independence by
considering the Java, Clojure, and Python platforms. Section 4 evaluates inte-
grateability, and Section 5 evaluates readability of the code generated by our
approach. Section 6 presents related work, sums up conclusions and discusses
directions for future work. Due to space limitation we provide little on CPNs
and Petri Nets. The reader is referred to [5] for details on CPNs and Petri Nets.
The PetriCode tool as well as the model, template and bindings used in this
paper are available at [10].

2 Example and Code Generation

In this section, we present an example CPN model which is an extension of the
protocol model we have used in previous work [14]. The example allows us to
introduce the concepts and foundations of our approach and the PetriCode tool
as well PA-CPNs [14], the CPN sub-class that has been defined for this approach.
The example is a well established and used in the literature to describe CPNs [5].
It is also a natural extension of the example we have been using in previous
works [14].

This example is a simple framing protocol which is tolerant to packet loss,
reordering and allows a limited number of retransmissions. The top level of the
CPN model is shown in Fig. 1. The model consists of three sub-modules. Sender
and Receiver represents each of the principal actors of the protocol, and Channel
connects the two principals.

The protocol uses sequence numbers and a flag to indicate the last message of
a frame. After a frame has been sent, the receiver, if it receives the frame, sends
an acknowledgement consisting of the sequence number of the frame expected
next. If the acknowledgement is not received, the sender will retransmit the frame
until an acknowledgement is received or the protocol fails sending the message.

In the Sender module, shown in Fig.2, there are two sub-modules. The send
sub-module is annotated with a 〈〈service〉〉1 pragmatic and represents a service
1 Pragmatics in the model and in the text are by convention written inside 〈〈〉〉.

290 PNSE’14 – Petri Nets and Software Engineering

Receiver
<<principal>>

Receiver

Channel
<<channel(unreliable, noorder, bidirectional)>>

Channel

Receiver
Channel

Endpoint

Sender
Channel

Endpoint
Channel

Receiver

Sender
<<principal>>

SenderSender

Fig. 1: The protocol system level

1`()

recieveAck
<<remote(senderChannel)>>

RecieveAck

send
<<service(msg, server)>>

Send

runAck
<<state>>

false

BOOL

ready
<<LCV>>

()

UNIT

nextSend
<<state>>

INT

Sender
Channel

I/O

Endpoint

I/O

Send

RecieveAck

Fig. 2: The Sender principal module

provided by this principal for sending a message. The other substitution transi-
tion receiveAck, annotated with an 〈〈internal〉〉 pragmatic, represents an internal
service which is to be invoked by another service of the principal. In this example,
the receiveAck service is invoked from the send service.

The Sender module also contains two places, runAck and nextSend, annotated
with a 〈〈state〉〉 pragmatic which contains shared data between the two services.
The ready place, annotated with a 〈〈LCV〉〉 pragmatic, is used to model the life-
cycle of the Sender principal and makes sure that only a single message is sent
at a time.

The send service, shown in Fig. 3, starts at the transition send which opens the
channel, initializes the content of the message to be sent and the sequence num-
ber. Also, at this transition, the receiveAck internal service is started by placing
a token with the colour true at the 〈〈state〉〉 place runAck. The service continues
from send to enter a loop at the start place. Inside the loop, the sendFrame tran-
sition retrieves the next frame to be sent based on the sequence number of the
frame which is matched against the sequence number incoming from the place
start. The limit place is updated with the sequence number of the current frame,
and the number of times the frame has been retransmitted. Then, the current
frame is sent. Due to the 〈〈wait〉〉 pragmatic at the sendFrame transition, the
system waits in order to allow acknowledgements to be received. The loop ends
at place frameSent. If a token is present on the place frameSent the loop will
either continue with the transition nextFrame firing or end by firing the return
transition. At the return transition, state places and the channel are cleared and

K. Simonsen: Automated Code Generation with the PetriCode Approach 291

false

true

ep

1`()

{name= senderId,
inb = [],
outb = []}

(i,e,str)

1

send
<<service(server, msg)>>

<<openChannel(senderChannel)>>
<<setField(nextSend, 1)>>
<<setValue(limit, [0|0])>>

<<startRemote(recieveAck, runAck,senderChannel)>>
BOOL

UNIT

limit
<<state>>

ready
<<LCV>>
I/O

()

UNIT

Data

startSending
<<Id>>

INT

I/O

()

(j,c)

Data

[(e = 1 andalso n > i)orelse
(i <= j andalso c >= maxResend
andalso i >= n)
andalso #inb ep = []]

(j,c)
n

1
(0,0)

(i,e,str)

LimitMap

Sender
Channel

I/OI/O

next
<<Id(cond: '(or (and (eq 0 __TOKEN__[1])

(or (gt 3 limit[1]) (gt nextSend limit[0])))(and
(eq 1 __TOKEN__[1]) (gt 3 limit[1])))') >>

endFinalAtomic
<<Id>>

return
<<stopRemote(runAck)>>

<<closeChannel(senderChanel)>>
<<return>>

sendMsg
<<get(msg, nextSend-1,

__TOKEN__)>>
<<setValue(limit, cond: '(eq __TOKEN__[0] limit[0])',

[__TOKEN__[0]_limit[1]+1],
[__TOKEN__[0]_0],)>>
<<send(senderChannel,

__TOKEN__,
server)>>

<<wait(1000)>>

i

(i,e,str)

if i > j
then (i,0)
else (i, c +1)

(j,c)

message
<<state>>

(i,e,str)

{name=senderId,
inb = inb,
outb = outb}

{name=senderId,
inb = inb,
outb = outb^^[{
src=senderId,
dest=recieverId,
packet=
DATA (i,e,str)}]}

Endpoint

n

runAck
<<state>>

I/OI/O

false

true

INT

nextSend
<<state>>

I/OI/O

n

loop

[(e = 0 andalso
(c < maxResend
orelse n > i))
orelse (e = 1
andalso n <= i
andalso c <
maxResend)]

1`(1, 0, "Col")++
1`(2, 1, "our")

Fig. 3: The Send service module

the service terminates. In the model, we have not shown the pragmatics that
can be automatically derived from the CPN model structure, see [14] for details.

The code generation approach is template-based and uses pragmatics to guide
the code generation in two ways. The first way is by having structural pragmat-
ics define the principals, services, and control-flow path within each service. The
〈〈principal〉〉, 〈〈service〉〉, and 〈〈Id〉〉 pragmatics in Figs. 1-3. The second way is to
define the operations that should occur at each transition. The pragmatics are
described in a domain specific language (DSL) and can often be derived from the
CPN model structure. Structural pragmatics are used to generate the Abstract
Template Tree (ATT), an intermediary representation of the pragmatics anno-
tated CPN model. Each node in the ATT has pragmatics attached. Pragmatics
are bound to code generation templates by template bindings. The generation

292 PNSE’14 – Petri Nets and Software Engineering

Listing 1: The Groovy template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).
1 def ${name}(${binding.getVariables()
2 .containsKey("params")
3 ?params.join(", "):""}){
4 <%if(binding.variables
5 .containsKey(’pre_conds’)){
6 for(pre_cond in pre_conds){
7 %>if(!$pre_cond) throw new
8 Exception(’...’)
9 <% if(!pre_sets.contains("$pre_cond"))
10 {%>$pre_cond = false<%}
11 } }%>
12 %%yield_declarations%%
13 %%yield%%
14 <%if(binding.variables
15 .containsKey(’post_sets’)){
16 for(post_set in post_sets){
17 %>$post_set = true<%
18 }}%>}

def bos = new ByteArrayOutputStream()
def oos = new ObjectOutputStream(bos)
oos.writeObject(${params[1]})
msg = bos.toByteArray()
DatagramPacket pack =

new DatagramPacket(_msg_, _msg_.length,
InetAddress.getByName(${params[2]}.host),
${params[2]}.port)

${params[0]}.send pack
%%VARS:_msg_%%

uses these bindings to generate code for each pragmatic at each ATT node.
Finally, the code is stitched together using special tags in the templates.

In order to give an overview of the code generation process, we use two tem-
plates as examples. The templates are the template for the 〈〈service〉〉 pragmatic
(Listing 1 (left)) and the 〈〈send〉〉 pragmatic (Listing 1 (right)).

The service template for the Groovy platform is shown in Listing 1 (left). The
first line of the template creates the signature of a method what will implement
the service. Lines 4 to 10 iterates over preconditions to the 〈〈service〉〉. Each
precondition is checked to make sure that the service may execute. In lines
11-12 two special tags %%yield%% and %%yield_declarations%% indicates the
places where the method body and the declarations will be inserted from nodes
coming from the sub-nodes in the ATT.

The template for 〈〈send〉〉 is shown in Listing 1 (right). The template first
creates a byte array from the data to be sent and then creates an appropriate
data packet and, finally, sends the datagram packet. The template uses UDP
as the underlying transport protocol, which is why the packet is created in the
form of a DatagramPacket.

The Groovy code shown here provides a baseline implementation for the
protocol. In the next section we show ho we can generate code from the same
model for three other platforms.

3 Evaluating Platform Independence

In order to demonstrate the platform independence of our approach, we have
generated code for the Java, Clojure and Python platforms in addition to the
Groovy platform. The platforms have been chosen in order to cover three main
programming languages and paradigms. Java is an imperative and object ori-
ented programming language. Clojure is a Lisp dialect for the Java Virtual Ma-
chine (JVM). It is a functional language, however it is able to utilize Java objects

K. Simonsen: Automated Code Generation with the PetriCode Approach 293

and the Java API. Python is a multi-paradigm language and, as the only lan-
guage in this survey, does not rely on the JVM. Python also uses significant
white-spaces which makes Python unique in this evaluation in both respects.
For each of the platforms, we show selected templates corresponding to the ones
shown for the Groovy platform in Sect. 2. In addition, we show an exerpt of the
generated code for the Java platform since this was used as part of the evaluation
of readability presented in Sect. 5

Listing 2: The Java template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).
public Object ${name}(<%
def paramsVal = ""
def params2 = []
if(binding.getVariables()

.containsKey("params")){
params.each{

if(it.trim() != "")
params2 << "Object $it"

}
paramsVal = params2.join(", ")

}%>$paramsVal) throws Exception {
<%if(binding.variables

.containsKey(’pre_conds’)){
for(pre_cond in pre_conds){
%>if(!$pre_cond)
throw new RuntimeException("...");
<%if(!pre_sets

.contains("$pre_cond"))
{%>$pre_cond=false;<%}

}}%>
%%yield_declarations%%
%%yield%% }

1 ByteArrayOutputStream bos = new
2 ByteArrayOutputStream();
3 ObjectOutputStream oos = new
4 ObjectOutputStream(bos);
5 oos.writeObject(${params[1]});
6 byte[] _msg_ = bos.toByteArray();
7 DatagramPacket pack = new
8 DatagramPacket(_msg_, _msg_.length,
9 InetAddress.getByName((String)
10 ((Map)${params[2]}).get("host")),
11 (Integer) ((Map)${params[2]})
12 .get("port"));
13 ((DatagramSocket)${params[0]})
14 .send(pack);

The Java Platform. The 〈〈service〉〉 template for the Java platform is shown in
Listing 2 (left). The main difference from the Groovy service template is that,
in the first line, the return type and visibility protection is explicit.

The 〈〈send〉〉 template (see Listing 2 (right)) is similar to the Groovy 〈〈send〉〉
template. The differences are mainly caused by the fact that Java is explicitly
typed and, at times, requires explicit casts.

Excerpts of the Java code for the Sender principal is shown in Listing 3. The
first part is generated from the service template. Lines 1-5 are generated by
the 〈〈service〉〉 template (Listing 2 (left)) and lines 10-17 are generated by the
〈〈send〉〉 template (Listing 2 (right)).

The Clojure Platform. The Clojure 〈〈service〉〉 template is shown in Listing 4
(left). It begins by defining a function with the name set to the name parameter.
Then it creates a vector which holds incoming variables. Finally, it yields for
declarations and the body of the function.

The networking templates for Clojure uses the Java networking API and the
〈〈send〉〉 template (see Listing 4 (right)) and is therefore reminiscent of Groovy

294 PNSE’14 – Petri Nets and Software Engineering

Listing 3: The Java code for the send service.
1 public Object send(Object msg, Object server) throws
2 Exception { /*[msg, server]*/ /*[Object msg, Object server]*/
3 if(!ready) throw new RuntimeException(
4 "unfulfilled precondition: ready");
5 ready = false;
6 ...
7 __LOOP_VAR__ = true;
8 do{
9 ...
10 ByteArrayOutputStream bos = new ByteArrayOutputStream();
11 ObjectOutputStream oos = new ObjectOutputStream(bos);
12 oos.writeObject(__TOKEN__);
13 byte[] _msg_ = bos.toByteArray();
14 DatagramPacket pack = new DatagramPacket(_msg_, _msg_.length,
15 InetAddress.getByName((String)((Map)
16 server).get("host")),(Integer) ((Map)server).get("port"));
17 ((DatagramSocket)senderChannel).send(pack);
18 ...
19 }while(__LOOP_VAR__);
20 ...
21 }

Listing 4: The Clojure template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).
(defn ${name} <%
def paramsVal = ""
def params2 = []
if(binding.getVariables().
containsKey("params")){
params.each{

if(it.trim() != "") params2 << "$it"
}
paramsVal = params2.join(", ")
%>[$paramsVal]<%}%>
(%%yield_declarations%%
%%yield%%))

(def bos (ByteArrayOutputStream.))
(.writeObject
(ObjectOutputStream. bos)
@${params[1]})

(def _msg_ (.toByteArray bos))
(.send ${params[0]}

(DatagramPacket.
msg (alength _msg_)
(InetAddress/getByName
(.get ${params[2]} "host"))
(.get ${params[2]} "port"))

)

and Java templates. First, the message is converted into a byte array using
java.io streams. Then a data packet is constructed and sent using the socket
given as a parameter.

The Python Platform. The Python 〈〈service〉〉 template is shown in Listing 5
(left). The template defines the method in line 2 and adds parameters, given
by the template variable paramsVal in line 10. Finally, the template yields for
declarations and the method body in lines 12-13.

The Python template for 〈〈send〉〉 is shown in Listing 5(right). The data using
Python is a simple call to the sendto function of a socket given as params[0] with
the serialized data given in params[1] and the host and port from params[2] in a
tuple.

Discussion. The examples above demonstrate that our approach allows us to
generate code for several platforms by providing a selection of templates for

K. Simonsen: Automated Code Generation with the PetriCode Approach 295

each platform. The platforms considered, spanning several popular paradigms,
gives us confidence that our approach and tool can also be applied to generate
code for many other platforms. Furthermore, we are able to generate the code
for each of the platforms using the same model with the same annotations and
the same code generator while only varying the code generation templates and
the mappings between the pragmatics and mappings between pragmatics and
code templates.

Adapting the Groovy templates to Java was, for the most part simple since
the two languages are similar in several respects. However, whereas Groovy is op-
tionally typed, Java is statically typed and requires all variables to be typed or to
be cast to specific types when accessing methods. Fulfilling Java’s requirements
for explicit types requires functionality from PetriCode so that the templates
are aware of the type of variables.

Clojure is a functional language with a different control flow from languages
such as Java. The main issue, compared with Groovy and Java, was related
to using immutable data-structures. In Clojure all data types are, in principle,
immutable. However, there is an Atom type in which values may be swapped.
This was challenging because Atom values must be treated differently from pure
values and lead to somewhat more verbose code than what could otherwise have
been written. Also, Clojure allows the use of Java data structures, which are
mutable and thus easier to work with in this case.

Python, as Groovy, is a multi-paradigm language combining the features of
object oriented and functional paradigms. Creating the templates of the Python
code was, although being the only language in this survey not based on the
JVM, no more difficult than for the other languages. The main challenge was
to handle the significant white-spaces of the Python syntax. To support this,
PetriCode contains functionality to keep track of the current indentation level.
This required no special treatment and was not strictly necessary, but allowed
for much cleaner templates.

Table 1 shows the sizes of the Sender and Receiver principal code (measured
in code lines) for each of the platforms considered. As can be seen, the code for

Listing 5: The Python template for 〈〈service〉〉 (left) and for 〈〈send〉〉 (right).
1 <%import static org.k1s.petriCode.
2 generation.CodeGenerator.indent
3 %>${indent(indentLevel)}def ${name}(self,<%
4 def paramsVal = ""
5 def params2 = []
6 if(binding.getVariables()
7 .containsKey("params")){
8 params.each{
9 if(it.trim() != "") params2 << "$it"
10 }
11 paramsVal = params2.join(", ")
12 %>$paramsVal<%}%>):
13 %%yield_declarations%%
14 %%yield%%

<%import static org.k1s.petriCode.
generation.CodeGenerator.indent

%>${indent(indentLevel)}
${params[0]}.sendto(
pickle.dumps(${params[1]}),
(${params[2]}["host"],
${params[2]}["port"]))

296 PNSE’14 – Petri Nets and Software Engineering

Python is much smaller than the others. This is due to the efficient libraries in
Python and that the Python code, for technical reasons, have much fewer blank
lines which is also reflected in the templates. Table 2 shows the sizes, in lines, for
selected templates and all the templates for each platform. The sizes reported
are the sizes in the actual code and may not correspond to the templates as
they are formatted in this paper. In this example, there was the same number
of templates for each platform, but this is not necessarily always the case. As
can be seen in Table 2, there is not a perfect correlation between the size of
templates and the size of the generated code. This is due to, in part, some
templates being more complex for some languages than others and template
reuse being possible for some languages. An example is the Clojure templates,
where the templates for the 〈〈setField〉〉 and 〈〈setValue〉〉 pragmatics are the same,
but since the 〈〈setValue〉〉 template has more functionality than the 〈〈setField〉〉
template for all platforms, this results in a higher total number of template lines
for Clojure. For each of the languages eleven new templates were constructed
while ten templates were already provided as part of the PetriCode tool. The
new templates were templates that are specific to the pragmatics applied for the
protocol considered.

4 Evaluating Intergrateability

It should be possible to integrate code generated by our approach with existing
software. We evaluate two types of integration with other software. The first type
can be exemplified by having our generated cod use another library for sending
and recieving data from the network. We call this type of integration downwards
integration (i.e, generated code can use different third-party libraries). The other
type can be exemplified by creating a runner program that employs the generated
protocol for sending a message to a server. This type is called upwards integration
(i.e, applications can use services provided by the generated code). We have
evaluated integratability using the code generated for the Java platform based
on the example in Sect. 2. However, the results are applicable for other platforms
as well.

Downwards Integration. We have already shown that by changing templates,
our approach can be used to generated code for different platforms. The same
technique can be used to employ various libraries on the same platform to per-
form the same task. We illustrate this by changing the network library from
the standard java.net library to Netty [16]. This example was chosen because

Language Groovy Java Clojure Python
Sender 131 132 119 66

Receiver 81 78 68 38
Total 212 210 187 104

Table 1: Sizes of the generated code.

Language Groovy Java Clojure Python
service 19 28 15 15
runInternal 4 10 4 3
send 9 9 8 2
All templates 154 219 251 112

Table 2: Size of code generation templates.

K. Simonsen: Automated Code Generation with the PetriCode Approach 297

Listing 6: The Java template for 〈〈send〉〉 with Netty (left) and the runner for
the generated Java code (right).

1 ByteArrayOutputStream bos =
2 new ByteArrayOutputStream();
3 ObjectOutputStream oos =
4 new ObjectOutputStream(bos);
5 oos.writeObject(${params[1]});
6 byte[] _msg_ = bos.toByteArray();
7 ((io.netty.channel.Channel)
8 ${params[0]}[0]).writeAndFlush(
9 new io.netty.channel.socket
10 .DatagramPacket(
11 io.netty.buffer.Unpooled
12 .copiedBuffer(_msg_),
13 new InetSocketAddress(InetAddress
14 .getByName((String)((Map)
15 ${params[2]}).get("host"))
16 ,(Integer)((Map)${params[2]})
17 .get("port")))).sync();

1 def sender = new Sender.Sender()
2 def reciever =
3 new Receiver.Receiver()
4 t = new Thread().start {
5 def ret = reciever.receive(31339)
6 println "Recieved: ${ret}"
7 }
8 def msg = [
9 [1,0,’Col’],[2,0,’our’],[3,0,’ed ’],

10 [4,0,’Pet’],[5,0,’ri ’],[6,0,’Net’],
11 [7,1,’s’]
12]
13 sender.send(
14 msg,[host:"localhost", port:31339])

networking is an important function of the network protocol domain that we
consider, and because Netty is substantially different from java.net as it is an
event driven library.

Three out of twenty-one templates had to be altered to accommodate Netty
as the network library for the sender principal. These were the templates that
generate code for sending and receiving data from the network. We show the
Netty variant of the send template from Listing 2 (right) in Listing 6 (left). The
main differences is the call to the socket (or channel in the terminology of Netty)
to send the message (lines 6-12).

Upwards Integration. The ability to call the generated code is necessary for
the code to be useful in many instances. Our approach allows this by explicitly
modelling the API in the CPN protocol model in the form of services which
defines the class and method names. To demonstrate upwards integration, we
have created runners for the generated implementations for each of the platforms
considered. The runner for the Java platform can be seen in Listing 6 (right).
This demonstrates that it is possible to use the generated services from third
party software. It is worth noticing that the explicit modelling of services in the
CPN model implies that it is simple to invoke the generated code.

5 Evaluating Readability

We have evaluated the readability of code generated by PetriCode in two ways.
One way is that we applied a code readability metric [2] to selected snippets of
the generated classes from the example described in Sect. 2, and the example
described in previous works [14]. Furthermore, we have conducted a field study

298 PNSE’14 – Petri Nets and Software Engineering

The Buse-Weimer experiment (BWE) The experiment conducted by Buse and Weimer to create
the BWM. The snippets were selected from open source
experiments.

The metric experiment (ME) Our experiment to validate the results from BWE for pro-
fessional developers. This experiment evaluated the twenty
first snippets evaluated in the BWE.

The code generation experiment (CGE) Our experiment to evaluate readability of generated code
compared to non-generated code. Eight snippets were ran-
domly selected from generated code and twelve from the
open source projects in the network protocol domain.

Table 3: Overview of the experiments conducted and discussed in this section

where software engineers were asked to evaluate the readability of the generated
code. This study was also used to evaluate the code readability metric.

We use the Buse-Weimer metric [2] (BWM) as a code readability metric.
This metric was constructed by Buse and Weimer based on an experiment (the
Buse-Weimer experiment (BWE), see Table 3) asking students at the University
of Virginia to evaluate short code snippets with regards to readability on a scale
of one to five. The experiment was used to construct the metric using machine
learning methods to compute weights on various factors that have an impact on
code readability. The final metric scores code snippets on a scale from zero to
one where values close to zero indicates low readability and values close to one
indicates a high degree of readability.

Our field study with software engineers took place at the JavaZone software
developer conference in Oslo, Norway in September 2013. The experiment was
organized into two parts. One part (the metric experiment (ME), see Table 3)
evaluated the BWM. The other part (the code generation experiment (CGE),
see Table 3) evaluated the readability of the generated code compared to non-
generated code. Both experiments were conducted by asking software developers
to evaluate twenty small code snippets with regards to readability by assigning
values, on a scale from one to five, to each code snippet. The experimental set-
up was created to mimic the BWE. The main advantage of our experiment over
the BWE is that the dominating majority of the participants were professional
software developers instead of students. The ME had 33 participants while the
CGE had 30 participants.

For the CGE, we randomly selected code snippets from code generated for
the Java platform based on the example described in Section 2, and the example
described in [14]. We use code for the Java platform because it was used in the
BWE, and the subjects of our experiments knew Java. Also, there exist several
Open Source projects from which to obtain snippets for our experiments. In
addition to the generated snippets, we selected, as controls, snippets from three
Open Source projects in the network protocol domain. These were the Apache
FtpServer, HttpCore and Commons Net [15]. All three are part of the Apache
project, and we consider them to be high quality projects within the network
protocol domain.

In the ME, we used the first twenty snippets from the BWE. Since we did
our experiment at a conference, we could not redo the experiment with all the

K. Simonsen: Automated Code Generation with the PetriCode Approach 299

Snippet 1 2 3 4 5 6 7 8 Mean Median
Score 0,14 0,03 0,19 0,28 1,00 1,00 1,00 0,99 0,58 0,63
Table 4: The results for the BWM on generated code

Snippet 1 2 3 4 5 6 7 8 9 10 11 12 Mean Median
Score 0,54 0,95 0,15 0,79 0,01 0,40 0,26 0,04 0,00 0,01 0,96 0,65 0,40 0,33

Table 5: The results for the BWM on selected hand-written protocol software snippets

one hundred snippets from the BWE and still expect enough software engineers
to participate.

Applying the Buse-Weimer Metric. The BWM is based on the scores of hundred
small code snippets. Even though the size of the snippets are not scored directly,
some of the factors are highly correlated with the snippet size [11]. This makes
it inappropriate to measure entire applications. Therefore, we applied the metric
to the snippets selected for the CGE.

Table 4 shows the results of running the BWM tool on each of the generated
code snippets. The mean and median score is above 0.5, indicating that the code
is fairly readable. Also the mean and median of the generated code is higher
than for the non-generated protocol-code as can be seen in Table 5.

Although the scores of the BWM on the generated code are highly encourag-
ing, the scores are either very high or very low. This motivates an independent
evaluation of the readability of the generated code (see below), as we have done
with the CGE, and to validate the BWM, as we have done with the ME (see
below).

The Metric Experiment: Validating the Buse-Weimer Metric. The ME was con-
ducted to validate the BWM and the BWE. This experiment measured twenty
of the code snippets that were measured in the BWE in a similar manner. The
goal was to determine whether the results of the BWE holds for professional
software developers.

Figure 4 shows the means of the BWE (blue/solid) and our repeat (red/-
dashed) for the selected snippets. The figure suggests significant covariance even
if the students in the BWE tended to judge snippets higher than the software
developers in our ME. We computed three statistical tests on the correlation
between the means of the two experiments (see Table 6). The correlation tests
show that there is strong to medium correlations between the means and that the
correlation is statistically significant(p<0.05).The correlation tests were carried

Method Corrolation P-value
Pearson cor = 0,82 9,28 · 10−06

Spearman rho = 0,79 2,94 · 10−05

Kendall tau = 0,61 1,65 · 10−04

Table 6: Correlations between the means of the ME and the BWE

300 PNSE’14 – Petri Nets and Software Engineering

5 10 15 20

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

snippet

m
e
a
n
 s

c
o
re

Fig. 4: The values of the selected snippets for the BWE and the ME.

out using the R [12] tool and the standard correlation test call, corr.test(),
with all the methods available for the call. These results indicate that the BWE
is relevant to professional software developers.

Mean values for the original BWE and for the ME are shown in Table 7. As
can be seen, the ME resulted in somewhat lower scores than that of the BWE,
in fact it is lower in 17 out of 20 instances. In order to determine the significance
of this observation we conducted a T-test. The results of the T-test does not
allow us to rule out that the means are not equal (p=0,21), although it does not
give us statistically significant results on the repeat always being higher either
(p=0,10), although that may be more likely.

The ME showed that there is a significant correlation between the results
of the BWE (conducted with students) and the ME (conducted with software
development professionals). This can be interpreted as evidence that the results
from BWE also has validity for professional developers, although the metric
based on it might be in need of some minor adjustments.

Snippet 1 2 3 4 5 6 7 8 9 10
Metric Experiment 2,15 3,30 2,33 3,15 3,97 1,64 3,39 2,21 3,91 3,33

Buse-Weimer Experiment 3,02 3,78 2,72 4,07 4,23 2,21 3,66 2,88 4,17 3,38
11 12 13 14 15 16 17 18 19 20

3,12 3,45 2,82 3,70 2,12 2,85 3,42 2,79 2,82 3,97
3,68 3,57 3,07 4,08 1,85 2,93 3,77 2,49 3,58 3,29

Table 7: Snippet means for the metric and BWE.

K. Simonsen: Automated Code Generation with the PetriCode Approach 301

The Code Generation Experiment: Comparing Generated and Handwritten Code.
We expected that the generated code would not do quite as well as the hand-
written high-quality code used as control. Therefore, our hypothesis was that
the generated code would be within the standard deviation of the hand-written
written code. The mean score for each of the snippets in the CGE are shown in
Table 8. Snippets one to eight are generated code while snippets eight to twenty
are hand-written. To check our hypothesis, we ran Welch’s T-test on the results
which is useful for determining the difference between the two samples. The
first hypothesis we checked was whether the generated snippets are less readable
than the hand-written ones. The results of a Welch’s Two Sample t-test showed
that the generated code-snippets scored below that of the hand-written code
(p=4,81 · 10−05).

Then we checked the hypothesis when reducing the score of the measurements
from the Apache projects by the standard deviation of those measurements. The
Welch’s Two Sample t-test indicates that the generated code scores better than
one standard deviation below the hand-written code (p=0,03). This indicates
that our goal of being readable within a standard deviation of non-generated
code is met both by measuring via the BWM and experimentally.

Table 9 shows normalized means for each snippet from the CGE and the
results of running the BWM on the corresponding snippets. As can be seen,
the correlation is less than strong as confirmed by running correlation tests (see
Table 10). Even though the results of the ME indicates that the BWE, which the
BWM is based on, is valid even for professional software developers, we content
that the results of the CGE are more reliable than the BWM. This is because the
BWM is derived from software from different domains and that it is sensitive to
snippet length. This indicates that the BWM is not relevant to code for network
protocols.

Assessment of Validity of Our Results. As with most experimental approaches,
this evaluation has some threats to the validity of the results. These are issues
we have identified that might skew our results. One such threat to validity for
the original BWE was that they used student as subjects who may or may not
disagree with professional software developers on the readability of code. We
have tried to alleviate this threat in the ME by repeating part of the BWE
with professional developers. Further threats to validity to the experiments and
results described in this section are discussed in the following.

Small sample size and limited number of participants may skew the results.
Since we conducted this experiment at a software developer conference where
people tended to be on their way to some lecture, we had to limit the number

Snippet 1 2 3 4 5 6 7 8 9 10
Mean 2,40 2,10 3,83 3,23 2,67 3,13 2,97 2,73 3,90 3,97

11 12 13 14 15 16 17 18 19 20
2,67 3,13 2,73 3,43 3,67 3,07 3,83 2,00 3,20 3,93

Table 8: Means of results for generated code (1-8) and Apache projects code (9-20).

302 PNSE’14 – Petri Nets and Software Engineering

Snippet 1 2 3 4 5 6 7 8 9 10
Experiment Score 0,48 0,42 0,77 0,65 0,53 0,63 0,59 0,55 0,78 0,79

Metric Score 0,14 0,03 0,19 0,28 1,00 1,00 1,00 0,99 0,54 0,95
11 12 13 14 15 16 171 18 19 20
0,53 0,63 0,55 0,69 0,73 0,61 0,77 0,40 0,64 0,79
0,15 0,79 0,01 0,40 0,26 0,04 0,00 0,01 0,96 0,65

Table 9: Normalized means from the CGE and results from applying the BWM

Method Corrolation P-value
Pearson cor = 0,21 0,37
Spearman rho = 0,20 0,40
Kendall tau = 0,14 0,40

Table 10: Correlation between normalized experimental scores and the BWM applied
to the same snippets

of snippets we asked each participant to evaluate. Also, because professional
software developers are harder to recruit than students, the number of partic-
ipants was limited. Furthermore, it is possible, albeit unlikely, that the people
participating in the experiment are not representative for software developers as
a whole. These threats can be alleviated by conducting broader studies on larger
groups of developers and using interviews.

In our experiments, we used small randomly selected code snippets as proxies
for code readability. We do this both for practical and conceptual reasons. The
practical reasons revolve around what we realistically could expect participants
to score. If they had to read entire classes or software projects in order to score
the code, this would have taken to much time and could have resulted in getting
too few participants in our experiments. Furthermore, we wanted to evaluate the
BWM since it is the only implemented metric we could find in the literature.
The more conceptual reason is that if each snippet is readable, then the whole
code is likely to be readable as well. In our approach, high-level understanding is
based more on the CPN models of the protocols than on the implementation, so
it makes sense for us to concentrate on low level, snippet-sized readability, since
readability in the large is intended to be considered at the level of the model.

6 Conclusions and Related Work

In this paper, we have evaluated our code generation approach and support-
ing software, with respect to platform independence, the integratability of the
generated code as well as the readability of the generated code.

Platform independence was evaluated by generating code for a protocol for
three platforms in addition to the Groovy platform from a single CPN model.
The number of and differences between the platforms gives us confidence that
our approach and the PetriCode tool can be used to generate protocol implemen-
tations for many target platforms. All the platforms considered have automatic
memory management in the form of garbage collection. This is convenient, but

K. Simonsen: Automated Code Generation with the PetriCode Approach 303

we intend to support platforms without automatic memory management in the
future.

Platform independence is especially important for network protocols since
they are used to communicate between two or more hosts that often run on
different underlying platforms. Although there exists many tools that allow gen-
erating code from models claiming to be platform independent, few studies seem
to have been made actually generating code for several platforms.

MDA [8] and associated tools rely on different platform specific models (PSM)
to be derived for platforms before generating code for each platform. This adds an
extra modelling step compared to our approach and may require somewhat differ-
ent PSMs for different platforms. The Eclipse Model To Text (M2T) [3] project
provides several template languages for code generation from Ecore models. In
general, M2T languages can generate code for several platforms. However, to
go beyond pure structural features and standard behaviour, the developer must
create customized code generators. In [9] code is for protocol is generated using
UML stereotypes and various UML diagram types. The UML diagrams, anno-
tated with stereotypes according to a custom made UML profile, combined with
a textual language named GAEL are used to obtain protocol specification in the
Specification and Description Language (SDL) [1, 4]. The authors also conjec-
ture that the approach can be used to generate code for any platform. The use
of stereotypes in the approach presented in [9] is similar to the pragmatics that
our approach uses. However, a difference is that several diagram types are used
in the UML based approach in contrast to our approach where we use CPNs to
describe both structure and behaviour.

MetaEdit+ [17] allows code generation of visual Domain Specific Modelling
Languages (DSMLs). MetaEdit+ and the DSML approach is similar to the Pet-
riCode approach since CPNs and pragmatics constitute a DSML. A main dif-
ference is that MetaEdit+ allows users to generate custom graphical languages
while PetriCode uses CPN, but extends CPNs using pragmatics. This allows us
to use the properties of CPNs for verification and validation, and also to use a
single syntax for different domains.

The Renew [7] tool uses a simulation-based approach where annotated Petri
Nets can be run as stand-alone applications. The simulation-based approach is
fundamentally different from our approach where the generated code can be
inspected and compiled in the same way as computer programs created with
traditional programming languages. A detailed comparison between these two
approaches would be an interesting avenue for future work.

We evaluated the integratability of the generated code in two directions: up-
wards and downwards integratability. Upwards integratability was evaluated by
showing that the generated protocol software can be called by programs running
the protocols. Downwards integratability was evaluated by showing how we can
change the network API for the Java platform by binding different templates to
some of the pragmatics.

Readability of the generated code was evaluated by an automatic metric and
an experiment. According to the BWM, the generated code is as, or possibly

304 PNSE’14 – Petri Nets and Software Engineering

even more, readable than the samples of high quality code in the same domain
that we used for comparison. Based on our experiment with software developers,
however, the generated code is somewhat less readable but within a standard
deviation of the non-generated code. A contribution of this paper is also to
provide evidence that the experimental results from the BWE are relevant to
professional software developers in addition to the students. However, based on
the discrepancy between the experimental evaluation, it seems that the BWM
may not be applicable to code in the network protocol domain. To the best
of our knowledge, there are no previous work evaluating intergrateability and
readability of automatically generated software.

In the future we will evaluate the verifiability of the models used in our ap-
proach by applying verification techniques to example protocols. We also intend
to develop a set of template libraries that can be used for code generation as well
as procedures for testing code generation templates. Another possible direction
for future work is to apply our code generation approach to other domain.

References

1. F. Babich and L. Deotto. Formal methods for specification and analysis of com-
munication protocols. Communications Surveys Tutorials, IEEE, 4(1):2–20, 2002.

2. R.P.L. Buse and W.R. Weimer. A metric for software readability. In Proc. of
ISSTA’08, pages 121–130, NY, USA, 2008. ACM.

3. IBM. Eclipse Model To Text (M2T). http://www.eclipse.org/modeling/
m2t/.

4. ITU-T. Recommendation z.100 (11/99) specification and description language
(sdl), 1999.

5. K. Jensen and L.M. Kristensen. Coloured Petri Nets - Modelling and Validation
of Concurrent Systems. Springer, 2009.

6. L.M. Kristensen and K.I.F. Simonsen. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs. In ToPNoc VII, volume 7480 of LNCS,
pages 56–115. Springer, 2013.

7. O. Kummer et al. An Extensible Editor and Simulation Engine for Petri Nets:
Renew. In Proc. of ICATPN ’04, volume 3099 of LNCS, pages 484–493. Springer,
2004.

8. Object Management Group. MDA Guide, June 2003. http://www.omg.org/
cgi-bin/doc?omg/03-06-01.

9. J. Parssinen, N. von Knorring, J. Heinonen, and M. Turunen. UML for protocol
engineering-extensions and experiences. In Proc. of TOOLS ’00, pages 82–93, 2000.

10. PetriCode. Example protocol. http://bit.ly/19HU8U4.
11. D. Posnett, A. Hindle, and P. Devanbu. A simpler model of software readability.

In Proc. of MSR ’11, pages 73–82. ACM, 2011.
12. R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, 2013.
13. K. I. F. Simonsen. Petricode: A tool for template-based code generation from cpn

models. In S. Counsell and M. Núñez, editors, Software Engineering and Formal
Methods, volume 8368 of LNCS, pages 151–163. Springer, 2014.

14. K. I. F. Simonsen, L. M. Kristensen, and E. Kindler. Generating Protocol Software
from CPN Models Annotated with Pragmatics. In Formal Methods: Foundations
and Applications, volume 8195 of LNCS, pages 227–242. Springer, 2013.

K. Simonsen: Automated Code Generation with the PetriCode Approach 305

15. The Apache Software Foundation. FtpServer http://mina.apache.org/
ftpserver-project/, HttpCore https://hc.apache.org/, Commons Net
http://commons.apache.org/proper/commons-net/.

16. The Netty project. Netty. http://netty.io.
17. J.P. Tolvanen. MetaEdit+: domain-specific modeling for full code generation

demonstrated. In Proc of SIGPLAN ’04, pages 39–40. ACM, 2004.

306 PNSE’14 – Petri Nets and Software Engineering

Computing Minimal Siphons in Petri Net Models
of Resource Allocation Systems: An Evolutionary

Approach

Fernando Tricas1, José Manuel Colom1, and Juan Julián Merelo2

1 Depto de Informática e Ingeniería de Sistemas
Universidad de Zaragoza
{ftricas,jm}@unizar.es
2 Depto. ATC/CITIC
Universidad de Granada
jmerelo@geneura.ugr.es

Abstract. Petri Nets are graph based tools to model and study concur-
rent systems and their properties; one of them is liveness, which is related
to the possibility of every part of the system to be activated eventually.
Siphons are sets of places that have been related to liveness properties.
When we need to deal with realistic problems its computation is hard
or even impossible and this is why in this paper we are approaching it
using evolutionary computation, a meta-heuristic that has proved it can
successfully find solutions when the search space is big. In this work a
formulation of the siphon property using linear constraints is presented
for general Petri Nets. We will also present an evaluation for a family
of resource allocation systems (RAS). The proposed solution is based on
a genetic algorithm (GA); we will show how siphons can be computed
using it, with experiments showing that in some cases they are able to
find a few solutions in less time than previous deterministic algorithms.

Keywords: Siphons, genetic algorithms, computing, deadlock prevention

1 Introduction

A Resource Allocation System (RAS) is a discrete event system in which a finite
set of concurrent processes shares in a competitive way a finite set of resources.
RAS are usually complex enough to take advantage of the use of formal methods,
which can help to improve its understanding, providing tools for the analysis and
implementation steps. They also help in the dialog between people involved in
the design, construction and system management. Our proposal is to use Petri
(or Place/Transition) Nets as a tool for this purpose. They are used to visualize
and, through formal analysis, describe structural properties of the system they
represent[1].

Software systems are also complex systems that can be seen as a set of pro-
cesses sharing (and competing for) resources. There is some recent work in this

area, such as [2] where a more detailed discussion of similarities and differences
with Flexible Manufacturing Systems (FMS) as the archetypal example of RAS
can be seen. In [3, 4] there is some work related to software systems and special
classes of Petri Nets for concurrency problems. The competition for resources
implies the existence of deadlocks; they occur when some processes are waiting
for the evolution of other processes, that are also waiting for the former ones to
evolve (the dependence does not need to be direct). RAS have proved to be spe-
cially useful when synthesizing deadlock avoidance and prevention policies, and
many of the published work relies on minimal siphons for this [5–10]. A minimal
siphon is a set of places such that existence of any edge from a transition t to
a place of D implies that there is an edge from some place of D to t. When a
siphon reaches a state with no tokens, it will never become marked again; for this
reason they are related to liveness properties. In consequence, some (efficient)
methods to compute these structural components are needed.

In [10] some promising work has been done in the field of Flexible Manufac-
turing Systems. They propose to reduce the number of siphons to be considered
for deadlock prevention, but they do not avoid the computation of the whole set
of minimal siphons. In most cases siphon enumeration cannot be avoided, and
this makes interesting to obtain better methods to find them ([5, 11, 12, 9]).

In this work we are going to propose a genetic algorithm (GA). that uses a
formulation of the siphon property by means on linear constraints. This imple-
mentation has been tested in a well-known family of RAS. We will show how we
can compute siphons using a genetic algorithm with an existing generic pack-
age. This approach opens the door to adapt another siphon-based techniques for
deadlock prevention.

The contents of this paper are organized as follows. Section 2 provides an
introduction to Petri Nets and the main concepts related to the problem, Sec-
tion 3 presents the standard Genetic Algorithm. There is also some information
about methods existing in the literature for solving the same problem, Section 4
presents the adapted method, Section 5 shows our experimental setup and the
experimental results, together with some discussion about them. Finally, some
conclusions are presented.

2 Petri Nets

A Petri net (or Place/Transition net) is a 3-tuple N = 〈P, T,W 〉 where P and T
are two non-empty disjoint sets whose elements are called places and transitions,
respectively. In a generic way, elements belonging to P ∪ T are called nodes.
W : (P × T) ∪ (T × P) → IN defines the weighted flow relation: if W (x, y) > 0,
then we say that there is an arc from x to y, with weight or multiplicityW (x, y).
Ordinary nets are those where W : (P × T) ∪ (T × P)→ {0, 1}.

Given a net N = 〈P, T,W 〉 and a node x ∈ P ∪ T , •x = {y ∈ P ∪ T |
W (y, x) > 0} is the pre-set of x, while x• = {y ∈ P ∪ T | W (x, y) > 0} is
the post-set of x. This notation is extended to a set of nodes as follows: given
X ⊆ P ∪ T, •X =

⋃
x∈X

•x, X• =
⋃

x∈X x•.

308 PNSE’14 – Petri Nets and Software Engineering

A Petri net is self–loop free when W (x, y) 6= 0 implies that W (y, x) = 0.
The Pre–incidence matrix Pre : P × T → IN of N is Pre[p, t] = W (p, t).
The Post–incidence matrix Post : P × T → IN of N is Post[p, t] = W (t, p).
A self–loop free Petri net N = 〈P, T,W 〉 can be alternatively represented as
N = 〈P, T,C〉 where C is the incidence matrix: a P × T indexed matrix such
that C[p, t] =W (t, p)−W (p, t) = Post[p, t]−Pre[p, t]. A marking is a mapping
m : P → IN; in general, markings are represented in vector form. A transition
t ∈ T is enabled for a marking m if and only if ∀p ∈ •t .m[p] ≥ W (p, t); this
fact will be denoted as m t−→ (or m[t>). If t is enabled at m, it can occur; when
it occurs, this gives a new marking m′ = m + C[P, t]; this will be denoted as
m t−→m′ (or m[t>m′), and we say that m’ is reached from m by the occurrence
of t. The state equation of a marked net is an algebraic equation that gives a
necessary condition for the reachability of a marking from the initial marking: a
markingsm ∈ IN|P | such that ∃σ ∈ IN|T | .m = m0+C·σ is said to be potentially
reachable. The potentially reachability set of a net is the set of solutions for
the state equation. Flows (Semiflows) are integer (natural) annullers of matrix
C (That is, a vector, y 6= 0 such that y · C = 0). Right and left annullers
are called T–(Semi)flows and P–(Semi)flows, respectively. The support of P–
(Semi)flows is given by: ‖y‖ = {p ∈ P | y[p] > 0}. Let PS be the set of minimal
P–Semiflows of N . A (Semi)flow is called minimal when its support is not a
strict super-set of the support of any other, and the greatest common divisor
of its elements is one. A P–Semiflow y defines the following invariant property:
∀m0 .∀m ∈ PRS(N ,m0) .y ·m = y ·m0 (cyclic behavior law).

Given N an ordinary Petri net, a subset of places D ⊆ P is a siphon (E ⊆ P
is a trap) of the net N if, and only if, •D ⊆ D• (E• ⊆ •E). A siphon (trap)
is minimal if, and only if, it does not properly contain another siphon (trap).
Siphons have the important property that, if at a given marking the siphon is
unmarked, it will never be marked. Researchers have considered and studied
different methods for finding siphons and traps. Among them let us present the
main types, that we will classify based on the underlying techniques used for their
computation: Algebraic methods compute families of siphons by means of the
solution of a set of linear equations or inequalities. They use the net incidence–
matrix or a transformation of it. Methods using this approach can be found
in [13]. Methods based on graph theory directly use the graph representation
of the Petri net to compute siphons: methods using this approach can be found
in [14, 15]. Methods based on logic formulas are based on characterizing siphons
by means of boolean variables, which typically represent places or transitions
and their relations. Methods using this approach can be found in [16, 17].

3 Genetic Algorithms

Genetic algorithms [18] are inspired by Darwin’s theory about evolution and
its genetic-molecular basis. More technically the genetic algorithm is a search
heuristic that mimics the process of natural selection. A random population

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 309

of candidate solutions is evolved trying to explore the search space looking for
better solutions. The sketch of the basic genetic algorithm is [19]:

1. (Start) Generate random population of n chromosomes (suitable solutions)
2. (Fitness) Evaluate the fitness of each chromosome in the population
3. (New population) Create a new population by repeating the following

steps until the new population is complete
(a) (Selection) Select two parent chromosomes from a population accord-

ing to their fitness (the better fitness, the bigger chance to be selected)
(b) (Crossover) With some probability cross over the parents to form a

new offspring (children). If no crossover was performed, offspring is
an exact copy of parents.

(c) (Mutation) With a mutation probability mutate new offspring at each
locus (position in chromosome).

(d) (Accepting) Place new offspring in a new population
4. (Replace) Use new generated population for a further run of algorithm
5. (Test) If the end condition is satisfied, stop, and return the best solution

in current population
6. (Loop) Go to step 2

The main task of a genetic algorithms designer is to find good parameter
settings (population size, encoding, selection criteria, genetic operator probabil-
ities, fitness evaluation, ...). We have used the Algorithm::Evolutionary [20]
implementation following the example tide_bitstring.pl for the experiments.
There are many other available implementations, but this one is known by the
authors, is written in Perl and needs just a few lines of code to be adapted to
new problems. Since it is written in an interpreted scripting language it can be,
in general, slower than other libraries written in Java or C++.

4 The Proposed Approach

As far as we know, there are no approaches using genetic algorithms to compute
structural properties of Petri Net models. Some work has been done on process
mining and scheduling [21–24]. A siphon is a special set of places, as defined
above. In [25] the method presented in [26] (algebraic based) was selected, taking
advantage of a parallel approach. Here we will explore a logic formula based
approach: with the formulation for siphons presented in [27] we will explore the
space state by means of the use of a genetic algorithm in its more classic way.

It is straightforward to try to use the standard GA without much difficulty:
each place p of the Petri net will be represented by means of a binary variable
vp. The siphon property can be represented as follows:

∀p ∈ P,∀t ∈ •p, vp ≤
∑

q∈ •t

vq,with vq, vp ∈ {0, 1} (1)

The siphon would be composed of the set of places whose corresponding
variable equals to one, vp = 1. The meaning of each equation is that if place
p is in the set (it belongs to the siphon) it must contain, at least, one of the

310 PNSE’14 – Petri Nets and Software Engineering

places that are in the pre–set of each of its entry transitions. This needs to be
completed with some restrictions that avoid undesired situations:

∑

p∈P\P0

vp < |P \ P0| (2)

That is, we are not interested in the whole set of places since it is a siphon
but it is an uninteresting one. Finally,

∀Y ∈ PS,
∑

p∈Y
vp < ‖Y‖ (3)

In this case, the selected set of places cannot be a P-Semiflow, since they
are uninteresting siphons. P-Semiflows cannot be emptied because of the cyclic
behavior law described above. Moreover, they are much less expensive from a
computational point of view. For the Figure 1 and the set of equations shown
there the assignment vp_0_1 = vp_1_0 = vr_0_0 = vr_0_1 = 1 is a solution
and the set of places defined by them is a minimal siphon ({p_0_1, p_1_0,
r_0_0, r_0_1}). It is easy to see that if we add vp_0_0 = 1 to the previous
solution the equations remain true. This is one of the problems of this method:
these equations can describe siphons, but they do not need to be minimal.

Set of equations:
Related to Equation 1:
vp_0_0 ≤ vr_0_0

vp_0_1 ≤ vp_0_0 + vr_0_1

vp_1_0 ≤ vp_1_1 + vr_0_0

vp_1_1 ≤ vr_0_1

vr_0_0 ≤ vp_0_0 + vr_0_1

vr_0_0 ≤ vp_1_0

vr_0_1 ≤ vp_1_1 + vr_0_0

vr_0_1 ≤ vp_0_1

Related to Equation 2:
vp_0_0+vp_0_1+vp_1_0+vp_1_1+vr_0_0+
vr_0_1 < 6
Related to Equation 3:
vp_0_0 + vp_1_0 + vr_0_0 < 3
vp_0_1 + vp_1_1 + vr_0_1 < 3

Fig. 1. A very simple Petri net and the equations that represent its siphons. The idle
places of the system have not been represented for the shake of brevity.

With this formulation we can construct a fitness function for the genetic al-
gorithm that can guide the system towards a solution. As each variable can have
a value of 0 or 1, this approach is well-suited to be formulated as a genetic algo-
rithm. A final remark is that the genetic algorithm is an optimization algorithm

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 311

so some objective function is needed. We have decided to minimize the number of
active variables. Since we cannot state by means of a simple logical formula the
minimality property, we have chosen to compute the smaller siphons. We can
imagine alternative objective functions that would take into account just the
number of resource places, the number of process places, or some more complex
measurements. The complete system would be:

min
∑

p∈P vp
∀p ∈ P,∀t ∈ •p, vp ≤

∑
q∈ •t vq, vp ∈ {0, 1}∑

p∈P\P0
vp < |P \ P0|

∀Y ∈ PS,∑p∈Y vp < ‖Y‖
(4)

Since we want to obtain a result that minimizes the function and that satisfies
the restrictions we need to combine this information. When we have an individual
which represents an empty siphon or a siphon composed by all the places of
the net, we can return a negative number, equivalent to twice the number of
restrictions (the idea is to help de GA to avoid these solutions). For the other
restrictions, we can just count the number of places in the siphon when they are
met. When there are unmet restrictions, we just return the difference between
the number of such restrictions and the total number of restrictions (this is a
negative number, that grows when more restrictions are met). We have tried
several configurations giving more weight to the number of places in the siphon
or to the number of satisfied restrictions but not significant differences appear.

5 The Experiments

We have compared the nets used in [25] as a benchmark of the performance of
the methods. These nets belong to S4PR class. It is a well–know subclass for
the modeling of a wide set of RAS with a well-defined and easy to understand
structure. Even the proposed method should allow us to look for siphons in any
general PN, our previous work has concentrated in this class of nets and our
examples belong to it. S4PR nets allow the modeling of concurrent sequential
processes with routing decisions and a general conservative use of resources.

There is a more detailed presentation of some of these models in [29, 25]. The
first and second classes of systems are obtained by means of the composition of
a set of sequential processes: each process, at each processing step, has attached
a single (and different) resource. An instance of the Petri net representing two of
such sequential processes of length two would follow the structure of the net in
Figure 1 (only the resources for the first process are shown). There are two ways
to study size variations in this family of systems: one of them is changing the
length of the process; that is, the number of processing steps (two in the figure).
The second one is changing the number of processes to be composed (in the
figure two processes are shown). For the experiment, the sequential processes
are composed with other processes according to the following rules: The first
process shares its resources with the second one in reverse order: the resource
used at the first step in the first process is used at the last step of the second

312 PNSE’14 – Petri Nets and Software Engineering

Table 1. Computing the minimal siphons with the algebraic methods

Name Size Number [28] [26]
of siphons

FMSAD 3 42 0 0.07
4 78 0.04 0.17
5 150 0.69 0.72
6 250 13.83 6.27
7 490 466.95 84.54
8 906 11127.44 1169.57

FMSLD 3 24 0 0.01
4 54 0 0.02
5 116 0.08 0.06
6 242 2.27 0.12
7 496 71.78 0.29
8 1006 2570.88 0.87

Phil 3 10 0 0.02
4 17 0.02 0.03
5 26 0.34 0.04
6 37 6.88 0.07
7 50 291.58 0.08
8 65 6930.71 0.13

Column 1: Name as in [25].
Column 2: Size of the problem (number of processes in FMSAD; length of two parallel
processes in FMSLD; number of philosophers in Phil).
Column 3: Number of minimal siphons (computed by means of an algebraic algorithm).
Column 4: Time needed to compute all the siphons (in seconds) with the method
described by Lautenbach in [28].
Column 5: Time needed to compute all the siphons (in seconds) with the method
described by Boer and Murata in [26].

process; the resource used at the second step of the first process is used by the
one that is previous to the last step in the second process, and so on. The second
process is composed with the third one in a similar way and so on, until we reach
the total number of composed processes. The last process is composed with the
first one, in a similar way. Using the previous ideas two different families of
S4PR nets have been generated, labeled as FMSAD and FMSLD in the tables.

FMSAD nets are obtained by means of the composition of a variable number
of sequential processes as the ones depicted in Figure 1, with a fixed length of
3. The number of processes to be composed in parallel is the parameter. In the
experiments, the number of composed processes is varying from 3 to 8. FMSLD
nets are obtained by means of the composition of a fixed number of two sequential
processes as the ones depicted in Figure 1, with a variable length which is the
parameter. In the experiments, this length is varying from 3 to 8.

The last one corresponds to an implementation of the well known dining
philosophers problem. The parameter corresponds to the number of philosophers.

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 313

forkR_i

phil1Waiting_i

philForkR_i philForkL_i

forkL_i

philEating_i

T5_i

T6_iT3_i

T2_iT1_i

Fig. 2. Petri net model of the i–th philosopher

Figure 2 shows the model of the ith philosopher. Places forkR_i and forkL_i
model, respectively, the state (free/engaged) of its right and left forks. The fork
forkR_i will be shared with the philosopher on his right, and the forkL_i will
be shared with the philosopher on his left. The results obtained for this family
of nets are entitled Phil in the tables.

We have recomputed the values shown in [25] to include time results obtained
with the same computer for all the experiments. This has been done with a
desktop computer, Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz, with 4Gb of
RAM. These results can be seen in Table 1. They are shown in a graphical way
in the first column of Figure 3. Notice also that for each type of problem the next
size takes more than 24 hours to finish the computation with the first method.

For these new experiments, we have measured the time used by the genetic
algorithm to obtain at least one siphon; the GA should be able to compute more
than one (just selecting the adequate set of best fit individuals) and we also
measured this. In any case, it would be difficult to predict the number of good
siphons, so let us use this time as a conservative measure.

The genetic algorithm has several parameters that need to be adjusted. We
have used elitism and rank-based selection. For mutation we have used a bitblip
operation with 33% of probability and we have selected a two-point crossover
operator with probability of 66%. Then, we have concentrated on the size of the

314 PNSE’14 – Petri Nets and Software Engineering

initial population and the number of evaluations. We start the experiment for
each example with an initial population of size 8 and we run the program thirty
times; if it fails (does not compute a siphon) more than once, we double the size
of the initial population and repeat until we can reach thirty iterations with at
most one failed result. We also established a maximum number of evaluations:
if no solution is found after this number of evaluations the algorithm stops (and
we consider this run a failure).

We have tested two approaches for the initial population: First, introducing
the P–Semiflows (when there are less P–Semiflows than the size of the initial
population we add the needed individuals at random; when there are more,
we add all of them and we complete the population until we reach a multiple of
eight individuals). Second, using a fully random initial population. The reason for
trying the first approach is that P–Semiflows could guide the algorithm toward
interesting places in the net (in some classes of nets it is possible to construct
them as a seed [30]). Notice that they cannot be part of the solution (they are
explicitly forbidden, see equation (3) in Section 4).

When the algorithm stops, we can check whether the solution with best
fitness is a siphon or not: if it has not positive fitness it won’t be a siphon.

The results obtained can be seen in Table 2. They also can be seen in a
graphical way in the second column of Figure 3 and in Figure 4. In the Figure 4
we have also included the standard deviation of the thirty runs of the program.
We have included in the Figure 3 the graphics for the algebraic methods as
a baseline. The times provided in the table and in the figures for the genetic
algorithms are the average of the thirty runs of each experiment with the smaller
acceptable initial population for each size of each problem.

We can see that the genetic algorithm is slower, in general, than the algebraic
methods except for the case of FMSAD example, where the genetic algorithm
seems to obtain its solution in less time (and it grows slowly if we compare with
the algebraic method, which seems to grow exponentially).

There are two things to remark here: the results should not be compared
directly, since the algebraic implementations where done in C, and the genetic
algorithm has been programmed using Perl (an interpreted language). Neverthe-
less, putting the results together helps us to see that they are not so far away and
that the approach can be adequate for some types of problems or when the size
grows in such a way that it cannot be managed with deterministic methods. The
second thing to note is that the genetic algorithm does not obtain all the siphons
but a number of them (as the best fitted members of the final population).

In Table 2 we can see that there are no relevant differences in time when
using the P–Semiflows as the initial population and when we use a random initial
population. In the FMSAD example there is a small difference in the number of
evaluations, which tend to be bigger (but the differences are small and there are
cases when there are less evaluations with the random population -sizes 4, 5-). In
the FMSLD example the number of evaluations tends to be lower for the initial
random population (except for sizes 5,7). Finally, in the Phil example, the cases

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 315

Table 2. Times for siphon computation with the proposed method

Initial Population
P–Semiflows Random

Size Pop. Time Eval. Time Eval.
FMSAD 3 64 0.93 (0.22) 912 (214.83) 0.96 (0.18) 938 (169.27)

4 64 1.97 (0.33) 1,102 (185.03) 1.92 (0.32) 1,082 (185.82)
5 64 3.97 (1.01) 1,448 (361.33) 3.33 (0.41) 1,222 (152.79)
6 128 10.16 (1.19) 2,627 (305.12) 12.61 (12.70) 2,657 (394.46)
7 256 31.07 (4.65) 5,877 (785.53) 31.71 (3.47) 5,954 (644.96)
8 256 43.18 (4.65) 6,299 (677.50) 50.95 (17.79) 7,009 (1,231.68)

FMSLD 3 32 0.19 (0.03) 408 (72.73) 0.50 (1.73) 379 (73.60)
4 32 0.37 (0.09) 458 (112.10) 0.36 (0.07) 447 (84.49)
5 32 0.65 (0.10) 519 (79.26) 0.65 (0.10) 526 (79.82)
6 32 1.01 (0.22) 571 (124.39) 1.00 (0.21) 562 (117.14)
7 32 1.59 (0.34) 654 (137.96) 1.59 (0.85) 661 (343.29)
8 64 4.14 (1.18) 1,349 (385.48) 4.05 (0.78) 1,310 (248.29)

Phil 3 64 0.33 (0.05) 790 (106.88) 0.34 (0.03) 812 (64.70)
4 64 0.64 (0.06) 887 (92.53) 0.62 (0.07) 863 (91.17)
5 128 2.02 (0.20) 1,852 (195.65) 2.03 (0.23) 1,859 (195.90)
6 128 3.08 (0.35) 1,988 (217.09) 3.18 (0.38) 2,042 (240.61)
7 128 4.77 (0.52) 2,260 (237.10) 4.60 (0.41) 2,185 (183.80)
8 128 6.61 (0.60) 2,454 (221.54) 6.40 (0.67) 2,362 (234.06)

Column 1: Name (as in [25])
Column 2: Size of the problem.
Column 3: Population of the instance.
Column 4: Average time. P–Semiflows in the initial population. Random initial popu-
lation.
Column 5: Average number of evaluations (rounded). P–Semiflows in the initial popu-
lation.
Column 6: Average time. Random initial population.
Column 7: Average number of evaluations (rounded). Random initial population.
In all the cases, in parentheses, the standard deviation.

where the number of evaluations is better is the same for both initial types of
initial population.

The results obtained show that the approach is suitable: we can compute
(minimal) siphons with the proposed method. Comparing with traditional meth-
ods the genetic approach does not provide better time computation except for
one example (but they are implementations in different languages) and the be-
havior is better with more complex problems (as one would expect). If we were
interested in computing all the siphons, we could add the computed ones as neg-
ative restrictions (this set of places cannot be a solution, as we have done with
P–Semiflows) and apply again the GA.

As another way to evaluate the approach we computed Table 3 where we can
see the total number of different siphons obtained with the proposed method
compared to the total number of siphons for each system. For this we have used

316 PNSE’14 – Petri Nets and Software Engineering

FMSAD Example

FMSLD Example

Philosophers Example

Fig. 3. Comparison of times for different examples and sizes

the same experiments as in the previous table: we can count the number of
different siphons for each size of each problem in the 30 runs of the experiment.
With this we can show that the genetic algorithm has a good behavior (different
runs examine different parts of the solutions space) but we are not measuring
what would happen with the addition of new restrictions to forbid siphons that
have been computed previously. Moreover, when the size of the problem increases
the method computes less siphons. Our feeling is that this is due to the size of
the population (the size is small compared to the number of total siphons when

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 317

FMSAD Example

FMSLD Example

Philosophers Example

Fig. 4. Comparison of times for different examples and sizes

the size of the problem grows). For this reason we have added columns 6 and 7.
There we can see that the number of different siphons computed increases with
a bigger initial population. We can also see in that Table that the random initial
population tends to produce more different siphons across different experiments.

318 PNSE’14 – Petri Nets and Software Engineering

Table 3. Number of siphons with different methods and populations

Number of siphons P R P R Percentage
FMSAD 3 42 22 28 25 28 52.38% 66.67% 59.52% 66.67%

4 78 29 32 34 42 37.18% 41.03% 43.59% 53.85%
5 150 42 48 44 49 28% 32% 29.33% 32.67%
6 250 48 53 55 68 19.20% 21.20% 22% 27.20%
7 490 75 70 90 83 15.31% 14.29% 18.37% 16.94%
8 906 59 67 110 78 6.51% 7.40% 12.14% 8.61%

FMSLD 3 24 14 11 58.33% 45.83%
4 54 28 32 32 36 51.85% 59.26% 59.26% 66.67%
5 116 34 31 38 45 29.31% 26.72% 32.76% 38.79%
6 242 31 37 43 48 12.81% 15.29% 17.77% 19.83%
7 496 35 36 48 49 7.06% 7.26% 9.68% 9.88%
8 1006 38 48 64 58 3.78% 4.77% 6.36% 5.77%

Phil 3 10 4 6 2 2 40% 60% 20% 20%
4 17 5 5 5 8 29.41% 29.41% 29.41% 47.06%
5 26 6 9 7 10 23.08% 34.62% 26.92% 38.46%
6 37 10 12 10 12 27.03% 32.43% 27.03% 32.43%
7 50 12 15 11 11 24% 30% 22% 22%
8 65 11 15 10 13 16.92% 23.08% 15.38% 20%

Column 1: Name (as in [25])
Column 2: Size of the problem.
Columns 3: Number of siphons obtained by means of an algebraic algorithm.
Columns 4: Number of siphons obtained with the proposed method. P–Semiflows as
initial population.
Column 5: Number of siphons obtained with the proposed method. Random initial
population.
Columns 6-7: The same as columns 4-5 but doubling the size of the initial population.
Columns 8-11: The results of columns 4-7 as a percentage of Column 3.

6 Conclusions and further work

Some deadlock prevention control policies need the set of minimal siphons to be
computed. It is well known that this is a very hard task because the number of
such components can be very high. This paper has concentrated on the study of
such question.

An adaptation of a set of logical formulas has been provided in order to try
the genetic algorithm to search for a structural component of the net (siphons).

Even when it is not clear if the method has a good enough performance, it
opens the door to further work. It is our intention to try to apply it to some
deadlock prevention methods proposed in the past, where some special siphons
need to be computed at each step.

Moreover, when the computation of all the siphons becomes prohibitively
expensive, the genetic algorithm can still deal with bigger problems if it is ac-
ceptable for us to have a partial set of the siphons instead of the whole set
provided by algebraic approaches.

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 319

In this sense, our proposal for further work will follow several ideas: First
of all, the genetic algorithm is well suited for parallelization as in [25]. Second,
the problem can be formulated not only in terms of siphon computation but in
terms of a problem with more information. In the last years some ideas have
been proposed in order to avoid the computation of all the minimal siphons.
The methods rely on the computation of some special bad siphons together with
bad markings (structural objects and bad states information is merged): if we
introduce the state equation the genetic algorithm will have more information
and, hopefully, it will be an alternative method to the one proposed in previously
published work. [31]. Finally, we feel that adding more information about the
siphon properties to the method (siphonosity?) it would work better. Other
improvements for the GA need to be tested.

Acknowledgments

The authors are indebted to the anonymous referees and the PC who have helped
us to improve the quality and presentation of this paper. This work is supported
in part by project ANYSELF (TIN2011-28627-C04-02) by the Spanish Mineco
and TIN2011-27479-C04-01 by the Spanish Ministry of Science and Innovation;
P08-TIC-03903 awarded by the Andalusian Regional Government, project 83,
Campus CEI BioTIC, and by Group of Discrete Event Systems Engineering
(GISED) awarded by Aragonese Government.

References

1. Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–580

2. López-Grao, J.P., Colom, J.M.: A Petri Net Perspective on the Resource Allocation
Problem in Software Engineering. Transactions on Petri Nets and Other Models
of Concurrency V. Springer-Verlag, Berlin, Heidelberg (2012) 181–200

3. Liao, H., Wang, Y., Stanley, J., Lafortune, S., Reveliotis, S., Kelly, T., Mahlke, S.:
Eliminating Concurrency Bugs in Multithreaded Software: A New Approach Based
on Discrete-Event Control. Control Systems Technology, IEEE Trans. PP(99)

4. Liao, H., Lafortune, S., Reveliotis, S., Wang, Y., Mahlke, S.: Optimal Liveness-
Enforcing Control for a Class of Petri Nets Arising in Multithreaded Software.
Automatic Control, IEEE Transactions on 58(5) (May 2013) 1123–1138

5. Ezpeleta, J., Colom, J., Martínez, J.: A Petri net based deadlock prevention policy
for flexible manufacturing systems. IEEE Trans. Rob. Aut. 11(2) (1995) 173–184

6. Barkaoui, K., Pradat-Peyre, J.: On Liveness and Controlled Siphons in Petri Nets.
In Billington, J., Reisig, W., eds.: Proceedings of the 1996 International Conference
on Aplications and Theory of Petri Nets, Springer Verlag (June 1996)

7. Tricas, F., García-Vallés, F., Colom, J., Ezpeleta, J.: An Iterative Method for
Deadlock Prevention in FMS. In Boel, R., Stremersch, G., eds.: Discrete Event
Systems: Analysis and Control. Proc. of WODES, Ghent, Belgium (2000) 139–148

8. Huang, Y., Jeng, M.D., Xie, Z., Chung, S.: Deadlock prevention policy based on
Petri nets and siphons. Int. Journal of Production Research 39(2) (2001) 283–305

320 PNSE’14 – Petri Nets and Software Engineering

9. Iordache, M.V., Moody, J.O., Antsaklis, P.: Synthesis of Deadlock Prevention
Supervisors Using Petri Nets. IEEE Trans. Rob. Automat. 18(1) (2002) 59–68

10. Li, Z., Zhou, M.C.: Elementary Siphons of Petri Nets and Their Applications to
Deadlock Prevention in Flexible Manufacturing Systems. IEEE Trans. on Systems,
Man, and Cybernetics 34(1) (January 2004) 38–51

11. Barkaoui, K., Chaoui, A., Zouari, B.: Supervisory Control of Discrete Event Sys-
tems Based on Structure of Petri Nets. In: Proceedings of the 1997 IEEE Interna-
tional Conference on Systems, Man and Cybernetics. Computational Cybernetics
and Simulation, Orlando, Florida, USA, IEEE (October 1997) 3750–3755

12. Tricas, F., Colom, J., Ezpeleta, J.: A solution to the problem of deadlocks in
concurrent systems using Petri nets and integer linear programming. In Horton,
G., Moller, D., Rude, U., eds.: Proc. of the 11th European Simulation Symposium,
Erlangen, Germany, The society for Computer Simulation International (oct 1999)

13. Li, S., Li, Z., Hu, H., Al-Ahmari, A., An, A.: An extraction algorithm for a set
of elementary siphons based on mixed-integer programming. Journal of Systems
Science and Systems Engineering 21(1) (March 2012) 106–125

14. Jeng, M., Peng, M., Huang, Y.: An algorithm for calculating minimal siphons and
traps of Petri nets. Int. J. of Intelligent Control and Systems 3(3) (1999) 263–275

15. Barkaoui, K., Lemaire, B.: An effective characterization of minimal deadlocks and
traps in petri nets based on graph theory. In: Proceedings of the 10th International
Conference on Application and Theory of Petri Nets, 1989. (1989) 1–21

16. Tricas, F.: Deadlock Analysis, Prevention and Avoidance in Sequential Resource
Allocation Systems, Ph.D. Thesis. Dep. Inf. e Ing. de Sist. U. Zaragoza (May 2003)

17. Cordone, R., Ferrarini, L., Piroddi, L.: Characterization of minimal and basis
siphons with predicate logic and binary programming. In: IEEE Int. Symposium
on Computer Aided Control System Design, 2002, IEEE (2002) 193–198

18. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Oxford,
England: U Michigan Press (1975)

19. Merelo, J.J.: A Perl Primer for Evolutionary Algorithm Practitioners. SIGEVO-
lution 4(4) (March 2010) 12–19

20. Merelo-Guervós, J.J., Castillo, P.A., Alba, E.: Algorithm::Evolutionary, a flex-
ible Perl module for evolutionary computation. Soft Computing 14(10) (2010)
1091–1109 Accesible at http://sl.ugr.es/000K [sl.ugr.es].

21. Prashant Reddy, J., Kumanan, S., Krishnaiah Chetty, O.V.: Application of Petri
Nets and a Genetic Algorithm to Multi-Mode Multi-Resource Constrained Project
Scheduling. The Int. J. of Advanced Manufacturing Tech. 17(4) (2001) 305–314

22. Lim, A.H.L., Lee, C.S., Raman, M.: Hybrid genetic algorithm and association
rules for mining workflow best practices. Expert Systems with Applications 39(12)
(September 2012) 10544–10551

23. Xing, K., Han, L., Zhou, M., Wang, F.: Deadlock-Free Genetic Scheduling Algo-
rithm for Automated Manufacturing Systems Based on Deadlock Control Policy.
Systems, Man, and Cybernetics, Part B, IEEE Trans. 42(3) (2012) 603–615

24. Han, L., Xing, K., Chen, X., Lei, H., Wang, F.: Deadlock-free genetic schedul-
ing for flexible manufacturing systems using Petri nets and deadlock controllers.
International Journal of Production Research 52(5) (October 2013) 1557–1572

25. Tricas, F., Ezpeleta, J.: Computing minimal siphons in Petri net models of resource
allocation systems: a parallel solution. Sys. Man Cyber. Part A: Systems and
Humans, IEEE Trans. on 36(3) (2006) 532–539

F. Tricas et al.: Computing Minimal Siphons in Petri Net Models of RASs 321

26. Boer, E.R., Murata, T.: Generating basis siphons and traps of Petri nets using
the sign incidence matrix. IEEE Trans. on Circuits and Systems, I – Fundamental
Theory and Applications 41(4) (1994) 266–271

27. Silva, M.: Las Redes de Petri en la Automática y la Informática. Ed. AC, Madrid
(1985)

28. Lautenbach, K.: Linear algebraic calculation of deadlocks and traps. In Voss, K.,
Genrich, H., Rozemberg, G., eds.: Concurrency and Nets. Springer Verlag (1987)
315–336

29. Tricas, F., Ezpeleta, J.: RessAllocation Petri net Model. In Kordon, F., et al.,
eds.: Model Checking Contest 2013, Milano, Italy (June 2013)

30. Cano, E.E., Rovetto, C.A., Colom, J.M.: An algorithm to compute the minimal
siphons in S4PR nets. Discrete Event Dynamic Systems 22(4) (2012) 403–428

31. Tricas, F., García-Vallés, F., Colom, J., Ezpeleta, J.: A Petri Net Structure–Based
Deadlock Prevention Solution for Sequential Resource Allocation Systems. In: Proc
of 2005 Int. Conf. on Robotics and Automation, Barcelona, Spain (2005) 272–278

322 PNSE’14 – Petri Nets and Software Engineering

Part IV

PNSE’14: Short Papers

Persistency and Nonviolence Decision Problems
in P/T-nets with Step Semantics?

Kamila Barylska
kamila.barylska@mat.umk.pl

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland

Abstract. Persistency is one of the notions widely investigated due to
its application in concurrent systems. The classical notion refers to nets
with a standard sequential semantics. We will present two approaches to
the issue (nonviolence and persistency). The classes of different types of
nonviolence and persistency will be defined for nets with step semantics.
We will prove that decision problem concerning all the defined types are
decidable.

1 Introduction

The notion of persistency has been extensively studied for past 40 years, as
a highly desirable property of concurrent systems. A system is persistent (in
a classical meaning) when none of its components can be prevented from being
executed by other components. This property is often needed during the imple-
mentation of systems in hardware [3]. The classical notion can be split into two
notions: persistency (no action is disabled by another one) and nonviolence (no
action disables another one).

The standard approach to Petri nets provides a sequential semantics - only
single actions can be executed at a time. We choose a different semantics (real
concurrency), in which a step, that is a set of actions, can be executed simulta-
neously as a unique atom of a computation.

In [6] different types of persistency and nonviolence notions for p/t-nets with
step semantics were presented. In [1] levels of persistency were introduced for
nets with sequential semantics. In this paper we combine both approaches and
define classes (not only enabling-oriented but also life-oriented) of nonviolence
and persistency of different types for nets with step semantics. We prove that all
defined kinds of nonviolence and persistency are decidable for place/transition
nets.

? This research was supported by the National Science Center under the grant
No.2013/09/D/ST6/03928.

2 Basic definitions and denotations

We assume that basic notions concerning Petri Nets are known to the reader.
Their definitions are omitted here due to the page limit, and can be found in
any monograph or survey about Petri Nets.

Classical p/t-nets provide a sequential semantics of action’s executions. It means
that only one action can be executed as a single atom of a computation. In this
paper we assume a different semantics: subset of actions called steps can be en-
abled and executed as an atomic operation of a net. Basic definitions concerning
p/t-nets adapted to nets with step semantics can be found in [6]. All the def-
initions and facts required in the paper are presented in its longer version and
posted on the author’s website1.

3 The Monoid Nk

See [1] for definitions and facts concerning the monoid Nk, rational subsets of Nk,
ω-vectors, sets of all minimal/maximal members of X (Min(X)/Max(X)), and
closures, convex sets, bottom and cover.

4 Levels of persistency and nonviolence

In [1] one can find definitions of three classes of persistency for nets with sequen-
tial semantics: the first one (corresponding to the classical notion): "no action
can disable another one", and two ways of generalization of this notion: "no
action can kill another one" and "no action can kill another enabled one".

In [6] a thorough analysis of persistent nets with step semantics was conducted.
It was pointed out there that the existing concept of persistency [7] can be sepa-
rated into two concepts, namely nonviolence (previously called persistency in [1])
and persistency (or robust persistency).

It is shown there that one can consider three classes of nonviolence and persis-
tency steps: A - where after the execution of one step we take into consideration
only the remaining part of the other step, B - if two steps do not have any
common action, then after the execution of one of them we consider the whole
second step, and C - after the execution of one step we take into account the
whole second step. As it is proved in [6], the notions of A and B persistency
(nonviolence, respectively) steps coincide, in the remaining we will only consider
the classes of A and C steps.

1 www.mat.umk.pl/~khama/Barylska-PersistencyAndNonviolenceDecisionProblems.pdf

326 PNSE’14 – Petri Nets and Software Engineering

Let us define classes of both types persistency and nonviolence with step seman-
tics.

Definition 1. Let S = (P, T,W,M0) be a place/transition net. For M ∈ [M0〉
and steps α, β ⊆ T , such that α 6= β, the step α in M is:

– A-e/e-nonviolent iff Mα ∧Mβ ⇒Mα(β \ α)
– A-l/l-nonviolent iff Mα ∧ (∃u)Muβ ⇒ (∃v)Mαv(β \ α), where u, v ∈ (2T)∗

– A-e/l-nonviolent iff Mα ∧Mβ ⇒ (∃v)Mαv(β \ α), where v ∈ (2T)∗

– A-e/e-persistent iff Mα ∧Mβ ⇒Mβ(α \ β)
– A-l/l-persistent iff (∃u)Muα ∧Mβ ⇒ (∃v)Mβv(α \ β), where u, v ∈ (2T)∗

– A-e/l-persistent iff Mα ∧Mβ ⇒ (∃v)Mβv(α \ β), where v ∈ (2T)∗

– C-e/e-nonviolent iff Mα ∧Mβ ⇒Mαβ
– C-l/l-nonviolent iff Mα ∧ (∃u)Muβ ⇒ (∃v)Mαvβ, where u, v ∈ (2T)∗

– C-e/l-nonviolent iff Mα ∧Mβ ⇒ (∃v)Mαvβ, where v ∈ (2T)∗

– C-e/e-persistent iff Mα ∧Mβ ⇒Mβα
– C-l/l-persistent iff (∃u)Muα ∧Mβ ⇒ (∃v)Mβvα, where u, v ∈ (2T)∗

– C-e/l-persistent iff Mα ∧Mβ ⇒ (∃v)Mβvα, where v ∈ (2T)∗

Let S = (P, T,W,M0) be a place/transition net and M ∈ [M0〉.
We say that a marking M is [A/C]-[(e/e)/(l/l)/(e/l)]-[persistent/nonviolent] iff
the step α in M is [A/C]-[(e/e)/(l/l)/(e/l)]-[persistent/nonviolent] for every en-
abled α ⊆ T .
We say that the net S is [A/C]-[(e/e)/(l/l)/(e/l)]-[persistent/nonviolent] iff every
reachable markingM ∈ [M0〉 is [A/C]-[(e/e)/(l/l)/(e/l)]-[persistent/nonviolent].
The classes of [A/C]-[(e/e)/(l/l)/(e/l)]-[persistent/nonviolent] p/t-nets will by
denoted by P[A/C]−[(e/e)/(l/l)/(e/l)]−[p/n].

5 Decision Problems

Let us recall the famous decidable (Mayr [8], Kosaraju [5]) problem called
Marking Reachability Problem:

Instance: A p/t-net S = (P, T,W,M0), and a marking M ∈ N|P |.
Question: Is M reachable in S?

Let us formulate a more general Set Reachability Problem
Instance: A p/t-net S = (P, T,W,M0), and a set X ⊆ N|P |.
Question: Is there a marking M ∈ X, reachable in S?

Theorem 1 ([1]). If X ⊆ Nk is a rational convex set, then the X-Reachability
Problem is decidable in the class of p/t-nets.

In order to formulate precisely decision problems concerning classes of nonvio-
lence and persistency types described in definition 1, let us define the following
sets of markings (for a given steps α and β):

K. Barylska: Persistency and Nonviolence Decision Problems in P/T-Nets 327

Eα = {M ∈ Nk | Mα} Eβ = {M ∈ Nk | Mβ}
Eαβ = {M ∈ Nk | Mαβ} Eβα = {M ∈ Nk | Mβα}
Eα(β\α) = {M ∈ Nk | Mα(β \ α)} Eβ(α\β) = {M ∈ Nk | Mβ(α \ β)}
E..α = {M ∈ Nk | (∃w ∈ (2T)∗)Mwα} E..β = {M ∈ Nk | (∃w ∈ (2T)∗)Mwβ}
E..(α\β) = {M ∈ Nk | (∃w ∈ (2T)∗)Mw(α \ β)}
E..(β\α) = {M ∈ Nk | (∃w ∈ (2T)∗)Mw(β \ α)}
Eα..β = {M ∈ Nk | (∃w ∈ (2T)∗)Mαwβ}
Eβ..α = {M ∈ Nk | (∃w ∈ (2T)∗)Mβwα}
Eα..(β\α) = {M ∈ Nk | (∃w ∈ (2T)∗)Mαw(β \ α)}
Eβ..(α\β) = {M ∈ Nk | (∃w ∈ (2T)∗)Mβw(α \ β)}

Remark:
Let us note the following equalities:
Eα = enα+ Nk
Eβ = enβ + Nk
Eαβ = max(enα, enα− exα+ enβ) + Nk
Eβα = max(enβ, enβ − exβ + enα) + Nk
Eα(β\α) = max(enα, enα− exα+ en(β \ α)) + Nk
Eβ(α\β) = max(enβ, enβ − exβ + en(α \ β)) + Nk

where enα and exα are vectors of entries and exits of α .

Thanks to the equalities it is easy to find a rational expressions for the listed
sets. It is much more difficult to find rational expressions for the rest of the
markings listed above.

Let us notice that a step is not nonviolent/persistent in a distinct sense when
a certain "unwanted" marking is reachable in a given net. It is easy to see, that
we can connect the above sets of markings with classes of nonviolent/persistent
steps. The table below shows the connections.

Z=Nonviolence Z=Persistency
X Y EX−Y−Z X Y EX−Y−Z
A EE Eα ∩ Eβ ∩ (Nk \ Eα(β\α) A EE Eα ∩ Eβ ∩ (Nk \ Eβ(α\β)
A LL Eα ∩ E..β ∩ (Nk \ Eα..(β\α) A LL E..α ∩ Eβ ∩ (Nk \ Eβ..(α\β)
A EL Eα ∩ Eβ ∩ (Nk \ Eα..(β\α) A LL Eα ∩ Eβ ∩ (Nk \ Eβ..(α\β)
C EE Eα ∩ Eβ ∩ (Nk \ Eαβ) C EE Eα ∩ Eβ ∩ (Nk \ Eβα)
C LL Eα ∩ E..β ∩ (Nk \ Eα..β) C LL E..α ∩ Eβ ∩ (Nk \ Eβ..α)
C EL Eα ∩ Eβ ∩ (Nk \ Eα..β) C LL Eα ∩ Eβ ∩ (Nk \ Eβ..α)

Denotation: US = {E{X−Y−X} |X ∈ {A,C}, Y ∈ {EE,LL,EL}, Z ∈ {N/P}}2
- the set of undesirable sets.

2 where N=Nonviolence and P=Persistency

328 PNSE’14 – Petri Nets and Software Engineering

Now we are ready to formulate the decision problems. Let us notice that a par-
ticular decision problem is decidable when we can settle whether any marking
from the undesirable set associated to the problem is reachable.

X-Y-Z Problem: (for X ∈ {A,C}, Y ∈ {EE,LL,EL}, Z ∈ {N/P})
Instance: A p/t-net S = (P, T,W,M0), and steps α, β ⊆ T .
Question: Is the set EX−Y−Z reachable in S?

Informally, if any marking from the set EX−Y−Z is reachable in S, some "un-
wanted" situation takes place, for example whenX − Y − Z = A−EL−P, then
it means that a subset (α\β) of an enabled α is killed by the execution of β . Such
a situation is depicted in Fig.1 with α = {a, c}, β = {a, b}, and (α \ β) = {c}.
One can easily see, that Mα and Mβ. Let M ′ = Mβ , then the step (α \ β) is
dead in M ′.

Fig. 1. Not A-EL-P p/t-net.

Theorem 2. The Decision Problems described above are decidable in the class
of p/t-nets.

Sketch of the proof:

1. We put into work the theory of residual sets of Valk/Jantzen [9] and thanks
to their results we show that Bottoms (the set of all minimal members) of
the sets E..α, E..β , E..(α\β), E..(β\α), Eα..β , Eβ..α, Eα..(β\α), Eβ..(α\β) are
effectively computable.

2. We obtain rational expressions for the sets as follows:
EX = Bottom(EX)+Nk, where X ∈ {..α, ..β, ..(α \ β), ..(β \ α), α..β, β..α,
α..(β \ α), β..(α \ β)}.

3. Using the Ginsburg/Spanier Theorem [4], which says that rational subsets
of Nk are closed under union, intersection and difference we compute rational
expressions for the undesirable sets. Let us notice that undesirable sets are
convex.

4. We check whether any marking from the undesirable set connected to a dis-
tinct decision problem is reachable in a given net. The Theorem 1 yields
decidability of all the problems.

K. Barylska: Persistency and Nonviolence Decision Problems in P/T-Nets 329

Let us now formulate net-oriented versions of the problems.

The Net Nonviolence and Persistency Problems
Instance: A p/t-net S = (P, T,W,M0).
Question:
[A/C]-[EE/LL/EL]-Net-[Nonviolence/Persistency] Problem:

Is the net [A/C]-[(e/e)/(l/l)/(e/l)]-[nonviolent/persistent]?

Of course the problems are decidable, as it is enough to check an adequate
transition oriented problem for every pair of steps.

6 Plans for Further Investigations

– In [1] inclusions between defined there kinds of nonviolence (called there
persistency) were investigated. One can examine the relationships between
the presented in definition 1 types of nonviolent and persistent nets.

– In [2] levels of e/l-k-persistency were defined. It would be useful to investigate
the notions in p/t-nets with step semantics.

References

1. Kamila Barylska and Edward Ochmanski. Levels of persistency in place/transition
nets. Fundam. Inform, 93(1-3):33–43, 2009.

2. Kamila Barylska and Edward Ochmanski. Hierarchy of persistency with respect to
the length of actions disability. Proceedings of the International Workshop on Petri
Nets and Software Engineering, Hamburg, Germany, pages 125–137, 2012.

3. Johnson Fernandes, Maciej Koutny, Marta Pietkiewicz-Koutny, Danil Sokolov, and
Alex Yakovlev. Step persistence in the design of gals systems. Lecture Notes in
Computer Science, 7927:190–209, 2013.

4. Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like languages. TRANS
AMER MATH SOC, (113):333–368, 1964.

5. S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing, STOC ’82, pages 267–281, New York, NY, USA, 1982. ACM.

6. Maciej Koutny, Lukasz Mikulski, and Marta Pietkiewicz-Koutny. A taxonomy of
persistent and nonviolent steps. Lecture Notes in Computer Science, 7927:210–229,
2013.

7. Lawrence H. Landweber and Edward L. Robertson. Properties of conflict-free and
persistent petri nets. JACM: Journal of the ACM, 25, 1978.

8. Ernst W. Mayr. An algorithm for the general petri net reachability problem. SIAM
J. Comput., 13(3):441–460, 1984.

9. Rudiger Valk and Matthias Jantzen. The residue of vector sets with applications to
decidability problems in petri nets. ACTAINF: Acta Informatica, 21, 1985.

330 PNSE’14 – Petri Nets and Software Engineering

Part V

PNSE’14: Poster Abstracts

Construction of Data Streams Applications from
Functional, Non-Functional and Resource

Requirements for Electric Vehicle Aggregators.
The COSMOS Vision

J.A. Bañares, R. Tolosana-Calasanz, F. Tricas, U. Arronategui, J. Celaya, and
J.M. Colom

Depto de Informática e Ingeniería de Sistemas - Universidad de Zaragoza
banares@unizar.es

Abstract. COSMOS, Computer Science for Complex System Model-
ing, is a research team that has the mission of bridging the gap between
formal methods and real problems. The goal is twofold: (1) a better
management of the growing complexity of current systems; (2) a high
quality of the implementation reducing the time to market. The COS-
MOS vision is to prove this approach in non-trivial industrial problems
leveraging technologies such as software engineering, cloud computing, or
workflows. In particular, we are interested in the technological challenges
arising from the Electric Vehicle (EV) industry, around the EV-charging
and control IT infrastructure.

Keywords: Continuous Data Streams, Executable High-Level Specification, Schedul-
ing, Non-functional specifications, Distributed Systems, Resource Allocation Systems,
Cloud Computing, Smart Grid, Electric Vehicle

1 Introduction

Electric Vehicles (EVs) give rise to computational challenging problems. EVs
will be plugged into the electric infrastructure (distribution networks) for the
re-charging of their batteries, and they will share capacity with other users of
electricity. On other hand, electricity distribution and generation infrastructures
are currently turning into Smart Grids for more efficient management. From a
computational point of view, this involves demand forecast methods, state es-
timation techniques, and real-time monitoring, leading to communication and
control of residential and commercial areas taking place at a fine granularity.
Critical characteristics of the involved computational problems are related to
large volumes of data being generated in a distributed, stream fashion, and
real-time –which is often agnostic of demand variation in a given geographical
area. The main scientific and technical objectives are: 1) The development of a
methodology for the construction of applications for Continuous Data Streams
Processing. It must cover all Software Engineering phases of the life cycle, and

must be able to address functional and non-functional requirements together
with the specification of the execution infrastructure and the involved resources.
2) The previous methodology requires the definition of an executable specifica-
tion language across all the software architectural levels. It will support modular
and hierarchical specification of these types of applications, together with the as-
sociated tools, analysis, verification, simulation, implementation, execution and
monitoring. A set of mechanisms, taking into account different architectural con-
figurations that can be used in the implementation, will be designed to support
the studied policies and mechanisms. 3) Analysis, design and development of
a proof of concept Autonomic Smart Energy Management System for Electric
Vehicles infrastructure management.

2 Expected Scientific Impact

Recent studies estimate that uncontrolled re-charging processes of EV batter-
ies can lead to significant increase in the electricity demand peaks. Moreover,
they anticipate that EVs will impact the local level, where hotspots will be cre-
ated depending on how EVs cluster within a particular geographical location.
These hotspots may eventually overload the low voltage distribution networks.
The re-charging of EV batteries will generate large-scale volumes of informa-
tion, in a distributed fashion, that need to be processed. This project looks for
computational solutions to manage the large amounts of re-charging informa-
tion coming from the EVs. It uses a single computational infrastructure that
enforces an established Service Level Agreement, while adapting the computa-
tional power for the processing of the information. From a socioeconomic point of
view, the expected impact is: (1) The computational solutions can be exploited
for the managing of EVs in the electric infrastructure. Large-amounts of infor-
mation streamed by smart meters can be required to be processed in real-time
when EVs re-charge their batteries. (2) As a result, there will be a substantial
reduction of computational resources and, as a consequence, of energy in their
management as well. Additionally, a substantial reduction of human intervention
is expected, saving costs to companies. (3) The project falls within the social
challenge 4 of the Horizon 2020 program of the European Union: "Smart, Green
and Integrated Transport." (4) The results of the research shall also apply to
decision-making systems of healthcare systems. (5) The results of the research
may also apply to different data processing applications with real-time needs,
that can be of interest for highly qualified SMEs, enabling them to become a
media company to data process.

3 Collaboration

In this endeavour, we are looking for partners that can help us to construct solid
collaboration structures in order to apply for an European project proposal
within the EU Horizon 2020 framework.

334 PNSE’14 – Petri Nets and Software Engineering

Modular Modeling of SMIL Documents with
Complex Termination Events

Djaouida Dahmani1, Samia Mazouz2, and Malika Boukala1

1 MOVEP, USTHB, Algiers.
dzaouche,mboukala@usthb.dz,

2 LSI, USTHB, Algiers.
smazouz@usthb.dz

Abstract. In order to design and analyse complex real time systems,
we improve the communication mechanism of Time Recursive Petri Net
model that we have proposed in previous works. We have used our ex-
tended model, named Time ERPN+, to check the temporal coherence
of SMIL documents. This paper presents on-going work where special
attention is given to the termination events between objects having
distinct time references.

This paper summarises and extends some previous results of our work aim-
ing at controlling the temporal coherence of SMIL documents by using models
based on Time Recursive Petri net (Time RPN) [1]. This latter is an extension
of Recursive Petri net (RPN) with time by proposing a formal methodology for
the design and validation of component-based real-time systems with dynamic
structure, namely Time RPN . The modularity is inherent in Time RPN with-
out any extended notation. Afterwards, we have refined Time RPN model by
improving the communication mechanism between threads; the proposed version
is called Time ERPN+. In Time RPN , each thread has its own local execution
context (local place marking). No communication between threads is possible,
except birth and death relationship. When a thread T terminates, it aborts its
whole descent of threads. Only T may return results to its father-thread (which
gave birth to T). Therefore, all aborted threads have a silent death, except T .
Whereas in Time ERPN+, communications between threads are enriched by
means of shared context (global places). Furthermore, any thread has the abil-
ity to report its death, contrary to Time RPN , where some threads have silent
death. Moreover, finitude, accessibility and boundness of Time ERPN+ are de-
cidable.

A multimedia document SMIL is a collection of media. A media may be (i)
basic as an image, a video, a text or an hyper-link, or (ii) composite as a par
(resp. seq) object which plays in parallel (resp. seq) a set of media, considered as
its children. The temporal behaviour of a media is described by a set of temporal
attributes. For instance, begin and end attributes define respectively the begin-
ning and ending times of a media; it can be a known value or a synchronisation

event (e.g. end(media1) = end(media2) means that media1 must terminate
when media2 terminates). Author, who is in charge of creating such document,
can incrementally add, modify or remove any temporal relation. Therefore, his
document may become incoherent. Research in the field of temporal consistency
verification of multimedia documents covers several aspects : verification at au-
thoring stage, designing schedulers which handle synchronisation at player level
and so on. Our approach focuses on temporal consistency verification of multi-
media documents at authoring stage [2].

A SMIL document is translated into a Time ERPN+, used to check its
temporal coherence. To each SMIL media (basic or composite), a time sub-
ERPN+ is associated as a simulation support. Furthermore, the transitions of
the sub-net are constrained by temporal intervals which are deduced from the
temporal attributes of the media. Also an abstract transition is attached to
the media and viewed as its interface. A firing of the media interface allows to
launch one media simulation occurrence by creating a thread which will play such
a simulation. In a previous work [2], we have modeled simple synchronisation
event between children of a same parent media. For this purpose, local places
are used within the sub-net associated with the parent media. Furthermore a
simple synchronisation event is played by the parent thread and no need to
global places. In second time, we have tackled media having distinct parents but
we have only considered relations such as begin(media1) = begin(media2) + t
or begin(media1) = end(media2) + t. We have shown that the time ERPN+

model is more suitable for such a synchronisation, characterized as complex, in
fact it allows to maintain the compactness of our modeling [3]. In this paper,
we consider terminate events such as end(media1) = begin(media2) + t or (ii)
end(media1) = end(media2) + t and explain briefly its modeling. It consists in
adding a time sub-ERPN+ which is played by the initial thread. The parent
thread of media2 puts a token in a global place as soon as media2 (i) starts or
(ii) terminates. After t time units, the initial thread marks a second global place
which will force the end of the thread playing media1. Thanks to global places
and the new communication concept of time ERPN+, our modeling is modular
and reflects the structure of a SMIL document.

References

1. D. Dahmani, JM. Ilié, and M. Boukala. Time recursive PetriNets. In Transactions
on Petri Nets and Other Models of Concurrency, volume 1, pages 104–118. Springer
Verlag, 2008.

2. D. Dahmani, S. Mazouz, and M. Boukala. Modular Modeling and Analyzing of
Multimedia Documents with Repetitive Objects. In 5th International Conference on
Computer Science and Information Technology (CSIT’13), pages 308–316, Amman,
Jordan, March 2013. IEEEXplore digital library.

3. D. Dahmani, S. Mazouz, and M. Boukala. Efficient and Modular Modeling of Hi-
erarchical Multimedia Objects by Using Time ERPN+. In 4th International Con-
ference on Multimedia Computing and Systems (ICMCS’14), Marrakesh, Morocco,
April 2014. IEEE Catalog Number : CFP-14050-CDR.

336 PNSE’14 – Petri Nets and Software Engineering

D&A4WSC as a Design and Analysis Framework
of Web Services Composition

Rawand Guerfel and Zohra Sbaï

Université de Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis,
BP. 37 Le Belvédère, 1002 Tunis, Tunisia

guerfel.rawand@gmail.com, zohra.sbai@enit.rnu.tn

Abstract. The Web services composition (WSC) has an enormous po-
tential for the organizations in the B2B area. In fact, different services
collaborate through the exchange of messages to implement complex
business processes. BPEL is one of the most used languages to develop
such cooperation. However, a composition is not with added value if it is
not compatible. This property garantees a placement of a correct compos-
ite web service. In this context, we develop a verification approach of the
WSC compatibility. We propose, hence, a framework named D&A4WSC
which allows to model the WSC by oWF-nets, to check their compati-
bility with the model checker NuSMV and to translate them if they are
compatible in BPEL processes using the oWFN2BPEL compiler.

Keywords: Open workflow nets, Model checking, Compatibility, BPEL

Web services are exposed to consumers through standard interfaces. In gen-
eral, because of the complexity of the demand of the consumer, a single service
cannot reach this request and it therefore needs to contact one or more other
services. This corresponds to Web services composition which allows multiple
services to communicate and collaborate by exchanging messages and thus to
implement a composite service that can perform complex tasks for consumers.

Several languages have been proposed to ensure this composition namely
BPEL which is based on XML. Indeed, BPEL is used to define the abstract and
executable business processes as a set of Web services coordinated recursively.
Yet, it is necessary to make sure that these services can interact properly.

In this context, we propose D&A4WSC as a framework allowing the user
to model the composition of Web services by the composition of open workflow
nets (oWF-nets) [2]. It allows in special, the compatibility checking [3] and the
generation of a BPEL process for the composite service. D&A4WSC is composed
of four modules (as drawn in figure 1): a module for WSC modelling, an SMV
translator, an analysis module and a BPEL generator of WSC.
WSC modelling: Web services modelling is performed using oWF-nets as a
subclass of Petri nets [4]. Each service is modeled by an oWF-net in which tran-
sitions represent the different tasks performed by the service, places define the
conditions and output (resp. input) interface places send (resp. receive) messages
to (resp. from) partners.

Fig. 1. The proposed approach

SMV generation of WSC: In order to be checked by NuSMV, the composition
of oWF-nets is converted to SMV code. In this code, we mapped the net evolution
and the firing history in integer arrays in which this evolution will be saved.
Analysis of WSC: D&A4WSC checks first for a syntactical compatibility,
which consists of a test of conformance in the number and types of interfaces.
Then, a semantic compatibility is enhanced, testing thus if the composition suf-
fers from any problem like deadlocks. We characterized 3 classes of compatibility
and showed how to model check them using NuSMV model checker [1].
Generation of BPEL process: BPEL allows the integration and orchestration
of a large number of applications published in the form of services. Thus, we
integrated in our framework a generator of a compatible composition into a
BPEL process. This generator consists on translating oWF-nets to owfn files
and then invoking the oWFN2BPEL to convert these files to BPEL.

References

1. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: Nusmv: A new symbolic
model verifier. In: Proceedings of the 11th International Conference on Computer
Aided Verification. pp. 495–499. Springer-Verlag (1999)

2. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract bpel processes. In: Modellierung 2008. Volume 127 of LNI., GI.
pp. 57–72 (2008)

3. Martens, A.: On compatibility of web services. In: Petri Net Newsletter. pp. 12–20
(2003)

4. Sbaï, Z., Barkaoui, K.: Vérification formelle des processus workflow - extension
aux workflows inter-organisationnels. Revue Ingénierie des Systèmes d’Information:
Ingénierie des systèmes collaboratifs. 18(5), 33–57 (2013)

338 PNSE’14 – Petri Nets and Software Engineering

Constructing Petri Net Transducers with PNTε
ooL

Markus Huber and Robert Lorenz

Department of Computer Science
University of Augsburg, Germany

firstname.lastname@informatik.uni-augsburg.de

Abstract This poster presents a tool for the modular construction of Petri net
transducers by means of several composition operations as for example union,
concatenation, closure, parallel and synchronous product and language composi-
tion. There are exports to PNML and several graphical output formats.
For the implementation, we use the SNAKES framework, which is a Python lib-
rary supporting the rapid prototyping of new Petri net formalisms and provides
many basic Petri net components and functionality.
In the context of our research activities, PNTε

ooL serves as a scientific prototype
for the development of an open library openPNT of efficient algorithms for the
construction, composition, simulation and optimisation of PNTs which can be
used in real world examples.

In [1] we introduced Petri net transducers (PNTs) and showed in [2] how they can
be successfully applied in the field of semantic dialogue modelling for translating utter-
ances into meanings. In [3] we presented a basic theoretical framework of PNTs.

In short PNTs are a formalism for the weighted translation of labelled partial orders
(LPOs), which are words consisting not of a total order between their symbols but of a
partial order. In this sense they are a generalisation of weighted finite state transducers
(FSTs) translating words.

a:x/0.5

N1

ε:y/0.25

N2

(a) A transducer N1 and a generator N2.

ε:y/0.25

t1

a:x/0.5

(b) Parallel product of N1 and N2 after tI has fired.

Figure 1. Some simple PNTs.

In Figure 1 one can see on the left side two simple PNTs called N1 and N2. Like for
weighted FSTs input symbols, output symbols and weights are annotated to the transi-
tions. So the transition of N1 reads the symbol a and writes the symbol x (with weight
0.5) – thus N1 translates the word a into the word x (with weight 0.5). The symbol ε
is used to denote empty input or output. So the PNT N2 is a generator which produces
the word y. The weights are elements of an algebraic structure called bisemiring [3]
which extends semirings by an additional operation. Thus, a bisemiring a set equipped

with three operations, namely addition, sequential multiplication and parallel multiplic-
ation, satisfying certain consistency properties (for example the existence of neutral
elements). Addition is used to combine the weights of alternative LPO-runs of a PNT,
sequential multiplication of weights is used for sequentially composed LPOs and the
weights of parallel composed LPOs are parallel multiplied. In the examples we use the
extended Viterbi semiring ([0,1],max, ·,min).

As for FSTs there exist composition operations for combining simple transducers to
more complex ones. For example, Figure 1 shows on the right side the parallel product
of the PNTs – an operation which does not exist for FSTs. In figures, we omit an-
notations of the form ε:ε/1 where 1 is the neutral weight w.r.t. sequential and parallel
multiplication. The PNT realises the translation from the word a into the LPO w=x‖y
where ‖ denotes the parallel composition of LPOs. There are more operators defined for
PNTs namely concatenation, union, closure, synchronous product and language com-
position of PNTs [3,2]. In Figure 2 on the right side the language composition of the
PNT N3 on the left side with the PNT shown on the right side of Figure 1 is illustrated.
Here, a transition from the first PNT is merged with a transition from the second PNT,
if the output of the first transition equals the input of the second one. The weight of the
merged transition labelled r, t3 is computed from the weights of the transitions labelled
r and t3 using sequential multiplication.

Note that PNTs are defined to always have a single source place which holds exactly
one token at the initial state. Furthermore a PNT has a single sink place and per defin-
ition only such LPO-runs are considered, which lead to a state where exactly the sink
place is marked by one token (the final state). Each LPO-run translates an LPO over
input symbols into an LPO over output symbols via a projection onto input symbols
resp. output symbols [3].

For such a formalism to be useful one needs a tool where PNTs can be implemented,
analysed, combined, simulated, drawn and the like. Since the PNT-formalism is new we
decided to start PNTε

ooL. We use the SNAKES framework [4] which is a Python library
supporting the rapid prototyping of new Petri net formalisms and provides many basic
Petri net components and functionality. Therefore we implemented PNTε

ooL as a Python
library extending SNAKES such that we essentially can use all the functionality already
provided by SNAKES. All graphics in this paper were generated by PNTε

ooL.

The support of graphical output serves as a possibility to check the implementation
and as a handy utility in the process of writing scientific papers. PNTε

ooL’s functionality
supports fast construction of concrete example PNTs for case studies. PNML export can
be used to analyse constructed example PNTs with other Petri net tools. In the context
of our research activities, PNTε

ooL serves as a scientific prototype for the development
of an open library openPNT of efficient algorithms for the construction, composition,
simulation and optimisation of PNTs which can be used in real world examples.

PNTε
ooL can be downloaded as a ZIP-archive from our website www.informatik.

uni-augsburg.de/EduCoSci/PNTooL. Assumed you have a working installa-
tion of Python, SNAKES, Graphviz, and dot2tex you only need to copy the py-files
into the plugins sub-directory of your SNAKES installation.

340 PNSE’14 – Petri Nets and Software Engineering

1 r

x:a/0.25

(a) A simple PNT N3.

t4

t1

pF

p4

pI

r, t3 x:x/0.125

t2

ε:y/0.25

p1

p3

p2

(b) Language composition N3 ◦ (N1 ‖ N2).

Figure 2. Some more PNTs.

References

1. R. Lorenz and M. Huber. Petri net transducers in semantic dialogue modelling. In M. Wolff,
editor, Proceedings of ”Elektronische Sprachsignalverarbeitung (ESSV)”, volume 64 of Stud-
ientexte zur Sprachkommunikation, pages 286 – 297, 2012.

2. R. Lorenz and M. Huber. Realizing the Translation of Utterances into Meanings by Petri Net
Transducers. In P. Wagner, editor, Proceedings of ”Elektronische Sprachsignalverarbeitung
(ESSV)”, volume 65 of Studientexte zur Sprachkommunikation, pages 103 – 110, 2013.

3. R. Lorenz, M. Huber, and G. Wirsching. On weighted Petri Net Transducers. In Proccedings
of ”35th International Conference on Application and Theory of Petri Nets and Concurrency”,
Lecture Notes in Computer Science. Springer, 2014.

4. F. Pommereau. The SNAKES toolkit. https://www.ibisc.univ-evry.fr/
~fpommereau/SNAKES/, 11 2013.

M. Huber and R. Lorenz: Constructing Petri Net Transducers with PNTε
ooL 341

342 PNSE’14 – Petri Nets and Software Engineering

SLAPN : A Tool for Slicing Algebraic Petri Nets

Yasir Imtiaz Khan and Nicolas Guelfi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,nicolas.guelfi}@uni.lu

Abstract. Algebraic Petri nets is a well suited formalism to represent
the behavior of concurrent and distributed systems by handling complex
data. For the analysis of systems modelled in Algebraic Petri nets, model
checking and testing are used commonly. Petri nets slicing is getting an
attention recently to improve the analysis of systems modelled in Petri
nets or Algebraic Petri nets. This work is oriented to define Algebraic
Petri nets slicing and implement it in a verification tool.

1 Introduction

Among several dedicated analysis techniques for Petri nets (PNs) and Algebraic
Petri nets (APNs) (i.e., an evolution to PNs), model checking and testing are
used more commonly. A typical drawback of model checking is its limits with
respect to the state space explosion problem. Similarly testing suffers with the
problems such as large input amount of test data, test case selection etc.

Petri nets slicing is a technique that aims to improve the verification of
systems modelled in Petri nets. PNs slicing is used to syntactically reduce Petri
net model based on the given criteria. A criteria is a property for which Petri net
model is analysed. The sliced part constitutes only that part of the PN model
that may affect the criteria. Roughly, we can divide PN Slicing into two major
classes, which are

Static Slicing: If the initial markings of places are not considered for gen-
erating sliced net.

Dynamic Slicing: If the initial markings of places are considered for gen-
erating sliced net.

One characteristic of APNs that makes them complex to slice is the use
of multisets of algebraic terms over the arcs. In principle, algebraic terms may
contain variables. Even though, we want to reach a syntactically reduced net (to
be semantically valid), its reduction by slicing, needs to determine the possible
ground substitutions of these algebraic terms. We use partial unfolding proposed
in [1] to determine ground substitutions of the algebraic terms over the arcs of
an APN. In the first column of Table1, our proposed APN slicing algorithms
are shown [2,3]. The second column represents properties that are preserved by
algorithm whereas in the last column slicing type is mentioned.

Table 1. Different APNs Slicing Algorithms

Algorithm Preserved Prop Type Slicing

Abstract Slicing CTL*−X Static

APN Slicing LTL−X Static

Liveness Slicing Livenss Static

Concerned Slicing Particular Dynamic

1.1 SLAPNN Overview

First of all, an APN is partially unfolded and from the temporal description
of properties places are extracted (shown in Fig.1). Different slicing algorithms
such as abstract slicing, concerned slicing, APN slicing, safety slicing, liveness
slicing can be used to generate the slice (can be observed in the meta model of
SLAPN (shown in Fig.2)). Following steps an APN slice can be generate by the
tool.

P
1 x

[1,2] t1

x

x

[1]

[] t2

x
P
2

P
3

[1,2]

t1
1

t1
3

t1
2

[]

t2
2

t2
3

t2
1

2 3

[1]

1

2

3

1

2

3

1

2

3

P
1

P
2

P
3

1

SLAP
N

[1,2]

t1
1

t1
3

t1
2

[1]

1

2

3

1

2

3
P
1

P
2

APN Model

Unfolded APN Model

Temporal Property

Sliced Unfolded APN ModelPartially unfold APN Extract Places

Criterion Place(s)

P2

AG(P2 != 0)

Fig. 1. SLAPN Overview

Step 0: Create an APN model and interesting property (i.e., writing a prop-
erty in the form of temporal formula).

Step 1: Choose a slicing algorithm.
Step 3: Sliced APN model is generated.

344 PNSE’14 – Petri Nets and Software Engineering

Fig. 2. SLAPN Meta Model

2 Conclusion and Future Work

– APN slicing can be used as a pre-processing step towards the verification
of systems modelled in APNs. The sliced APN model can then be used to
generate state space.

– Our work is the first effort to define and implement the proposed slicing
algorithms.

– As a future work, we consider to integrate SLAPN with the existing model
checkers such as AlPiNA [3].

– We intend to develop SLAPN as a generic tool over the PN classes such as
timed PN, colored PN.

References

1. D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: A symbolic model
checker. In J. Lilius and W. Penczek, editors, Applications and Theory of Petri
Nets, volume 6128 of Lecture Notes in Computer Science, pages 287–296. Springer
Berlin Heidelberg, 2010.

2. Y. I. Khan. Slicing high-level petri nets. Technical Report TR-LASSY-14-03, Uni-
versity of Luxembourg, 2014.

3. Y. I. Khan and M. Risoldi. Optimizing algebraic petri net model checking by slic-
ing. International Workshop on Modeling and Business Environments (ModBE’13,
associated with Petri Nets’13), 2013.

This work has been supported by the National Research Fund, Luxembourg,
Project RESIsTANT, ref.PHD-MARP-10.

Y. I. Khan and N. Guelfi: SLAPN : A Tool for Slicing Algebraic Petri Nets 345

346 PNSE’14 – Petri Nets and Software Engineering

Generating CA-Plans from Multisets of Services

Łukasz Mikulski1, Artur Niewiadomski2, Marcin Piątkowski1, Sebastian Smyczyński3

1 Nicolaus Copernicus University,
{lukasz.mikulski, marcin.piatkowski}@mat.umk.pl
2 Siedlce University, artur.niewiadomski@uph.edu.pl

3 Simplito Computer Science Lab, s.smyczynski@simplito.com

The main idea of solving WSCP utilised by Planics(see [3]) is to divide the
composition process into several stages. The first phase, called abstract planning,
deals with an ontology which contains a hierarchy of classes describing sets of
real-world services and processed object types. Our abstract planners find multi-
sets of service types that potentially satisfy a user query. Still, each equivalence
class defined by a multiset can be viewed as the union of finer equivalence classes
defined by partial orders, in which the plans differ only in the ordering of context
independent services. Finding all of such classes is the task of Multiset Explorer
- a module of Planics presented here.

abstract
planner

ontology
provider

concrete
planner

service registry

user interface:

ontology browser

service registration
 module

query creator

expression parser

plan viewer

plan executor

etc.

web services interfaces

proposals

service selection

abstract
plans

service registration

source
of semantics

execution of plans

a user query

ontology browsing

offer
collector

offer plansMultiset
Explorer

Context
Abstract
Plans

The realizations of web service composition is a transformation sequence of
services together with sets of affected objects (the arguments of those services).
In contrast to concrete plan, we abstract from objects attributes. We also ab-
stract from concrete object names (defining an equivalence relation ∼=). We treat
two sequences as indistinguishable if they differ only in types of arguments which
are in inheritance relation (we build a partial order 4 based on inheritance rela-
tion and utilize the filters over 4) or are equivalent in Mazurkiewicz sense (see
[2]), which we denote by ≡Maz. However, we distinguish between two sequences
that match produced objects with the expected ones (specified by user query)
differently.

The diagram presented below shows relationships between classes of trans-
formation sequences obtained by dividing the set of all potential ones that starts
with the set of initial objects specified in the user query. We denote this set by
~S. At the bottom of this diagram individual transformation sequences (~S/I), can
be seen. Looking at the top this diagram, we define three equivalence relations
based on Parikh equivalence of services utilized in the transformation sequence.
Namely, they are ≡sPar which looks only on names of services (as in abstract
plan), ≡Par which takes into account names of the attributes and lying in be-

tween ≡iPar which abstracts from the names and types of objects in favor of the
inheritance relation. In our solution we cut classes of ≡sPar into classes of ≡iPar

using the notion of relational structures (see [5]) and based on them equivalence
relation ≡topology.

~S/≡sPar

~S/topology
~S/≡iPar

Filters of
(
~S/≡iPar ,≺Par

)

Filters of
(
~S/(∼=◦≡Maz),4

)
~S/≡Par

~S/≡Maz

Filters of
(
~S/∼=,4

)

The main goal of the presented procedure is to browse all transformation
sequences satisfying a given user query with the same Parikh vector of service
specifications without duplicating indistinguishable ones. As an input we take
the ontology, the user query in the form of two sets of objects, and an arbitrary
multiset of service names that identifies single equivalence class ≡sPar. We start
from fixing the names of objects originating form the user query initial world
or produced by the considered services. After that, we distribute them between
inputs of the services to obtain all possible topologies and compute maximal (in
the sense of 4) possible types of utilized objects. In the next step, we match the
obtained possibilities with the user query expected world, considering all valid
matchings. The last step is browsing all traces (in Mazurkiewicz sense) based
on the multisets of context services from ~S/≡iPar

. This phase of the algorithm is
based on the approach presented in [4] adapted to the specification in the form
of a relational structure.

The preliminary experimental results are very promising. We used Z3 SMT-
solver together with Abstract Planner (AP). We browse all solutions equivalent
in the sense of ≡sPar with the one reported by AP. In the case of the shortest
plans we are able to validate their uniqueness significantly faster than the pro-
cedure of their generation. For longer plans, we are as fast as Z3+AP reporting
from 1.5 to 5 times more plans.

Acknowledgements This research was supported by the National Science Cen-
ter under the grants No.2011/01/B/ST6/01477 and No.2013/09/D/ST6/03928.

References
1. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. LNCS 4963:337-340, Springer, 2008.
2. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
3. D. Doliwa et al. PlanICS - a web service composition toolset. Fund. Inf., 112(1):47-71, 2011.
4. Ł. Mikulski et al. Algorithmics of posets generated by words over partially commutative alphabets

(extended). Scientific Annals of Comp. Sci., 23(2):229-249, 2013.
5. R. Janicki et al. Causal structures for general concurrent behaviours. In CS&P’13, pp. 193-205.

348 PNSE’14 – Petri Nets and Software Engineering

LoLA as Abstract Planning Engine of Planics?

Artur Niewiadomski1 and Karsten Wolf2

1 ICS, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
artur.niewiadomski@uph.edu.pl

2 ICS, University of Rostock, 18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. An abstract planning (AP) is the first phase of the web ser-
vice composition in the Planics framework. We propose an automatic
translation of AP to reachability problem in high-level Petri nets, and
exploiting the LoLA tool to solve it. We present our approach together
with a prototype implementation, and preliminary experimental results.

Keywords: Web Service Composition, Abstract Planning, Planics, LoLA

1 Introduction

Planics [1] is a system that solves the Web service composition problem by
dividing it into several stages. The first phase, called the abstract planning, deals
with an ontology which contains a hierarchy of classes describing sets of real-
world services and processed object types.

This paper reports the use of LoLA [3] tool as an abstract planning engine.
To this aim, we developed a translator which takes an ontology and a user
query as the input, and builds a high-level Petri net augmented with a state-
predicate formula P . The translation is performed in such a way that some
marking satisfying P is reachable only if the planning problem has a solution.
Moreover, the comparison of very first results with those obtained with SMT-
based abstract planner [2] shows that our new approach is very promising.

2 Translation

At this early stage of our work we assume that service descriptions do not contain
alternatives, and we do not take the type inheritance into account. According to
the restrictions above, the main ideas of our translation are as follows. The object
types of Planics become LoLA sorts, i.e., domains for tokens on places. These
sorts are records consisting of components corresponding to object attributes.
Moreover, for each object type we put a single place in a high-level output net,
? Partially supported by the European Union from resources of the European Social
Fund. Project PO KL “Information technologies: Research and their interdisciplinary
applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

Table 1. Experimental results

avg LoLA PlanICS
types attrs objs conds services length time[s] mem[MB] time[s] mem[MB]
78 58 3,14 1,58 6 0,05 6,71 3,88 12,17
92 62 3,98 2,06 64 12 0,07 7,26 155 34,76
106 74 3,88 2,17 15 0,08 7,59 593 63,19
137 136 3,53 1,77 6 0,33 30,32 16,57 16,67
143 113 3,28 1,55 128 12 0,06 9,92 242 44,16
142 112 3,34 1,71 15 0,06 9,85 1007 69,8
151 209 3,74 1,89 6 4,95 434 37,26 21,11
151 173 3,6 1,76 256 12 12,1 934 659 69,01
151 166 3,51 1,75 15 22,5 1639 1038 85,85
101 141 5,16 5,06 382 6643 13,18 17,12
121 145 6,92 10,4 5 - >7000 15,43 19,28
127 132 7 7,2 50 67,3 1045 12,63 17,97
127 181 6,1 4,62 10 - >7000 92,66 90,92
119 193 5,96 4,9 - >7000 155 230,7

and thus worlds (sets of objects in some states) are represented by markings.
The Planics services, which transform worlds by producing new objects and
changing states of existing ones, become transitions consuming and producing
tokens from/to world places w.r.t. service descriptions. Finally, the part of user
query specifying the initial worlds is translated to a set of (initially marked)
places and transitions which put appropriate tokens to world places. Similarly,
a set of special places and transitions, together with a state-predicate formula,
correspond to the query fragment concerning the goal of the plan. Moreover,
some reductions of an input ontology have been implemented. Their aim is to
remove all object types and attributes which are neither used by services, nor
query, what leads to a significant improvement of LoLA performance.

3 Experiments and Conclusion

In order to evaluate the efficiency of our approach, we generated a number of
parametrized random benchmarks using Planics Ontology Generator. Then, we
tried to solve them exploiting a prototype Planics2LoLA implementation and
LoLA tool, as well as an SMT-based planner. The obtained results are summa-
rized in Table 1. We marked in bold the better ones. The overall conclusion is
that due to ontology reductions applied during the translation, LoLA in many
cases outperforms the SMT-based abstract planner.

References

1. D. Doliwa et al. PlanICS - a Web Service Compositon Toolset. Fundam. Inform.,
112(1):47–71, 2011.

2. A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In Proc. of KEOD 2013, pages 123–131, 2013.

3. K. Schmidt. LoLA: A Low Level Analyser. In Application and Theory of Petri Nets
2000, volume 1825 of LNCS, pages 465–474. Springer Berlin Heidelberg, 2000.

350 PNSE’14 – Petri Nets and Software Engineering

Planics 2.0 - A Tool for Composing Services?

Artur Niewiadomski1 and Wojciech Penczek1,2

1 ICS, UPH, Siedlce, Poland, artur.niewiadomski@uph.edu.pl
2 ICS PAS, Warsaw, Poland, wpenczek@gmail.com

Abstract. This poster reports on the current state of the Planics toolset,
which aims at solving the Web service composition problem by dividing
it into several stages. These include an abstract planning, an offer col-
lecting, and a concrete planning.

Keywords: Web Service Composition, multi-phase Planning, SMT, GA

1 Introduction

A Web Service Composition is a hot topic of many theoretical and practical
approaches. It is so deeply investigated since typically a simple Web service does
not need to satisfy a user objective. Moreover, due to a support of automatic tools
the user is exempted from a manual preparation of execution plans, matching
services to each other, and choosing optimal providers for all components. In this
poster, we report on the current state of the Web service composition system
Planics [1]. We describe the general idea behind the system and its modules as
well as the work in progress together with some future work directions.

2 Planics

Planics makes use of a uniform semantic description of services and service
types as a part of the ontology, which contains also the objects processed by the
services. The user query is expressed in a fully declarative language defined over
terms from the ontology. The user describes two object sets, called the initial and
the expected world. The task of Planics consists in finding a way of transforming
the initial world into a superset of the expected one using service types available
in the ontology and matching them later with real-world services.

The general system architecture is shown in Figure 1. Planics divides the
composition process into several stages. The first phase, called the abstract plan-
ning, deals only with the service types of the ontology. So far, we have imple-
mented two abstract planners: the SMT-based one [3] and the other based on
Genetic Algorithms (GA) [8]. Currently, we investigate hybrid algorithms com-
bining SMT with GA, and we work on a translation of the abstract planning
to a task for tools dealing with Petri nets, like LoLA [7]. Moreover, we work

? This work has been supported by the National Science Centre under the grant No.
2011/01/B/ST6/01477.

on extending abstract planning to its temporal [4] and parametric version. The
abstract planners find multisets of service types that potentially satisfy a user
query. Still, such a multiset can be viewed as the union of finer equivalence classes
defined by partial orders that are identified by the Multiset Explorer module [2].

abstract
planner

ontology
provider

concrete
planner

service registry

user interface:

ontology browser

service registration
 module

query creator

expression parser

plan viewer

plan executor

etc.

web services interfaces

proposals

service selection

abstract
plans

service registration

source
of semantics

execution of plans

a user query

ontology browsing

offer
collector

offer plansMultiset
Explorer

Context
Abstract
Plans

Fig. 1. Planics architecture overview.

The second planning stage is performed by the Offer Collector (OC) module,
which, in cooperation with service registry, communicates with Web services
collecting data to replace the abstract attribute values computed in the first
planning phase. Moreover, OC is also to build a set of constraints over offers
corresponding to the dependencies from the abstract plan, and resulting from
the user query. Then, concrete planners (CPs) get into action. Their task is to
prepare a concrete plan by choosing one offer from each set in such a way that all
the constraints are satisfied, and the quality function (a part of the user query)
is maximized. We provide implementations of CPs based on SMT and GA [5],
as well as the hybrid one [6] combining the power of both the methods.

References

1. D. Doliwa et al. PlanICS - a Web Service Compositon Toolset. Fundam. Inform.,
112(1):47–71, 2011.

2. L. Mikulski et al. Generating CA-Plans from Multisets of Services. In PNSE, this
volume, 2014.

3. A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In KEOD, pages 123–131, 2013.

4. A. Niewiadomski and W. Penczek. SMT-based Abstract Temporal Planning. In
PNSE, this volume, 2014.

5. A. Niewiadomski, W. Penczek, and J. Skaruz. SMT vs Genetic Algorithms: Concrete
Planning in PlanICS Framework. In CS&P, pages 309–321, 2013.

6. A. Niewiadomski, W. Penczek, and J. Skaruz. Genetic Algorithm to the Power
of SMT: a Hybrid Approach to Web Service Composition Problem. In Service
Computation, pages 44–48, 2014.

7. A. Niewiadomski and K. Wolf. LoLA as Abstract Planning Engine of PlanICS. In
PNSE, this volume, 2014.

8. J. Skaruz, A. Niewiadomski, and W. Penczek. Evolutionary Algorithms for Abstract
Planning. In PPAM (1), volume 8384 of LNCS, pages 392–401. Springer, 2013.

352 PNSE’14 – Petri Nets and Software Engineering

Petri Net Simulation as a Service

Petr Polasek, Vladimir Janousek, and Milan Ceska

Faculty of Information Technology, BUT,
IT4Innovations Centre of Excellence,

Bozetechova 1/2, 612 66 Brno, Czech Republic
{polasek,janousek}@fit.vutbr.cz

http://www.fit.vutbr.cz

Abstract. This paper presents an approach to integrating a Petri net
simulator into a service-oriented simulation architecture in order to pro-
vide on demand simulation as a service. As a concrete example the sim-
ulation tool Renew is wrapped as a service and used to simulate a sample
traffic control system represented as a Petri net model that is able to ad-
just its parameters via reflective simulation in a distributed simulation
environment. The simulation architecture where modeling and simulation
is treated as a service (MSaaS) is presented. The main components, their
roles and attributes are briefly discussed.

Keywords: simulation as a service, Petri nets, integration of tools,
simulation architecture, web services, system design, simulation model,
model specification, reflective simulation

1 Introduction, motivation and context

Modeling and Simulation (M&S) plays an unsubstitutable role in successful de-
sign of systems. A need for timely, cost-effective and resource-effective devel-
opment requires to have a model of a system that can be analyzed, simulated,
verified and even validated. As one may expect, modeling and simulation of
complex and heterogeneous systems requires the application of more than one
approach. Although developers have dozens of tools available that support var-
ious formalisms and allow them to use different M&S practices and methodolo-
gies, their integration into a simulation environment is rather a challenging task.
Proper interaction and communication is a non-trivial task. Enabling access to
functionality of an integrated application to a group of people is a challenge. The
requirement for scalability and on demand computational power in simulation
environment may represent another complication.

As a small and motivated team with limited resources, we have relied on
properly chosen software for modeling and simulation tasks and inclined to in-
tegrate existing software and used a set of tools as a whole to achieve our goals.
This was always rather a challenging task as the integration of different modeling
and simulation tools was impossible without additional work. Our efforts devoted
to standardize communication processes, simplifying the integration, deployment

and additional requirements like remote simulation and model manipulation lead
to the creation of a service oriented architecture where modeling and simulation
is treated as a service (MSaaS). The goal was to have extensible architecture that
allows integration of various modeling and simulation tools with different levels
of functionality that can be used as a multiparadigm platform for modeling and
simulation.

In this paper, we present the architecture and show how the Petri net simu-
lation tool Renew [2], [3] can be integrated as a modeling and simulation service
and used to simulate a sample traffic control system represented by a Petri net
model that is able to adjust its parameters via reflective simulation in a dis-
tributed simulation environment.

2 Service Oriented Architecture for Modeling and
Simulation

Service Oriented Architecture (SOA) as a software architecture with loosely
coupled services is not tied to specific technology and independent services can
be accessed without knowledge of their underlying implementation. It can be
applied in many different scenarios including web-based services running on dif-
ferent network nodes (servers) or in more challenging cloud environment. The
comparison with existing architectures is in [4]. We employ the service-oriented
approach mainly to:

1. Enable integration of existing software to supplement our tools that support
dynamic and interactive development of systems with unclear specification.

2. Allow reusability of existing tools/applications/services so that they can be
widely used.

3. Enable remote simulation and model management.
4. Simplify the installation, deployment and administration of services
5. Allow better scalability and on demand computing power in a distributed

simulation environment

2.1 Architecture Details

The simulation architecture is based on web services. Web services stand for
discrete web-based applications that provide a software function over a network.
Web service has an interface described in Web Service Description Language
(WSDL) and interacts with other systems in a manner prescribed by its descrip-
tion using a Simple Object Access Protocol (SOAP) that defines a messaging
framework.

The advantages of web services allowed us to create a simulation framework
with well-defined API that can be used by developers. On one side, there is a set
of possibly interconnected services and on the other side, there is a client using
this interface to perform various tasks, all depending on abilities of the service.

354 PNSE’14 – Petri Nets and Software Engineering

Fig. 1. Service oriented architecture

The architecture is shown in Fig. 1 and its main components are: simulator
as a service (SaaS), service broker (SB), other services and client.

Simulation service allows clients to deploy and simulate models and can be
used to inspect running simulations. Every service has a defined interface and
allows the client to perform a set of operations. A service doesn’t need to support
every possible operation and may publish just a few of them - in practice there
are a variety of services with different features and clients can choose the proper
one that fits their needs. Operation categories are shown in Table 1.

Services are registered in and located by Service broker that acts as UDDI
registry (Universal Description, Discovery and Integration). It is designed to
be interrogated by SOAP messages and to provide access to WSDL documents
describing the protocol bindings and message formats required to interact with
services listed in its directory. Service broker is used by clients also for a service
recommendation and may have implemented a set of rules to decide what service
to retrieve. A simple recommendation mechanism may be based on model format
or preferred formalisms. Non-simulation services are also registered via Service
broker and a client may get its description documents and start using them.

Client is a service consumer. It can use Service broker’s registry to locate
requested or recommended service and then it communicates directly with sim-
ulation or other services. The communication between the client and a service is
done via SOAP and it may be a simple request to start a simulation of a specific
model: if the model is accepted and the simulation is started, the simulation
service responds with the simulation identifier for further reference. Additional
configuration parameters may be provided by the client in the request and the
model payload can be sent either directly in the XML document, via SOAP

P. Polasek et al.: Petri Net Simulation as a Service 355

attachments or using SOAP Message Transmission Optimization Mechanism
(MTOM) [9].

Table 1. Service operations

Operation category Description/Purpose

Administration and configuration Simulation control
Simulator/Service configuration

Inspection and monitoring Model inspection
Simulation inspection
Gathering log information
Simulator or service monitoring
Event Notifications

Model/Simulation Manipulation Model design
Editing actions over models
Actions over simulation objects

Storage access Model repository
Simulation repository

Other services provide non-simulation but not less important functions. One
of them is the log presentation service that can be used to convert raw outputs
from simulators to more comprehensive and human readable graphical reports.
Our implementation of a log presentation service exists in a Squeak environment
[20] empowered with the SoapOpera and was integrated into the simulation
environment as a web service. Model transformation service is another useful
service for developers that is designed to translate models between different
formalisms so that a developer can use one formalism for the design and another
for the simulation. We have experimented with simple Petri net models that
were translated to models in classic DEVS formalism (Discrete Event Systems
Formalism) [1] according to the approach presented in [11]. Model library service
provides very basic functionality. It is a common place where models together
with other related documents can be stored as project resources and shared with
other clients. It may also offer more sophisticated access control.

2.2 Integration of Existing Tools

To integrate and deploy existing applications or tools and to transform them
into simulation services, we use Apache Axis2 [12] as a core engine for web ser-
vices. It is a re-designed and re-written successor to the widely used Apache Axis
[13] SOAP stack with implementations available in Java and C languages. Axis2
provides us with a capability to add a web service interface to the existing appli-
cation and can function as a standalone server where a service can be deployed
without restart. It supports WSDL 2.0 and SOAP 1.2 which allows us to easily
build stubs to access remote services.

356 PNSE’14 – Petri Nets and Software Engineering

Renew as a Service Petri net simulation tool Renew is a Java-based multi-
formalism editor and simulator that provides a flexible modeling approach based
on reference nets [15]. We have extended the Renew tool so that it can be de-
ployed in Axis2 server and may act as a service that clients can use for simulation
purposes - moreover, the client can be another Renew service and this will allow
us to execute nested simulations remotely in the case study below.

To develop a web service, we use a bottom-up approach, where implementation
of a service has to be coded first. A service operation logic is in Java classes where
methods have simple contracts that allow a caller to start or stop simulations, to
configure the service, to get logs, etc. This implementation requires the Renew
application to be installed on a target system, where it is executed as an external
program. Service classes are used to create a deployable service artifact - it is a
single archive file and we deploy it in the Axis2 server where it is immediately
accessible without reload. We use scripts that automate the service deployment
and the installation of the Renew application. Java libraries that may be needed
for a model execution can be either pre-installed together with Renew or can be
provided by the service later as well.

To be able to invoke service methods over a network, a client that understands
the service API has to be implemented. For this purpose, we can use a service
description file, i.e. a WSDL file that Axis2 server generates on demand for every
deployed service. Then Apache Axis2 tools can be used to create stub classes
that may be called from another Java program to invoke the remote Renew
service.

Although Renew already supports remote simulation with RMI (Remote
Method Invocation), we use SOAP as a messaging framework for communication
between services. SOAP has significant advantages over RMI. It uses XML, it
is language independent and allows platform independent services whereas RMI
is Java-centric. SOAP as a more robust technology allows functionality to be
accessible to a variety of clients and it allows a loosely coupled architecture. Al-
though RMI has smaller latency, it is more suited to smaller applications where
objects must stay in sync in all applications.

2.3 Simulation as a Service in Cloud Environment

The deployment of simulation services in cloud environments boosts efficiency,
allows scalability, simplifies deployment and administration tasks and allows bet-
ter control over the simulation environment. Especially in cases when the tool
integration, installation and service configuration is rather a complicated task, it
is worth having a virtual machine with a service or a set of services preinstalled
and available in the cloud environment. By maintaining a preconfigured image
you can avoid complicated service setup. An easy deployment of virtual ma-
chines from captured image with pre-configured services increases architecture
scalability for demanding scenarios in multi-simulation environments. We have
used Windows Azure [14] to successfully deploy and manage simulator services
in the cloud environment.

P. Polasek et al.: Petri Net Simulation as a Service 357

3 Case study

To demonstrate a Petri Net simulator as a service, we have created a sample
model of a traffic control system that controls lights on a simple crossroad. The
model is able to adjust its configuration via reflective simulation. Renew was
effectively used with all its advantages to design and build the model and when
the tool was deployed as a service, it could operate as a remote simulator and as
a client at the same time allowing nested simulations to be executed remotely.

Fig. 2. Concept of reflective simulation with main components

3.1 Reflective simulation

The main concept of reflective simulation is depicted in Fig. 2 and Fig. 3. In Fig.
2 we can see a traffic model with its control system and the way they influence
each other. The control system reacts to changes in the traffic (e.g. increased
volume of vehicles) which may trigger a change of traffic control system settings
(e.g. signal timing plans) and this further influences the traffic (e.g. improves
throughput) which may again require a change to control system settings and so
on. In this scenario an undesired oscillation may happen - imagine a situation
when increasing the green interval in one direction may cause excessive queuing
of vehicles waiting in the other direction. In this case, it would be better if
the control system could anticipate the effect of the change, infer on its own
future behavior and adjust the signal timing appropriately. The control system
is able to trigger nested simulations, to simulate its own behavior and to perform
decisions based on collected results. We call this a reflective simulation. You can
compare it with the approach to nested simulations presented in [17] or [18].

3.2 Model

The model comprises of three main components, each of them being a Petri net:
the traffic model, the traffic control system and the simulation control model. The

358 PNSE’14 – Petri Nets and Software Engineering

Fig. 3. Simulation control model and its role in reflective simulation

crossroad and its traffic control model were inspired by the example presented in
[16] and further modified to our purpose. Other components - the odel of traffic
and the simulation control model (in Fig. 4) were created from scratch.

Traffic Model The traffic flow at the crossroad is divided into three phases
with blocking and non-blocking directions. In the traffic model net, tokens rep-
resent vehicles that travel through the intersection. Each lane and each direction
has assigned a time it takes every vehicle to travel through the crossroad. The
model contains a statistics part that is dedicated to gathering statistics about the
traffic. This comprises the number of vehicles waiting to cross the intersection
in each lane and the number of vehicles that successfully travelled through the
crossroad in each phase. A Synchronous channel concept (uplinks and downlinks)
is used to trigger statistics gathering and to deliver results to the simulation con-
trol model. The traffic model net has a part that allows its initialization when
running in a nested simulation - e.g. it sets a number of waiting vehicles before
the simulation starts.

Traffic Control System The Petri net representing the traffic control sys-
tem is presented in [16]. It reflects three phases of a crossroad, each with sig-
nal lights for pedestrians and vehicles. In every phase, only vehicles from the
corresponding phase in the traffic model net are allowed to move through the
intersection. The actual behavior of the traffic control system is determined by
its main parameters that contain time values for signal timing plans. In com-
parison with [16] the control system net was enhanced to allow changes to its
configuration (signal timing plans) and to communicate the active phase to the
traffic model net.

Simulation Control The Petri net in Fig. 4 controls the simulation and
acts as a controller as shown in Fig. 3. It configures the traffic control system

P. Polasek et al.: Petri Net Simulation as a Service 359

according to collected data from the traffic model and based on results from
nested simulations. More specifically, it:

1. Initializes traffic model and traffic control system nets
2. Starts the simulation
3. Gathers and analyzes data from the traffic model
4. Communicates with other simulation services
5. Triggers nested simulations of its own model with different configurations
6. Collects and interprets logs from nested simulations
7. Changes traffic control system settings according to results from nested sim-

ulations

Fig. 4. Simulation control

360 PNSE’14 – Petri Nets and Software Engineering

As reference nets work seamlessly with Java programs, part of the model is
implemented in Java language and it is called via action inscriptions or method
invocations. This enables access to remote services directly from the Petri net
model. For this purpose two Java classes are imported in the bottom right corner
in Fig. 4. The Util class is used to analyze traffic data and to spawn nested
simulations. Under the hood, a small framework with a set of Java libraries is
used for communication with remote simulators. The Simcontrol is a stub class
that wraps the simulation control net. It forwards its method calls to synchronous
channels of the wrapped net instance and enables them to be used from Java.

The simulation control net instantiates the traffic net and the traffic control
system net and keeps their references, named as traffic and control.

After the initial configuration the system starts to control the traffic. Ac-
cording to statistics gathered from the traffic model (traffic: gatherStatistics())
that are evaluated (modify=Util.evaluateStatistics()), the system may decide to
reconfigure signal timing plans in traffic control net to increase the through-
put. Then a set of configuration candidates is suggested and a nested simula-
tion is executed for each of them to see if it brings some improvement (action
Util.runSimulations()). The master simulation control model acts as a client.
Each simulation is controlled by a single Java thread that communicates with
either a local or a remote simulation service(s). Although we can configure the
level of nesting and a model in a nested simulation may further trigger other
nested simulations of itself, our tests show that there is no significant benefit,
especially when compared to increased demand for resources.

After some time, remote simulations are stopped and logs are acquired and
interpreted. The simulation that improved the throughput more than others is
chosen as the best candidate and its configuration is applied to the traffic control
system when possible. A brute force computing is used to achieve continuous
improvement and more than one round of nested simulations may be executed.
However, the model quickly converge to the optimal configuration, especially
when changes in the traffic flow are less extreme.

A model containing all three nets (simulation control net, traffic control sys-
tem net and traffic model net) is sent to the simulator service along with all
necessary libraries, configuration and startup parameters. As we use Renew’s
non-graphical simulator for nested simulations, the model must be sent as a sin-
gle merged file in shadow net format. As a result the transmitted model contains
only the semantic information and not the visual appearance and it can be used
only by a non-graphical simulator. To preserve the graphical information the
PNML (Petri Net Markup Language) may be used instead when transferring
the model.

Acknowledgement. The work was supported by the EU/Czech IT4Innovations
Centre of Excellence project CZ.1.05/1.1.00/02.0070 as well as the internal BUT
projects FIT-S-12-1 and FIT-S-14-2486.

P. Polasek et al.: Petri Net Simulation as a Service 361

References

1. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation, Second
Edition. Academic Press (2000)

2. Renew - The Reference Net Workshop, http://www.renew.de
3. Kummer, O., Wienberg, F., Duvigneau, M., Kohler, M., Moldt, D., Rolke, H.: Renew

- the Reference Net Workshop. In: Tool Demonstrations, pp. 99–102. 24th Interna-
tional Conference on Application and Theory of Petri Nets 2003. Department of
Technology Management, Technische Universiteit Eindhoven, Beta Research School
for Operations Management and Logistics (2003)

4. Janousek, V., Polasek, P.: Modeling and Simulation Management in Distibuted
Environment Using Web Services, In: WOSC 2008 - 14TH International Congress
of Cybernetics and Systems. Wroclaw (2008)

5. Johns, K., Taylor, T.: Professional Microsoft Robotics Developer Studio, Paperback,
Wiley (2008)

6. Coen-Porsini, A., Gallo, I., Zanzi, A.: Integration of web based simulators in the
SINPL platform. In: Proceedings of ESM 2006. Ghent, BE, pp. 259–263 (2006)

7. Dahmann, J.S., Fujimoto, R.M., Weatherly R.M.: The Department of Defense High
Level Architecture. In: Proceedings of the 1997Winter Simulation Konference (1997)

8. Multi-Simulation Interface (MSI) Brochure, http://msi.sourceforge.net
9. W3C - SOAP Message Transmission Optimization Mechanism http://www.w3.org/

TR/2005/REC-soap12-mtom-20050125
10. SmallDEVS, www.fit.vutbr.cz/~janousek/smalldevs
11. Jacques, C.J.D., Wainer, G.A.: Using the CD++ DEVS Tookit to Develop Petri

Nets. In: Proc. of the 2002 Summer Computer Simulation Conference, San Diego,
CA, USA (2002)

12. Apache Axis2 - Apache Axis2/Java - Next Generation Web Services http://axis.
apache.org/axis2/java/core

13. Web Services - Axis http://axis.apache.org/axis
14. Windows Azure cloud platform http://www.windowsazure.com
15. Cabac, L., Duvigneau, M., Moldt, D., Rölke H.: Modeling dynamic architectures

using nets-within-nets. In: Proceedings, volume 3536 of Lecture Notes in Computer
Science, pp. 148–167. 26th International Conference, Applications and Theory of
Petri Nets 2005, Miami, USA (2005)

16. Turek, R.: Modelovani vybranych dopravnich problemu s vyuzitim Petriho siti
(in Czech) [Modeling of Chosen Traffic Problems with Petri Nets]. In: Posterus.sk,
Portal pre odborne publikovanie [Portal for Scientific Publications], vol. 3, nr. 12
(2010)

17. Sklenar, J. - Introduction to OOP in Simula (Nested Simulation) http://staff.
um.edu.mt/jskl1/talk.html

18. Kindler, E. - Reflective Simulation - Simulation of Systems That Simulate. In:
Proc. of ESM - European Simulation and Modeling, Porto, Portugal (2005)

19. Chandrasekaran, S., Cardoso, J., Silver, G., Miller, A.J., Sheth, A.P.: Web service
technologies and their synergy with simulation. In: Proceedings of the 2002 Winter
Simulation Conference, pp. 606–615. San Diego, California (2002)

20. Squeak http://www.squeak.org

362 PNSE’14 – Petri Nets and Software Engineering

	Frontmatter
	Title
	Publication/Copyright
	Preface
	PNSE'14 Contents

	Part I PNSE'14: Invited Talk
	An Approach for the Engineering of Protocol Software from Coloured Petri Net Models: A Case Study of the IETF WebSocket Protocol
	Lars Michael Kristensen

	Part II PNSE'14: Long Presentations
	Verification of Logs - Revealing Faulty Processes of a Medical Laboratory
	Robin Bergenthum and Joachim Schick
	On-The-Fly Model Checking of Times Properties on Time Petri Nets
	Kais Klai
	SMT-based Abstract Temporal Planning
	Artur Niewiadomski and Wojciech Penczek
	Kleene Theorems for Labelled Free Choice Nets
	Ramchandra Phawade and Kamal Lodaya
	Using Symbolic Techniques and Algebraic Petri Nets to Model Check Security Protocols for Ad-Hoc Networks
	Mihai Lica Pura and Didier Buchs

	Part III PNSE'14: Short Presentations
	Morphisms on Marked Graphs
	Luca Bernardinello, Lucia Pomello and Stefano Scaccabarozzi
	A Petri Net Approach for Reusing and Adapting Components with Atomic and non-atomic Synchronisation
	Djaouida Dahmani, Mohand Cherif Boukala and Hassan Mountassir
	Observable Liveness
	Jörg Desel and Görkem Kılınç
	Real-Time Property Specific Reduction for Time Petri Net
	Ning Ge and Marc Pantel
	Visual Language Plans - Formalization of a Pedagogical Learnflow Modeling Language
	Kerstin Irgang and Thomas Irgang
	Slicing High-level Petri Nets
	Yasir Imtiaz Khan and Nicolas Guelfi
	Performance Analysis of M/G/1 Retrial Queue with Finite Source Population Using Markov Regenerative Stochastic Petri Nets
	Ikhlef Lyes, Lekadir Ouiza and Djamil Aïssani
	Petri Nets Based Approach for Modular Verification of SysML Requirements on Activity Diagrams
	Messaoud Rahim, Malika Boukala-Ioualalen and Ahmed Hammad
	Compatibility Analysis of Time Open Workflow Nets
	Zohra Sbaï, Kamel Barkaoui and Hanifa Boucheneb
	Petra: A Tool for Analysing a Process Family
	Dennis Schunselaar, Eric Verbeek, Wil van der Aalst andHajo A. Reijers
	An Evaluation of Automated Code Generation with the PetriCode Approach
	Kent Inge Fagerland Simonsen
	Computing Minimal Siphons in Petri Net Models of Resource Allocation Systems: An Evolutionary Approach
	Fernando Tricas, José Manuel Colom and Juan Julián Merelo

	Part IV PNSE'14: Short Papers
	Persistency and Nonviolence Decision Problems in P/T-Nets with Step Semantics
	Kamila Barylska

	Part V PNSE'14: Poster Abstracts
	Construction of Data Streams Applications from Functional, Non-Functional and Resource Requirements for Electric Vehicle Aggregators. The COSMOS Vision
	José Ángel Bañares, Rafael Tolosana-Calasanz, Fernando Tricas, Unai Arronategui, Javier Celaya and José Manuel Colom
	Modular Modeling of SMIL Documents with Complex Termination Events
	Djaouida Dahmani, Samia Mazouz and Malika Boukala
	D&A4WSC as a Design and Analysis Framework of Web Services Composition
	Rawand Guerfel and Zohra Sbaï
	Constructing Petri Net Transducers with PNTooL
	Markus Huber and Robert Lorenz
	SLAPN: A Tool for Slicing Algebraic Petri Nets
	Yasir Imtiaz Khan and Nicolas Guelfi
	Generating CA-Plans from Multisets of Services
	Łukasz Mikulski, Artur Niewiadomski, Marcin Piatkowski and Sebastian Smyczynski
	LoLA as Abstract Planning Engine of PlanICS
	Artur Niewiadomski and Karsten Wolf
	PlanICS 2.0 - A Tool for Composing Services
	Artur Niewiadomski and Wojciech Penczek
	Petri Net Simulation as a Service
	Petr Polasek, Vladimir Janousek and Milan Ceska

