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Abstract. Reconfigurable systems (RSs) are systems were the struc-
ture can be changed during the execution of the system. Reconfigurable
manufacturing systems (RMSs) represent one of the most prominent suc-
cesses in the RSs technology. Reconfiguration in RMSs can be motivated
by many reasons: a new requirement in the production process, to avoid
some problems caused by machines breakdowns, etc. RMSs offer flexibil-
ity, productivity and efficiency in plants and production lines. Though,
the design, realisation and verification of RMSs seem to be hard tasks
and imply innovative approaches. High level Petri Nets supply the ability
to design these systems and to analyse their properties. In this paper,
we apply Reconfigurable Object Nets (RONs) for the modelling, simu-
lation and analysis of reconfigurable manufacturing systems. We present
an experience where the reconfiguration process, in RMSs, is specified
explicitly as a “Place/transition nets transformation”, the simulation is
realised using the RON-editor tool, and the analysis exploits the TINA-
tool (TImed Nets Analyser tool).

1 Introduction

Manufacturing Systems (MSs) [1] are widely used in industry. They are charac-
terised by their hybrid aspect and their complexity. A manufacturing system is,
usually, composed of a set of components: machines, robots, conveyors, buffers,
and eventually humans. These components co-exist and interact to produce some
products. Interactions, between these components, are done explicitly through
exchanged messages or implicitly through travelling products during the manu-
facturing process. The success of a manufacturing system is based on the qual-
ity of each component and on the quality of the interactions. Reconfigurable
manufacturing systems (RMSs) [2, 3] are MSs where the components and their
interaction can change over time. Thus, the structure of the system is no more
static but its structure is dynamic. This reconfigurability makes the system more



flexible, allows its adaptation for new events, and so that enhances its productiv-
ity. In a reconfigurable manufacturing system, the flow changes dynamically and
the components are self-reconfigured to answer new requirements or to handle
damages. According to [4], the RMSs guarantee three abilities in the production
systems: capacity ability, functionality ability, and cost ability. Capacity ability
allows the system to adapt the production’s quantity to the dynamic requirement
of the market. Functionality ability allows the system to change their function-
ality and so the quality of the product. Cost ability allows RMSs to reduce the
cost of the production and the cost of the reconfiguration process.

Although the advantages of reconfigurability in RMSs, it makes the RMSs
more complex, and their development becomes a hard task. Reconfigurability im-
poses new challenges to the developers, where new kinds of errors and anomalies
will probably appear. One of the most critical questions, when designing a Recon-
figurable Manufacturing System, is about the properties of the system after each
reconfiguration process. When the system is reconfigured, the new configuration
must still satisfying the well properties satisfied in the former configuration but
bad properties must be avoided. In order to guarantee such constraints, sophis-
ticated verification processes are required. Verification of RMSs can be done
using classical techniques, used for classical manufacturing systems as Petri Net
(PN) [5]. This formalism attracted, early, researchers in manufacturing systems
domain [6-9]. However, with its classical definition as a non dynamic formalism
(characterised by its rigid structure); this classical formalism is not suitable to
catch some important aspects in RMSs as reconfiguration ability. To enhance
Petri nets formalism, new extensions were proposed to deal with reconfiguration
process and for the study of dynamic systems [10-14].

The global objective, of our work, is to build a formal approach that can
be used to specify, simulate, and analyse reconfigurable manufacturing systems.
The approach uses the Reconfigurable Object Nets (RONs) formalisms [15] as a
formal model, exploits the RON-tool [16] to simulate interactively the system,
and uses the TINA-tool (TIme Petri Net Analyzer) [17] to verify the reached
configurations. The RONs are high level Petri Nets, where the tokens can be also
nets (called token-nets). The token-nets can change their structure due to recon-
figuration rules (modelled also as other tokens called “token-rules” in the RON).
The RONs formalism has two advantages; firstly it finds its mathematical back-
ground in a well-founded theory (graph transformation theory [18]), secondly
it has been implemented in many automatic tools which allow the simulation
and the verification of the system (RON-tool [16], ReConnect [30]). The current
paper presents an experimentation on a case-study inspired from [19].

This paper is organised as follows: section 2 will present related work. Sec-
tion 3 will detail the Reconfigurable Object Nets formalism and its mathemat-
ical background in graph transformation techniques. Section 4 will present the
approach proposed to specify RMSs using RONs, and then demonstrates this
approach on a case study. Section 5 will treat the simulation and the verification
processes, using automatic tools (RON-tool and TINA-tool). Finally, Section 6
will conclude this paper.



2 Related Work

Several works have used PNs and their extensions in the design and verification
of RMSs (Reconfigurable Manufacturing Systems). In this section, we examine
some recent works which are close to our work. We classify these works into two
principal classes: works where PNs (Petri Nets), without dynamic structure, are
applied to RMSs ([19-22, 37]), and works which have exploited High level Petri
nets (with dynamic structure) for RMSs ([11, 18, 23-25, 28-30, 33- 36]).

The first class of works finds its motivation in the maturity and stability of the
used formalisms: p-time PNs in [20], Coloured PNs in [21], and Coloured Timed
Object Nets in [19]. In this category of extensions, some researchers treated the
reconfiguration in a modular way to facilitate the building of new models af-
ter reconfiguration. They enrich PNs with oriented object concepts (derivation,
inheritance) or the modularity concept to overcome the reconfigurability com-
plexity. Authors of [19] used coloured timed oriented object nets (CTOONs) to
facilitate reconfiguration of the PNs models. In CTOONs, the Petri nets models
are seen as objects in classes, and where new objects can be derived from other
objects. The authors of [19] consider the reconfiguration process in RMSs as a
derivation activity in the CTOONs model. In [22], the authors proposed ITPNs
(Intelligent Token Petri Nets). In the ITPNs formalism, tokens are enriched with
time and knowledge. Transitions in an ITPNs model can be disabled when a to-
ken is consumed in the model. The knowledge enclosed in a consumed token
decides which transitions must be disabled. A synthesis process is proposed to
construct new nets from other nets. This process facilitates the definition of new
models from existing ones. However, no mechanism is included in the ITPNs
to realise this reconfiguration. Thus, the dynamic of the structure is not im-
plemented in the net itself. In [37], the authors used coloured timed Petri nets
in the modelling of RMSs. In this work, the authors introduced a mechanism
to define reconfigurability in the CTPN formalism, yielding to a new formalism
supporting reconfiguration. This mechanism involves reconfigurable transitions,
inhibitor arcs, and specific places (machines class). However, the reconfigurable
mechanism is not the same used in our proposal. We believe that the reconfig-
uration in RONs is more intuitive and makes the model more expressive and
more suitable for the RMSs. The power of these models [19-22, 37] resides in
the existence of well-founded analysis techniques, where many properties are
decidable. Many automatic tools are proposed to model, simulate and analyse
systems using these formalisms. The major lack in these approaches is the ab-
sence of the ability to represent explicitly and intuitively reconfiguration of the
system. In our work, we are interested to use formalisms where the reconfigura-
tion of the system can be modelled, explicitly, through the dynamic structure of
the formalism. Thus, our work can be inscribed in the second category of works.

In the second class of works, the used “Petri Net formalism” is enriched by
a mechanism to reconfigure itself, when necessary. Thus, the PNs model is more
intuitive and more natural to support the modelling of Reconfigurable Manu-
facturing Systems (RMSs). In this class of works, we find several variants of
extensions proposed for PN’s. Each variant proposes a specific mechanism to



provide the reconfiguration of the PN’s structure. The most popular variants
find their origins in Valk’s works [28, 29] where a notion of ”object token” is
introduced. However this ”object token”, proposed by Valk, has not the abil-
ity to change its structure. The proposed extensions, for Valk’s proposal, have
tried to introduce reconfigurability in the structure of the object nets through
two basic mechanisms: graph transformation (yielding to: Reconfigurable Petri
Nets [26], RONs (Reconfigurable Object Nets) [15], Reconfigurable Petri Nets
[25]), or rewriting rules (yielding to: Badouel’s reconfigurable Petri nets [11],
Improved Net Rewriting Systems (INRSs) in [23], Hybrid Reconfigurable Petri
Nets (HRPNs) [24]). This reconfiguration expands the application of Petri Nets
to several systems where the structure is dynamic. In the following paragraphs,
we will highlight some works that we consider similar to our work in their ob-
jectives or in their applied techniques.

We consider that the first work where graph transformation, as a reconfig-
urability mechanism, was applied to PNs can be found in [18]. In this former
work, graph grammars have been used to define the PNs transformations rules,
and as an example the authors used manufacturing systems. However the aim,
of this work, was not the design of”Reconfigurable Manufacturing Systems”, but
only the refinement of Manufacturing Systems. Indeed, the objective was not to
provide an approach for the specification and verification of RMSs; but only a
study on the refinement of manufacturing systems, using PNs transformations.

In fact, a more close work to our work is the one proposed by Li et al. [23].
The authors developed a new formalism INRSs (Improved Net Rewriting Sys-
tems), which are based on Badouel’s reconfigurable Petri nets [11]. In their work,
the authors proposed a hybrid approach, which combines UML.2’s activity dia-
grams [32] and INRSs formalism, to design RMSs. We can identify three major
differences between this work and our current work. Firstly, they used the INRSs
formalism which is based on the idea of ”rewriting rules” proposed by Badouel
[31]. However, the formalism used in our work is based on “graph transformation
theory” applied to PNs [18]. This theory was proposed before “rewriting rules”
and has been applied and studied in many works. Two advantages motivate
the choice of graph transformation theory; the first one is the existence of an
important work in developing software tools supporting these transformations,
and the second advantage can be found in the application of graph transfor-
mation theory to a variety of PNs kinds: P/T nets, Algebraic High level nets,
and Coloured Petri Nets. For all these kinds of PNs, many results about proper-
ties conservation, during transformations, have been proved (a set of conserved
properties during transformation can be found in [18]). The second difference
between our work and the work in [23] is that the RONs (Reconfigurable Ob-
ject Nets) formalism lets us make a one “connected model” which represents:
(i) all the system’s configurations set, (ii) the applied transformations rules, and
(iii) the dynamic at micro-level (functioning of the configuration) and the dy-
namic at macro-level (the reconfiguration in the system). All these aspects are
represented in one model which is the RON-model. This is not the case in the
proposed approach in [23] where an INRSs represents one configuration with its



set of rewriting rule. The third difference, and which is an important motiva-
tion in our choice, is the availability of software tools that can be used in the
simulation and analysis of the RONs models (RON-tool [16], ReConNet [30]).

On another level, authors of [25, 33] applied PNs transformations techniques
but for another purpose then RMSs design. In [25] the authors used Recon-
figurable P/T nets to model mobile ad-hoc networks. The system modelled is
designed for an archaeological disaster/recovery mission. In this mission, a set of
teams cooperate and their behaviour can be updated to new situations. The for-
malism proposed, in [25], is not the same one proposed in [23]. Reconfigurable
P/T nets, based also on graph transformation theory, represent the building
blocks of Reconfigurable Object Nets which is exploited in our current work.
The authors of [25] have not treated the case of manufacturing systems, and so
no approach for this kind of systems was proposed; nevertheless, the dynamic
aspect of their system is similar to the one presented here, because the same idea
is applied: “graph transformation”. In [34], the authors used Petri Nets in the
development of ”Dynamically Reconfigurable Embedded Systems”. They exploit
the Petri Nets to provide a first specification which will be transformed, after,
to generate code. This work was interested to embedded systems (i.e. micro-
controllers used in WNS) and their reconfigurability rather than manufacturing
systems. The formalism used is a class of basic Petri nets: Work flow PN (WFPN
[35]). The reconfigurability within the system is formulated as migrating of nets
in the “nets-within-nets” formalism [36]. The Nets-within-nets formalism is con-
sidered as the basic of Object Petri Nets [36] used after in the proposition of
RONs (used in this paper). This work deals with mobility rather than hardware
reconfigurability. Finally, the authors of [33] exploited the RONs formalism for
the modelling of mobile agents, used in the mobile maintenance of manufactur-
ing system. This last work used the same formalism used in our present work,
but it treats also mobility rather than reconfigurability.

In this paper, we propose to use the RONs formalism to specify, simulate
and verify the Reconfigurable Manufacturing Systems. Through an example, we
present the requirements for this modelling and how the model can be con-
structed. One of the advantages of the RONs is the availability of dedicated
automatic tools (as RON-tool used in our proposal) to simulate and analyse the
constructed models.

3 Reconfigurable object nets

3.1 An informal presentation

Reconfigurable Object Nets (RONs) [26] was introduced firstly in [15], as High
Level Nets with Nets and Rules as Tokens. In RONs, we distinguish between two
levels in the Net (the system level and the token level) and two classes of tokens
(token-nets and token-rules). A place in the system level can contain token-nets
or token-rules. A token-net is a P/T net which can move from place to place
in the system. During its moving, the token-net’s marking can change as well
as its structure. Transitions in the system level decide about the movement of



token-nets, as well as if the marking or the structure of these token-nets will
change. To change the marking of a token-net, the model must have a transition
in the system level which will trigger a transition in the token-net level. However,
to change the structure of a token-net, a token-rule is required to specify how
this structure will be changed. Hence, the token-rule decides how the structure
of the token-net will change when some transition, in the system level, is fired.
In RONs, reconfiguration of the structure concerns only the token-nets and not
the whole net in the system level. This reconfiguration is defined through a set
of token-rules, inspired from graph transformation techniques.

Indeed, graph transformation techniques allow the formulation of two ba-
sic constructions: union and transformation, on Place/Transition Nets (P/T
nets). Informally, the union construction takes two Nets N1 and N2 and yields
another net N3, but the transformation construction takes one P/T net N1

and yields another net N2. In RONs formalism, these two constructions are
the two basic reconfigurable techniques for P/T nets. Union and transforma-
tion are based on the morphism concept defined over P/T nets. In the fol-
lowing paragraphs, we will formalise the necessary concepts for our proposal:
Place/Transition nets, morphisms over P/T nets, union, transformation, and
finally RONs.

3.2 Place/Transition nets (P/T nets)

A place/transition net is a quadruplet (T, P, Pre, Post), where:

– T : is a finite set of transitions;
– P : is a finite set of places;
– Pre (for pre-domain) and Post (for post-domain) are the two mappings

defined as: Pre, Post : T → P⊕

The set P⊕ is the set of finite multi-sets over the set P . An element w in P⊕

can be written as the sum: w = Σp∈Pλp × p, where: λp is a natural number
(λp ∈ N). We can also consider w as a function: w : P → N .

3.3 Morphisms over P/T nets

Given two P/T nets:N1 = (T1, P1, P re1, Post1) andN2 = (T2, P2, P re2, Post2).
A morphism f between the two nets N1 and N2 is a function: f : N1 → N2.
We have: f = (fT , fP ), such that: fT : T1 → T2, and fP : P1 → P2 are two
morphisms which map transitions into transitions and places into places, re-
spectively. fT and fP satisfy:

1. Pre2 ◦ fT = f⊕P ◦ Pre1
2. Post2 ◦ fT = f⊕P ◦ Post1

The diagram (on Figure 1) [15] summarizes the above concepts.



Fig. 1. Morphisms on P/T nets [15]

3.4 Union of P/T nets as a pushout

Based on the morphisms defined over P/T nets, it is possible to define a spe-
cific construction which is the pushout (or union) of two P/T nets. Let N1 =
(T1, P1, P re1, Post1),N2 = (T2, P2, P re2, Post2), and I = (T0, P0, P re0, Post0)
be three P/T nets, with the two morphisms: f : I → N1 and g : I → N2. The net
I is said a common interface between N1 and N2. The union of N1 and N2 is the
Net N = (T, P, Pre, Post), defined using the two morphisms: f ′ : N1 → Nand
g′ : N2 → N . We write: N = N1 +I N2. The operator +I is called the pushout
construction (see the Figure 2) or the gluing operator.

Fig. 2. Union of P/T nets [15]

The net N is constructed as follows:

1. T = T1 +T0 T2 is the disjoint union of T1 and T2, where we glue together all
the transitions in: {fT (t), gT (t)}t∈T0

;
2. P = P1 +P0

P2. P is the disjoint union of P1 and P2, where we glue together
all the places in: {fP (p), gP (p)}p∈P0

;

3. Pre(t) =

{
Pre1(t1) if g′T (t1) = t
Pre2(t2) if f ′T (t2) = t

4. Post(t) =

{
Post1(t1) if g′T (t1) = t
Post2(t2) if f ′T (t2) = t

3.5 Transformations of P/T nets as a double pushout rule

Based on the P/T gluing (or pushout) construction, the P/T transformation
is constructed as a double pushout. Let L, K, R, and C be four P/T nets. A
transformation f : N1 → N2 transforms the P/T net N1 to the P/T net N2



Fig. 3. Double pushout [15]

using the rule r = (L,K,R) and the match m : L → N1 iff we have the double
pushout of the Figure 3.

On Figure 3, k1, k2, m, c, and n are morphisms, thus, the P/T net C is called
the context of the transformation and it satisfies the following conditions:

1. TC = (T1 \mT (TL)) ∪mT (k1T (TK)) ;
2. PC = (P1 \mP (PL)) ∪mP (k1P (PK)) ;
3. PreC = Pre1|TC

(The relation PreC is the subset of Pre1 which concerns
only the set of transitions: TC);

4. PostC = Post1|TC
(The relation PostC is the subset of Post1 which concerns

only the set of transitions: TC);

3.6 Reconfigurable object nets (RON)

A Reconfigurable Object Nets (RONs) [15] is a high level net where places con-
tain two kinds of tokens: token-nets and token-rules. Token-nets are P/T nets
and token-rules are ”double pushout” production rules. In the RON model, firing
a transition can trigger the movement of a token-net from its current place to
another place. Despite this movement, the transition can change the structure
of the token-net by applying a token-rule. Indeed, a transition can transform the
structure of a token-net as well as it can unify two token-nets.

4 Modelling and simulation of reconfigurable
manufacturing systems

4.1 The case study

Let us consider a system inspired (with some modifications) from the one pre-
sented in [19]. This system is composed of two manufacturing cells (MC1, MC2),
a storage AS/AR (Automated Storage and Retrieval System), and an AGV (Au-
tomated Guided Vehicle). The system produces a final product A, and uses two
raw materials R1 and R2 (see the Figure 4). The flow starts in MC1 and then
passes to MC2.

MC1 contains a CNC (Computerized Numerical Controlled) lathe machine,
a CNC milling machine, a robot, and a buffer. In MC1 (see the Figure 5), R1

and R2 start in the lathe machine then the results are processed in the milling
machine. MC2 contains an assembly machine (which assembles the two products



Fig. 4. Manufacturing of product A

Fig. 5. Flow in MC1

into one product A), a robot, and a buffer. The flow in MC2 is depicted on Figure
6.

Reconfiguration: during the life of the system, the plan will meet two
reconfigurations. Firstly, a new type of product is required: Product B. Product
B requires the flow depicted on Figure 7, where the assembly is done before the
lathe and the milling.

The second reconfiguration (concerns the production of B) occurs when a new
cell MC3 (inspection cell) is introduced in the system (Figure 8). The inspection
cell contains: a Coordinate Measuring Machine (CMM) and a set of buffers.

4.2 The modelling process

The modelling using RONs (Reconfigurable Object Nets) requires the definition
of the two levels: System Level and Token Level. In the Token level, one must
identify: the set of token-nets (the P/T nets which describe the structure and the
behaviour of the manufacturing system), and the set of token-rules (production
“double pushout rules” which describe the reconfigurations that can be applied
on the manufacturing system’s structure). In the system level, places can be
net-places (can contain token-nets) or rule-places (can contain token- rules).
The transitions, in the system level, have the ability to trigger the transitions
in a token-net, so that they change the token-net marking. In this case, the
transitions (of system level) are called Fire Transitions. A second ability is to
change the token-net structure by the application of a token-rule. In this case,
the transitions (of system level) are called Transform Transitions.

Identification of token-nets. In the proposed system, three tokens-nets are
defined (Figure 9, Figure 10, Figure 11). These three nets represent the three
configurations of the system, during its execution. The interpretation of the set
of nodes, in these token-nets, is presented on the Table 1.

Identification of the token-rules. In order to simulate the reconfigurations of
the system, two productions rules must be defined. A production rule will trigger
a reconfiguration processes in the manufacturing system. The construction of
these two rules requires the definition of a set of morphisms.



Fig. 6. Flow in MC2

Fig. 7. Reconfiguration 1: Manufacturing of the new product B

Fig. 8. Reconfiguration 2: introducing MC3

Table 1. Interpretation of the Nodes in the Token-Nets

Node Interpretation in the manufacturing system

p11 buffer for R1 in MC1
t11 robot and Lathe machine (in MC1)
p12 robot (in MC1)
t12 milling and robot (in MC1)
p13 buffer for final product of MC1
t13, t2, t5 AGVs
p1, p2 Buffer for raw product of MC2
t1 Robot and AM in MC2
p3 Buffer for final product of MC2
p4 AS/RS
p21 buffer for R2 in MC1
t21 robot and Lathe machine (in MC1)
p22 robot (in MC1)
t22 milling and robot (in MC1)
p23 buffer for final product of MC1
p5 Buffer in MC3
t4 CMM
p6 Buffer in MC3

Rule 1: Figure 12 depicts the first rule. The rule contains three components:
L: left, I: Interface, and R: Right. We have the first production p = (L, I, R).
In this figure: h1 and h2 are two morphisms.

On the Figure 13, we depict with more details the two morphisms h1, and
h2.

Examining the Figure 13, it is easy to see that the two relations h1 and h2 are
two morphisms. They satisfy the set of relations presented in the paragraph 3.3.



Fig. 9. Token-net (TN1) for product A manufacturing

Fig. 10. Token-net (TN2) for reconfiguration 1

Fig. 11. Token-net (TN3) for reconfiguration 2

Thus, the first double pushout rule, which triggers the first reconfiguration
form token-net TN1 (Figure 9) toward the token-net TN2 (Figure 10), is depicted
on Figure 14.

In Figure 14, the applications h11, h12, c, m, and g are morphisms. The net
C is the context of the double pushout. Once the morphism m is defined, the
context C can be computed using the definition presented above in the subsection
(3.5). The double pushout rule is written as: r1 = (p, m), and the transformation
is now written as: TN1 →(p,m) TN2.

The Figure 15 and the Figure 16 present in details the two morphisms m and
g. It is also easy to verify that the two relations m and g satisfy the necessary
requirements to be morphisms.

Now, we can compute the context C, using the definition presented above in
the section (3.5), thus:

1. TC = (T1 \mT (TL))
⋃
mT (K1T (TK)) = {t11, t21, t22, t13, t23}

⋃
{t12}

2. PC = (P1\mP (PL))
⋃
mP (K1P (PK))) = {p11, p22, p23}

⋃
{p1, p2, p3, p4, p12, p13}

The Figure 17 shows the context C.
Rule 2: The Figure 18 shows the second production. The second production

is written: p′ = (L′, I ′, R′), where: L′ for left, I ′ for Interface, and R′ for Right.
The two relations: h′1, h′2 are two morphisms.

The second double pushout rule, which triggers the second reconfiguration
form token-net TN2 (presented in Figure 10, in the section 4.2.1) toward token-



Fig. 12. Production 1

Fig. 13. Morphisms h1 and h2

net TN3 (presented in Figure 11, in the section 4.2.1), is depicted on Figure
19.

In the Figure 19, h′11, h′12, c′, m′, g′ are morphisms, and C ′ is a context net.
Once the morphism m′ is defined, the context C ′ can be computed using the defi-
nition presented above in the subsection (3.5). The second double pushout rule is
written as: r2 = (p′, m′), where p′ = (L′, I ′, R′), and the second transformation
is written as: TN2 →(p′,m′) TN3.

The system level net. In the system level, we have two kinds of transitions:
Fire-Transitions which trigger the dynamic behaviour over markings of the
token-nets, and Transform-Transitions which trigger the reconfiguration be-
haviour over the structure of the token-nets. Places in the system level can
contain two kinds of tokens: token-nets or token-rules. A Fire-Transition takes
as parameters: a net N , a transition t from this net, and updates the marking of



Fig. 14. Double pushout of the rule 1

Fig. 15. The morphism m

N by firing t (if this last one is enabled). A Fire-Transition must have a guard
[enabled(t) = true]. Once fired, this fire-transition produces a new net computed
by the function: fire(N, t).

A Transform-Transition takes as parameters: a net N , a rule r = (p,m),
and applies this rule to transform N . A transform transition must have a guard
[applicable(N, r)]. This Transform-Transition produces a new net with a new
structure defined by a function: transform(N, r).

In Figure 20, we depict the Reconfigurable Object Net model for the system
described in this paper. Each place (a circle) has a name (depicted in the right
high side, near the circle), a type (depicted in the right low side, near the circle),
and an eventually initial marking (inside the circle). Each transition (a rectan-
gle) has a name (depicted inside the rectangle), and eventually guard (depicted
outside the rectangle). An arc links a place to a transition or a transition to a
place, and has a label depicted near it.

5 Simulation and verification

The objective of the formal modelling is to understand more the system, to sim-
ulate it and to do verification. In this section, we will present the simulation and
verification processes, that can be applied in this study. We will use the auto-
matic tool RON-Tool [16] to edit and simulate the reconfiguration process, and



Fig. 16. The morphism g

Fig. 17. The context C

the TINA-tool [17] to verify properties of each allowable configuration obtained
during the life of the system.

5.1 Simulation

One of the advantages when using the RONs formalism is the ability to simulate
the model with the RON-tool [16]. The RONs-tool is free and can be downloaded
(with its open source). The current version allows, only, the simulation of the
model. The verification of properties is not yet implemented [16]. However, the
availability of the source allows the implementation and the specialisation of the
verification process by designers. The RONs-tool allows the graphical edition of
the model. The user introduces the system net and the object nets, and the set
of reconfiguration rules. Figure 21 shows the model of the system edited in the
RONs-tool.

The interface presents three windows. The right high window depicts the
system level net, the left high window depicts the object net TN1 in the place
np1, and the low window depicts the transformation rule (token-rule r1) to be
applied on the object net TN1. The tool can be used to simulate the behaviour of
the system level net as well as the behaviour of the object nets. The Transform-
Transition 1 has a green colour which means that this transition can be fired.

5.2 Verification

Besides the simulation of the models, we can verify the set of reached configu-
rations by the system. In this section, we propose to use the TINA-tool [17] to
verify the P/T nets which model the set of configurations. The TINA-tool (TIme



Fig. 18. Production 2

Fig. 19. Double pushout 2

Petri Net Analyser) can compute the state space graph for a Petri Net and ver-
ify many properties using this graph. Properties like: reachability, boundedness,
liveness can be verified using TINA. Moreover the analysis using the reachability
graph, the TINA-tool can do structural analysis of the net using the incidence
matrix and invariants. As an example, we present the result of the TINA-tool
on the first configuration of the system: Token-net TN1 (presented in figure 9).
figure 22 shows the object net TN1 and its coverability graph computed using
TINA. The proposed initial marking is two tokens in the place p11 and two
tokens in the place p21.

The coverability graph can be used to verify many properties like: the live
transitions and states, the dead transitions and states, the reachable states, etc.
According to [18], the reconfiguration of P/T nets based on graph transfor-
mation preserve the liveness and the safety properties. Thus, if TN1 has some
live transitions and states then these transitions and states still live in the new
configuration TN2. The designer is not obliged to redo the verification of such
properties after reconfiguration.

6 Conclusion

Reconfigurable Manufacturing Systems (RMSs) are systems where the structure
changes over time, to satisfy some new requirements or to resolve some structural
problems (breakdown machines). Developing these systems and insuring their
reliability become an exigency, but also a hard task. The use of formal methods,
in particular Petri Nets (PNs), attracts many researchers. Many works applied
PNs to specify, simulate, and verify manufacturing systems. The reconfigurability
aspect of RMSs presents a challenge for the use of classical Petri nets, therefore
some new PNs extensions are proposed to deal with RMSs. In this paper, we
have presented an experience where the Reconfigurable Object Nets formalism



Fig. 20. The RON model of the system

Fig. 21. The model of the system by the RON-tool

[27] is used to specify RMSs. This formalism is based on graph transformation
techniques. In this paper, we have examined (step by step) a case study, where
the RMS meets two reconfigurations. These two reconfigurations are specified as
two transformation-rules to be applied on the structure of the system. We have
presented the final model as a RON. After the modelling, we have presented
the simulation of the model using the RON-tool [16] (to see the reconfiguration
process) and the verification process of one object-net using the TINA-tool [17].

This work opens many perspectives. We propose to develop this work on
three levels: (i) enrich the work and develop a concrete approach that can be
used in the modelling of RMSs using RONs, (ii) working on the RONs automatic
tool (open source), to implement properties verification processes, and finally



Fig. 22. The token-net TN1 and its coverability graph

(iii) introducing the time factor in the modelling process. The amelioration of
the efficiency (reducing the global time of the manufacturing process) of the
system is one of the most motivation of reconfiguration. This efficiency can be
verified by the use of temporal model. Time Petri Nets [27] can be used for this
purpose; however reconfiguration is not yet well defined for time Petri Nets. One
important perspective can be the work on reconfiguration of Time Petri Nets.
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