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Preface

Developing ontologies is not an easy task and, as the ontologies grow in size,
they are likely to show a number of defects. Such ontologies, although often
useful, also lead to problems when used in semantically-enabled applications.
Wrong conclusions may be derived or valid conclusions may be missed. Defects
in ontologies can take different forms. Syntactic defects are usually easy to find
and to resolve. Defects regarding style include such things as unintended re-
dundancy. More interesting and severe defects are the modeling defects which
require domain knowledge to detect and resolve such as defects in the structure,
and semantic defects such as unsatisfiable concepts and inconsistent ontologies.
Further, during the recent years more and more mappings between ontologies
with overlapping information have been generated, e.g. using ontology alignment
systems, thereby connecting the ontologies in ontology networks. This has led
to a new opportunity to deal with defects as the mappings and other ontologies
in the network may be used in the debugging of a particular ontology in the
network. It also has introduced a new difficulty as the mappings may not always
be correct and need to be debugged themselves.

The WoDOOM series deals with these issues. This volume contains the pro-
ceedings of its third edition: WoDOOM14 - Third International Workshop on
Debugging Ontologies and Ontology Mappings held on May 26, 2014 in Anis-
saras/Hersonissou, Greece. WoDOOM14 was an ESWC 2014 (11th Extended
Semantic Web Conference) workshop.

In his excellent invited talk, Jérôme Euzenat considered the problem of re-
vising a network of ontologies. Further, there were presentations of four research
and two demonstration papers. The topics included work on defects regarding
incorrectness and incompleteness and dealt with both detection and repair of
defects.

The editors would like to thank the Program Committee for their work in
enabling the timely selection of papers for inclusion in the proceedings. We
also appreciate our cooperation with EasyChair as well as our publisher CEUR
Workshop Proceedings.

May 2014 Patrick Lambrix
Guilin Qi

Matthew Horridge
Bijan Parsia
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Linköping University, Sweden
Bernardo Cuenca Grau University of Oxford, UK
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Jérôme Euzenat

Repairing Learned Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Daniel Fleischhacker

Identifying Wrong Links between Datasets by Multi-dimensional
Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Heiko Paulheim

Interactive Ontology Debugging using Direct Diagnosis . . . . . . . . . . . . . . . . 39
Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler and Philipp

Fleiss

Demonstration Papers

A System for Debugging Missing Is-a Structure in EL Ontologies . . . . . . . . 51
Zlatan Dragisic, Patrick Lambrix and Fang Wei-Kleiner

B-Annot: Supplying Background Model Annotations for Ontology
Coherence Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Foundations for revising networks of ontologies

Jérôme Euzenat

INRIA & LIG
Grenoble,France

Jerome.Euzenat@inria.fr
http://exmo.inria.fr

The framework of belief revision has been studied for years in the context of logic
theories. It has been considered several times for description logics and more recently
for aligned ontologies. We consider more generally the problem of revising a network of
ontologies: given a set of ontologies connected by alignments, how to evolve them such
that they account for new information, i.e., new formulas or correspondences. Revision
is a typical problem of the semantic web due to its open nature.

There are two extreme ways to approach this problem: on the one hand, transform-
ing the network of ontologies in a single logic theory and applying classical revision;
on the other hand, applying revision locally to each ontology and to each alignment and
communicating the changes to related elements. We keep a middle term between these
two approaches: local revision alone is not sufficient to revise networks of ontologies
but preserving the separation of ontologies and alignments can be exploited by revision.

We first use existing semantics of networks of ontologies for defining the notions
of closure and consistency for networks of ontologies. Inconsistency can come from
two different sources: local inconsistency in a particular ontology or alignment, and
global inconsistency between them. Revision, in turn, can affect any of these compo-
nents: retracting assertions from closed ontologies, like in classical belief revision, or
correspondences from closed alignments, like in current alignment repair.

Then, we define revision postulates for networks of ontologies and we show that
revision cannot be simply based on local revision operators on both ontologies and
alignments: they may fail to reach a consistent network of ontologies although solu-
tions exist. We define a global revision operator by adapting the partial meet revision
framework to networks of ontologies. We show that it indeed satisfies the revision pos-
tulates.

Finally, we discuss strategies based on network characteristics for designing con-
crete revision operators.
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First experiments in cultural alignment repair

Jérôme Euzenat

INRIA & LIG,
Grenoble, France

Jerome.Euzenat@inria.fr
http://exmo.inria.fr

Abstract. Alignments between ontologies may be established through agents
holding such ontologies attempting at communicating and taking appropriate ac-
tion when communication fails. This approach has the advantage of not assuming
that everything should be set correctly before trying to communicate and of being
able to overcome failures. We test here the adaptation of this approach to align-
ment repair, i.e., the improvement of incorrect alignments. For that purpose, we
perform a series of experiments in which agents react to mistakes in alignments.
The agents only know about their ontologies and alignments with others and they
act in a fully decentralised way. We show that such a society of agents is able
to converge towards successful communication through improving the objective
correctness of alignments. The obtained results are on par with a baseline of a
priori alignment repair algorithms.

Keywords: Ontology alignment; alignment repair; cultural knowkedge evolu-
tion; agent simulation; coherence; network of ontologies

1 Motivation

The work on cultural evolution applies, an idealised version of, the theory of evolution
to culture. Culture is taken here as an intellectual artifact shared among a society. Cul-
tural evolution experiments typically observe a society of agents evolving their culture
through a precisely defined protocol. They perform repeatedly and randomly a task,
called game, and their evolution is monitored. This protocol aims to experimentally
discover the common state that agents may reach and its features. Luc Steels and col-
leagues have applied it convincingly to the particular artifact of natural language [9].

We aim at applying it to knowledge representation and at investigating some of its
properties. A general motivation for this is that it is a plausible model of knowledge
transmission. In ontology matching, it would help overcoming the limitations of cur-
rent ontology matchers by having alignments evolving through their use, increasing the
robustness of alignments by making them evolve if the environment evolves.

In this paper, we report our very first experiments in that direction. They consider
alignments between ontologies as a cultural artifact that agents may repair while trying
to communicate. We hypothesise that it is possible to perform meaningful ontology
repair with agents acting locally. The experiments reported here aims at showing that,
starting from a random set of ontology alignments, agents can, through a very simple
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and distributed mechanism, reach a state where (a) communication is always successful,
(b) alignments are coherent, and (c) F-measure has been increased. We also compare
the obtained result to those of state-of-the-art repair systems.

Related experiments have been made on emerging semantics (semantic gossiping
[3, 2]). They involve tracking the communication path and the involved correspon-
dences. By contrast, we use only minimal games with no global knowledge and no
knowledge of alignment consistency and coherence from the agents. Our goal is to in-
vestigate how agents with relatively little common knowledge (here instances and the
interface to their ontologies) can manage to revise networks of ontologies and at what
quality.

2 Experimental framework

We present the experimental framework that is used in this paper. Its features have been
driven by the wish that experiments be easily reproducible and as simple as possible.
We first illustrate the proposed experiment through a simple example (§2.1), before
defining precisely the experimental framework (§2.2) following [9].

2.1 Example

Consider an environment populated by objects characterised by three boolean features:
color={white|black}, shape={triangle|square} and size={small|large}. This character-

ises 23 = 8 types of individuals: �, N, �,4,�, N, �,4.
Three agents have their own ontology of what is in the environment. These ontolo-

gies, shown in Figure 1, identify the objects partially based on two of these features.
Here they are a circular permutation of features: FC (shape, color), CS (color, size)
and SF (size, shape).

In addition to their ontologies, agents have access to a set of shared alignments.
These alignments comprise equivalence correspondences between their top (all) classes
and other correspondences. Initially, these are randomly generated equivalence corre-
spondences. For instance, they may contain the (incorrect) correspondence: SF :small
≡ CS:black.

Agents play a very simple game: a pair of agents a and b are randomly drawn as well
as an object of the environment o. Agent a asks agent b the class c (source) to which
the object o belongs, then it uses an alignment to establish to which class c′ (target) this
corresponds in its own ontology. Depending on the respective relation between c and
c′, a may take the decision to change the alignment.

For instance, if agent CS draws the small-black-triangle (N) and asks agent SF
for its class, this one will answer: small-triangle. The correspondence SF :small ≡
CS:black and the class of N in CS is black-small which is a subclass of CS:black, the
result is then a SUCCESS. The fact that the correspondence is not valid is not known
to the agents, the only thing that counts is that the result is compatible with their own
knowledge.
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Fig. 1. Example of a generated network of ontologies with the exact reference alignments.

If, on the contrary, the drawn instance is small-white-triangle (4), SF would have
made the same answer. This time, the result would be a FAILURE because 4 belongs
to class CS:white-small which is disjoint from CS:black-small.

How to deal with this failure is a matter of strategy:

delete SF :small ≡ CS:black can be suppressed from the alignment;
replace SF :small ≡ CS:black can be replaced by SF :small ≤ CS:black;
add in addition, the weaker correspondence SF :small ≥ CS:all can be added to the

alignment (but this correspondence is subsumed by SF :all ≡ CS:all).

In the end, it is expected that the shared alignments will improve and that commu-
nication will be increasingly successful over time. Successful communication can be
observed directly. Alignment quality may be assessed through other indicators: Figure 1
shows (in dotted lines) the correct (or reference) alignments. Reference alignments are
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not known to the agents but can be automatically generated and used for measuring the
quality of the resulting network of ontologies through F-measure.

2.2 Experimental set up

We systematically describe the different aspects of the carried out experiments in the
style of [9].
Environment: The environment contains objects which are described by a set of n
characteristics (we consider them ordered). Each characteristic can take two possible
values which, in this experiment, are considered exclusive.
Population: The experiment uses n agents with as many ontologies. Each agent is
assigned one different ontology. In this first setting, each agent will have an ontology
based on n−1 of these characteristics (each agent will use the first n−1 characteristics
starting at the agent’s rank). The ontology is a simple decision trees of size 2n−1 in
which each level corresponds to a characteristic and subclasses are disjoint.
Shared network of ontologies: A complete network of n×(n−1)

2 alignments between
the ontologies is shared among agents (public). The network is symmetric (the align-
ment between o and o′ is the converse of the alignment between o′ and o) and a class is
in at most one correspondence per alignment.
Initialisation: In the initial state, each alignment contains equivalence correspondences
between the most general classes of both ontologies, plus 2n−1 randomly generated
equivalence (≡) correspondences.
Game: A pair of distinct agents 〈a, b〉 is randomly picked up as well as a set of char-
acteristic values describing an individual (equiprobable). The first agent (a) asks the
second one (b) the (most specific) class of its ontology to which the instance belongs
(source). It uses the alignment between their respective ontologies for finding to which
class this corresponds in its own ontology (target). This class is compared to the one
the instance belongs to in the agent a ontology (local).
Success: Full success is obtained if the two classes (target and local) are the same. But
there are other cases of success:

– target is a super-class of local: this is considered successful (this only means that
the sets of alignments/ontologies are not precise enough);

– target is a sub-class of local: this is not possible here because for each instance,
local will be a leaf.

Failure: Failure happens if the two classes are disjoint. In such a case, the agent a will
proceed to repair.
Repair: Several types of actions (called modalities) may be undertaken in case of fail-
ure:

delete the correspondence is simply discarded from the alignment;
replace if the correspondence is an ≡ correspondence it is replaced by the ≤ corre-

spondence from the target class to the source class;
add in addition to the former a new ≤ correspondence from the source to a superclass

of the target is added. This correspondence was entailed by the initial correspon-
dence, but would not entail the failure.
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Success measure: The classical success measure is the rate of successful communica-
tion, i.e., communication without failure.
Secondary success measure: Several measures may be used for evaluating the qual-
ity of the reached state: consistency, redundancy, discriminability. We use two different
measures: the averaged degree of incoherence [7] and the semantic F-measure [4]. In-
deed, this setting allows for computing automatically the reference alignment in the
network, so we can compute F-measure.
External validation: The obtained result can be compared with that of other repair
strategies. We compare the results obtained with those of two directly available repair
algorithms: Alcomo [6] and LogMap repair [5].

3 Experiments

We report four series of experiments designed to illustrate how such techniques may
work and what are their capabilities

The tests are carried out on societies of at least 4 agents because, in the setting
with 3 agents, the delete modality drives the convergence towards trivial alignments
(containing only all≡all) and the other modalities do it too often.

All experiments have been run in a dedicated framework that is available from
http://lazylav.gforge.inria.fr.

3.1 Convergence

We first test that, in spite of mostly random modalities (random initial alignments, ran-
dom agents and random instances in each games), the experiments converge towards a
uniform success rate.

Four agents are used and the experiment is run 10 times over 2000 games. The
evolution of the success rate is compared.

3.2 Modality comparison

The second experiment tests the behaviour of the three repair modalities: delete, re-
place, add.

Four agents are used and the experiment is run 10 times over 2000 games with each
modalities. The results are collected in terms of average success rate and F-measure.

3.3 Baseline comparison

Then the results obtained by the best of these modalities are compared to baseline re-
pairing algorithms in terms of F-measures, coherence and number of correspondences.

The baseline algorithms are Alcomo and LogMap repair. The comparison is made
on the basis of success rate, F-measure and the number of correspondences.

LogMap and Alcomo are only taken as a baseline: on the one hand, such algorithms
do not have the information that agents may use, on the other hand, agents have no
global view of the ontologies and knowledge of consistency or coherence.
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3.4 Scale dimension

Finally we observe settings of increasing difficulty by taking the modality providing the
best F-measure and applying it to settings with 3, 4, 5 and 6 ontologies.

This still uses 10 runs with the add modality over 10000 games. Results are reported
as number of correspondences, F-measure and success rate and compared with the best
F-measure of Alcomo and LogMap.

4 Results

Results of the four presented experiments are reported and discussed.

4.1 Convergence

Figure 2 shows the result of our first experiment: 10 runs with a random network as
defined above with 4 ontologies. Each curve corresponds to one of the 10 runs over
2000 iterations.
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Fig. 2. Ten random runs and their overall success rate, i.e., the proportion of games which were
successful so far [mod=add; #agents=4; #games=2000; #runs=1].

Figure 2 shows a remarkable convergence between the runs. After the first 200
games dominated by randomness, they converge assymptotically and at the same pace
towards 100%. Indeed, as soon as the network of ontologies has been cleaned up
(around 1200 iterations maximum), the rate only grows. It never reaches 1 because
of the initial period which contains failures.

From now on, we will still consider 10 runs, but the results will be averaged over
these runs.

4.2 Modality comparison

Figure 3 shows the evolution over 2000 iterations of the success rate and F-measure of
the three presented modalities.
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Fig. 3. The average F-measures (dashed) and success rate (plain) with the three different modali-
ties: delete (red), replace (green) and add (blue) [mod=del,repl,add; #agents=4; #games=2000;
#runs=10].

delete converges more quickly than replace which converges more quickly than
add. This can easily be explained: delete suppresses a cause of problem, replace only
suppresses half of it so it may need one further deletion for converging, while add
replaces one incorrect correspondence by two correspondences which may be incorrect,
so it requires more time to converge.

For the same reason, the success rate is consequently higher. Table 1 shows that for
the delete modality, 97.6% success rate corresponds to 48 failure, i.e. 48 deleted cor-
respondences over 54. The 6 remaining correspondences are all≡all correspondences.
replace reaches the same result with a 95.2% rate, which corresponds to twice as many
failures.

The results of delete and replace modalities are the same: in order to be correct,
alignments are reduced to the all≡all correspondences. This is unavoidable for delete
(because initial correspondences are equivalences, although, by construction, the cor-
rect correspondences are subsumption, so the initial correspondences are incorrect in at
least one direction). This is by chance, and because of averaging, for replace.

On the contrary, the add modality has a 88.6% success rate, i.e., 228 failures. This
means that on average for each correspondence it has generated 4 alternative correspon-
dences. This is only an average because after 2000 games (and even after 10000 games),
there remain more than 12 correspondences.

Contrary to the other modalities, add improves over the initial F-measure.
Table 1 shows that all methods reach full consistency (incoherence rate=0.) from

a network of ontologies with 50% incoherence, i.e., half of the correspondences are
involved in an inconsistency (or incoherence).

Concerning F-measure, add converges towards a significantly higher value than the
two other approaches. With four ontologies, it has a chance to find weaker but more
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Success Incoherence Semantic Syntactic
Modality Size rate degree F-measure F-measure Convergence
reference 70 - 0.0 1.0 1.0 -
initial 54 - [0.46-0.49] 0.20 (0.20) -
delete 6 0.98 0.0 0.16 (0.16) 400
replace 6 0.95 0.0 0.16 (0.16) 1000
add 12.7 0.89 0.0 0.23 (0.16) 1330
Alcomo 25.5 - 0.0 0.26 (0.14) -
LogMap 36.5 - 0.0 0.26 (0.14) -

Table 1. Results of the three different modalities compared with Alcomo and LogMap on 10
runs, 4 ontologies and 2000 iterations. Syntactic F-measure has been obtained in an independent
but identical evaluation.

correct correspondences. The add strategy is more costly but more effective than the
two other strategies.

4.3 Baseline comparison

This experiment exploits the same data as the previous one (§4.2); exploiting those of
the next experiment (on 10000 iterations) provides similar results.

Table 1 shows that all three methods are able to restore full coherence and to slightly
improve the initial F-measure. Their result is overall comparable but, as can be seen in
Figure 4, the agents do not reach the F-measure of logical algorithms.

The agents find half of the correspondences of Alcomo and one third of those of
LogMap. This is expected because Alcomo only discards the minimum number of
correspondences which bring incoherence, while LogMap weaken them (like the add
modality). The agents having more information on what is incorrect, discard more cor-
respondences.

When looking at F-measures, it seems that logical repair strategies can find more
than 6 new correspondences which are correct while the add strategy can only find more
than 3. This is not true, as shown in Table 1, because we use semantic precision and
recall [4]. These methods preserve correspondences which are not correct, but which
entails correct correspondences. This increases semantic recall and F-measure.

There is a large variation on the results given by the different methods. Out of the
same 10 runs, LogMap had the best F-measures 5 times, Alcomo 3 times, and the agents
twice. But the largest variation is obtained by the agents with a F-measure ranging from
0.16 to 0.33. Its result is indeed highly dependent on the initial alignment.

4.4 Scale dimension

So far, we concentrated on 4 agents, what happens with a different number of agents?
The number of agents does not only determine the number of ontologies. It also deter-
mines the number of alignments (quadratic in the number of ontologies), the number of
correspondences per alignments and the number of features per instances. This means
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Fig. 4. Average success, F-measure and number of correspondences for the add modality com-
pared to the Alcomo and LogMap F-measure as a baseline [mod=add; #agents=4; #games=2000;
#runs=10].

that the more agents are used, the slower is the convergence. So, we played 10000
games in order to have a chance to reach a satisfying level of F-measure.

Figure 5 shows the regular pattern followed by agents: the first phase is random
and increases the number of correspondences (due to the add modality). Then, this
number slowly decreases. Agents are slower to converge as the problem size increases.
This is easily explained: as the correction of the alignment converges, the number of
failure-prone games diminishes. Since games are selected at random, the probability to
pick up the last configurations (in the end there is only one) becomes lower and lower.
The increased number of iterations to converge is directly tied to the largely increased
difficulty of the task (number of agents, number of alignments, size of ontologies, char-
acteristics of objects).

This increase is not a measure of the complexity of the approach itself. In fact, it
is highly distributed, and it is supposed to be carried out while agents are achieving
other tasks (trying to communicate). All the time spend between the two last failures
are time of communicative success, i.e., agents never had to suffer from the wrong
correspondences.

A very simple strategy for improving this would be that agents try to select them-
selves examples in order to verify the correspondences that they have not already tested.

Table 2 seems to show that, as the complexity of the problem increases, the F-
measure of agents is better than that of logical repair mechanisms.

5 Discussion

The relatively low F-measure rate is tied to the type of experiments: agents do not invent
any correspondences, they only repair them. Hence, they are constrained by the initial
alignment. To this respect, they are on par with logical repair algorithms.

However, they have more information than these repair algorithms. It could then
be expected that their results are higher. This is not the case because, when an initial
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Fig. 5. 10.000 games with 3, 4, 5 and 6 ontologies [mod=add,#agents=3,4,5,6; #games=10000;
#runs=10].
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3 15 15 12 10.3 3 0.31 0. 0. 0. 0.32 0.35 0.36 0.33 300
4 70 54 36.7 28.4 12.4 0.47 0. 0. 0. 0.20 0.24 0.25 0.21 1670
5 250 170 94.7 71.7 47.4 0.58 0. 0. 0. 0.11 0.18 0.17 0.24 5400
6 783 495 234 182 224 0.63 0. 0. 0. 0.06 0.12 0.11 0.14 10.000+

Table 2. Number of correspondences, incoherence rate and F-measure over 10000 games.

correspondence is unrelated to the valid one, agents will simply discard them. They will
thus end up with few correspondences with a high precision and low recall.

The state-of-the-art repair algorithms will preserve more correspondences because
their only criterion is consistency and coherence: as soon as the alignment is coherent,
such algorithms will stop. One could expect a lower precision, but not a higher recall
since such algorithms are also tied to the initial alignment.

But because we use semantic precision and recall, it happens that among these er-
roneous correspondences, some of them entail some valid correspondences (and some
invalid ones). This contributes to raise semantic recall.

6 Conclusion

We explored how mechanisms implemented as primitive cultural evolution can be ap-
plied to alignment repair. We measured:

– Converging success rate (towards 100% success);
– Coherent alignments (100% coherence);
– F-measures on par with logical repair systems;
– A number of games necessary to repair increasing very fast.

The advantage of this approach are:

– It is totally distributed: agents do not need to have the knowledge of what is an
inconsistent or incoherent alignment (only an inconsistent ontology).

– The repair of the network of ontologies is not blind, i.e., restoring inconsistency
without knowing if it is likely to be correct, so it also increases F-measure (which
is not necessarily the case of other alignment repair strategies [8]).

Yet, this technique does not replace ontology matching nor alignment repair techniques.

7 Perspectives

We concentrated here on alignment repair. However, such a game can perfectly be
adapted for matching (creating missing correspondences and revising them on the fly).

In the short term, we would like to adapt this technique in two directions:
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– introducing probabilities and using such techniques in order to learn confidence on
correspondences that may be used for reasoning [1],

– dealing with alignment composition by propagating instances across agents in the
same perspective as the whispering games (propagating classes and see what comes
back, setting weights to correspondences) [3].

In the longer term, such techniques do not have to be concentrated on one activity,
such as alignment repair. Indeed, they are not problem solving techniques (solving the
alignment repair problem). Instead, they are adaptive behaviours, not modifying any-
thing as long as activities are carried out properly, and reacting to improper situations.
So, cultural knowledge evolution has to be involved in broader activities, such as infor-
mation gathering.
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Abstract. Though ontology learning can help ontology engineers in creating on-
tologies more rapidly, it also poses new challenges to them especially in creating
coherent, high-quality ontologies. Given that there have been proposed ontol-
ogy learning approaches which are even supporting the generation of highly ex-
pressive schemas, the need for pushing debugging methods for such schemas
further also arises. Throughout the literature, several methods applicable for on-
tology debugging were presented which might be well-suited for being used on
learned ontologies. Thus, in this work, we describe some of these approaches,
and also present an approach based on Markov logic networks which is inspired
by recent work in this direction and which we adapted to learned ontologies.
Afterwards, we evaluate the approaches regarding their runtime performance on
learned ontologies and their suitability for automatic and semi-automatic debug-
ging of learned ontologies.

1 Introduction

Linked Data without schema information is already providing many chances for im-
plementing new applications. Most Linked Data repositories are not accompanied by
schemas giving additional knowledge about their structure and also new possibilities to
deduce not yet explicitly contained information by means of inferencing mechanisms.
This could, for example, be beneficial in a query answering scenario for inferring ad-
ditional instances fulfilling an information need. The additional value of schemas gets
even higher when not only light-weight schemas are provided, e.g., containing sub-
sumption hierarchies, but more expressive schemas are accompanying the data. Even
containing logically simple elements like disjointness would give many additional pos-
sibilities for using the data. Unfortunately, there are hardly any data repositories serv-
ing expressive schemas which is mostly caused by the effort required to create such
schemas. The even greater expressivity of the OWL2 seems to be practically unused
throughout the Linked Data cloud.

To reduce the impact of this so-called knowledge acquisition bottleneck, there has
been much work in the direction of ontology and schema learning trying to generate
expressive ontologies from a variety of data sources like texts or structured data [2].
Recently, methods also supporting large parts of the expressivity of OWL2 have been
introduced [6]. However, since ontology learning approaches are considered to be error-
prone and erroneous schemas are limited in their usage, ontology learning is typically
used for supporting human ontology engineers with the creation of schemas. This also
poses new challenges to the engineers since the approaches might generate ontologies
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containing a great number of complex axioms which could lead to a high degree of
incoherence in the ontology whose causes are not as easy to grasp as for more basic
axioms. Thus, additional support for humans in debugging learned ontologies or even
automatic means for repairing them is desired. Lately, some new debugging methods for
ontologies which are based on Markov logic networks [14] and specialized diagnosis
tools trying to take advantage from the specific characteristics of learned ontologies [4]
have been proposed.

In this paper, we perform experiments on learned ontologies to compare and evalu-
ate common and also more recently proposed debugging methods on expressive learned
ontologies. In particular, we focus on the runtime properties and the scalability of the
approaches. Furthermore, we examine them regarding their applicability in automatized
and semi-automatized scenarios.

The rest of the paper is structured as follows: After giving a short overview on the
related work relevant for this paper (Section 2), we give required definitions regarding
the incoherence of ontologies and the notion of explanations as well as a short overview
on the basics of Markov Logic networks in Section 3. Afterwards, in Section 4, we de-
scribe the different approaches we considered for making the ontology coherent before
presenting the comparison of these approaches in Section 5. Finally, we summarize our
findings and draw conclusion regarding the usage of different approaches for debugging
learned ontologies in Section 6.

2 Related Work

In this section, we describe other works which concentrate on the diagnosis and repair
of ontologies.

Most approaches for repairing incoherent or inconsistent ontologies are based on
finding the roots of discovered errors in the ontology which are sets of axioms leading
to the specific logical error. Finding these so-called explanations is most often done
employing diagnosis facilities integrated in reasoning tools (white-box approach) as
implemented in the Pellet reasoner [19] or black-box approaches which work indepen-
dently from the underlying reasoning system [8]. Since, as also argued by Horridge et
al. [9], it is practically not possible to generate all explanations for a given unsatisfi-
ability in many cases, these approaches concentrate on retrieving a limited number of
explanations. There has also been some work regarding the computation of full expla-
nation sets for learned ontologies by trying to exploit the specific characteristics of the
learned ontologies [4].

A tool based on the explanation generated capabilities of Pellet is Swoop [11] which
is an ontology editor able to present unsatisfiabilities in the ontology and the causes of
these logical problems. The Protege ontology editor can 1 also use Pellet to generate ex-
planations for incoherent classes or other inconsistencies found in the ontology. How-
ever, the main purpose of these tools is to provide the information about the causes of
the unsatisfiability to the ontology engineers, but they neither provide automatic means
to solve the problems nor help on choosing axioms to remove. Furthermore, though

1 http://protege.stanford.edu/
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these tools are applicable to both T-box and A-box, they are not specifically targeted at
cleaning only the terminology.

Lehmann and Bühmann [12] proposed the ORE tool which combines learning and
debugging processes into a common workflow in which a given ontology is progres-
sively enriched with additional, possibly complex axioms and the resulting inconsisten-
cies or incoherences are presented to the user along with possible solutions. As reported
in the paper, ORE’s enrichment part is currently limited to a very basic set of axioms
and, e.g., not supporting disjointness axioms. In contrast to our work presented here,
ORE is also combining both incoherence and inconsistency repair and needs user inter-
action.

There are cases in which it might be impossible for a human to check and solve
all logical problems in the ontology manually without additional support, e.g., if the
number of wrong explanations is overwhelmingly high and thus it is hard to find the
actually problematic axiom. Thus, there are also approaches which propose methods
of automatically determining fixes for logical errors. One of the earliest works in this
direction has been done by Schlobach [18] who describes an approach for debugging
incoherences, i.e., unsatisfiable classes in ontologies, based on computing and remov-
ing minimum sets of axioms causing the incoherence. In addition, he also addresses the
problem that many real world ontologies are not expressive enough and are especially
missing disjointness axioms which makes debugging almost impossible. Schlobach pro-
vides a possible solution by using the Strong Disjointness Assumption to consider all
sibling classes to be disjoint.

Another work concentrating on debugging terminologies comes from Qi et al. [16]
who propose and experimentally evaluate kernel revision operators for cleaning up the
terminology. For finding the axioms which are removal candidates, these approaches
use scoring, like the number of occurrences of an axiom in explanations, or confidence
values as they could be assigned to the axioms by an ontology learning approach. Based
on explanations generated by the Pellet reasoning tool, this also leads to an approach
which can potentially be run fully automatically to generate coherent ontologies. The
proposed approaches are evaluated on an ontology generated by an ontology learning
tool and an ontology mapping scenario since both methods used in these areas com-
monly create logically incoherent schemas.

The RaDON tool [10] is a tool providing automatized support for repairing incon-
sistent or incoherent ontologies using different strategies which can be chosen by the
user based on the characteristics of the ontology to repair. These strategies differ in the
number of explanations which are computed per unsatisfiability and can thus especially
be adapted when working on large ontologies containing great numbers of unsatisfi-
able concepts. In contrast to Ji et al., who put special emphasis on ontology mappings,
we in this work concentrate on learned ontologies for which we evaluate different re-
pairing strategies. We present an approach similar to the one proposed by Noessner
and Niepert [14] for debugging EL ontologies containing uncertainties which showed
promising results. Our approach uses a different set of inference rules specially targeted
at learned, expressive and TBox-only ontologies.

For the area of ontology matching, there is work which recourses to disjointness ax-
ioms generated by ontology learning approaches for debugging ontology mappings [13].
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3 Preliminaries

In the following, we first give a short overview on the most important notions regarding
incoherence in ontologies. Since two approaches presented in Section 4 are based on
Markov Logic Networks, we also give a short introduction into these.

3.1 Incoherences in Ontologies

Description logic is the foundation for ontologies on the Semantic Web since the mostly
used ontology language OWL is based on it. A description of all its details is given by
Baader et al. [1] for those parts required for OWL in its first version. The logical features
added later in OWL2 are described by Grau et al. [7]. In the following, we focus on the
definitions relevant for our use case.

Since in this work we are exploring approaches to repair ontologies, i.e., make inco-
herent ones coherent, we first have to define the notion of incoherence. As already done
previously [4], we extend the notion of incoherence, which is usually only defined for
classes, to object properties. This is especially important since, with the introduction of
property disjointness in OWL2, properties can get unsatisfiable more easily.

Definition 1 (Incoherence). Given an interpretation function I, a class or property
definition D in an ontologyO is unsatisfiable iff for each model I ofO DI = ∅ holds.
An ontology is said to be incoherent iff it contains at least one unsatisfiable named class
or property.

According to this definition, unsatisfiable classes or properties are equivalent to the
bottom class respectively to the bottom object property. Thus, a common way to check
for the unsatisfiability of a class C is to check whetherO � C v ⊥. Checking an object
property P for unsatisfiability can be done similarly by checking O � ∃P.> v ⊥.
For debugging purposes, it is important to detect the roots of specific errors, so-called
explanations or minimal incoherence-preserving sub-TBoxes (MIPS).

Definition 2 (Explanation). Given an ontology O and an axiom α, a subset O′ ⊆ O
is an explanation for α iff O′ � α and there exists no O′′ ⊂ O′ with O′′ � α.

Thus, an explanation for an axiom α is a set of axioms which implies the validity
of α and cannot be further minimized by removing contained axioms. Obviously, there
might be a great number of explanations for a single axiom.

3.2 Markov Logic Networks

Markov logic networks as introduced by Richardson et al. [17] are a way of formulating
uncertain logical knowledge based on Markov networks. For this purpose, they extend
first order logic by allowing the annotation of formulas with weights. In contrast to pure
description logic where all formulas represent hard constraints and a world (an assign-
ment to all atomic variables) not satisfying all constraints is no valid world, in Markov
logic a world violating a constraint is not an impossible world but only a less probable
one. The higher the weight associated to a formula the less probable a world violating
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it. Because of this property, it is even possible to have formulas in the knowledge base
which contradict each other. Furthermore, by adding infinite weights to formulas it is
possible to set these formulas as hard constraints which are not allowed to be violated.

More formally, a Markov logic network (MLN) is given by a set of pairs (Fi, wi)
where each Fi is a first-order logic formula and each wi a real number. Together with a
set of constantsC the logic network can be used to determine a ground Markov network.
On this Markov network it is then possible to define the probability distribution over
possible worlds x by

P (X = x) =
1

Z
exp

(
F∑
i=1

wini(x)

)
with F being the number of formulas in the MLN and ni(x) the number of true

groundings of Fi in x. Given a world, we are able to compute its probability based on
this definition.

However, as for our use case, often the more interesting scenario is to find the most
likely world y given evidences e, i.e.,

argmaxyP (y|e)

which is also called MAP inference and is a task commonly supported by Markov logic
solving tools. One possibility to solve a MAP inference problem is based on Integer
Linear Programming and employed by the MAP query engine RockIt [15].

4 Approaches

In this section, we present the different approaches we examined in this work for re-
pairing incoherent ontologies. The first two approaches are common methods which
start with a diagnosis step by computing explanations for incoherences and afterwards
perform a repair step to create a coherent version of the ontology. The further two
approaches belong to the new family of MLN-based methods. First, we describe an
approach using MLN to compute coherent ontologies based on pre-computed explana-
tions. Then, we present a fourth approach which avoids the computation of explanations
by implementing inference rules directly in Markov logic.

For the first three approaches, we assume the set of all explanations of incoher-
ences to be given. In this work, we implemented the following methods using the TRex
system [4] for gathering explanations.
A1: Baseline Approach As a baseline approach, we use Algorithm 1. It iterates over all
explanations and for each explanation the axiom with the lowest confidence is removed
from the ontology. Since each explanation is the minimum set of axioms causing the
specific incoherence, after removing it this incoherence does no longer exist. If the cur-
rently considered explanation contains an axiom already removed when fixing an earlier
explanation the current incoherence is already resolved by this removal and no further
axiom removal is required. Obviously, this approach is neither optimal with respect to
the number of removed axioms, which is bounded by the number of incoherence expla-
nations in the ontology, nor with respect to the confidence values.
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Algorithm 1 Greedy ontology debugging
Precondition: O is a learned ontology, explu(O) is the set of explanations for all incoherences

function GREEDYDEBUG(O, explu(O))
H ← {} . set for storing already removed axioms
for all e ∈ explu(O) do . e is an explanation, i.e., a set of axioms

if e ∩H = ∅ then
a← axiom with lowest confidence value in e
O← O \ {a}
H ←H ∪ {a}

A2: Axiom Adding Approach Algorithm 2 also uses the set of all incoherence expla-
nations. But instead of iterating over all explanations, it iterates over learned axioms and
adds them one by one starting with the highest confidence axioms and continuing with
the lower confidence ones. After each axiom addition, we check whether the resulting
ontology fully contains one of the original explanations which would mean that the on-
tology is incoherent. If so, the last axiom addition is reverted and the process continues
with the axiom having the next lower confidence. This guarantees that no explanation
is fully contained in the ontology and thus the occurrence of all detected incoherences
is prevented.

Algorithm 2 Hitting Set
Precondition: O is a learned ontology, explu(O) is the set of explanations for all incoherences

function HITTINGSETDEBUG(O, explu(O))
H ← {} . set of removed axioms
L← learned axioms contained in O sorted by descending confidence
O′←O \ L . O′ is ontology without learned axioms
for all a ∈ L do
O′←O′ ∪ {a}
if ∃e ∈ explu(O) : e ⊆ O′ then
O′←O′ \ {a}
H ←H ∪ {a}

After the termination of this algorithm, H contains a hitting set for the set of expla-
nations, i.e., H is a set of axioms so that ∀e ∈ explu(O) : e∪H 6= ∅. It is important to
note that due to the greedy nature of the algorithm, H is a minimal but not a minimum-
cardinality hitting set.
A3: MAP inference based approach In contrast to the two approaches presented be-
fore, this approach is not a greedy one. Instead it uses the Markov logic-based RockIt [15]
system for finding a minimum confidence set of axioms which have to be removed in
order to make the learned ontology coherent. For this purpose, we first define a model
as shown in Figure 1. The presented model supports explanation sets with at maxi-

20



mum 2 axioms per explanation but can be adapted easily and automatically for larger
explanations.

active(axiom)

*activeConf(axiom, _float)

*conflict1(axiom)

*conflict2(axiom, axiom)
conf: active(x) v !activeConf(x, conf)
!conflict1(x0) v !active(x0).
!conflict2(x0,x1) v !active(x0) v !active(x1).

Fig. 1. RockIt model for approach A3

In this model, we define a way of setting axioms to active, i.e., include them into
the final ontology, and furthermore give the possibility to assign confidence values to
axioms. The conflict1 and conflict2 predicates are defined to represent expla-
nations containing one resp. two axioms. The last three lines define that active axioms
contribute towards the total confidence value and that for each set of conflicting axioms
at least one has to be set to inactive.

Using this model as base, we generate the evidence for the MAP inference step by
setting unlearned axioms as active (hard constraints) while learned axioms get their
confidence value assigned using activeConf (soft constraints). For each generated
explanation, we create a conflict predicate containing the identifiers of all contained
axioms. The RockIt system then determines a world with the highest sum of confidence
values, i.e., it gives a list of all active axioms in the most probable world which we then
include into the result ontology. Since the last two lines in Figure 1 guarantee that at
least one axiom for each explanation is not set to active, the result is coherent.
A4: Pure Markov Logic Approach We also considered an approach which is based
purely on Markov Logic and does not require a set of explanations to be computed.
This approach is highly inspired by the work of Niepert and Noessner [14] but instead
of using the inference rules for the logic EL we implement the rules also used in TRex
to perform inference and generate explanations using Markov logic.2 This model again
defines activity and activity confidence predicates but this time for each supported ax-
iom type separately. The axioms contained in the ontology are transformed into the
representing predicates and set as active if they are unlearned axioms resp. get assigned
a confidence for learned axioms. Again, after applying RockIt to this data, we get a list
of active axioms which are then used to build the final coherent ontology.

The approaches differ in a number of characteristics which will be the focus of our
evaluation. First, the runtime of the approaches and the complexity of ontologies the
approaches can be applied to is an important factor for practical usage since learned
ontologies can pose challenges in both, their size and their complexity. Since ontol-

2 The file containing the MLN formulation of the TRex rules is available at http://web.
informatik.uni-mannheim.de/trex/trex-rules-model.txt

21



ogy learning approaches are mostly used for assisting humans in creating ontologies,
it is also an important factor how transparent their repair steps are. More transparent
approaches are better suited for being used in an interactive scenario.

5 Evaluation

In the following, we first describe the setup used to evaluate the performance of the
approaches shown above. Afterwards, we describe the results of our evaluation.

5.1 Experimental Setup

For the evaluation, we worked on different ontologies all generated by means of ontol-
ogy learning approaches. The first ontology, which we refer to as A, is based on the
DBpedia ontology3 and additionally contains class disjointness axioms as generated
by the GoldMiner [5] tool. We have a high-quality gold standard of class disjointness
axioms for the DBpedia ontology.4 As a second data set, we employ the one already
used to evaluate the TRex tool [4]. This data set also contains axioms learned by the
GoldMiner tool but instead of only being enriched by class disjointness, the ontology
was enriched with additional axiom types as property disjointness or domain and range
restriction axioms. The data set consists of 11 ontologies where all axioms contained
in the smaller ontologies are also contained in the larger ontologies. This enables us
to assess the scalability of the approaches. Furthermore, the additional learned axioms
make a more demanding use case since they lead to more possibilities for incoherences.
In the following, we call the 11 ontologies B0 to B10. Finally, we performed the ex-
periments on an ontology fully generated from a text corpus by the Text2Onto [3] tool.
This dataset was already used for similar experiments by Qi et al. [16] and is interest-
ing for our experiments since, in contrast to the enriched DBpedia ontologies, it is a
fully learned ontology which might differ considerably regarding its basic characteris-
tics. This ontology is called C in the following. Table 1 summarizes the most important
characteristics of all ontologies. It is also worth noting, that the first two data sets do
not contain instances at all while for the third ontology, we only considered the TBox.

On these three data sets, we run the different approaches described in Section 4 and
compared them regarding their runtime and the number of axioms removed from the
ontology. Based on our class disjointness gold standard for the first data set, we com-
puted the correctness of the axiom removals. For this purpose, we define correctness
as also used by Qi et al. [16] as (# correctly removed axioms/# removed axioms). It
is important to note, that by “correctness” we mean the correctness regarding human
assessment not regarding their influence on the logical satisfiability. For the second
DBpedia data set, an ontology engineer inspected the list of axioms removed from one

3 Both DBpedia ontology and data set were used in version 3.7. The enriched
ontology is available at http://web.informatik.uni-mannheim.de/trex/
enriched-dbpedia-ontology.zip

4 This gold standard has been created by three ontology engineers and will be subject of a future
publication.
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Table 1. Statistics about ontologies used in experiments.

Ontology Axioms Classes Properties Unsat. Classes Unsat. Properties
A 48,186 394 855 8 8
B0 23,706 300 654 3 5
B1 32,814 304 673 6 7
B2 41,941 309 689 9 14
B3 51,056 316 702 15 29
B4 60,166 319 714 26 50
B5 69,271 321 724 32 82
B6 78,375 323 730 49 112
B7 87,468 324 736 63 162
B8 96,555 324 737 83 209
B9 105,642 324 742 132 336
B10 114,726 324 742 152 396
C 22,416 9,827 548 3,992 455

of the incoherent ontologies regarding their correctness. Thus, we were able to com-
pare the performance of the approaches regarding the actual correctness of the resulting
ontology. For the third data set, we only did a runtime evaluation.

All experiments were performed on a system with an Intel Core i7 3.4GHz with
32GB of RAM. As mentioned, for the Markov logic-based approaches, we used the
RockIt5 MAP query engine which in turn uses the ILP solver Gurobi6.

5.2 Results

Applied to the first ontology, the approaches using explanations for incoherences per-
formed similar, all of them removing the same 10 axioms from the ontology and having
similar runtimes of about 40 seconds. During the evaluation of the removed axioms, the
correctness turned out to be only at 0.4. Approach A4 run 12 seconds and removed only
6 axioms with a correctness of 0.

We examined the low correctness value and the high overlap regarding removed
axioms and discovered that it comes from the fact that the debugged ontology has one
central point of incoherence which is centered around the disjointness of organization
and educational institution classes. For instance, the class Library is a subclass of
both Organisation and Building which are marked as disjoint in the disjoint-
ness gold standard. Since the subclass axiom, which is the actual cause of the overall
problem, is contained in the base ontology, the approaches are not allowed to remove
it and try to find a minimal set of axioms mitigating the problem. Seemingly, the ap-
proaches based on explanation generation are not able to find a minimum cardinality
set of axioms to remove, in contrast to the purely Markov logic based method. The
latter however does not remove any axioms whose removal is justified according to
human assessment. During its evaluation, one disadvantage of not computing explana-
tions was discovered. Fully based on Markov logic, there is almost no possibility to

5 https://code.google.com/p/rockit/, Version 0.3.228
6 http://www.gurobi.com/, Version 5.6.0

23



reconstruct the reasons for the removal of certain axioms which makes human interven-
tion hardly possible whereas having access to explanations enables humans to better
track and understand the reasons for certain removals. In particular, this is relevant in
semi-automatized ontology debugging scenarios.

For the second data set, we manually assessed the removed axioms only for ontol-
ogy B5. Since this ontology contains more different axioms and more potential inco-
herences thanA, there are much more variations in the number of removed axioms and
their correctness than for the first ontology. The results are given in Table 2.

Table 2. Results for approaches on ontology B5

Approach Runtime # Removed axioms # correct axioms correctness
A1 12,502 54 43 0.80
A2 15,029 46 40 0.87
A3 19,006 106 73 0.67
A4 23,864 98 75 0.77

The greedy approaches performed better regarding the number of removed axioms
and the correctness. They only removed about half of the axioms the MLN-based ap-
proaches remove. This is probably caused by some axioms with lower confidence be-
ing removed by the MLN methods but again hard to track down because of the black
box characteristics of the MLN approaches. For this smaller ontology, the greedy ap-
proaches are even better with respect to the runtime. However, the MLN-only method
is more capable of handling an increasing number of axioms as shown in Figure 2.
The runtimes of the explanation-based approaches increase more significantly than the
MLN-only approach caused by the increasing number and size of explanations and the
time required for collecting them beforehand. Furthermore, the number of explanations
has a more drastic influence on approach A2 since its runtime is not linear in the number
of explanations in contrast to approach A1.

The performance advantage of the MLN-only approach was even more drastically
shown by the experiments on the third ontology. Having nearly 10,000 classes the ex-
planation generation for all incoherences was not possible in reasonable time7. Since
only approach A4 does not depend on the explanation generation, it was the only one
applicable to this dataset. With a total runtime of about 32 seconds and a total number
of removed axioms of 3,097 it showed a performance suitable for most practical use
cases, especially when considering the high number of incoherent entities in the on-
tology. This qualifies the approach especially for usage on large ontologies potentially
containing many incoherences and for cases where no human intervention is desired.
Additionally, compared to the original results of Qi et al. [16], the MLN-only approach
was able to process the whole ontology at once instead of having to add additional ax-
ioms in chunks, then checking and repairing the ontology and add another chunk of
axioms. Our approach also has a lower runtime than the one reported for the original
approach. Interestingly, we remove more axioms for reaching a coherent ontology. Both
aspects could also be influenced by the iterative addition of axioms.

7 We aborted the computation after one hour.
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Fig. 2. Runtime behavior

6 Conclusion

In this paper, we compared four approaches regarding their performance and charac-
teristics when used to repair learned ontologies. In particular, we concentrated on the
TBox of learned ontologies. Besides traditional greedy repairing approaches, we also
evaluated two approaches using Markov logic networks. The approach which did not
rely on the computation of explanations but was fully MLN-based showed promising
runtime and scalability characteristics. The main problem of approaches is the miss-
ing possibility to get further insights into the repair process since with circumventing
the explicit diagnosis of incoherences the chances for human engineers to understand
the axiom removals also decrease. This was also partly visible for the MLN-based ap-
proach which worked on the generated explanations. These discoveries seem to imply
that the results of globally optimizing strategies like employed by the MLN approaches
are harder to understand for humans than those of the more locally optimizing greedy
approaches. However, this needs further examination and discussion. Based on the ex-
periments presented here, we would choose approaches based on ontology diagnosis
for smaller ontologies and when the full process should be interactive. Approaches like
A4 seem to be qualified for larger ontologies in fully automatized scenarios.

In future work, we will integrate the most promising approaches presented here into
a data debugging system which employs learned schemas for detecting data errors.
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Abstract. Links between datasets are an essential ingredient of Linked
Open Data. Since the manual creation of links is expensive at large-scale,
link sets are often created using heuristics, which may lead to errors. In
this paper, we propose an unsupervised approach for finding erroneous
links. We represent each link as a feature vector in a higher dimen-
sional vector space, and find wrong links by means of different multi-
dimensional outlier detection methods. We show how the approach can
be implemented in the RapidMiner platform using only off-the-shelf com-
ponents, and present a first evaluation with real-world datasets from the
Linked Open Data cloud showing promising results, with an F-measure
of up to 0.54, and an area under the ROC curve of up to 0.86.

Keywords: Linked Open Data, Link Quality, Data Quality, Link Debugging,
Outlier Detection

1 Introduction

Links between datasets are an essential ingredient for Linked Open Data [6].
For reasons of scalability, such interlinks are often not created manually, but
generated (semi-)automatically by heuristics, which leads to occasional wrong
links.

There are different reasons why link sets may contain errors. The first (and
probably most frequent) reason is that the heuristic mechanism that creates
the links does not work at an accuracy of 100%. Typical heuristic approaches for
generating links combine different string metric of the entities’ labels, sometimes
combined with some filtering by type (e.g., only linking entities of type Person)
[26]. Those heuristics can work well, but are not free from errors, e.g., linking
two different persons which share the same name, or a river and a region with
the same name. Moreover, with such heuristics, there is a trade-off between
recall and precision, which leads to incorrect links. For example, [28] reports
that around 20% of the links between DBpedia and Freebase are incorrect. A
further problem is that the link generation heuristics are usually not re-created
every time one of the linked data sources changes, thus, links may be outdated,
e.g., pointing to to resources that do not exist anymore.
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Another source of errors is that entities are linked which are not exactly the
same. While in theory, entities linked by owl:sameAs should refer to the same
real-world entity, this is not often the case, e.g., when linking a description of
the company Starbucks to an actual Starbucks café. A study in 2010 has shown
that only about half of all owl:sameAs actually denote two descriptions of the
same real world entity [13].

In order to increase the quality of links between datasets, we propose an
approach which uses multi-dimensional outlier techniques for detecting wrong
links. To that end, features for each link are created, so that the link can be
described as a point in a high dimensional feature space. We use outlier detection
methods to find those links that are represented by points which are far from
the overall distribution, assuming that those points represent wrong links.

The rest of this paper is structured as follows. In section 2, we show our
approach for finding wrong links with outlier detection. In section 3, we introduce
the experimental setup we used for validating our approach, and discuss the
results. We conclude the paper with a review of related work in section 4, and
an outlook on future work in section 5.

2 Approach

For finding wrong links with outlier detection, we first represent each link as
a feature vector. Possible features are, e.g., the direct types of resources in the
linked datasets, i.e., all objects of statements that have the linked resource as a
subject and rdf:type as a predicate. A simplified example is shown in Fig. 1:
two datasets contain links between artists and music works. Instances of Song

and Album in dataset 1 are linked to instances of Music Work in dataset 2,
and instances of Artist in dataset 1 are mapped to instances of Music Artist

in dataset 2. It can be observed that in that feature space, there are relatively
dense clusters, and single outliers (such as the one dot in the upper middle, which
represents an album wrongly linked to an artist). Assuming that the majority
of links between two datasets is correct, the clusters are likely to represent the
correct links, while the singular outliers are likely to be wrong links.

Such singular outliers can be found by methods of outlier or anomaly detec-
tion [8, 15]. These methods automatically assign labels or scores to data points
which significantly deviate from the majority of data points in the overall dataset.
The outlier detection approach to be used has to be multi-dimensional, i.e., find
data points that are abnormal w.r.t. the combination of their coordinates. In
contrast, single-dimensional or univariate outlier detection methods (such as
Grubbs’ test or IQR) find suspicious data points in only one dimension, e.g.,
unusually large or small temperature values measured by a sensor. In Fig. 1, the
outlying data point would not be an outlier if only considering one dimension,
i.e., only the type in dataset 1 or the type in dataset 2.

To facilitate the detection of wrong links by outlier detection, our approach
consists of three basic steps:

1. Read a link set, and create a feature vector representation for each link
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Fig. 1. A simplified example of links being represented in a vector space. The single
dot in the upper middle quadrant represents a wrong link.

2. Perform outlier detection on the set of vectors, i.e., assign an outlier score
to each link

3. Order the links by outlier score, and store them

In a semi-automatic setting, a user would work through the list from top to
bottom until the false positive rate begins to rise above a certain limit. For fully
automatic link correction, all links with an outlier score above a threshold τ
would be regarded as outliers.

3 Experiments

To evaluate our approach, we have set up a process in the RapidMiner1 platform
for data mining, combining operators from the Linked Open Data extension [23]
and the Anomaly Detection extension [11]. The basic pipeline is shown in Fig. 2:
first, a set of links is read, e.g., from a SPARQL endpoint, and for both resources
linked, features are added to the feature vector representation using the Linked
Open Data extension. The resulting vector is then passed to an outlier detection
algorithm, which assigns outlier scores. The output is written to a file containing
pairs of resources, augmented with scores.2

1 http://www.rapidminer.com
2 A step-by-step explanation of how to set up such a process is shown at http:

//dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/

rapidminer-lod-extension-example-discovering-wrong-links-between-datasets/
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Prepare and Write Output File

Fig. 2. The implementation of our approach in the RapidMiner platform

3.1 Feature Vector Creation

We examine two different strategies of creating feature vectors:

– Using all direct types. A binary feature is created for each schema class,
which is set to true for a link if the linked resource has the class defined as
its rdf:type.

– Using all ingoing and outgoing properties. Two binary features are created for
each data and object property, which are set to true if the linked resource
is the subject resp. the object of a triple which uses the property as its
predicate.

The same feature creation technique is applied to each of the two linked re-
sources, where distinct features are created for both resources. Furthermore, we
examine the union of both feature sets.

3.2 Datasets

We evaluate our approach on two link sets between three datasets of the Linked
Open Data cloud. The three datasets are:

– DBpedia, a cross-domain dataset created from Wikipedia infoboxes [20].
– Peel Sessions, a dataset describing the John Peel Sessions at BBC, the artists

involved, and the songs performed [25].
– DBTropes, a dataset collecting information about movies, TV shows, com-

puter games, and books, among others, as well as tropes used in those [17].

For DBpedia, we use the mapping-based types and the mapping-based prop-
erties datasets of the 3.9 release3. For the Peel Sessions dataset, we use the dump

3 http://wiki.dbpedia.org/Downloads39
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Table 1. Sizes of feature vectors for the different link sets

Dataset Peel Session DBpedia DBTropes DBpedia

# Links 2,087 4,229

# Types 3 31 2 79
# Properties 4 56 18 124

available at the web site4. For the DBTropes dataset, which provides daily snap-
shots, we use a snapshot obtained on November 8th, 2013.5

Both the Peel Sessions and the DBTropes data set are linked to DBpedia. The
Peel Sessions dataset contains 2,087 owl:sameAs links to DBpedia, the DBTropes
dataset contains 4,229 owl:sameAs links to DBpedia. While the Peel Sessions
dataset is rather restricted to the type of entities it links (in particular: artists
and songs), DBTropes contains a larger variety of entities, including general
concepts such as Celtic Mythology.

Besides random links two homonymous resources (e.g., the TV series Ma-
terial Girl and the Madonna song), one typical source of errors is the linking
of instances derived from disambiguation pages (both DBpedia and DBTropes,
which is also derived from a Wiki, have such instances). A typical source of er-
rors for the Peel Session dataset is the linking of songs to albums with the same
name. Furthermore, the Peel Sessions dataset links different persons of the same
name – e.g., a blues musician named Jimmy Carter to the U.S. president.

Table 1 depicts the sizes of the feature vectors for both link sets, i.e., the
number of classes and properties used for the elements that are mapped. The
counts of DBpedia classes and properties, show that the variety of objects linked
from DBTropes is higher. Furthermore, it is noteworthy that although DBTropes
uses two classes, one of those is only used for two objects, while the remaining
4,219 instances have the class TVTItem, which is only a generic class comparable
to owl:Thing. The properties used in the dataset are similarly generic.

For our experiment, we have randomly sampled 100 links from both link sets,
and manually evaluated them for correctness, thus creating small partial gold
standards. From the Peel Session link set, 90 out of the 100 links are correct, for
the DBTropes link set, 76 out of the 100 links are correct. For the gold standard,
we use a strict definition of owl:sameAs, e.g., a book and its protagonist are not
considered the same, neither are a book and a movie based on that book.

3.3 Outlier Detection Methods

To detect outliers, we compare six different multi-dimensional outlier detection
methods. For all outlier detection methods, we use the implementation in the
RapidMiner Anomaly Detection extension, and used the default parameters un-
less specified otherwise.

– The k-NN global anomaly score (GAS) is the average distance to the k near-
est neighbors [5], following the intuition that outliers are located in rather

4 http://dbtune.org/bbc/peel/, downloaded on November 6th, 2013
5 http://skipforward.opendfki.de/wiki/DBTropes
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sparsely populated areas of the vector space (cf. Fig. 1). Since values for k
between 10 and 50 are recommended [11], we compute a GAS with k = 10,
k = 25, and k = 50.

– The Local Outlier Factor (LOF) is computed from the density of data points
around the point under inspection, which in turn is computed from the
distances to the k nearest neighbors [7]. Since the algorithm allows the setting
of a minimum and a maximum k, we use kmin = 10 and kmax = 50 following
the recommendation above.

– The Local Outlier Probability (LoOP) follows a similar idea as LOF, but maps
the outlier scores to probabilities in a [0; 1] interval (the scores assigned by
other methods are usually unbound) [19]. Like for GAS, we compute LoOP
with k = 10, k = 25, and k = 50.

– The Cluster-based Local Outlier Factor (CBLOF) uses the output of a clus-
tering algorithm. It follows the intuition that outliers are located outside of
larger clusters, and thus assigns an outlier score based on the size of the
cluster in which a data point is located, and the distance to the next large
cluster [14]. According to the recommendation in [11], we set the α value to
the expected percentage of correct instances, i.e., 0.90 for the Peel dataset,
and 0.76 for the DBtropes dataset.6 As a clustering algorithm, we use the
X-means algorithm, which restarts k-means with different values for k, in or-
der to find an optimal one [24]. For the X-means clustering, we set kmin = 2
and kmax = 60.

– The Local Density Cluster-based Outlier Factor (LDCOF) works similar to
CBLOF, but also takes the local density of the cluster into account [3]. We
again use it together with X-means in the same configuration as above.

– One-Class Support Vector Machines aim at training a support vector ma-
chine covering only positive examples, so that the majority of data points is
separated from the rest. In our experiment, we use one-class SVMs with a
robust kernel defined particularly for outlier detection [4].

Most of the above methods (including the clustering algorithm) require the def-
inition of a distance function. Here, we use cosine similarity, since we want two
links to be more similar if they share a feature (both are of type Person), but
not if they share the absence of a feature (e.g., both are not of type City). In
contrast, other distance functions, such as Euclidean distance, would weigh the
shared presence and absence of a feature equally.

3.4 Results

We have tested each of the above outlier detection methods with three different
feature groups – direct types, properties, and the combination of both – on both
datasets, performing a total of 60 runs of the approach. The results are depicted
in table 2. We report the area under the ROC curve (AUC), the best F1-measure

6 Strictly speaking, setting these values according to observations on a labeled sample
of the data makes the approach using CBLOF no longer fully supervised.
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Table 2. Results on both datasets using different feature sets and methods. For each
dataset, the top three AUC and F-measure values are marked in bold.

Dataset Peel DBTropes

Features / Method AUC F1 τ total AUC F1 τ total

types
GAS (k=10) 0.353 0.185 1.414 2,049 0.404 0.390 0.000 4,088
GAS (k=25) 0.341 0.182 0.476 2,071 0.424 0.390 0.000 4,009
GAS (k=50) 0.341 0.182 0.478 2,071 0.422 0.390 0.000 3,943
LOF 0.753 0.454 0.953 1,843 0.619 0.500 1.084 3,025
LoOP (k=10) 0.749 0.454 0.311 1,834 0.413 0.412 0.000 1,636
LoOP (k=25) 0.803 0.500 0.378 1,181 0.581 0.488 0.143 2,978
LoOP (k=50) 0.803 0.500 0.378 1,181 0.581 0.488 0.920 2,969
CBLOF 0.754 0.537 245.423 1,051 0.413 0.404 0.000 1,498
LDCOF 0.696 0.432 0.953 1,352 0.410 0.404 0.000 1,498
1-class SVM 0.857 0.471 2.689 1,514 0.456 0.421 3.712 1,795

properties
GAS (k=10) 0.341 0.182 0.955 2,059 0.411 0.387 0.000 786
GAS (k=25) 0.344 0.182 0.969 2,046 0.405 0.387 0.000 563
GAS (k=50) 0.381 0.182 0.000 663 0.391 0.387 0.000 461
LOF 0.516 0.217 1.102 1,225 0.529 0.424 0.984 1,006
LoOP (k=10) 0.364 0.222 0.156 1,810 0.510 0.425 0.076 2,037
LoOP (k=25) 0.438 0.250 0.706 1,992 0.422 0.387 0.000 1,060
LoOP (k=50) 0.452 0.235 0.531 1,966 0.489 0.411 0.000 1,012
CBLOF 0.402 0.189 68.426 426 0.496 0.400 197.739 254
LDCOF 0.516 0.208 1.013 1,509 0.428 0.390 0.619 276
1-class SVM 0.360 0.189 2.000 426 0.378 0.387 2.000 200

all
GAS (k=10) 0.331 0.200 0.553 1,942 0.412 0.387 0.000 785
GAS (k=25) 0.349 0.200 0.591 1,927 0.407 0.387 0.000 562
GAS (k=50) 0.440 0.222 0.520 1,529 0.390 0.387 0.000 460
LOF 0.638 0.280 1.105 1,002 0.481 0.400 1.010 567
LoOP (k=10) 0.454 0.333 0.802 2,063 0.547 0.420 0.064 1,881
LoOP (k=25) 0.430 0.250 0.478 2,004 0.445 0.388 0.000 1,065
LoOP (k=50) 0.378 0.235 0.473 1,980 0.502 0.420 0.008 1,253
CBLOF 0.313 0.189 25.302 235 0.366 0.403 223.036 240
LDCOF 0.530 0.250 1.326 1,876 0.467 0.390 0.632 272
1-class SVM 0.303 0.180 2.000 237 0.353 0.387 2.000 199

that can be achieved, the threshold τ that has to be set on the outlier score in
order to achieve that F1-measure, and the total number of outliers that are
identified at that threshold.

Multiple observations can be made from the table. First, in particular in
terms of AUC, the results on the Peel dataset are much better than those on the
DBTropes dataset. There are two main reasons for that: on the one hand, the
schema used in the Peel dataset is more fine-grained than that of the DBTropes
dataset, where the latter essentially has only major class, which is TVTItem.
Second, with around 24%, the fraction of outliers on the DBTropes dataset
is rather large, and larger than the amount of outliers many outlier detection
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methods are built for. This can be observed very well on the results for the 1-class
SVM method, which reaches the best AUC on the Peel dataset, but performs
only average on the DBTropes dataset.

Second, using only the type features works best, and the results do not im-
prove when combining both feature sets. As shown in table 1, the number of
features created from direct types is much smaller than that created from rela-
tions, i.e., the outlier detection problem to be solved has a much lower dimen-
sionality. A large number of dimensions, however, is a problem for many outlier
detection methods, in particular those based on nearest neighbor methods. The
combination of type features and LoOP yields good results, with an AUC of
0.803 and 0.581, respectively, while the optimal results are achieved by the 1-
class SVM (AUC=0.857) and CBLOF (F1=0.537) on the Peel dataset, and by
LOF (AUC=0.619, F1=0.5) on the DBTropes dataset. The absolute numbers of
identified outliers for the optimal F1 show that in those cases, the F1 is opti-
mized mainly because of a high recall value, flagging up to three quarters of all
links as outliers. This shows that selecting an optimal configuration is difficult.

In order to obtain a more fine-grained picture of the differences between the
approaches, figures 3 and 4 show the ROC curves of all approaches, using only
type features. It shows that in particular the LoOP approaches show very good
results on both datasets. The steep ascend of the respective ROC curves show
that there are five actually wrong links among the top 10 identified outliers.

The approach runs very fast in most cases. While the creation of feature
vectors strongly depends on the data access method (e.g., working with a public
SPARQL endpoint over the internet is much slower than using a local dump),
the outlier detection itself takes less than 10 seconds on both datasets for all the
methods used in our experiments. The only exceptions are the clustering-based
methods, where the clustering can take up to 30 seconds, and most dominantly
the One-Class SVM method, which can take up to 15 minutes.

4 Related Work

In this paper, we have analyzed the use of multi-dimensional outlier detection
for finding erroneous links. This work is orthogonal to the approach sketched in
[27], where we use outlier detection in a one-dimensional setting to find wrong
numeric literals in DBpedia.

While a larger body of work is concerned with automatically creating links,
there are not too many approaches that try to automatically find errors in links
between datasets. Moreover, most approaches discussed so far assume some prior
knowledge about the datasets, e.g., links on the schema level.

[12] use a set of five network metrics, such as degree and centrality, to predict
typical properties of nodes in two interlinked datasets, as well as try to find
wrongly linked resources. They report a recall of 0.68 and a precision of 0.49
(although on a different dataset), i.e., a result quality comparable to the approach
discussed in this paper. In [9], links between more than two datasets are exploited
to find the set of owl:sameAs that minimize the contradictions. The authors
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Fig. 3. ROC curve of the results on the Peel dataset, using only type features. The
three curves for GAS are mostly identical; so are LoOP for k = 25 and k = 50.

show that they are capable of identifying a significant amount of contradictions,
however, they do not state the precision of their approach. A similar problem
is addressed in [10], where the authors aim at finding the most coherent set of
links from a set of possible link candidates.

An approach using statistical distributions of properties, such as average de-
grees, is discussed in [16]. Like our approach, the authors compute confidence
scores for owl:sameAs links. However, there is a fundamental difference: the
authors expect the same schema to be used by both linked resources. In con-
trast, our approach can cope with entities using different schemas. The two link
sets used in this paper could not have been processed with such an approach
expecting the same schema for both linked datasets.

The Databugger framework allows for finding typical patterns of wrong and/or
incomplete data, formulated as SPARQL queries [18]. The key difference is that,
while Databugger relies on schema information (e.g., owl:equivalentClass def-
initions), our approach is agnostic with respect to the schemas used in the
datasets at hand. In [1], a crowd sourcing approach is introduced for evalu-
ating the quality of interlinks between datasets. While a considerable precision
of 0.94 is achieved using majority voting over Amazon MTurk tasks, the results
are not directly comparable, since the approach discussed in this paper works
fully automatically and unsupervised, while the authors exploit the wisdom of
the crowd. In [2], an approach is discussed for assessing the completeness of link
sets, based on manually defined schema mappings. This is complementary to our
work, which is concerned with correctness, not completeness.

The approaches in this paper focus on debugging link sets between individu-
als, i.e., links on the A-box level. A related problem is the debugging of schema
mappings, i.e., links on the T-box level. Here, reasoning based approaches are
frequently used [21]. While reasoning would also be a possible approach for A-box
level link set debugging, the problems here are scalability and missing expressiv-
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Fig. 4. ROC curve of the results on the DBTropes dataset, using only type features.
The curves for GAS k = 25 and k = 50 are mostly identical; so are the curves for LoOP
with k = 25 and k = 50, and the curves for CBLOF and LDCOF.

ity of the schemas used for Linked Open Data, and the A-box data often being
too noisy for reasoning to yield useful results [22].

5 Conclusion and Outlook

In this paper, we have presented an approach for finding wrong links between
datasets, which uses multi-dimensional outlier detection techniques. An evalua-
tion on two datasets has shown promising results, with an area under the ROC
curve up to 0.86 (i.e., wrong links get lower scores than correct links with a
probability of 86%), and an F-measure up to 0.54. The approach is scalable, as
it processes link sets between real datasets from the LOD cloud in a few seconds
to a few minutes, depending on the configuration used.

Although the datasets used for evaluation only use owl:sameAs links, it can
be applied to all sorts of datasets interlinks, the approach is not limited to a
particular type of links. It may also be used, e.g., on a dataset of persons linked
to a dataset of locations using foaf:basedNear links, or even for finding wrong
instantiations of any property within a single dataset.

Given the amount of work that has been done in supervised or active learning
of dataset interlinks, a link validation method such as the one introduced in this
paper could be an interesting counterpart to be used in such learning systems.
Given that the features used for learning and for validating the links are different,
our method could provide a direct feedback loop for refining the learned links.

In essence, there are two basic degrees of freedom in our approach: the strat-
egy for creating feature vectors, and the outlier detection algorithm (and its
parametrization). With respect to feature vectors, we have experimented with
direct types and properties so far. A further option are qualified relations, as
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discussed in [23], which, however, may impose scalability issues. Network mea-
sures, as discussed in some related works, are an interesting option for generating
possible features, and domain or dataset specific features, such as Wikipedia cat-
egories for DBpedia, may also be csonidered. Furthermore, since many outlier
detection algorithms experience problems in higher dimensional spaces, applying
feature selection might be a useful preprocessing step, which, however, has to be
taken with great care, since particularly in our setting, the very sparse features
(which are likely to be eliminated by many feature selection approaches) are
often those which are well suited for finding outliers.

As far as the selection of outlier detection methods is concerned, we have
observed some trends, in particular that Local Outlier Factor, Local Outlier
Probabilities, and 1-class SVMs perform quite well, however, especially the latter
two need to be carefully parametrized. Since many automatic parameter tuning
methods rely on a supervised rather than an unsupervised setting, it might be
an interesting option to wrap our approach in a semi-supervised setting, using
a small set of labeled links for automatic parameter tuning.
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Lehmann, and Roland Cornelissen. Test-driven evaluation of linked data quality.
2014.
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Abstract. Sequential diagnosis methods compute a series of queries for discrim-
inating between diagnoses. Queries are answered by some oracle such that even-
tually the set of faults is identified. The computation of queries is based on the
generation of a set of most probable diagnoses. However, in diagnosis problem
instances where the number of minimal diagnoses and their cardinality is high,
even the generation of a set of minimum cardinality diagnoses is unfeasible with
the standard conflict-based approach. In this paper we propose to base sequential
diagnosis on the computation of some set of minimal diagnoses using the direct
diagnosis method, which requires less consistency checks to find a minimal diag-
nosis than the standard approach. We study the application of this direct method
to high cardinality faults in ontologies. In particular, our evaluation shows that
the direct method results in almost the same number of queries for cases when
the standard approach is applicable. However, for the cases when the standard ap-
proach is not applicable, sequential diagnosis based on the direct method is able
to locate the faults correctly.

1 Introduction

Standard sequential model-based diagnosis (MBD) methods [18, 15] acquire additional
information in order to discriminate between diagnoses. Queries are generated and an-
swered either by automatic probing or by asking humans for additional observations
about the system to be diagnosed. As various applications show, the standard meth-
ods work very satisfactorily for cases where the number of faults is low (single digit
number), consistency checking is fast (single digit number of seconds), and sufficient
possibilities for observations are available for discriminating between diagnoses.

MBD is a general method which can be used to find errors in hardware, software,
knowledge-bases, orchestrated web-services, configurations, etc. In particular, OWL
ontology debugging tools [14, 7, 10] can localize a (potential) fault by computing sets
of axiomsD ⊆ O called diagnosis for an ontologyO. At least all axioms of a diagnosis
must be modified or deleted in order to formulate a fault-free ontologyO∗. The latter is
faulty if some requirements, such as consistency of O, presence or absence of specific
entailments, are violated.

All the discrimination and diagnosis approaches listed above follow the standard
MBD technique [18] and compute diagnoses using minimal conflict sets, i.e. irreducible
sets of axioms CS ⊆ O that violate some requirements, by using a consistency checker
(black-box approach). Furthermore, diagnoses are ordered and filtered by some pref-
erence criteria, e.g. probability or cardinality, in order to focus debugging on the most
likely cases.
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In the common ontology development scenario where a user develops an ontology
manually, the changes between validation steps, e.g. consistency checking, are rather
small. Therefore, the number of faulty axioms is in a range where standard sequen-
tial MBD methods are applicable [20]. However, there are cases when the changes are
substantial. For example, in ontology matching two ontologies with several thousands
of axioms are merged into a single one. High quality matchers (e.g. [12]) require the
diagnosis of such merged ontologies, but often cannot apply standard MBD methods
because of the large number of minimum cardinality diagnoses and their high cardinal-
ity (e.g. greater than 20). This observation is supported by analysis of justifications [11],
which is a dual problem to computation of diagnoses. Moreover, most of the diagnostic
problems are NP-complete even if reasoning is done in polytime [4, 17].

In order to deal with hard diagnosis instances, we propose to relax the require-
ment for sequential diagnosis to compute a set of preferred diagnoses, such as a set of
most probable diagnoses. Instead, we compute some set of diagnoses which can be em-
ployed for query generation. This allows to use the direct computation of diagnoses [19]
without computing conflict sets. The direct approach was applied for non-interactive di-
agnosis of ontologies [3, 2] and constraints [6]. The computation of a diagnosis D by
a variant of QUICKXPLAIN [13] requires O(|D| log( |O||D| )) consistency checks, where
|D| is the cardinality of the diagnosis and |O| the size of the knowledge base. If m
diagnoses are required for query generation, then only m calls to a direct diagnosis
generator are needed. A recent approach [21] does not generate the standard HS-TREE,
but still depends on the minimization of conflict sets, i.e. |D| minimized conflicts have
to be discovered. Consequently, if |D| � m, substantially more consistency checks are
required.

Since we are replacing the set of most probable diagnoses by just a set of diagnoses,
some important practical questions have to be addressed. (1) Is a substantial number
of additional queries needed, (2) is this approach able to locate the faults, and (3) how
efficient is this approach?

In order to answer these questions we have exploited the most difficult diagnoses
problems of the ontology alignment competition [5]. Our evaluation shows that sequen-
tial diagnosis by direct diagnosis generation needs approximately the same number of
queries (±1) in order to identify the faults. This evaluation was carried out for cases
where the standard sequential diagnosis method was applicable. Furthermore, the eval-
uation shows that our proposed direct method is capable of locating faults in all cases
correctly. Moreover, for the hardest instance the computation costs which are introduced
in addition to the computational costs of theorem proving are less than 7%.

The remainder of the paper is organized as follows: Section 2 gives a brief introduc-
tion to the main notions of sequential ontology diagnosis. The details of the suggested
algorithms and their applications are presented in Section 3. In Section 4 we provide
evaluation results.

2 Basic concepts

In the following we present (1) the fundamental concepts regarding the diagnosis of
ontologies and (2) the interactive localization of axioms that must be changed.
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Diagnosis of ontologies. Given an ontology O which is a set of logical sentences (ax-
ioms), the user can specify particular requirements during the knowledge-engineering
process. The most basic requirement is consistency, i.e. a logical model exists. A further
frequently employed requirement is coherence. In addition, as it is common practice in
software engineering, the knowledge-engineer (user for short) may specify test cases,
which are axioms which must (not) be entailed by a valid ontology.

Given a set of axioms P (positive test cases) and a set of axioms N (negative test
cases), an ontology O∗ is valid iff O∗ is consistent (and coherent if required) and

1. O∗ |= p for all p ∈ P
2. O∗ 6|= n for all n ∈ N

Let us assume that there is a non-valid ontology O, then a set of axioms D ⊆
O must be removed and possibly some axioms EX must be added by a user s.t. an
updated O∗ becomes valid, i.e. O∗ := (O \ D) ∪ EX . The goal of diagnosis is to
provide information which sets of axioms D should be revised in order to formulate a
valid ontology. Furthermore, we allow the user to define a set of axioms B (called the
background theory) which must not be changed (i.e. the correct axioms).

Definition 1. Let 〈O,B, P,N〉 be a diagnosis problem instance (DPI) where O is a
ontology, B a background theory, P a set of axioms which must be implied by a valid
ontology O∗, and N a set of axioms which must not be implied by O∗.

A set of axioms D ⊆ O is a candidate diagnosis iff the set of axioms O \ D can be
extended by a set of logical sentences EX such that:

1. (O \ D) ∪ B ∪ EX is consistent (and coherent if required)
2. (O \ D) ∪ B ∪ EX |= p for all p ∈ P
3. (O \ D) ∪ B ∪ EX 6|= n for all n ∈ N

D is a diagnosis iff there is no D′ ⊂ D such that D′ is a candidate diagnosis. D is a
minimum cardinality diagnosis iff there is no diagnosis D′ such that |D′| < |D|.

The following proposition of [20] characterizes diagnoses by replacing EX with the
positive test cases.

Corollary 1. Given a DPI 〈O,B, P,N〉, a set of axioms D ⊆ O is a diagnosis iff (O \
D)∪B∪{

∧
p∈P p} is consistent (coherent) and ∀n ∈ N : (O\D)∪B∪{

∧
p∈P p} 6|= n

In the following we assume that there is always a diagnosis.

Proposition 1. A diagnosis D for a DPI 〈O,B, P,N〉 exists iff B ∪ {
∧

p∈P p} is
consistent (coherent) and ∀n ∈ N : B ∪ {

∧
p∈P p} 6|= n

For the computation of diagnoses conflict sets are usually employed to constrain
the search space. A conflict set is the part of the ontology that preserves the inconsis-
tency/incoherency.

Definition 2. Given a DPI 〈O,B, P,N〉, a set of axioms CS ⊆ O is a conflict set iff
CS ∪ B ∪ {

∧
p∈P p} is inconsistent (incoherent) or there is an n ∈ N s.t. CS ∪ B ∪

{
∧

p∈P p} |= n. CS is a minimal conflict set iff there is no CS′ ⊂ CS such that CS′ is
a conflict set.
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Minimal conflict sets can be used to compute the set of diagnoses as it is shown
in [18]. The idea is that each diagnosis should include at least one element of each
minimal conflict set.

Proposition 2. D is a diagnosis for the DPI 〈O,B, P,N〉 iff D is a minimal hitting set
for the set of all minimal conflict sets of the DPI.

Generation of a minimal conflict set is done by specific algorithms such as the
divide-and-conquer method QUICKXPLAIN (QX) [13]. In the worst case, QX requires
O(|CS| log( |O||CS| )) calls to the reasoner, where CS is the returned minimal conflict set.

The computation of diagnoses in ontology debugging systems is implemented using
Reiter’s Hitting Set HS-TREE algorithm [18]. The algorithm constructs a directed tree
from the root to the leaves, where each non-leave node is labeled with a minimal conflict
set and leave nodes are labeled by X (no conflicts) or × (pruned).

Each (X) node corresponds to a diagnosis. The subset minimality of the diagnoses
is guaranteed by the minimality of conflict sets used for labeling the nodes, the pruning
rule and the breadth-first strategy for tree generation [18]. Moreover, because of the
breadth-first strategy the diagnoses are generated in increasing order of their cardinality.
Under the assumption that diagnoses with lower cardinality are more probable than
those with higher cardinality, HS-TREE generates most probable diagnoses first.
Diagnoses discrimination. For many real-world DPIs, an ontology debugger can return
a large number of diagnoses. Each diagnosis corresponds to a different set of axioms
that must be changed in order to formulate a valid ontology. The user may extend the test
cases P and N s.t. diagnoses are eliminated, thus identifying exactly those axioms that
must be changed. That is, we assume that the user (oracle) is equipped with sufficient
knowledge about the valid ontologyO∗ such that axiomQ can be classified either as en-
tailed byO∗ or not. If a user finds that Q must be entailed byO∗, then it is added to the
set P yielding the new DPI 〈O,B, P ∪ {Q} , N〉, and to N , i.e. 〈O,B, P,N ∪ {Q}〉,
otherwise. According to Definition 1, any diagnosis of the original DPI is not a diagno-
sis of an updated DPI if it violates any of its test cases. Moreover, in case Q ∈ O, each
diagnosis of an updated DPI must comprise Q if Q ∈ N and not comprise Q if Q ∈ P .

Property 1. Given set of diagnoses D for a DPI 〈O,B, P,N〉 and an axiom Q rep-
resenting the oracle query O∗ |= Q . If the oracle gives the answer yes then every
diagnosis Di ∈ D is a diagnosis for 〈O,B, P ∪ {Q}, N〉 iff both conditions hold:

(O \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} is consistent (coherent)

∀n ∈ N : (O \ Di) ∪ B ∪ {
∧
p∈P

p} ∪ {Q} 6|= n

If the oracle gives the answer no then every diagnosis Di ∈ D is a diagnosis for
〈O,B, P,N ∪ {Q}〉 iff both conditions hold:

(O \ Di) ∪ B ∪ {
∧
p∈P

p} is consistent (coherent)

∀n ∈ (N ∪ {Q}) : (O \ Di) ∪ B ∪ {
∧
p∈P

p} 6|= n
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However, many different queries might exist for some set of diagnoses |D| > 2,
in the extreme case exponentially many (in |D|). To select the best query, the authors
in [20] suggest two query selection strategies: SPLIT-IN-HALF (SPL) and ENTROPY
(ENT). The first strategy is a greedy approach preferring queries which allow to remove
half of the diagnoses in D, for both answers to the query. The second is an information-
theoretic measure, which estimates the information gain for both outcomes of each
query and returns the query that maximizes the expected information gain. The prior
fault probabilities required for evaluating the ENTROPY measure can be obtained from
statistics of previous diagnosis sessions. For instance, if the user has problems to apply
“∃”, then the diagnosis logs are likely to contain more repairs of axioms including this
quantifier. Consequently, the prior fault probabilities of axioms including “∃” should be
higher. Given the fault probabilities of axioms, one can calculate prior fault probabilities
of diagnoses as well as evaluate ENTROPY (see [20] for more details). The queries
for both strategies are constructed by exploiting so called classification and realization
services provided by description logic reasoners. Given a ontology O the classification
generates the subsumption hierarchy, i.e. the entailments O |= A v B, where B is the
most specific concept that subsumesA. Realization computes, for each individual name
t occurring in an ontology O, a set of most specific concepts A s.t. O |= A(t) (see [1]
for details).

Due to the number of diagnoses and the complexity of diagnosis computation, not
all diagnoses are exploited for generating queries but a set of (most probable) diagnoses
of size less or equal to some (small) predefined number m [20]. We call this set the
leading diagnoses and denote it by D from now on. The set of leading diagnoses D
acts as a representative of the set of all diagnoses.

The standard sequential ontology debugging process can be sketched as follows. As
input a DPI and some meta information, i.e. prior fault estimates F , a query selection
strategy sQ (SPL or ENT) and a stop criterion σ, are given. As output a diagnosis is
returned that has a posterior probability of at least 1 − σ. For sufficiently small σ this
means that the returned diagnosis is highly probable whereas all other leading diagnoses
are highly improbable.

1. Using QX and HS-TREE (re-)calculate a set of leading diagnoses D of cardinality
min(m, a), where a is the number of all diagnoses for the DPI andm is the number
of leading diagnoses predefined by a user.

2. Use the prior fault probabilities F and the already specified test cases to compute
(posterior) probabilities of diagnoses in D by the Bayesian Rule (cf. [20]).

3. If some diagnosis D ∈ D has probability greater or equal to 1 − σ or the user
accepts D as the axioms to be changed then stop and return D.

4. Use D to generate a set of queries and select the best query Q according to sQ.
5. Ask the user O∗ |= Q and, depending on the answer, add Q either to P or to N .
6. Remove elements from D violating the newly acquired test case.
7. Repeat at Step 1.

3 Interactive Direct Diagnosis of Ontologies

The novelty of our approach is the interactivity combined with the direct calculation
of diagnoses. To this end, we provide modifications to Step 1 of the diagnosis process
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given above. Namely, we utilize an “inverse” version of the QX algorithm [13] called
INV-QX and an associated “inverse” version of HS-TREE termed INV-HS-TREE.

This combination of algorithms was first used in the earlier version of [6]. However,
we introduced two modifications: (i) a depth-first search strategy instead of breadth-first
and (ii) a new pruning rule which moves axioms from O to B instead of just removing
them from O, since not adding them to B might result in losing some of the diagnoses.
INV-QX – Key Idea. INV-QX relies on the monotonic semantics of the used knowl-
edge representation language. The algorithm takes a DPI 〈O,B, P,N〉 and a ranking
heuristic as input and outputs either one diagnosis or no-diagnosis-exists. The ranking
heuristic assigns a fault probability to each axiom in O, if this information is available;
otherwise every axiom has the same rank. In the first step INV-QX verifies if a diag-
nosis exists, next whether O is faulty and, if so, sorts all axioms in descending order.
Ordering of axioms according to their fault probabilities allows the algorithm to com-
pute an approximation of a most probable diagnosis. Next, INV-QX enters the recursion
in which O is partitioned into two subsets S1 and S2 such that S1 comprises axioms
with higher fault probabilities and S2 with lower. In our implementation O is split in
half. Then the algorithm verifies whether S1 is a candidate diagnosis of the input DPI
according to Definition 1. The algorithm continues to operate in a divide-and-conquer
strategy until a diagnosis is found. INV-QX requiresO(|D| log( |O||D| )) calls to a reasoner
to find a diagnosis D.

INV-QX is a deterministic algorithm. In order to obtain a different next diagnosis,
the DPI used as input for INV-QX must be modified accordingly. To this end we employ
INV-HS-TREE.
INV-HS-TREE – Construction. The algorithm is inverse to the HS-TREE algorithm
in the sense that nodes are now labeled by diagnoses (instead of minimal conflict sets)
and a path from the root to an open node is a partial conflict set (instead of a partial
diagnosis). The algorithm constructs a directed tree from the root to the leaves, where
each node nd is labeled either with a diagnosis D or × (pruned) which indicates that
the node is closed. For each s ∈ D there is an outgoing edge labeled by s. Let H(nd)
be the set of edge labels on the path from the root to the node nd. Initially the algorithm
generates an empty root node and adds it to a LIFO-queue, thereby implementing a
depth-first search strategy. Until the required number m of diagnoses is reached or the
queue is empty, the algorithm removes the first node nd from the queue and labels the
node by applying the following steps.

1. (reuse): if D ∩H(nd) = ∅ for some D ∈ D, then label the node with D; add for
each s ∈ D a node to the LIFO-queue and return

2. Call INV-QX(O \H(nd),B ∪H(nd), P,N) = V alue
3. (prune): if V alue = no-diagnosis-exists, then label the node with × (see Proposi-

tion 1) and return
4. (assign): Otherwise V alue is a diagnosis, label the node with D = V alue; add D

to D and add for each s ∈ D a node to the LIFO-queue.

Reuse of known diagnoses in Step 1 and the addition of H(nd) to the background the-
ory B in Step 2 allows the algorithm to force INV-QX to search for a diagnosis that is
different to all diagnoses in D. In case INV-QX returns no-diagnosis-exists the node
is pruned. Otherwise, a new diagnosis D is added to the set D and is used to label the
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node. The depth-first search strategy maintains only a set of diagnoses comprising at
most m elements. No conflicts are stored. This allows a significant reduction of mem-
ory usage by INV-HS-TREE compared to HS-TREE. The worst case space complexity
of INV-HS-TREE computing m diagnoses is linear and amounts to O(m), whereas the
worst case space complexity of HS-TREE is O(|CSmax|d) where |CSmax| is the max-
imal cardinality minimal conflict set (i.e. there is no minimal conflict set with larger
cardinality) and d is the depth were m diagnoses have been generated w.r.t. a DPI.

The disadvantage of INV-HS-TREE is that it cannot guarantee the computation of
diagnoses in a special order, e.g. minimum cardinality or maximum probability first.
INV-HS-TREE – Update Procedure for Interactivity. Since paths in INV-HS-TREE
are (1) irrelevant and need not be maintained, and (2) only a small (linear) number
of nodes/paths is in memory due to the application of a depth-first search, the update
procedure after a query Q has been answered involves a reconstruction of the tree. In
particular, by answering Q, m− k of (maximally) m leading diagnoses are invalidated
and deleted from memory. The k still valid diagnoses are used to build a new tree. To
this end, the root is labeled by any of these k diagnoses and a tree is constructed as
described above where the k diagnoses are incorporated for the reuse check. Note, the
recalculation of a diagnosis that has been invalidated by a query is impossible as in
subsequent iterations a new DPI is considered which includes the answered query as a
test case.
Example. Consider a DPI with O = {ax 1 : C v A ax 2 : C v E ax 3 :
A v ¬(C t ¬B) ax 4 : B v C ax 5 : B v ¬D} the background knowledge
B = {A(v), B(w), C(s)}, one positive P = {D(v)} and one negative N = {E(w)}
test case. For the sample DPI the set of minimal conflict sets comprises four elements
{CS1 : 〈ax 1, ax 3〉 , CS2 : 〈ax 2, ax 4〉 , CS3 : 〈ax 3, ax 5〉 , CS4 : 〈ax 3, ax 4〉}, as
well as the set of diagnoses {D1 : [ax 2, ax 3] , D2 : [ax 3, ax 4] , D3 : [ax 1, ax 4, ax 5]}.
Assume also that the number of leading diagnoses required for query generation is set
to m = 2. Applied to the sample DPI, INV-HS-TREE computes a diagnosis D1 :=
[ax 2, ax 3] returned by INV-QX(O,B, P,N) to label the root node, see Figure 1. Next,
it generates one successor node that is linked with the root by an edge labeled with
ax 2. For this node INV-QX(O \ {ax 2} ,B ∪ {ax 2} , P,N) yields a diagnosis D2 :=
[ax 3, ax 4] disjoint with {ax 2}. Now |D| = 2 and a query is generated and answered
as in Figure 1. Adding C(w) to the negative test cases invalidates D1 because of
ax 4 ∈ (O \ D1) and B(w) ∈ B, that is (O \ D1) ∪ B ∪ {

∧
p∈P p} |= C(w). In

the course of the update, D1 is deleted and D2 used as the root of a new tree. An edge
labeled with ax3 is created and diagnosis D3 := [ax 1, ax 4, ax 5] is generated. After the
answer to the second query is added to the positive test cases, D3 is invalidated and all
outgoing edge labels ax 3, ax 4 of the root D2 of the new tree are conflict sets for the
current DPI 〈O,B, {D(v), A v C} , {E(w), C(w)}〉, i.e. all leaf nodes are labeled by
× and the tree construction is complete. So, D2 is returned as its probability is 1.

4 Evaluation

We evaluated our approach DIR (based on INV-QX and INV-HS-TREE) versus the
standard technique STD [20] (based on QX and HS-TREE) using a set of ontologies
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[ax3, ax4]

[ax2, ax3]
ax2

��

〉 D:
D1 = [ax2, ax3]
D2 = [ax3, ax4]
Query: C(w)
Answer: no

〉
[ax1, ax4, ax5]

[ax3, ax4]

ax3��

〉 D:
D2 = [ax3, ax4]
D3 = [ax1, ax4, ax5]
Query: A v C
Answer: yes

→ No further minimal diagnoses, return [ax3, ax4]

Fig. 1. Identification of the target diagnosis [ax3, ax4] using interactive direct diagnosis.

created by automatic matching systems. Given two ontologies Oi and Oj , a matching
system outputs an alignmentMij which is a set of mappings (correspondences) between
semantically related entities ofOi andOj . LetE(O) denote the set of all elements ofO
for which mappings can be produced, i.e. names of concepts. Each mapping is a tuple
〈xi, xj , r, v〉, where xi ∈ E(Oi), xj ∈ E(Oj) and xi, xj are either two concepts or
two roles, r ∈ {v,≡,w} and v ∈ [0, 1] is a confidence value. The latter expresses the
probability of a mapping to be correct. Each 〈xi, xj , r, v〉 ∈ Mij can be translated to
the axiom of the form xi r xj . Let O(Mij) be the set of axioms for the alignment Mij ,
then the result of the matching process is an aligned ontologyOij = Oi∪O(Mij)∪Oj .
The ontologies considered in this section were created by ontology matching systems
participating in the Ontology Alignment Evaluation Initiative (OAEI) 2011 [5]. Each
matching experiment in the framework of OAEI represents a scenario in which a user
obtains an alignment Mij by means of some (semi)automatic tool for two real-world
ontologies Oi and Oj .

The goal of the first experiment was to compare the performance of sequential STD
and sequential DIR on a set of large, but diagnostically uncomplicated ontologies, gen-
erated for the Anatomy experiment of OAEI1. In this experiment the matching systems
had to find mappings between two ontologies describing the human and the mouse
anatomy. O1 (Human) and O2 (Mouse) include 11545 and 4838 axioms respectively,
whereas the size of the alignment M12 produced by different matchers varies between
1147 and 1461 mappings. Seven matching systems produced a consistent but incoher-
ent output. One system generated a consistent and coherent aligned ontology. However,
this system employes a built-in heuristic diagnosis engine which does not guarantee to
produce diagnoses. I.e. some axioms are removed without reason. Four systems pro-
duced ontologies which could not be processed by current reasoning systems (e.g. Her-
miT [16]) since consistency of these ontologies could not be checked within 2 hours.

For testing the performance of our system we have to define the correct output of
sequential diagnosis which we call the target diagnosis Dt. We assume that the only
available knowledge is Mij together with Oi and Oj . In order to measure the perfor-
mance of the matching systems the organizers of OAEI provided a golden standard
alignment Mt considered as correct. Similarly to OAEI evaluation, in our experiments
Mt was unavailable explicitly, e.g. in form of test cases, during a debugging session,
just as none of matching systems has any knowledge of Mt during the competition.
However, we assumed that an oracle answers debugging queries using its knowledge

1 All ontologies and source code of programs used in the evaluation can be downloaded from
http://code.google.com/p/rmbd/wiki/DirectDiagnosis. The tests were performed on Core i7,
64GB RAM running Ubuntu, Java 7 and HermiT as DL reasoner.
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of Mt. Therefore, for every alignment Oij we selected a diagnosis as target diagno-
sis Dt which is outside the golden standard, i.e. Mt ∩ Dt = ∅. Moreover, we used
Oij \ Dt to answer the queries instead of Mt to ensure that the system finds exactly
Dt and not some other diagnosis. By this procedure we mimic cases where additional
information can be acquired such that no mapping of the golden standard is removed
in order to establish coherence. We stress that this setting is unfavorable for diagnosis,
since providing more information as test cases using the golden standard would reduce
the number of queries to ask.

In particular, the selection of a target diagnosis for each Oij output by a match-
ing system was done in two steps: (i) compute the set of all diagnoses AD w.r.t. the
mappings which are not in the golden standard, i.e. O(Mij \Mt), and use Oi ∪ Oj ∪
O(Mij ∩Mt) as background theory. The set of test cases are empty. That is, the DPI is
〈O(Mij \Mt),Oi ∪ Oj ∪ O(Mij ∩Mt), ∅, ∅〉. (ii) selectDt randomly from AD. The
prior fault probabilities of mapping axioms ax ∈ O(Mij) were set to 1 − vax where
vax is the confidence value provided by the matching system.

The tests were performed for the mentioned seven incoherent alignments where the
input DPI is 〈O(Mij),Oi ∪ Oj , ∅, ∅〉 and the output is a diagnosis. We tested DIR and
STD with both query selection strategies SPLIT-IN-HALF (SPL) and ENTROPY (ENT)
in order to evaluate the quality of fault probabilities based on confidence values. More-
over, for generating a query the number of leading diagnoses was limited to m = 9.

The results of the first experiment are presented in Table 1. DIR computedDt within
36 sec. on average and slightly outperformed STD which required 36.7 sec. The num-
ber of asked queries was equal for both methods in all but two cases resulting from
ontologies produced by the MapSSS system. For these ontologies DIR required one
query more using ENT and one query less using SPL. In general, the results obtained
for the Anatomy case show that DIR and STD have similar performance in both runtime
and number of queries. Both DIR and STD identified the target diagnosis. Moreover,
the confidence values provided by the matching systems appeared to be a good estimate
for fault probabilities. Thus, in many cases ENT was able to find Dt using one query
only, whereas SPL used 4 queries on average. In the first experiment the identification
of the target diagnosis by sequential STD required the computation of 19 minimal con-
flicts on average. Moreover, the average size of a minimum cardinality diagnosis over
all ontologies in this experiment was 7. In the second experiment (see below), where
STD is not applicable, the cardinality of the target diagnosis is significantly higher.

The second experiment was performed on ontologies of the OAEI Conference bench-
mark which turned out to be problematic for STD. For these ontologies we observed
that the minimum cardinality diagnoses comprise 18 elements on average. In 11 of the
13 ontologies of the second experiment (see Table 2) STD was unable to find any di-
agnosis within 2 hours. In the other two cases STD succeeded to find one diagnosis for
csa-conference-ekaw and nine for ldoa-conference-confof. However,
DIR even succeeded to find 30 diagnoses for each ontology within time acceptable for
interactive diagnosis settings. Moreover, on average DIR was able to find 1 diagnosis
in 8.9 sec., 9 diagnoses in 40.83 sec. and 30 diagnoses in 107.61 sec. (see Column 2 of
Table 2). This result shows that DIR is a stable and practically applicable method even
in cases where an ontology comprises high-cardinality faults.
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HS-TREE INV-HS-TREE

System Scoring Time #Queries Reaction Time #Queries Reaction
AgrMaker ENT 19.62 1 19.10 20.83 1 18.23
AgrMaker SPL 36.04 4 8.76 36.03 4 8.28
GOMMA-bk ENT 18.34 1 18.07 14.47 1 12.68
GOMMA-bk SPL 18.95 3 6.15 19.51 3 5.91
GOMMA-nobk ENT 18.26 1 17.98 14.26 1 12.49
GOMMA-nobk SPL 18.74 3 6.08 19.47 3 5.89
Lily ENT 78.54 1 77.71 82.52 1 72.83
Lily SPL 82.94 4 20.23 115.24 4 26.93
LogMap ENT 6.60 1 6.30 13.41 1 11.36
LogMap SPL 6.61 2 3.17 15.13 2 6.82
LogMapLt ENT 14.85 1 14.54 12.89 1 11.34
LogMapLt SPL 15.59 3 5.05 17.45 3 5.29
MapSSS ENT 81.06 4 19.86 56.17 3 17.32
MapSSS SPL 88.32 5 17.26 77.59 6 12.43

Table 1. HS-TREE and INV-HS-TREE applied to Anatomy benchmark. Time is given in sec,
Scoring stands for query selection strategy, Reaction is the average reaction time between
queries.

In the Conference experiment we first selected the target diagnosis Dt for each
Oij just as it was done in the described Anatomy case. Next, we evaluated the per-
formance of sequential DIR using both query selection methods. The results of the
experiment presented in Table 2 show that DIR found Dt for each ontology. On aver-
age DIR solved the problems more efficiently using ENT than SPL because also in the
Conference case the confidence values provided a reasonable estimation of axiom fault
probabilities. Only in three cases ENT required more queries than SPL. Moreover, the
experiments show that the efficiency of debugging methods depends highly on the run-
time of the underlying reasoner. For instance, in the hardest case consistency checking
took 93.4% of the total time whereas all other operations – including construction of
the search tree, generation and selection of queries – took only 6.6% of time. Conse-
quently, sequential DIR requires only a small fraction of computation effort. Runtime
improvements can be achieved by advances in reasoning algorithms or the reduction of
the number of consistency checks. Currently DIR requires O(m ∗ |D| log( |O||D| )) checks
to find m leading diagnoses. A further source for improvements can be observed for
the ldoa-ekaw-iasted ontology where both methods asked the same number of
queries. In this case, ENT required only half of the consistency checks SPL did, but
an average consistency check of ENT took almost twice as long as an average one for
SPL. The analysis of this ontology showed that there is a small subset of axioms (hot
spot) which made reasoning considerably harder. Identification of such hot spots [8]
could result in a significant improvement of diagnosis runtime, since a hot spot can be
resolved by suitable queries. This can be observed in the ldoa-ekaw-iasted case
where SPL acquired appropriate test cases early and thereby found Dt faster.

In order to speed up the computation of conflicts and diagnoses we tested two pop-
ular module extraction methods [9, 3]. In ontology debugging these methods are used
as preprocessors allowing to generate a smallest possible ontology O′ ⊆ O for a faulty
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Ontology (Expressivity) 30 Diag min |D| Scoring Time #Queries Reaction #CC CC
ldoa-conference-confof 48.06 16 ENT 11.6 6 1.5 430 0.003
SHIN (D) SPL 11.3 7 1.6 365 0.004
ldoa-cmt-ekaw 42.28 12 ENT 48.6 21 2.2 603 0.016
SHIN (D) SPL 139.1 49 2.8 609 0.054
mappso-confof-ekaw 55.66 10 ENT 10 5 1.9 341 0.007
SHIN (D) SPL 31.6 13 2.3 392 0.021
optima-conference-ekaw 62.13 19 ENT 16.8 5 2.6 553 0.008
SHIN (D) SPL 16.1 8 1.9 343 0.012
optima-confof-ekaw 44.52 16 ENT 24 20 1.1 313 0.014
SHIN (D) SPL 17.6 10 1.7 501 0.006
ldoa-conference-ekaw 56.98 16 ENT 56.7 35 1.5 253 0.053
SHIN (D) SPL 25.5 9 2.7 411 0.016
csa-conference-ekaw 62.82 17 ENT 6.7 2 2.8 499 0.003
SHIN (D) SPL 22.7 8 2.7 345 0.02
mappso-conference-ekaw 70.46 19 ENT 27.5 13 1.9 274 0.028
SHIN (D) SPL 71 16 4.2 519 0.041
ldoa-cmt-edas 15.47 16 ENT 24.7 22 1 303 0.008
ALCOIN (D) SPL 11.2 7 1.4 455 0.002
csa-conference-edas 39.74 26 ENT 18.4 6 2.7 419 0.005
ALCHOIN (D) SPL 240.8 37 6.3 859 0.036
csa-edas-iasted 377.36 20 ENT 1744.6 3 349.2 1021 1.3
ALCOIN (D) SPL 7751.9 8 795.5 577 11.5
ldoa-ekaw-iasted 229.72 13 ENT 23871.5 9 1886 287 72.6
SHIN (D) SPL 20449 9 2100.1 517 37.2
mappso-edas-iasted 293.74 27 ENT 18400.3 5 2028.3 723 17.8
ALCOIN (D) SPL 159299 11 13116.6 698 213.2

Table 2. Interactive debugging with direct computation of diagnoses. 30 Diag the time required
to find 30 diagnoses, min |D| the cardinality of a minimum cardinality diagnosis, Scoring query
selection strategy, Reaction average system reaction time between queries, #CC number of con-
sistency checks, CC gives average time needed for one consistency check. Time is given in sec.

ontology O such that O′ comprises all axioms relevant to a fault and often |O′| � |O|.
The algorithm based on syntactic locality [9] was used in all STD tests since it improved
performance of conflict set computation. The second module extraction algorithm [3]
was not as effective as [9] when applied to compute conflict sets for most of our test
cases. In fact, [3] tended to generate large modules including all axioms relevant to top
classes of the hierarchy since all these classes are declared to be pairwise disjoint in all
but two Conf ontologies. The same was observed for Anat where all top classes of the
Human ontology are defined to be disjoint as well.

5 Conclusions

In this paper we presented a sequential diagnosis method for faulty ontologies which
is based on the direct computation of diagnoses. We reduce the number of consistency
checks by avoiding the computation of minimized conflict sets and by computing some

49



set of diagnoses instead of a set of most probable diagnoses or a set of minimum car-
dinality diagnoses. The evaluation results presented in the paper indicate that the per-
formance of the suggested sequential diagnosis system is either comparable with or
outperforms the existing approach in terms of runtime and the number of queries in
case a ontology includes a large number of faults. The scalability of the algorithms was
demonstrated on a set of large ontologies including thousands of axioms.
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2. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and conse-

quences of Semantic Web ontologies. J. Web Semant. 12-13, 22–40
3. Du, J., Qi, G., Pan, J.Z., Shen, Y.D.: A Decomposition-Based Approach to OWL DL Ontol-

ogy Diagnosis. In: ICTAI. pp. 659–664 (2011)
4. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. JACM 42(1), 1–49 (1995)
5. Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D.,

Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Sváb-Zamazal, O., dos Santos, C.T.: Final
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Abstract. With the increased use of ontologies in semantically-enabled applica-
tions, the issue of debugging defects in ontologies has become increasingly im-
portant. These defects can lead to wrong or incomplete results for the semantically-
enabled applications. Debugging consists of the phases of detection and repairing.
In this paper we introduce a system for repairing a particular kind of defects, i.e.
missing relations in the is-a hierarchy of EL ontologies.

1 Introduction

Developing ontologies is a difficult task and it is often the case that the ontologies are
incomplete or incorrect. More and more ontologies are used in semantically-enabled
applications. Defects in these ontologies can cause incomplete or incorrect results so
ontology debugging is a crucial step for acquiring high-quality results in these applica-
tions.

In this demonstration paper, we focus on missing is-a relations which are a type
of modelling defects. This type of defects requires domain knowledge to detect and
resolve. We consider ontologies that are represented by description logics (DLs), more
specifically represented by TBoxes in EL. EL is highly relevant for the representation of
lightweight ontologies. For instance, several of the major ontologies in the biomedical
domain, e.g., SNOMED1 and Gene Ontology [1], can be represented in EL or small
extensions thereof [2].

In this demonstation paper we briefly introduce the system introduced in [4]. We
describe the system (Section 2) and an example run (Section 3). For the theory, the
algorithm as well as more detailed discussion of the experiments we refer to [4]. In
Section 4 we introduce the demonstration.

2 Approach

Debugging missing is-a structure consists of two phases, detection and repair. In the
detection phase, missing is-a relations are identified while in the repair phase the idea is
to make these identified missing is-a relations derivable in the ontology. If all missing
is-a relations were identified in the detection phase, the repair phase would be straight-
forward as only adding these is-a relations is required. However, in general, detection

1 http://www.ihtsdo.org/snomed-ct/
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algorithms do not detect all missing is-a relations and in most cases only few. In cases
when only some missing is-a relations are detected there are different approaches for
repairing missing is-a structure.

In our setting we assume that our ontology is represented using a TBox T. Further,
a detection algorithm or a domain expert has provided a set M of missing is-a relations
(but not necessarily all) for the ontology. Then we want to identify a set of is-a relations
S such that T ∪ S |= M. We require that relations in S and M are is-a relations between
named concepts as well as that the is-a relations in S should be correct according to
the domain. In general, the set of all is-a relations using concepts in T that are correct
according to the domain is not known beforehand. If this set was given then we would
only have to add this to the ontology. The common case is that we do not have this
set, but instead can rely on a domain expert that can decide whether an is-a relation is
correct according to the domain. The role of the domain expert can be formalized by an
oracle function that returns true or false given an is-a relation. The formal definitions of
the problem can be found in [4].

While our earlier work focused on taxonomies [7, 5], in this work we focus on
repairing missing is-a relations in EL ontologies. A TBox in EL ontologies is a finite
set of general concept inclusions of the form C v D where C and D represent concept
descriptions. Concept descriptions in EL are inductively formed using concept names,
role names and concepts constructors which include the top concept, conjuction and
existential restriction. In our approach for repairing missing is-a relations we require
that the TBox is normalized as described in [2]. A normalized TBox T contains only
axioms of the forms A1 u . . . u An v B, A v ∃r.B, and ∃r.A v B, where A, A1, . . .,
An and B are concept names and r is a role.

Given that we are dealing with normalized EL ontologies the algorithm for repairing
missing is-a relations uses the following intuitions. Given missing is-a relation A v B:

1. if A v C and D v B are derivable from the ontology, then adding C v D would
make the missing is-a relation derivable. Therefore, to acquire possible logical so-
lutions we form two sets, Source and Target, containing the superconcepts of A and
the subconcepts of B, respectively. Any is-a relation C v D such that C ∈ Source
and D ∈ Target would be a logical solution for repairing A v B.

2. if the ontology contains axioms A v ∃r.C and ∃r.D v B then adding is-a relation C
v D would make A v B derivable.

3. if the ontology contains axioms A v ∃r.C, ∃r.D v B and is-a relations C v F and
G v D are derivable in the ontology then F v G would be a logical solution for the
missing is-a relation A v B. This intuition corresponds to generating Source and
Target sets for the identified logical solution in the second intuition.

Following the above intuitions we identify logical solutions but not necessarily so-
lutions that are correct according to the domain. Therefore, it is necessary to validate
logical solutions with respect to the domain. The repair for the complete set of missing
is-a relations is formed by taking the union of repairs for individual missing is-a rela-
tions. Any element in the repair for the complete set of missing is-a relations which is
not in the initial set of missing is-a relations can be considered as a new missing is-a
relation (which was not detected earlier). These new missing is-a relations can then be
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used as input for a new iteration of the process, thus possibly finding additional solu-
tions.

We have implemented a system for repairing missing is-a structure in EL ontologies
based on the described approach. The input to the system is a set of missing is-a rela-
tions which have been validated to be correct according to the domain. The repairing
process is semi-automatic and requires interaction with the user who acts as an oracle
and decides whether an is-a relation is correct according to the domain. The system has
been implemented in Java and uses the ELK reasoner (version 0.4.1) [6] to calculate
implicit entailments in the ontology.

3 Use

In order to demonstrate the use of the system, let us consider the process of repairing the
BioTop ontology from the 2013 OWL Reasoner Evaluation Workshop [4]. The ontology
contains 280 concepts and 42 object properties. The set of missing is-a relations consists
of 47 is-a relations which were randomly selected in the ontology. Then the ontology
was modified by removing relations from the ontology which would make the selected
is-a relations derivable. The unmodified ontology has been used as domain knowledge.

The repairing process starts with the user loading the ontology and missing is-a re-
lations into the system and pressing the button Generate Repairing Actions.
The system then generates Source and Target sets according to intuition 1 and intuitions
2/3. The loaded missing is-a relations are shown in a drop down list allowing the user
to easily switch between missing is-a relations. After selecting one of the missing is-a
relations, the system shows Source and Target sets for that is-a relation. To repair the
missing is-a relation the user needs to choose is-a relations which are correct accord-
ing to the domain for that is-a relation. This is done by selecting one element from the
Source set and one element from the Target set and pressing the Validate button thus
validating the is-a relation as a repairing action. The system allows multiple repairing
actions for each missing is-a relation.

In the BioTop use case the system generates Source and Target sets for 50 is-a
relations, 47 according to intuition 1 and 3 according to intuitions 2/3. An example
of a Source and Target set generated according to intuition 1 is given in Figure 1(b).
Given that is-a relation ArchaebacteriaCell v Organism is in the input set of missing
is-a relations the is-a relation is automatically validated to be correct according to the
domain. In this case, the domain expert will also validate is-a relation Prokaryote v
Organism as correct thus introducing new knowledge to the ontology.

An example of Source and Target sets acquired following the intuitions 2/3 is shown
in Figure 2(b). In this case, we have the Source and Target set for the is-a relation
SpeciesHomoSapiensQuality v FamilyHominidaeQuality which is a logical solution
for the missing is-a relation Human v GreatApe given that the ontology contains ax-
ioms Human v ∃hasInherence.SpeciesHomoSapiensQuality and
∃hasInherence.FamilyHominidaeQuality v GreatApe (Figure 2(a)). Unlike the previ-
ous example, the is-a relation SpeciesHomoSapiensQuality v FamilyHominidaeQual-
ity has to be validated explicitly by the domain expert as it was found using intuitions
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2/3. In addition, is-a relation GenusHomoQuality v FamilyHominidaeQuality will also
be validated by the domain expert as it is correct according to the domain.

(a) Relevant part of the BioTop ontology.

(b) Screenshot from the system

Fig. 1: Repairing ArchaebacteriaCell v Organism.

Clicking the Validate Is-a Relations in Repairing Action but-
ton opens a pop-up window where the user has a possibility to check validated is-a
relations or see which relations can be validated. On this screen the user can also do the
actual validation or remove already validated relations. By clicking on the Recommend
button the system will recommend correct is-a relations by querying external sources.
Currently the recommendations are acquired from WordNet, UMLS Methathesaurus
and Uberon. In Figures 1(b) and 2(b) the validation panel for the is-a relations Archae-
bacteriaCell v Organism and SpeciesHomoSapiensQuality v FamilyHominidaeQual-
ity, respectively, is given.

The validation phase is ended by clicking on the Validation Done button. The
user has a possibility to end validation phase at any point. If the user has not dealt
with some missing is-a relation then the repairing for that is-a relation would be the
missing is-a relation itself (as the missing is-a relations are automatically validated to
be correct). The system then calculates a repair for the complete set of missing is-a
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(a) Relevant part of the BioTop ontology.

(b) Screenshot from the system

Fig. 2: Repairing Human v GreatApe.
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relations. This repair is then used as input in the next iteration of the repairing process.
If the repairing did not change between iterations, the system outputs the final solution.

In our example, 28 relations are repaired by adding a total of 26 new relations out
of which 3 are acquired using intuitions 2/3. The remaining 19 missing is-a relations
are repaired by adding the missing is-a relation itself. Before the start of the second
iteration the system calculates a new set of non-redundant is-a relations from the union
of repairing actions from the first iteration. In total 41 new non-redundant is-a relations
are identified (4 redundant is-a relations are removed from the solution in iteration 1).
In the next iteration the user is presented with Source and Target sets for a total of 64
is-a relations out of which 23 correspond to repairing actions acquired using intuitions
2/3. However, none of these 23 is-a relations are identified to be correct according to the
domain. In this iteration 10 is-a relations are repaired by adding new is-a relations. Four
out of these 10 is-a relations are from the initial set of missing is-a relations while others
were added in the first iteration. For example, relation Virus v StructuredBiologicalEn-
tity is repaired by adding relation Virus v Organism given that the relation Organism
v StructuredBiologicalEntity was added in the first iteration. Figure 3(a) shows the
relevant part of the BioTop ontology for the missing is-a relation Virus v Structured-
BiologicalEntity with is-a relations added in the previous iteration marked in green. A
screenshot from the system with Source and Target set for the missing is-a relation is
given in Figure 3(b).

In the third iteration, the user is presented with Source and Target sets for 65 is-a
relations out of which 42 are non-redundant is-a relations from the union of repairing
actions in the second iteration and 23 are is-a relations which represent repairing actions
acquired using intuitions 2/3. Out of these 23 is-a relations only one is validated to be
correct according to the domain. Additionally, 2 relations are added in this iteration
repairing a total of 4 is-a relations. Out of these 4 repaired is-a relations 3 are from the
initial set of missing is-a relations while 1 is from the first iteration.

Finally, in the fourth iteration no new relations are added and the system outputs the
solution.

Given that validation can be a time consuming task for large ontologies, the system
also implements sessions thus allowing the user to repair ontologies across multiple
sessions. To accommodate this, the system implements mechanisms for saving currently
validated relations as well as loading previously stored validated relations.

4 Demonstration

In the demonstration we will show two use cases from [4]. The first use case is the one
described in Section 3. For the second use case we use Mouse anatomy (AMA) and
a fragment of NCI human anatomy ontology (NCI-A) from the Anatomy track of the
2013 Ontology Alignment Evaluation Initiative [3]. The set of missing is-a relations
for these two experiments were obtained using a logic-based approach presented in [7]
which uses an alignment between these two ontologies to generate possible missing is-a
relations which are then validated by a domain expert. The set of missing is-a relations
consists of 94 is-a relations for the AMA ontology and 58 for the NCI-A ontology. The
missing is-a relations were repaired by adding 101 is-a relations to AMA and 54 is-a
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(a) Relevant part of the BioTop ontology.

(b) Screenshot from the system

Fig. 3: Repairing Virus v StructuredBiologicalEntity.
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relations to NCI-A. Out of 101 is-a relations in the repair for AMA 47 represent new
is-a relations which do not appear in the initial set of missing is-a relations. In the case
of NCI-A 10 new is-a relations were added.

Acknowledgments. We thank the Swedish Research Council (Vetenskapsrådet), the
Swedish e-Science Research Centre (SeRC) and the Swedish National Graduate School
in Computer Science for financial support.
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Abstract. The demo paper presents B-Annot, a Protégé plugin for an-
notation of ontologies and linked data vocabularies by background model
distinctions. In addition, it briefly demonstrates the subsequent use of
the annotations created by B-Annot, for verifying the ontological coher-
ence of the ontologies/vocabularies at the level of meta-models. Finally,
possible further extensions of the tool and its role in the (background-
model-driven) ontological engineering workflow are briefly discussed.

1 Introduction and Motivation

With the growing popularity of the semantic web, a large portion of new on-
tologies, such as Linked Data (LD) vocabularies, has been directly authored in
OWL and thus influenced from the beginning by its inventory of constructs, and
also by particular application needs. Let us call such an operational artefacts
ontological foreground model (OFM). On the other hand, by giving priority to
mimicking as much as possible (at least, in some aspects) what is observed in the
real-world, we arrive at an ontological background model (OBM). For instance:

– OWL classes may sometimes represent permanent types of objects and some-
times just roles played by these objects in a certain phase of their existence;

– OWL individuals may represent true individual objects (‘particulars’), but
also universal entities (types), or even relationships whose existence fully
depends on the participating objects.

When the OFMs are, e.g., visualized, reused, matched or transformed, such
‘hooding’ may cause troubles. For example, in an OFN it can happen that a
class (i.e. role) Student becomes superclass of classes Human and Robot ; an
object then may stop being member of the superclass while remaining member
of the subclass. For another example see the upper part of the diagram (adapted
from [8]) in Fig. 1, depicting the complex fact of a business entity (resource 3)
offering exemplars (i.e., ‘some items’) of a certain musical album (resource 1) as
product for sale, in a certain region. The fact refers to two LD vocabularies: the
e-commerce ontology GoodRelations (GR)3 and the Music Ontology (MO).4 The

3 http://purl.org/goodrelations/v1
4 http://purl.org/ontology/mo/
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remaining two instance-level resources in the diagram (2 and 4) are the ‘offering’
itself and the value ‘90’ (minutes) understood as ‘typical’ and thus modeled as a
resource rather than literal.5 In the lower part of the diagram we approximate the
ontological background of this fragment (omitting the entities that would be types
in both diagrams, for easier readability). Among other things we see that notion
of ‘album’, originally being the value of the object property mo:release type,
now becomes an additional type of the product offered, and that the ‘Offering’
object becomes absorbed by the ‘offers’ relationship (now with arity >2).

Obviously, modelling the ontological background for each individual data
fragment is infeasible. The mapping between the ‘foreground view’ of the do-
main (as contained in the vocabulary) and the corresponding ‘background view’
thus has to be established at the level of entity types, which means, indirectly
(note that especially less expressive vocabularies are just collections of unlinked
entities whose connection is only established at the level of instance data). On
the one side of the mapping is an ontological foreground model (OFM), i.e., the
structure of an RDFS/OWL ontology; on the other side is an analogous ontolog-
ical background model (OBM). OBM models should be represented in a suitable
OBM language of modelling primitives (OBML). Two such languages are

– OntoClean [3], which labels OFM classes with the ontological notions of
essentiality, rigidity (e.g., in the first example mentioned, ‘permanent’ classes
Human and Robot would be rigid while the ‘temporary’ class Student would
be anti-rigid), identity and unity.

– The recently designed PURO OBML [9],6 aiming to capture the background
distinctions of OFM entities as in the bottom part of Fig. 1: that between
objects (‘particulars’) and their types (‘universals’) and that between rela-
tionships (or ‘valuations’ by a quantitative value) and self-standing objects.

OntoClean has proven useful for taxonomy-centric ontologies that dominate, e.g.,
in bioinformatics. On the other hand, PURO has been specifically designed for
‘relation-centric’ ontologies/vocabularies [8], which are prominent in LD. An-
other important phenomenon in LD is that an existing entity might be sys-
tematically used with a different background distinction than foreseen in the
vocabulary specification; for example, a property that is assumed to have cate-
gories of objects in its range might refer to individual objects in some dataset.
Therefore, ‘generic’ annotation of vocabularies might not be sufficient; we should
also be able to annotate vocabularies ‘as they are used’ in a specific dataset.

By their capacity of underlying the entities from various operational (typi-
cally, domain-restricted) knowledge models with background ontological distinc-
tions, OBMLs are analogous to foundational ontologies. The difference is in the
way the ‘surface’ and ‘deep’ model are interconnected. A foundational ontology
provides root concepts upon which the ‘surface model’ concepts are grafted; both
models thus share the same space. In contrast, OBMs reside in their own ‘layer’;

5 Such kind of modeling is not common in MO, but, rather, in GR-compliant ontolo-
gies, cf. http://www.ebusiness-unibw.org/ontologies/opdm/#ontologies.

6 A more extensive description is in [7].
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when connecting an OFM with an OBM, we thus need to ‘inject’ a ‘proxy’ of one
model to the other model, in order not to let the one interfere with the formal
semantics of the other. Two alternatives for creating such a ‘proxy’, assuming
both layers are to be expressed in OWL-DL, are as follows:

– OBM entities could become values of specific OWL annotation properties,
and be saved as unobtrusive part of (a copy of) the OFM.

– OFM entities (classes, properties and individuals) could be uniformly meta-
modelled as syntactical instances to be inserted as an A-Box into a meta-
modelling ontology, where their mapping to OBM can be captured.

The first alternative is favourable for visibility of the OBM distinctions to a
human when working with the OFM. The second alternative, in turn, allows
to carry out conceptual coherence checking according to constraints defined in
the meta-modelling ontology, via a generic OWL DL reasoning mechanism. This
approach has been previously tested for the OntoClean OBML in [2, 10], and
later for the PURO OBML by us [9].

In this system/demonstration paper we present B-Annot : a Protégé plugin7

that allows to create and save meta-models of a selected vocabulary with respect
to either OntoClean or PURO, and (especially for the latter) in two modali-
ties, ‘generic’ and ‘dataset-specific’. (Storage of OBM distinctions in annotation
property values, as well as other enhancements, is forthcoming.) We also briefly
demonstrate how the annotations can be used for conceptual coherence checking;
in contrast to PURO-only coherence checking described in [9], we nowadays rely
on a modular set of ontologies that also includes an OntoClean module.

2 B-Annot Functionality

In summary, the tool allows the user, for the vocabulary to be annotated already
loaded into the Protégé editor,

– to select the meta-ontology (either OntoClean or PURO) and decide whether
generic or dataset-level annotation is going to take place;

– for dataset-specific annotation, to inspect the statistics of presence of entities
from the given vocabulary in different datasets, fetched online from LOD-
Stats [1], to select an appropriate dataset, and to view the list of entities
from the vocabulary that occur in this dataset;

– for dataset-specific annotation, to browse a pre-computed summary of the
dataset (inspired by [4]), with entities from the vocabulary highlighted;

– select an entity (in one of the Protégé tabs) and annotate it with a back-
ground model distinction;

– save the whole annotation set to an RDF file, and load it back.

7 Available from http://patomat.vse.cz/cz.vse.bannotation.plugin.view.jar.
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Fig. 1. RDF data fragment and its ontological background

We will now describe the scenario of dataset-specific annotation, since generic
annotation is essentially a subset of it. Furthermore, we will use the PURO meta-
ontology as more relevant in the dataset-specific mode. (OntoClean would be
applied in the same way.) Fig. 2 shows the B-Annot interface after the choice of
PURO and dataset-specific annotation mode (FOAF has been previously loaded
into Protégé as ontology to be annotated). The user can see that of the 14
datasets for which the statistics has been fetched, 10 use some number of FOAF
entities, ranging from 1 to 23; these are relevant to the annotation session. After
clicking at the ‘summary’ button for the Geospecies dataset, an ordered list-
ing of frequent ‘class-property-class’ is displayed, a part of which is in Fig. 3.8

FOAF entities, here the properties depiction, isPrimaryTopicOf, primaryTopic
and topic, are displayed in red. Finally, the actual annotation takes place. In
Fig. 4 we see that the user, based on the observation that foaf:topic is usually
valued by biological taxa9 in this dataset, assigns this property the PURO label
‘PrT’ (‘property whose range is a type’) from the pull-down menu (with items
picked from the meta-ontology depending on the entity type to be annotated:
class, property or individual). Entity annotations are subsequently listed in the
bottom part of the window, and can, eventually, be saved (and reloaded) in bulk,
as a set of hasLabel10 triples.

8 We also experiment with ‘class-property-class-property-class’ paths, but they are not
implemented in the current version of the system.

9 For the sake of this example, we omit the philosophical discussion whether and for
what purpose a taxon should indeed be understood as a universal.

10 Every meta-modelling ontology has its own hasLabel property; here it is the one
from the PURO ontology.

62



Fig. 2. Dataset choice in dataset-specific annotation

3 Coherence Checking Examples

For each OBML considered, the distinctions underlying a particular OFM can
be compared to a predefined set of coherence rules. For OntoClean there are four
standard coherence rules [3]: Given two properties, p and q, when q subsumes
p then: a) if q is anti-rigid then p must be anti-rigid, b) if q carries an identity
criterion then p must carry the same criterion, c) if q carries a unity criterion
then p must carry the same criterion, and d) if q has anti-unity then p must
also have anti-unity. The PURO OBML, in turn, specifies three constraints: for
a) entity coherence, b) type coherence, and c) relation coherence (for details
see [9]). We demonstrate the coherence checking on two example annotations.

The first is a fragment of the GR ontology annotated with PURO OBML,11

containing class ProductOrService with subclasses Individual and ProductOrSer-

11 http://patomat.vse.cz/gr_mm.owl
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Fig. 3. Dataset summary for Geospecies, with FOAF entities emphasized

Fig. 4. Annotation of foaf:topic by a PURO label, for Geospecies
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viceModel. Using DL consistency checking over the PURO meta-ontology12 and
this fragment leads to inferred membership of class ProductOrService to a special
‘diagnostic’ class of the PURO ontology: Incoherent-TPU. This class which con-
tains meta-models of classes that ‘do not have homogeneous instances’ in terms
of PURO, specifically, whose instances can be both particulars and universals.

The second example is annotation of a fragment of the ontology used to
demonstrate OntoClean inconsistencies in [3]. This fragment13 includes meta-
entities representing six classes of the original ontology annotated with Onto-
Clean labels. The OntoClean meta-ontology used for coherence checking14 al-
lows for validation of all four coherence rules. The ontology contains four classes
(Incoherence-Antiunity, Incoherent-Identity, Incoherent-Rigidity, Incoherent-Uni-
ty) that are – as result of inference – filled with individuals that represent classes
in meta-model that are incoherent with regard to respective OntoClean rules.
For example, the class AmountOfWater was annotated with OntoClean labels
+O ∼U +R. Its subclass LivingBeing was annotated with OntoClean labels
+O +U +R. The defect of the model is that a class with anti-unity label
(simply said, class of objects whose arbitrary ‘section’ is again an instance of
the same class) cannot subsume a class with unity label (i.e., containing objects
that have ‘strict boundaries around themselves’). Therefore it is inferred that
the individual meta-modelling the class LivingBeing belongs to the diagnostic
class Incoherent-Antiunity.

4 Conclusions and Future Work

The B-Annot plugin represents the first proof-of-concept implementation of an-
notation technology for ontologies and vocabularies that is (1) not restricted
to a single theoretical framework but supports multiple OBMLs, and (2) in-
terconnects the browsing/editing of ontologies (as supported by common onto-
logical editors) with LD summaries. It is a part of a prospective eco-system of
tools (other existing ones include, e.g., pattern-based ontology transformation
tools [6]) supporting (informed rather than merely intuitive) reuse and design of
ontologies on the semantic web.

Serious usability tests and requirement collection for B-Annot is only planned
after some of the envisaged enhancements will have taken place.

A straightforward extension of B-Annot will be the possibility to also store
annotations in OWL annotation properties of a copy of the annotated ontology.
This will allow for easy browsing of the annotations in their original context.

Background annotation by distinctions referring to notions like ‘rigid’ (in
OntoClean) or ‘particular’ (in PURO) risks to discourage even reasonably expe-
rienced ontological engineers without philosophical background. The threshold
should thus be set as low as possible in the future, via operationalized annota-
tion guidelines. For OntoClean’s rigidity alternatives, a promising approach has

12 http://patomat.vse.cz/puro_v1.1.owl
13 http://patomat.vse.cz/ontoclean-coherence-check-1.owl
14 http://patomat.vse.cz/ontoclean-v.1.0.owl
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already been shown by Seyed, who designed a wizard relying on common-sense
verbalization of the meaning of these alternatives [5]. For the PURO OBML
distinctions, textual guidelines with examples have already been designed and
tested in an classroom assignment; the experience gained will be used to design
verbalisation templates similar to those from [5].

As the amount of mature vocabularies and their stable entities is still low15

their purely manual annotation via B-Annot is feasible. In long term, however,
partial automation could be achieved by leveraging on two different sources: (1)
via linguistic parsing of associated texts, especially the values of rdfs:comment,
and, (2) via logically inferring the most likely annotations based on previously
assigned annotations of interrelated entities, e.g., from superclasses to subclasses.

This work has been supported from the EU ICT FP7 under no. 257943 (LOD2
project), from the VSE IGA project no. 34/2014, from the Slovak VEGA project
no. 1/1333/12, and from project APVV-0513-10.
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7. Svátek, V., Homola, M., Kľuka, J., Vacura, M.: Ontological Distinctions for
Linked Data Vocabularies. Technical Report TR-2013-039. Comenius Univer-
sity, Bratislava, 2013. Available online: http://kedrigern.dcs.fmph.uniba.sk/

reports/display.php?id=54
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9. Svátek, V., Homola, M., Kľuka, J., Vacura, M.: Metamodeling-Based Coherence
Checking of OWL Vocabulary Background Models. In: Proc. OWLED 2013, online
http://ceur-ws.org/Vol-1080/owled2013_6.pdf.

10. Welty, C.: OntOWLClean: Cleaning OWL ontologies with OWL. In: Proc. FOIS
2006.

15 The statistics at http://lov.okfn.org/dataset/lov/stats/ reveals that out of the
several thousand entities referenced in LD, there are only about 150 that are at the
same time reused by more than one other vocabulary and instantiated by at least
100 LOD instances.

66


	preface.pdf
	invited.pdf
	empty.pdf
	paper1.pdf
	paper2.pdf
	paper3.pdf
	paper4.pdf
	paper5.pdf
	paper6.pdf
	Blank Page



