
Repairing Learned Ontologies

Daniel Fleischhacker

Research Group Data and Web Science, University of Mannheim, Germany
daniel@informatik.uni-mannheim.de

Abstract. Though ontology learning can help ontology engineers in creating on-
tologies more rapidly, it also poses new challenges to them especially in creating
coherent, high-quality ontologies. Given that there have been proposed ontol-
ogy learning approaches which are even supporting the generation of highly ex-
pressive schemas, the need for pushing debugging methods for such schemas
further also arises. Throughout the literature, several methods applicable for on-
tology debugging were presented which might be well-suited for being used on
learned ontologies. Thus, in this work, we describe some of these approaches,
and also present an approach based on Markov logic networks which is inspired
by recent work in this direction and which we adapted to learned ontologies.
Afterwards, we evaluate the approaches regarding their runtime performance on
learned ontologies and their suitability for automatic and semi-automatic debug-
ging of learned ontologies.

1 Introduction

Linked Data without schema information is already providing many chances for im-
plementing new applications. Most Linked Data repositories are not accompanied by
schemas giving additional knowledge about their structure and also new possibilities to
deduce not yet explicitly contained information by means of inferencing mechanisms.
This could, for example, be beneficial in a query answering scenario for inferring ad-
ditional instances fulfilling an information need. The additional value of schemas gets
even higher when not only light-weight schemas are provided, e.g., containing sub-
sumption hierarchies, but more expressive schemas are accompanying the data. Even
containing logically simple elements like disjointness would give many additional pos-
sibilities for using the data. Unfortunately, there are hardly any data repositories serv-
ing expressive schemas which is mostly caused by the effort required to create such
schemas. The even greater expressivity of the OWL2 seems to be practically unused
throughout the Linked Data cloud.

To reduce the impact of this so-called knowledge acquisition bottleneck, there has
been much work in the direction of ontology and schema learning trying to generate
expressive ontologies from a variety of data sources like texts or structured data [2].
Recently, methods also supporting large parts of the expressivity of OWL2 have been
introduced [6]. However, since ontology learning approaches are considered to be error-
prone and erroneous schemas are limited in their usage, ontology learning is typically
used for supporting human ontology engineers with the creation of schemas. This also
poses new challenges to the engineers since the approaches might generate ontologies

15



containing a great number of complex axioms which could lead to a high degree of
incoherence in the ontology whose causes are not as easy to grasp as for more basic
axioms. Thus, additional support for humans in debugging learned ontologies or even
automatic means for repairing them is desired. Lately, some new debugging methods for
ontologies which are based on Markov logic networks [14] and specialized diagnosis
tools trying to take advantage from the specific characteristics of learned ontologies [4]
have been proposed.

In this paper, we perform experiments on learned ontologies to compare and evalu-
ate common and also more recently proposed debugging methods on expressive learned
ontologies. In particular, we focus on the runtime properties and the scalability of the
approaches. Furthermore, we examine them regarding their applicability in automatized
and semi-automatized scenarios.

The rest of the paper is structured as follows: After giving a short overview on the
related work relevant for this paper (Section 2), we give required definitions regarding
the incoherence of ontologies and the notion of explanations as well as a short overview
on the basics of Markov Logic networks in Section 3. Afterwards, in Section 4, we de-
scribe the different approaches we considered for making the ontology coherent before
presenting the comparison of these approaches in Section 5. Finally, we summarize our
findings and draw conclusion regarding the usage of different approaches for debugging
learned ontologies in Section 6.

2 Related Work

In this section, we describe other works which concentrate on the diagnosis and repair
of ontologies.

Most approaches for repairing incoherent or inconsistent ontologies are based on
finding the roots of discovered errors in the ontology which are sets of axioms leading
to the specific logical error. Finding these so-called explanations is most often done
employing diagnosis facilities integrated in reasoning tools (white-box approach) as
implemented in the Pellet reasoner [19] or black-box approaches which work indepen-
dently from the underlying reasoning system [8]. Since, as also argued by Horridge et
al. [9], it is practically not possible to generate all explanations for a given unsatisfi-
ability in many cases, these approaches concentrate on retrieving a limited number of
explanations. There has also been some work regarding the computation of full expla-
nation sets for learned ontologies by trying to exploit the specific characteristics of the
learned ontologies [4].

A tool based on the explanation generated capabilities of Pellet is Swoop [11] which
is an ontology editor able to present unsatisfiabilities in the ontology and the causes of
these logical problems. The Protege ontology editor can 1 also use Pellet to generate ex-
planations for incoherent classes or other inconsistencies found in the ontology. How-
ever, the main purpose of these tools is to provide the information about the causes of
the unsatisfiability to the ontology engineers, but they neither provide automatic means
to solve the problems nor help on choosing axioms to remove. Furthermore, though

1 http://protege.stanford.edu/

16



these tools are applicable to both T-box and A-box, they are not specifically targeted at
cleaning only the terminology.

Lehmann and Bühmann [12] proposed the ORE tool which combines learning and
debugging processes into a common workflow in which a given ontology is progres-
sively enriched with additional, possibly complex axioms and the resulting inconsisten-
cies or incoherences are presented to the user along with possible solutions. As reported
in the paper, ORE’s enrichment part is currently limited to a very basic set of axioms
and, e.g., not supporting disjointness axioms. In contrast to our work presented here,
ORE is also combining both incoherence and inconsistency repair and needs user inter-
action.

There are cases in which it might be impossible for a human to check and solve
all logical problems in the ontology manually without additional support, e.g., if the
number of wrong explanations is overwhelmingly high and thus it is hard to find the
actually problematic axiom. Thus, there are also approaches which propose methods
of automatically determining fixes for logical errors. One of the earliest works in this
direction has been done by Schlobach [18] who describes an approach for debugging
incoherences, i.e., unsatisfiable classes in ontologies, based on computing and remov-
ing minimum sets of axioms causing the incoherence. In addition, he also addresses the
problem that many real world ontologies are not expressive enough and are especially
missing disjointness axioms which makes debugging almost impossible. Schlobach pro-
vides a possible solution by using the Strong Disjointness Assumption to consider all
sibling classes to be disjoint.

Another work concentrating on debugging terminologies comes from Qi et al. [16]
who propose and experimentally evaluate kernel revision operators for cleaning up the
terminology. For finding the axioms which are removal candidates, these approaches
use scoring, like the number of occurrences of an axiom in explanations, or confidence
values as they could be assigned to the axioms by an ontology learning approach. Based
on explanations generated by the Pellet reasoning tool, this also leads to an approach
which can potentially be run fully automatically to generate coherent ontologies. The
proposed approaches are evaluated on an ontology generated by an ontology learning
tool and an ontology mapping scenario since both methods used in these areas com-
monly create logically incoherent schemas.

The RaDON tool [10] is a tool providing automatized support for repairing incon-
sistent or incoherent ontologies using different strategies which can be chosen by the
user based on the characteristics of the ontology to repair. These strategies differ in the
number of explanations which are computed per unsatisfiability and can thus especially
be adapted when working on large ontologies containing great numbers of unsatisfi-
able concepts. In contrast to Ji et al., who put special emphasis on ontology mappings,
we in this work concentrate on learned ontologies for which we evaluate different re-
pairing strategies. We present an approach similar to the one proposed by Noessner
and Niepert [14] for debugging EL ontologies containing uncertainties which showed
promising results. Our approach uses a different set of inference rules specially targeted
at learned, expressive and TBox-only ontologies.

For the area of ontology matching, there is work which recourses to disjointness ax-
ioms generated by ontology learning approaches for debugging ontology mappings [13].

17



3 Preliminaries

In the following, we first give a short overview on the most important notions regarding
incoherence in ontologies. Since two approaches presented in Section 4 are based on
Markov Logic Networks, we also give a short introduction into these.

3.1 Incoherences in Ontologies

Description logic is the foundation for ontologies on the Semantic Web since the mostly
used ontology language OWL is based on it. A description of all its details is given by
Baader et al. [1] for those parts required for OWL in its first version. The logical features
added later in OWL2 are described by Grau et al. [7]. In the following, we focus on the
definitions relevant for our use case.

Since in this work we are exploring approaches to repair ontologies, i.e., make inco-
herent ones coherent, we first have to define the notion of incoherence. As already done
previously [4], we extend the notion of incoherence, which is usually only defined for
classes, to object properties. This is especially important since, with the introduction of
property disjointness in OWL2, properties can get unsatisfiable more easily.

Definition 1 (Incoherence). Given an interpretation function I, a class or property
definition D in an ontologyO is unsatisfiable iff for each model I ofO DI = ∅ holds.
An ontology is said to be incoherent iff it contains at least one unsatisfiable named class
or property.

According to this definition, unsatisfiable classes or properties are equivalent to the
bottom class respectively to the bottom object property. Thus, a common way to check
for the unsatisfiability of a class C is to check whetherO � C v ⊥. Checking an object
property P for unsatisfiability can be done similarly by checking O � ∃P.> v ⊥.
For debugging purposes, it is important to detect the roots of specific errors, so-called
explanations or minimal incoherence-preserving sub-TBoxes (MIPS).

Definition 2 (Explanation). Given an ontology O and an axiom α, a subset O′ ⊆ O
is an explanation for α iff O′ � α and there exists no O′′ ⊂ O′ with O′′ � α.

Thus, an explanation for an axiom α is a set of axioms which implies the validity
of α and cannot be further minimized by removing contained axioms. Obviously, there
might be a great number of explanations for a single axiom.

3.2 Markov Logic Networks

Markov logic networks as introduced by Richardson et al. [17] are a way of formulating
uncertain logical knowledge based on Markov networks. For this purpose, they extend
first order logic by allowing the annotation of formulas with weights. In contrast to pure
description logic where all formulas represent hard constraints and a world (an assign-
ment to all atomic variables) not satisfying all constraints is no valid world, in Markov
logic a world violating a constraint is not an impossible world but only a less probable
one. The higher the weight associated to a formula the less probable a world violating

18



it. Because of this property, it is even possible to have formulas in the knowledge base
which contradict each other. Furthermore, by adding infinite weights to formulas it is
possible to set these formulas as hard constraints which are not allowed to be violated.

More formally, a Markov logic network (MLN) is given by a set of pairs (Fi, wi)
where each Fi is a first-order logic formula and each wi a real number. Together with a
set of constantsC the logic network can be used to determine a ground Markov network.
On this Markov network it is then possible to define the probability distribution over
possible worlds x by

P (X = x) =
1

Z
exp

(
F∑
i=1

wini(x)

)
with F being the number of formulas in the MLN and ni(x) the number of true

groundings of Fi in x. Given a world, we are able to compute its probability based on
this definition.

However, as for our use case, often the more interesting scenario is to find the most
likely world y given evidences e, i.e.,

argmaxyP (y|e)

which is also called MAP inference and is a task commonly supported by Markov logic
solving tools. One possibility to solve a MAP inference problem is based on Integer
Linear Programming and employed by the MAP query engine RockIt [15].

4 Approaches

In this section, we present the different approaches we examined in this work for re-
pairing incoherent ontologies. The first two approaches are common methods which
start with a diagnosis step by computing explanations for incoherences and afterwards
perform a repair step to create a coherent version of the ontology. The further two
approaches belong to the new family of MLN-based methods. First, we describe an
approach using MLN to compute coherent ontologies based on pre-computed explana-
tions. Then, we present a fourth approach which avoids the computation of explanations
by implementing inference rules directly in Markov logic.

For the first three approaches, we assume the set of all explanations of incoher-
ences to be given. In this work, we implemented the following methods using the TRex
system [4] for gathering explanations.
A1: Baseline Approach As a baseline approach, we use Algorithm 1. It iterates over all
explanations and for each explanation the axiom with the lowest confidence is removed
from the ontology. Since each explanation is the minimum set of axioms causing the
specific incoherence, after removing it this incoherence does no longer exist. If the cur-
rently considered explanation contains an axiom already removed when fixing an earlier
explanation the current incoherence is already resolved by this removal and no further
axiom removal is required. Obviously, this approach is neither optimal with respect to
the number of removed axioms, which is bounded by the number of incoherence expla-
nations in the ontology, nor with respect to the confidence values.

19



Algorithm 1 Greedy ontology debugging
Precondition: O is a learned ontology, explu(O) is the set of explanations for all incoherences

function GREEDYDEBUG(O, explu(O))
H ← {} . set for storing already removed axioms
for all e ∈ explu(O) do . e is an explanation, i.e., a set of axioms

if e ∩H = ∅ then
a← axiom with lowest confidence value in e
O← O \ {a}
H ←H ∪ {a}

A2: Axiom Adding Approach Algorithm 2 also uses the set of all incoherence expla-
nations. But instead of iterating over all explanations, it iterates over learned axioms and
adds them one by one starting with the highest confidence axioms and continuing with
the lower confidence ones. After each axiom addition, we check whether the resulting
ontology fully contains one of the original explanations which would mean that the on-
tology is incoherent. If so, the last axiom addition is reverted and the process continues
with the axiom having the next lower confidence. This guarantees that no explanation
is fully contained in the ontology and thus the occurrence of all detected incoherences
is prevented.

Algorithm 2 Hitting Set
Precondition: O is a learned ontology, explu(O) is the set of explanations for all incoherences

function HITTINGSETDEBUG(O, explu(O))
H ← {} . set of removed axioms
L← learned axioms contained in O sorted by descending confidence
O′←O \ L . O′ is ontology without learned axioms
for all a ∈ L do
O′←O′ ∪ {a}
if ∃e ∈ explu(O) : e ⊆ O′ then
O′←O′ \ {a}
H ←H ∪ {a}

After the termination of this algorithm, H contains a hitting set for the set of expla-
nations, i.e., H is a set of axioms so that ∀e ∈ explu(O) : e∪H 6= ∅. It is important to
note that due to the greedy nature of the algorithm, H is a minimal but not a minimum-
cardinality hitting set.
A3: MAP inference based approach In contrast to the two approaches presented be-
fore, this approach is not a greedy one. Instead it uses the Markov logic-based RockIt [15]
system for finding a minimum confidence set of axioms which have to be removed in
order to make the learned ontology coherent. For this purpose, we first define a model
as shown in Figure 1. The presented model supports explanation sets with at maxi-

20



mum 2 axioms per explanation but can be adapted easily and automatically for larger
explanations.

active(axiom)

*activeConf(axiom, _float)

*conflict1(axiom)

*conflict2(axiom, axiom)
conf: active(x) v !activeConf(x, conf)
!conflict1(x0) v !active(x0).
!conflict2(x0,x1) v !active(x0) v !active(x1).

Fig. 1. RockIt model for approach A3

In this model, we define a way of setting axioms to active, i.e., include them into
the final ontology, and furthermore give the possibility to assign confidence values to
axioms. The conflict1 and conflict2 predicates are defined to represent expla-
nations containing one resp. two axioms. The last three lines define that active axioms
contribute towards the total confidence value and that for each set of conflicting axioms
at least one has to be set to inactive.

Using this model as base, we generate the evidence for the MAP inference step by
setting unlearned axioms as active (hard constraints) while learned axioms get their
confidence value assigned using activeConf (soft constraints). For each generated
explanation, we create a conflict predicate containing the identifiers of all contained
axioms. The RockIt system then determines a world with the highest sum of confidence
values, i.e., it gives a list of all active axioms in the most probable world which we then
include into the result ontology. Since the last two lines in Figure 1 guarantee that at
least one axiom for each explanation is not set to active, the result is coherent.
A4: Pure Markov Logic Approach We also considered an approach which is based
purely on Markov Logic and does not require a set of explanations to be computed.
This approach is highly inspired by the work of Niepert and Noessner [14] but instead
of using the inference rules for the logic EL we implement the rules also used in TRex
to perform inference and generate explanations using Markov logic.2 This model again
defines activity and activity confidence predicates but this time for each supported ax-
iom type separately. The axioms contained in the ontology are transformed into the
representing predicates and set as active if they are unlearned axioms resp. get assigned
a confidence for learned axioms. Again, after applying RockIt to this data, we get a list
of active axioms which are then used to build the final coherent ontology.

The approaches differ in a number of characteristics which will be the focus of our
evaluation. First, the runtime of the approaches and the complexity of ontologies the
approaches can be applied to is an important factor for practical usage since learned
ontologies can pose challenges in both, their size and their complexity. Since ontol-

2 The file containing the MLN formulation of the TRex rules is available at http://web.
informatik.uni-mannheim.de/trex/trex-rules-model.txt

21



ogy learning approaches are mostly used for assisting humans in creating ontologies,
it is also an important factor how transparent their repair steps are. More transparent
approaches are better suited for being used in an interactive scenario.

5 Evaluation

In the following, we first describe the setup used to evaluate the performance of the
approaches shown above. Afterwards, we describe the results of our evaluation.

5.1 Experimental Setup

For the evaluation, we worked on different ontologies all generated by means of ontol-
ogy learning approaches. The first ontology, which we refer to as A, is based on the
DBpedia ontology3 and additionally contains class disjointness axioms as generated
by the GoldMiner [5] tool. We have a high-quality gold standard of class disjointness
axioms for the DBpedia ontology.4 As a second data set, we employ the one already
used to evaluate the TRex tool [4]. This data set also contains axioms learned by the
GoldMiner tool but instead of only being enriched by class disjointness, the ontology
was enriched with additional axiom types as property disjointness or domain and range
restriction axioms. The data set consists of 11 ontologies where all axioms contained
in the smaller ontologies are also contained in the larger ontologies. This enables us
to assess the scalability of the approaches. Furthermore, the additional learned axioms
make a more demanding use case since they lead to more possibilities for incoherences.
In the following, we call the 11 ontologies B0 to B10. Finally, we performed the ex-
periments on an ontology fully generated from a text corpus by the Text2Onto [3] tool.
This dataset was already used for similar experiments by Qi et al. [16] and is interest-
ing for our experiments since, in contrast to the enriched DBpedia ontologies, it is a
fully learned ontology which might differ considerably regarding its basic characteris-
tics. This ontology is called C in the following. Table 1 summarizes the most important
characteristics of all ontologies. It is also worth noting, that the first two data sets do
not contain instances at all while for the third ontology, we only considered the TBox.

On these three data sets, we run the different approaches described in Section 4 and
compared them regarding their runtime and the number of axioms removed from the
ontology. Based on our class disjointness gold standard for the first data set, we com-
puted the correctness of the axiom removals. For this purpose, we define correctness
as also used by Qi et al. [16] as (# correctly removed axioms/# removed axioms). It
is important to note, that by “correctness” we mean the correctness regarding human
assessment not regarding their influence on the logical satisfiability. For the second
DBpedia data set, an ontology engineer inspected the list of axioms removed from one

3 Both DBpedia ontology and data set were used in version 3.7. The enriched
ontology is available at http://web.informatik.uni-mannheim.de/trex/
enriched-dbpedia-ontology.zip

4 This gold standard has been created by three ontology engineers and will be subject of a future
publication.

22



Table 1. Statistics about ontologies used in experiments.

Ontology Axioms Classes Properties Unsat. Classes Unsat. Properties
A 48,186 394 855 8 8
B0 23,706 300 654 3 5
B1 32,814 304 673 6 7
B2 41,941 309 689 9 14
B3 51,056 316 702 15 29
B4 60,166 319 714 26 50
B5 69,271 321 724 32 82
B6 78,375 323 730 49 112
B7 87,468 324 736 63 162
B8 96,555 324 737 83 209
B9 105,642 324 742 132 336
B10 114,726 324 742 152 396
C 22,416 9,827 548 3,992 455

of the incoherent ontologies regarding their correctness. Thus, we were able to com-
pare the performance of the approaches regarding the actual correctness of the resulting
ontology. For the third data set, we only did a runtime evaluation.

All experiments were performed on a system with an Intel Core i7 3.4GHz with
32GB of RAM. As mentioned, for the Markov logic-based approaches, we used the
RockIt5 MAP query engine which in turn uses the ILP solver Gurobi6.

5.2 Results

Applied to the first ontology, the approaches using explanations for incoherences per-
formed similar, all of them removing the same 10 axioms from the ontology and having
similar runtimes of about 40 seconds. During the evaluation of the removed axioms, the
correctness turned out to be only at 0.4. Approach A4 run 12 seconds and removed only
6 axioms with a correctness of 0.

We examined the low correctness value and the high overlap regarding removed
axioms and discovered that it comes from the fact that the debugged ontology has one
central point of incoherence which is centered around the disjointness of organization
and educational institution classes. For instance, the class Library is a subclass of
both Organisation and Building which are marked as disjoint in the disjoint-
ness gold standard. Since the subclass axiom, which is the actual cause of the overall
problem, is contained in the base ontology, the approaches are not allowed to remove
it and try to find a minimal set of axioms mitigating the problem. Seemingly, the ap-
proaches based on explanation generation are not able to find a minimum cardinality
set of axioms to remove, in contrast to the purely Markov logic based method. The
latter however does not remove any axioms whose removal is justified according to
human assessment. During its evaluation, one disadvantage of not computing explana-
tions was discovered. Fully based on Markov logic, there is almost no possibility to

5 https://code.google.com/p/rockit/, Version 0.3.228
6 http://www.gurobi.com/, Version 5.6.0

23



reconstruct the reasons for the removal of certain axioms which makes human interven-
tion hardly possible whereas having access to explanations enables humans to better
track and understand the reasons for certain removals. In particular, this is relevant in
semi-automatized ontology debugging scenarios.

For the second data set, we manually assessed the removed axioms only for ontol-
ogy B5. Since this ontology contains more different axioms and more potential inco-
herences thanA, there are much more variations in the number of removed axioms and
their correctness than for the first ontology. The results are given in Table 2.

Table 2. Results for approaches on ontology B5

Approach Runtime # Removed axioms # correct axioms correctness
A1 12,502 54 43 0.80
A2 15,029 46 40 0.87
A3 19,006 106 73 0.67
A4 23,864 98 75 0.77

The greedy approaches performed better regarding the number of removed axioms
and the correctness. They only removed about half of the axioms the MLN-based ap-
proaches remove. This is probably caused by some axioms with lower confidence be-
ing removed by the MLN methods but again hard to track down because of the black
box characteristics of the MLN approaches. For this smaller ontology, the greedy ap-
proaches are even better with respect to the runtime. However, the MLN-only method
is more capable of handling an increasing number of axioms as shown in Figure 2.
The runtimes of the explanation-based approaches increase more significantly than the
MLN-only approach caused by the increasing number and size of explanations and the
time required for collecting them beforehand. Furthermore, the number of explanations
has a more drastic influence on approach A2 since its runtime is not linear in the number
of explanations in contrast to approach A1.

The performance advantage of the MLN-only approach was even more drastically
shown by the experiments on the third ontology. Having nearly 10,000 classes the ex-
planation generation for all incoherences was not possible in reasonable time7. Since
only approach A4 does not depend on the explanation generation, it was the only one
applicable to this dataset. With a total runtime of about 32 seconds and a total number
of removed axioms of 3,097 it showed a performance suitable for most practical use
cases, especially when considering the high number of incoherent entities in the on-
tology. This qualifies the approach especially for usage on large ontologies potentially
containing many incoherences and for cases where no human intervention is desired.
Additionally, compared to the original results of Qi et al. [16], the MLN-only approach
was able to process the whole ontology at once instead of having to add additional ax-
ioms in chunks, then checking and repairing the ontology and add another chunk of
axioms. Our approach also has a lower runtime than the one reported for the original
approach. Interestingly, we remove more axioms for reaching a coherent ontology. Both
aspects could also be influenced by the iterative addition of axioms.

7 We aborted the computation after one hour.

24



0

50000

100000

150000

23706 32814 41941 51056 60166 69721 78375 87468 96555 105642 114726

Runtime Comparison

GREEDY_COUNTING Axiom Adding Baseline

GREEDY_RANDOM MLN + Explanations Pure MLN

0

20,000

40,000

60,000

80,000

100,000

120,000

23,706 33,706 43,706 53,706 63,706 73,706 83,706 93,706 103,706 113,706

R
u
n
ti

m
es

 (
m

se
c)

Number of axioms

Baseline Axiom Adding MLN + Explanations Pure MLN

Fig. 2. Runtime behavior

6 Conclusion

In this paper, we compared four approaches regarding their performance and charac-
teristics when used to repair learned ontologies. In particular, we concentrated on the
TBox of learned ontologies. Besides traditional greedy repairing approaches, we also
evaluated two approaches using Markov logic networks. The approach which did not
rely on the computation of explanations but was fully MLN-based showed promising
runtime and scalability characteristics. The main problem of approaches is the miss-
ing possibility to get further insights into the repair process since with circumventing
the explicit diagnosis of incoherences the chances for human engineers to understand
the axiom removals also decrease. This was also partly visible for the MLN-based ap-
proach which worked on the generated explanations. These discoveries seem to imply
that the results of globally optimizing strategies like employed by the MLN approaches
are harder to understand for humans than those of the more locally optimizing greedy
approaches. However, this needs further examination and discussion. Based on the ex-
periments presented here, we would choose approaches based on ontology diagnosis
for smaller ontologies and when the full process should be interactive. Approaches like
A4 seem to be qualified for larger ontologies in fully automatized scenarios.

In future work, we will integrate the most promising approaches presented here into
a data debugging system which employs learned schemas for detecting data errors.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, pp. 3–28. Intl. Handbooks on Information Systems, Springer (2004)

25



2. Cimiano, P., Mädche, A., Staab, S., Völker, J.: Ontology learning. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies, pp. 245–267. Intl. Handbooks on Information Systems,
Springer (2009)

3. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005, LNCS, vol. 3513, pp. 227–238. Springer (2005)

4. Fleischhacker, D., Meilicke, C., Völker, J., Niepert, M.: Computing incoherence explanations
for learned ontologies. In: Faber, W., Lembo, D. (eds.) RR 2013, LNCS, vol. 7994, pp. 80–
94. Springer (2013)

5. Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms. In: Meersman,
Robert et al. (ed.) OTM 2011, LNCS, vol. 7045, pp. 680–697. Springer (2011)

6. Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In:
Meersman, Robert et al. (ed.) OTM 2012, LNCS, vol. 7566, pp. 718–735. Springer (2012)

7. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The
next step for OWL. Web Semantics: Science, Services and Agents on the World Wide Web
6(4), 309 – 322 (2008)

8. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Sheth,
Amit et al. (ed.) ISWC 2008, LNCS, vol. 5318, pp. 323–338. Springer (2008)

9. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In:
Godo, L., Pugliese, A. (eds.) SUM 2009, LNCS, vol. 5785, pp. 124–137. Springer (2009)

10. Ji, Q., Haase, P., Qi, G., Hitzler, P., Stadtmüller, S.: RaDON — repair and diagnosis in on-
tology networks. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen,
E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009, LNCS, vol. 5554,
pp. 863–867. Springer (2009)

11. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: A web ontology editing
browser. Web Semantics: Science, Services and Agents on the World Wide Web 4(2), 144 –
153 (2006)

12. Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge bases. In:
Patel-Schneider, Peter et al. (ed.) ISWC 2010, LNCS, vol. 6497, pp. 177–193. Springer
(2010)

13. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging mappings
between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008, LNCS,
vol. 5268, pp. 93–108. Springer (2008)

14. Noessner, J., Niepert, M.: ELOG: A probabilistic reasoner for OWL EL. In: Rudolph, S.,
Gutierrez, C. (eds.) RR 2011, LNCS, vol. 6902, pp. 281–286. Springer (2011)

15. Noessner, J., Niepert, M., Stuckenschmidt, H.: Rockit: Exploiting parallelism and symmetry
for map inference in statistical relational models. In: des Jardins, M., Littman, M.L. (eds.)
Proc. of the 27th AAAI Conference on Artificial Intelligence (2013)

16. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J., Völker, J.: A kernel revision operator for termi-
nologies — algorithms and evaluation. In: Sheth, Amit et al. (ed.) ISWC 2008, LNCS, vol.
5318, pp. 419–434. Springer (2008)

17. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136
(2006)

18. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005, LNCS, vol. 3532, pp. 226–240. Springer (2005)

19. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.
Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51 – 53 (2007)

26




