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Abstract. Links between datasets are an essential ingredient of Linked
Open Data. Since the manual creation of links is expensive at large-scale,
link sets are often created using heuristics, which may lead to errors. In
this paper, we propose an unsupervised approach for finding erroneous
links. We represent each link as a feature vector in a higher dimen-
sional vector space, and find wrong links by means of different multi-
dimensional outlier detection methods. We show how the approach can
be implemented in the RapidMiner platform using only off-the-shelf com-
ponents, and present a first evaluation with real-world datasets from the
Linked Open Data cloud showing promising results, with an F-measure
of up to 0.54, and an area under the ROC curve of up to 0.86.
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1 Introduction

Links between datasets are an essential ingredient for Linked Open Data [6].
For reasons of scalability, such interlinks are often not created manually, but
generated (semi-)automatically by heuristics, which leads to occasional wrong
links.

There are different reasons why link sets may contain errors. The first (and
probably most frequent) reason is that the heuristic mechanism that creates
the links does not work at an accuracy of 100%. Typical heuristic approaches for
generating links combine different string metric of the entities’ labels, sometimes
combined with some filtering by type (e.g., only linking entities of type Person)
[26]. Those heuristics can work well, but are not free from errors, e.g., linking
two different persons which share the same name, or a river and a region with
the same name. Moreover, with such heuristics, there is a trade-off between
recall and precision, which leads to incorrect links. For example, [28] reports
that around 20% of the links between DBpedia and Freebase are incorrect. A
further problem is that the link generation heuristics are usually not re-created
every time one of the linked data sources changes, thus, links may be outdated,
e.g., pointing to to resources that do not exist anymore.
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Another source of errors is that entities are linked which are not exactly the
same. While in theory, entities linked by owl:sameAs should refer to the same
real-world entity, this is not often the case, e.g., when linking a description of
the company Starbucks to an actual Starbucks café. A study in 2010 has shown
that only about half of all owl:sameAs actually denote two descriptions of the
same real world entity [13].

In order to increase the quality of links between datasets, we propose an
approach which uses multi-dimensional outlier techniques for detecting wrong
links. To that end, features for each link are created, so that the link can be
described as a point in a high dimensional feature space. We use outlier detection
methods to find those links that are represented by points which are far from
the overall distribution, assuming that those points represent wrong links.

The rest of this paper is structured as follows. In section 2, we show our
approach for finding wrong links with outlier detection. In section 3, we introduce
the experimental setup we used for validating our approach, and discuss the
results. We conclude the paper with a review of related work in section 4, and
an outlook on future work in section 5.

2 Approach

For finding wrong links with outlier detection, we first represent each link as
a feature vector. Possible features are, e.g., the direct types of resources in the
linked datasets, i.e., all objects of statements that have the linked resource as a
subject and rdf:type as a predicate. A simplified example is shown in Fig. 1:
two datasets contain links between artists and music works. Instances of Song

and Album in dataset 1 are linked to instances of Music Work in dataset 2,
and instances of Artist in dataset 1 are mapped to instances of Music Artist

in dataset 2. It can be observed that in that feature space, there are relatively
dense clusters, and single outliers (such as the one dot in the upper middle, which
represents an album wrongly linked to an artist). Assuming that the majority
of links between two datasets is correct, the clusters are likely to represent the
correct links, while the singular outliers are likely to be wrong links.

Such singular outliers can be found by methods of outlier or anomaly detec-
tion [8, 15]. These methods automatically assign labels or scores to data points
which significantly deviate from the majority of data points in the overall dataset.
The outlier detection approach to be used has to be multi-dimensional, i.e., find
data points that are abnormal w.r.t. the combination of their coordinates. In
contrast, single-dimensional or univariate outlier detection methods (such as
Grubbs’ test or IQR) find suspicious data points in only one dimension, e.g.,
unusually large or small temperature values measured by a sensor. In Fig. 1, the
outlying data point would not be an outlier if only considering one dimension,
i.e., only the type in dataset 1 or the type in dataset 2.

To facilitate the detection of wrong links by outlier detection, our approach
consists of three basic steps:

1. Read a link set, and create a feature vector representation for each link
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Fig. 1. A simplified example of links being represented in a vector space. The single
dot in the upper middle quadrant represents a wrong link.

2. Perform outlier detection on the set of vectors, i.e., assign an outlier score
to each link

3. Order the links by outlier score, and store them

In a semi-automatic setting, a user would work through the list from top to
bottom until the false positive rate begins to rise above a certain limit. For fully
automatic link correction, all links with an outlier score above a threshold τ
would be regarded as outliers.

3 Experiments

To evaluate our approach, we have set up a process in the RapidMiner1 platform
for data mining, combining operators from the Linked Open Data extension [23]
and the Anomaly Detection extension [11]. The basic pipeline is shown in Fig. 2:
first, a set of links is read, e.g., from a SPARQL endpoint, and for both resources
linked, features are added to the feature vector representation using the Linked
Open Data extension. The resulting vector is then passed to an outlier detection
algorithm, which assigns outlier scores. The output is written to a file containing
pairs of resources, augmented with scores.2

1 http://www.rapidminer.com
2 A step-by-step explanation of how to set up such a process is shown at http:

//dws.informatik.uni-mannheim.de/en/research/rapidminer-lod-extension/

rapidminer-lod-extension-example-discovering-wrong-links-between-datasets/
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Prepare and Write Output File

Fig. 2. The implementation of our approach in the RapidMiner platform

3.1 Feature Vector Creation

We examine two different strategies of creating feature vectors:

– Using all direct types. A binary feature is created for each schema class,
which is set to true for a link if the linked resource has the class defined as
its rdf:type.

– Using all ingoing and outgoing properties. Two binary features are created for
each data and object property, which are set to true if the linked resource
is the subject resp. the object of a triple which uses the property as its
predicate.

The same feature creation technique is applied to each of the two linked re-
sources, where distinct features are created for both resources. Furthermore, we
examine the union of both feature sets.

3.2 Datasets

We evaluate our approach on two link sets between three datasets of the Linked
Open Data cloud. The three datasets are:

– DBpedia, a cross-domain dataset created from Wikipedia infoboxes [20].
– Peel Sessions, a dataset describing the John Peel Sessions at BBC, the artists

involved, and the songs performed [25].
– DBTropes, a dataset collecting information about movies, TV shows, com-

puter games, and books, among others, as well as tropes used in those [17].

For DBpedia, we use the mapping-based types and the mapping-based prop-
erties datasets of the 3.9 release3. For the Peel Sessions dataset, we use the dump

3 http://wiki.dbpedia.org/Downloads39
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Table 1. Sizes of feature vectors for the different link sets

Dataset Peel Session DBpedia DBTropes DBpedia

# Links 2,087 4,229

# Types 3 31 2 79
# Properties 4 56 18 124

available at the web site4. For the DBTropes dataset, which provides daily snap-
shots, we use a snapshot obtained on November 8th, 2013.5

Both the Peel Sessions and the DBTropes data set are linked to DBpedia. The
Peel Sessions dataset contains 2,087 owl:sameAs links to DBpedia, the DBTropes
dataset contains 4,229 owl:sameAs links to DBpedia. While the Peel Sessions
dataset is rather restricted to the type of entities it links (in particular: artists
and songs), DBTropes contains a larger variety of entities, including general
concepts such as Celtic Mythology.

Besides random links two homonymous resources (e.g., the TV series Ma-
terial Girl and the Madonna song), one typical source of errors is the linking
of instances derived from disambiguation pages (both DBpedia and DBTropes,
which is also derived from a Wiki, have such instances). A typical source of er-
rors for the Peel Session dataset is the linking of songs to albums with the same
name. Furthermore, the Peel Sessions dataset links different persons of the same
name – e.g., a blues musician named Jimmy Carter to the U.S. president.

Table 1 depicts the sizes of the feature vectors for both link sets, i.e., the
number of classes and properties used for the elements that are mapped. The
counts of DBpedia classes and properties, show that the variety of objects linked
from DBTropes is higher. Furthermore, it is noteworthy that although DBTropes
uses two classes, one of those is only used for two objects, while the remaining
4,219 instances have the class TVTItem, which is only a generic class comparable
to owl:Thing. The properties used in the dataset are similarly generic.

For our experiment, we have randomly sampled 100 links from both link sets,
and manually evaluated them for correctness, thus creating small partial gold
standards. From the Peel Session link set, 90 out of the 100 links are correct, for
the DBTropes link set, 76 out of the 100 links are correct. For the gold standard,
we use a strict definition of owl:sameAs, e.g., a book and its protagonist are not
considered the same, neither are a book and a movie based on that book.

3.3 Outlier Detection Methods

To detect outliers, we compare six different multi-dimensional outlier detection
methods. For all outlier detection methods, we use the implementation in the
RapidMiner Anomaly Detection extension, and used the default parameters un-
less specified otherwise.

– The k-NN global anomaly score (GAS) is the average distance to the k near-
est neighbors [5], following the intuition that outliers are located in rather

4 http://dbtune.org/bbc/peel/, downloaded on November 6th, 2013
5 http://skipforward.opendfki.de/wiki/DBTropes
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sparsely populated areas of the vector space (cf. Fig. 1). Since values for k
between 10 and 50 are recommended [11], we compute a GAS with k = 10,
k = 25, and k = 50.

– The Local Outlier Factor (LOF) is computed from the density of data points
around the point under inspection, which in turn is computed from the
distances to the k nearest neighbors [7]. Since the algorithm allows the setting
of a minimum and a maximum k, we use kmin = 10 and kmax = 50 following
the recommendation above.

– The Local Outlier Probability (LoOP) follows a similar idea as LOF, but maps
the outlier scores to probabilities in a [0; 1] interval (the scores assigned by
other methods are usually unbound) [19]. Like for GAS, we compute LoOP
with k = 10, k = 25, and k = 50.

– The Cluster-based Local Outlier Factor (CBLOF) uses the output of a clus-
tering algorithm. It follows the intuition that outliers are located outside of
larger clusters, and thus assigns an outlier score based on the size of the
cluster in which a data point is located, and the distance to the next large
cluster [14]. According to the recommendation in [11], we set the α value to
the expected percentage of correct instances, i.e., 0.90 for the Peel dataset,
and 0.76 for the DBtropes dataset.6 As a clustering algorithm, we use the
X-means algorithm, which restarts k-means with different values for k, in or-
der to find an optimal one [24]. For the X-means clustering, we set kmin = 2
and kmax = 60.

– The Local Density Cluster-based Outlier Factor (LDCOF) works similar to
CBLOF, but also takes the local density of the cluster into account [3]. We
again use it together with X-means in the same configuration as above.

– One-Class Support Vector Machines aim at training a support vector ma-
chine covering only positive examples, so that the majority of data points is
separated from the rest. In our experiment, we use one-class SVMs with a
robust kernel defined particularly for outlier detection [4].

Most of the above methods (including the clustering algorithm) require the def-
inition of a distance function. Here, we use cosine similarity, since we want two
links to be more similar if they share a feature (both are of type Person), but
not if they share the absence of a feature (e.g., both are not of type City). In
contrast, other distance functions, such as Euclidean distance, would weigh the
shared presence and absence of a feature equally.

3.4 Results

We have tested each of the above outlier detection methods with three different
feature groups – direct types, properties, and the combination of both – on both
datasets, performing a total of 60 runs of the approach. The results are depicted
in table 2. We report the area under the ROC curve (AUC), the best F1-measure

6 Strictly speaking, setting these values according to observations on a labeled sample
of the data makes the approach using CBLOF no longer fully supervised.
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Table 2. Results on both datasets using different feature sets and methods. For each
dataset, the top three AUC and F-measure values are marked in bold.

Dataset Peel DBTropes

Features / Method AUC F1 τ total AUC F1 τ total

types
GAS (k=10) 0.353 0.185 1.414 2,049 0.404 0.390 0.000 4,088
GAS (k=25) 0.341 0.182 0.476 2,071 0.424 0.390 0.000 4,009
GAS (k=50) 0.341 0.182 0.478 2,071 0.422 0.390 0.000 3,943
LOF 0.753 0.454 0.953 1,843 0.619 0.500 1.084 3,025
LoOP (k=10) 0.749 0.454 0.311 1,834 0.413 0.412 0.000 1,636
LoOP (k=25) 0.803 0.500 0.378 1,181 0.581 0.488 0.143 2,978
LoOP (k=50) 0.803 0.500 0.378 1,181 0.581 0.488 0.920 2,969
CBLOF 0.754 0.537 245.423 1,051 0.413 0.404 0.000 1,498
LDCOF 0.696 0.432 0.953 1,352 0.410 0.404 0.000 1,498
1-class SVM 0.857 0.471 2.689 1,514 0.456 0.421 3.712 1,795

properties
GAS (k=10) 0.341 0.182 0.955 2,059 0.411 0.387 0.000 786
GAS (k=25) 0.344 0.182 0.969 2,046 0.405 0.387 0.000 563
GAS (k=50) 0.381 0.182 0.000 663 0.391 0.387 0.000 461
LOF 0.516 0.217 1.102 1,225 0.529 0.424 0.984 1,006
LoOP (k=10) 0.364 0.222 0.156 1,810 0.510 0.425 0.076 2,037
LoOP (k=25) 0.438 0.250 0.706 1,992 0.422 0.387 0.000 1,060
LoOP (k=50) 0.452 0.235 0.531 1,966 0.489 0.411 0.000 1,012
CBLOF 0.402 0.189 68.426 426 0.496 0.400 197.739 254
LDCOF 0.516 0.208 1.013 1,509 0.428 0.390 0.619 276
1-class SVM 0.360 0.189 2.000 426 0.378 0.387 2.000 200

all
GAS (k=10) 0.331 0.200 0.553 1,942 0.412 0.387 0.000 785
GAS (k=25) 0.349 0.200 0.591 1,927 0.407 0.387 0.000 562
GAS (k=50) 0.440 0.222 0.520 1,529 0.390 0.387 0.000 460
LOF 0.638 0.280 1.105 1,002 0.481 0.400 1.010 567
LoOP (k=10) 0.454 0.333 0.802 2,063 0.547 0.420 0.064 1,881
LoOP (k=25) 0.430 0.250 0.478 2,004 0.445 0.388 0.000 1,065
LoOP (k=50) 0.378 0.235 0.473 1,980 0.502 0.420 0.008 1,253
CBLOF 0.313 0.189 25.302 235 0.366 0.403 223.036 240
LDCOF 0.530 0.250 1.326 1,876 0.467 0.390 0.632 272
1-class SVM 0.303 0.180 2.000 237 0.353 0.387 2.000 199

that can be achieved, the threshold τ that has to be set on the outlier score in
order to achieve that F1-measure, and the total number of outliers that are
identified at that threshold.

Multiple observations can be made from the table. First, in particular in
terms of AUC, the results on the Peel dataset are much better than those on the
DBTropes dataset. There are two main reasons for that: on the one hand, the
schema used in the Peel dataset is more fine-grained than that of the DBTropes
dataset, where the latter essentially has only major class, which is TVTItem.
Second, with around 24%, the fraction of outliers on the DBTropes dataset
is rather large, and larger than the amount of outliers many outlier detection
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methods are built for. This can be observed very well on the results for the 1-class
SVM method, which reaches the best AUC on the Peel dataset, but performs
only average on the DBTropes dataset.

Second, using only the type features works best, and the results do not im-
prove when combining both feature sets. As shown in table 1, the number of
features created from direct types is much smaller than that created from rela-
tions, i.e., the outlier detection problem to be solved has a much lower dimen-
sionality. A large number of dimensions, however, is a problem for many outlier
detection methods, in particular those based on nearest neighbor methods. The
combination of type features and LoOP yields good results, with an AUC of
0.803 and 0.581, respectively, while the optimal results are achieved by the 1-
class SVM (AUC=0.857) and CBLOF (F1=0.537) on the Peel dataset, and by
LOF (AUC=0.619, F1=0.5) on the DBTropes dataset. The absolute numbers of
identified outliers for the optimal F1 show that in those cases, the F1 is opti-
mized mainly because of a high recall value, flagging up to three quarters of all
links as outliers. This shows that selecting an optimal configuration is difficult.

In order to obtain a more fine-grained picture of the differences between the
approaches, figures 3 and 4 show the ROC curves of all approaches, using only
type features. It shows that in particular the LoOP approaches show very good
results on both datasets. The steep ascend of the respective ROC curves show
that there are five actually wrong links among the top 10 identified outliers.

The approach runs very fast in most cases. While the creation of feature
vectors strongly depends on the data access method (e.g., working with a public
SPARQL endpoint over the internet is much slower than using a local dump),
the outlier detection itself takes less than 10 seconds on both datasets for all the
methods used in our experiments. The only exceptions are the clustering-based
methods, where the clustering can take up to 30 seconds, and most dominantly
the One-Class SVM method, which can take up to 15 minutes.

4 Related Work

In this paper, we have analyzed the use of multi-dimensional outlier detection
for finding erroneous links. This work is orthogonal to the approach sketched in
[27], where we use outlier detection in a one-dimensional setting to find wrong
numeric literals in DBpedia.

While a larger body of work is concerned with automatically creating links,
there are not too many approaches that try to automatically find errors in links
between datasets. Moreover, most approaches discussed so far assume some prior
knowledge about the datasets, e.g., links on the schema level.

[12] use a set of five network metrics, such as degree and centrality, to predict
typical properties of nodes in two interlinked datasets, as well as try to find
wrongly linked resources. They report a recall of 0.68 and a precision of 0.49
(although on a different dataset), i.e., a result quality comparable to the approach
discussed in this paper. In [9], links between more than two datasets are exploited
to find the set of owl:sameAs that minimize the contradictions. The authors
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Fig. 3. ROC curve of the results on the Peel dataset, using only type features. The
three curves for GAS are mostly identical; so are LoOP for k = 25 and k = 50.

show that they are capable of identifying a significant amount of contradictions,
however, they do not state the precision of their approach. A similar problem
is addressed in [10], where the authors aim at finding the most coherent set of
links from a set of possible link candidates.

An approach using statistical distributions of properties, such as average de-
grees, is discussed in [16]. Like our approach, the authors compute confidence
scores for owl:sameAs links. However, there is a fundamental difference: the
authors expect the same schema to be used by both linked resources. In con-
trast, our approach can cope with entities using different schemas. The two link
sets used in this paper could not have been processed with such an approach
expecting the same schema for both linked datasets.

The Databugger framework allows for finding typical patterns of wrong and/or
incomplete data, formulated as SPARQL queries [18]. The key difference is that,
while Databugger relies on schema information (e.g., owl:equivalentClass def-
initions), our approach is agnostic with respect to the schemas used in the
datasets at hand. In [1], a crowd sourcing approach is introduced for evalu-
ating the quality of interlinks between datasets. While a considerable precision
of 0.94 is achieved using majority voting over Amazon MTurk tasks, the results
are not directly comparable, since the approach discussed in this paper works
fully automatically and unsupervised, while the authors exploit the wisdom of
the crowd. In [2], an approach is discussed for assessing the completeness of link
sets, based on manually defined schema mappings. This is complementary to our
work, which is concerned with correctness, not completeness.

The approaches in this paper focus on debugging link sets between individu-
als, i.e., links on the A-box level. A related problem is the debugging of schema
mappings, i.e., links on the T-box level. Here, reasoning based approaches are
frequently used [21]. While reasoning would also be a possible approach for A-box
level link set debugging, the problems here are scalability and missing expressiv-
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Fig. 4. ROC curve of the results on the DBTropes dataset, using only type features.
The curves for GAS k = 25 and k = 50 are mostly identical; so are the curves for LoOP
with k = 25 and k = 50, and the curves for CBLOF and LDCOF.

ity of the schemas used for Linked Open Data, and the A-box data often being
too noisy for reasoning to yield useful results [22].

5 Conclusion and Outlook

In this paper, we have presented an approach for finding wrong links between
datasets, which uses multi-dimensional outlier detection techniques. An evalua-
tion on two datasets has shown promising results, with an area under the ROC
curve up to 0.86 (i.e., wrong links get lower scores than correct links with a
probability of 86%), and an F-measure up to 0.54. The approach is scalable, as
it processes link sets between real datasets from the LOD cloud in a few seconds
to a few minutes, depending on the configuration used.

Although the datasets used for evaluation only use owl:sameAs links, it can
be applied to all sorts of datasets interlinks, the approach is not limited to a
particular type of links. It may also be used, e.g., on a dataset of persons linked
to a dataset of locations using foaf:basedNear links, or even for finding wrong
instantiations of any property within a single dataset.

Given the amount of work that has been done in supervised or active learning
of dataset interlinks, a link validation method such as the one introduced in this
paper could be an interesting counterpart to be used in such learning systems.
Given that the features used for learning and for validating the links are different,
our method could provide a direct feedback loop for refining the learned links.

In essence, there are two basic degrees of freedom in our approach: the strat-
egy for creating feature vectors, and the outlier detection algorithm (and its
parametrization). With respect to feature vectors, we have experimented with
direct types and properties so far. A further option are qualified relations, as
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discussed in [23], which, however, may impose scalability issues. Network mea-
sures, as discussed in some related works, are an interesting option for generating
possible features, and domain or dataset specific features, such as Wikipedia cat-
egories for DBpedia, may also be csonidered. Furthermore, since many outlier
detection algorithms experience problems in higher dimensional spaces, applying
feature selection might be a useful preprocessing step, which, however, has to be
taken with great care, since particularly in our setting, the very sparse features
(which are likely to be eliminated by many feature selection approaches) are
often those which are well suited for finding outliers.

As far as the selection of outlier detection methods is concerned, we have
observed some trends, in particular that Local Outlier Factor, Local Outlier
Probabilities, and 1-class SVMs perform quite well, however, especially the latter
two need to be carefully parametrized. Since many automatic parameter tuning
methods rely on a supervised rather than an unsupervised setting, it might be
an interesting option to wrap our approach in a semi-supervised setting, using
a small set of labeled links for automatic parameter tuning.

References

1. Maribel Acosta, Amrapali Zaveri, Elena Simperl, Dimitris Kontokostas, Sören
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