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Preface

This volume contains the papers presented at the 12th edition of the International Work-
shop on Satisfiability Modulo Theories (SMT 2014). The workshop was held on July 17th
and 18th 2014 as part of the Vienna Summer of Logic (VSL 2014), in association with the
26th International Conference on Computer Aided Verification (CAV 2014), the 7th Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2014), and the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2014).

The workshop is the main annual event of the SMT community, where both researchers
and users of SMT technology meet and discuss new theoretical ideas, implementation and
evaluation techniques, as well as applications. Like in previous editions of the workshop, this
year we invited submissions in three categories: extended abstracts, to present preliminary
reports of work in progress; original papers, to describe original and mature research; and
presentation-only papers, to provide additional access to important developments, recently
published or submitted elsewhere and which SMT Workshop attendees may be unaware of.
We received 13 submissions and each of them was reviewed by three program committee
members. Due to the quality of and interest in the submissions, and in keeping with the
desire to encourage presentation and discussion of work in progress, we were able to accept
11 contributions for presentation at the workshop: 2 original papers, 4 extended abstracts,
and 5 presentation-only papers. Furthermore, the program included two invited talks, by
Clark Barrett from New York University and Guillaume Melquiond from Inria. We would
like to thank the authors, the invited speakers, the program committee, and the reviewers
for their work and contributions to the workshop. We thank the CAV, IJCAR, SAT, and
VSL organizers for their support and for hosting the workshop, and the EasyChair team for
the availability of the EasyChair Conference System.

July, 2014 Philipp Rümmer
Christoph M. Wintersteiger
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Invited Talk

SMT: Where do we go from here?

Clark Barrett

New York University

There is no question that the last decade has been a remarkable success story for SMT. Yet,
many challenges remain that are obstacles to unlocking the full potential of this technology. In
this talk, I will take a look at what has brought SMT to this point, including some notable
success stories. Then I will discuss some of the remaining challenges, both technical and non-
technical, and suggest directions for addressing these challenges.
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Speeding Up SMT-Based

Quantitative Program Analysis

Daniel J. Fremont and Sanjit A. Seshia

University of California, Berkeley
dfremont@berkeley.edu

sseshia@eecs.berkeley.edu

Abstract

Quantitative program analysis involves computing numerical quantities about individual or col-

lections of program executions. An example of such a computation is quantitative information flow

analysis, where one estimates the amount of information leaked about secret data through a program’s

output channels. Such information can be quantified in several ways, including channel capacity and

(Shannon) entropy. In this paper, we formalize a class of quantitative analysis problems defined over

a weighted control flow graph of a loop-free program. These problems can be solved using a combi-

nation of path enumeration, SMT solving, and model counting. However, existing methods can only

handle very small programs, primarily because the number of execution paths can be exponential in

the program size. We show how path explosion can be mitigated in some practical cases by taking ad-

vantage of special branching structure and by novel algorithm design. We demonstrate our techniques

by computing the channel capacities of the timing side-channels of two programs with extremely large

numbers of paths.

1 Introduction

Quantitative program analysis involves computing numerical quantities that are functions of
individual or collections of program executions. Examples of such problems include computing
worst-case or average-case execution time of programs, and quantitative information flow, which
seeks to compute the amount of information leaked by a program. Much of the work in this area
has focused on extremal quantitative analysis problems — that is, problems of finding worst-
case (or best-case) bounds on quantities. However, several problems involve not just finding
extremal bounds but computing functions over multiple (or all) executions of a program. One
such example, in the general area of quantitative information flow, is to estimate the entropy
or channel capacity of a program’s output channel. These quantitative analysis problems are
computationally more challenging, since the number of executions (for terminating programs)
can be very large, possibly exponentially many in the program size.

In this paper, we present a formalization and satisfiability modulo theories (SMT) based
solution to a family of quantitative analysis questions for deterministic, terminating programs.
The formalization is covered in detail in Section 2, but we present some basic intuition here.
This family of problems can be defined over a weighted graph-based model of the program.
More specifically, considering the program’s control flow graph, one can ascribe weights to
nodes or edges of the graph capturing the quantity of interest (execution time, number of bits
leaked, memory used, etc.) for basic blocks. Then, to obtain the quantitative measure for a
given program path, one sums up the weights along that path. Furthermore, in order to count
the number of program inputs (and thus executions) corresponding to a program path, one can
perform model counting on the formula encoding the path condition. Finally, to compute the
quantity of interest (such as entropy or channel capacity) for the overall program, one combines
the quantities and model counts obtained for all program paths using a prescribed formula.
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The obvious limitation of the basic approach sketched above is that, for programs with
substantial branching structure, the number of program paths (and thus, executions) can be
exponential in the program size. We address this problem in the present paper with two ideas.
First, we show how a certain type of “confluent” branching structure which often occurs in real
programs can be exploited to gain significant performance enhancements. A common example of
this branching structure is the presence of a conditional statement inside a for-loop, which leads
to 2N paths for N loop iterations. In this case, if the branches are proved to be “independent”
of each other (by invoking an SMT solver), then one can perform model counting of individual
branch conditions rather than of entire path conditions, and then cheaply aggregate those model
counts. Secondly, to compute a quantity such as channel capacity, it is not necessary to derive
the entire distribution of values over all paths. For this case, we give an efficient algorithm
to compute all the values attained by a given quantity (e.g. execution time) over all possible
paths — i.e., the support of the distribution — which runs in time polynomial in the sizes of
the program and the support. Our algorithmic methods are particularly tuned to the analysis
of timing side-channels in programs. Specifically, we apply our ideas to computing the channel
capacity of timing side-channels for two standard programs which have far too many paths for
previous techniques to handle.

Our techniques enable the use of SMT methods in a new application, namely quantitative
program analyses such as assessing the feasibility of side-channel attacks. While SMT methods
are used in other program verification problems with exponentially-large search spaces, näıve
attempts to use them to compute statistics like those we consider do not circumvent path
explosion. The optimizations that form our primary contributions are essential in making
feasible the application of SMT to our domain.

To summarize, the main contributions of this paper include:

• a method for utilizing special branching structure to reduce the number of model counter
invocations needed to compute the distribution of a class of quantitative measures from
potentially exponential to linear in the size of the program, and

• an algorithm which exploits this structure to compute the support of such distributions in
time polynomial in the size of the program and the support.

The rest of the paper is organized as follows. We present background material and problem
definitions in Sec. 2. Algorithms and theoretical results are presented in Sec. 3. Experimental
results are given in Sec. 4 and we conclude in Sec. 5.

2 Background and Problem Definition

We present some background material in Sec. 2.1 and the formal problem definitions in Sec. 2.2.

2.1 Preliminaries

We assume throughout that we are given a loop-free deterministic program F whose input
is a set of bits I. Our running example for F will be the standard algorithm for modular
exponentiation by repeated squaring, denoted modexp, where the base and modulus are fixed
and the input is the exponent. Usually modexp is written with a loop that iterates once for each
bit of the exponent. To make modexp loop-free we unroll its loop, yielding for a 2-bit exponent
the program shown on the left of Figure 1. Lines 2–5 and 6–9 correspond to the two iterations
of the loop.
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1: r ← 1
2: if (e & 1) = 1 then
3: r ← rb (mod m)
4: e← e >> 1
5: b← b2 (mod m)
6: if (e & 1) = 1 then
7: r ← rb (mod m)
8: e← e >> 1
9: b← b2 (mod m)

10: return r

e1

e2
e3

e4
e5

e7
e6

e8
e9

CFG            C        BA A + B - C

Figure 1: Unrolled pseudocode and CFG for modexp, computing be (mod m) for a 2-bit ex-
ponent e. Paths A, B, and C form a basis, the remaining (rightmost) path being a linear
combination of them.

To describe the execution paths of F we use the formalism introduced by McCabe [6].
Consider the control-flow graph (CFG) of F , where there is a vertex for each basic block,
conditionals having two outgoing edges. For example, since 2-bit modexp has two conditionals,
its CFG (shown in Figure 1) has two vertices with outdegree 2. We call such vertices branch
points, and denote the set of them by B. Which edge out of a branch point b ∈ B is taken
depends on the truth of its branch condition Cb, the condition in the corresponding conditional
statement. In Figure 1, the branch condition for the first branch point is (e&1) = 1: if this
holds, then edge e3 is taken, and otherwise edge e2 is taken. We model the finite-precision
semantics of programs, variables being represented as bitvectors, so that the branch conditions
can be expressed as bitvector SMT formulae. Since these conditions can depend on the result
of prior computations (e.g. the second branch condition in Figure 1), the corresponding SMT
formulae include constraints encoding how those computations proceed. Then each formula
uniquely determines the truth of its branch condition given an assignment to the input bits.
When necessary, these formulae can be bit-blasted into propositional SAT formulae for further
analysis (e.g. model counting).

For convenience we add a dummy vertex to the CFG which has an incoming edge from all
sink vertices. Since F is loop-free the CFG is a DAG, and each execution of F corresponds to
a simple path from the source to the (now unique) sink. Given such a path P , we write B(P )
for the set of branch points where P takes the right of the two outgoing edges, corresponding
to making Cb true. If there are N edges then these paths can be viewed as vectors in {0, 1}N ,
where each coordinate specifies whether the corresponding edge is taken. For example, in Figure
1 path A corresponds to the vector (1, 0, 1, 1, 1, 1, 0, 0, 1) under the given edge labeling. This
representation allows us to speak meaningfully about linear combinations of paths, as long as
the result is in {0, 1}N . A basis of the set of paths is defined by analogy to vector spaces to be
a minimal set of paths from which all paths can be obtained by taking linear combinations. In
Figure 1, the paths A, B, and C form a basis, as the only other path through the CFG can be
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expressed as A + B−C.
Now suppose we are given an integer weight for each basic block of F , or equivalently for

each vertex of its CFG.1 We define the total weight wt(P ) of an execution path P of F to be
the sum of the weights of all basic blocks along P . Note that we get the same value if the
weight of each vertex is moved to all of its outgoing edges (obviously excluding the dummy
sink), and we sum edge instead of vertex weights — thus wt(·) is a linear function. Since F is
deterministic, each input x ∈ {0, 1}I triggers a unique execution path we denote P(x), and so
has a well-defined total weight wt(x) = wt(P(x)).

2.2 Problem Definition

We consider in this paper the following problems:

Problem 1. Picking x ∈ {0, 1}I uniformly at random, what is the distribution of wt(x)?

and the special case:

Problem 2. What is the support of the distribution of wt(x), i.e. what is the set wt({0, 1}I) =
{wt(x) | x ∈ {0, 1}I}?

One way to think about these problems is to view the weight of a basic block as some
quantity or resource, say execution time or energy, that the block consumes when executed.
Then Problem 1 is to find the distribution of the total execution time or energy consumption
of the program.

Computing or estimating this distribution is useful in a range of applications (see [10]).
We consider here a quantitative information flow (QIF) setting, with an adversary who tries to
recover x from wt(x). In the example above, this would be a timing side-channel attack scenario
where the adversary can only observe the total execution time of the program. Given the
distribution of wt(x), we can compute any of the standard QIF metrics such as channel capacity
or Shannon entropy measuring how much information is leaked about x. For deterministic
programs, the channel capacity2 is simply the (base 2) logarithm of the number of possible
observed values [11]. Thus to compute the channel capacity we do not need to know the full
distribution of wt(x), but only how many distinct values it can take — hence our isolation of
Problem 2. As we will see, this special case can sometimes be solved much more rapidly than
by computing the full distribution.

We note that the general problems above can be applied to a variety of different types of
resources. On platforms where the execution time of a basic block is constant (i.e. not dependent
on the state of the machine), they can be applied to timing analysis. The weights could also
represent the size of memory allocations, or the number of writes to a stream or device. For
all of these, solving Problems 1 and 2 could be useful for performance characterization and
analysis of side-channel attacks.

3 Algorithms and Theoretical Results

The simplest approach to Problem 1 would be to execute program F on every x ∈ {0, 1}I ,
computing the total weight of the triggered path and eventually obtaining the entire map

1Note that our formalism and approach can be made to work with rational weights, but we focus here on
applications for which integer weights suffice.

2Sometimes called the conditional min-entropy of x with respect to wt(x), since for deterministic programs
with a uniform input distribution they are the same [11].
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x 7→ wt(x). This is obviously impractical when there are more than a few input bits, and is
wasteful because often many inputs trigger the same execution path. A more refined approach
is to enumerate all execution paths, and for each path compute how many inputs trigger it. This
can be done by expressing the branch conditions corresponding to the path as a bitvector or
propositional formula and applying a model counter [3] (this idea was used in [1] to count how
many inputs led to a given output, although with a linear integer arithmetic model counter). If
the number of paths is much less than 2|I|, as is often the case, this approach can be significantly
more efficient than brute-force input enumeration. However, as noted above the number of paths
can be exponential in the size of F , in which case this approach requires exponentially-many
calls to the model counter and therefore is also impractical.

A prototypical example of path explosion is our running example modexp. For an N -bit
exponent, there are N conditionals, and all possible combinations of these branches can be
taken, so that there are 2N execution paths. This makes model counting each path infeasible,
but observe that the algorithm’s branching structure has two special properties. First, the
conditionals are unnested : the two paths leading from each conditional always converge prior
to the next one. Second, the branch conditions are independent : they depend on different bits
of the input. Below we show how we can use these properties to gain greater efficiency, yielding
Algorithms 2 and 4 for Problems 1 and 2 respectively.

3.1 Unnested Conditionals

If F has no nested conditionals, its CFG has an “N -diamond” form like that shown in Figure
1 (the number of basic blocks within and between the “diamonds” can vary, of course — in
particular, we do not assume that the “else” branch of a conditional is empty, as is the case
for modexp). This type of structure naturally arises when unrolling a loop with a conditional
in the body, as indeed is the case for modexp. Verifying that there are no nested conditionals is
a simple matter of traversing the CFG.

With unnested conditionals, there is a one-to-one correspondence between execution paths
and subsets of B, given by P 7→ B(P ). For any b ∈ B, we write Bb for the path which takes
the left edge at every branch point except b (i.e. makes every branch condition false except for
that of b — of course it is possible that no input triggers this path). We write Bnone for the
path which always takes the left edge at each branch point. For example, in Figure 1 if the
conditionals on lines 2 and 6 correspond to branch points a and b respectively, then A = Ba,
B = Bb, and C = Bnone. In general, Bnone together with the paths Bb form a basis for the set
of all paths. In fact, for any path P it is easy to see that

P =


 ∑

c∈B(P )

Bc


− (|B(P )| − 1)Bnone . (1)

This representation of paths will be useful momentarily.

3.2 Independence

Recall that an input variable of a Boolean function is a support variable if the function actu-
ally depends on it, i.e. the two cofactors of the function with respect to the variable are not
equivalent. For each branch point b ∈ B, let Sb ⊆ I be the set of input bits which are support
variables of Cb. We make the following definition:

Definition 1. Two conditionals b, c ∈ B are independent if Sb ∩ Sc = ∅.

7



Independence simply means that there are no common support variables, so that the truth
of one condition can be set independently of the truth of the other.

To compute the supports of the branch conditions and check independence, the simplest
method is to iterate through all the input bits, checking for each one whether the cofactors
of the branch condition with respect to it are inequivalent using an SMT query in the usual
way. This can be substantially streamlined by doing a simple dependency analysis of the branch
condition in the source of F , to determine which input variables are involved in its computation.
Then only input bits which are part of those variables need be tested (for example, in Figure 1
both branch conditions depend only on the input variable e, and if there were other input
variables the bits making them up could be ignored). This procedure is outlined as Algorithm
1. Note that as indicated in Sec. 2.1, the formula φ computed in line 6 encodes the semantics
of F so that the truth of Cb (equivalently, the satisfiability of φ) is uniquely determined by an
assignment to the input bits. For lack of space, the proofs of Lemma 1 and the other lemmas
in this section are deferred to the Appendix found in the full version of this paper.

Algorithm 1 FindConditionSupports(F )

1: Compute CFG of F and identify branch points B
2: if there are nested conditionals then
3: return FAILURE

4: for all b ∈ B do
5: Sb ← ∅ // these are global variables
6: φ← SMT formula representing Cb

7: V ← input bits appearing in φ
8: for all v ∈ V do
9: if the cofactors of Cb w.r.t. v are not equivalent then

10: Sb ← Sb ∪ {v}
11: return SUCCESS

Lemma 1. Algorithm 1 computes the supports Sb correctly, and given an SMT oracle runs in
time polynomial in |F | and |I|.

If all of the conditionals of F are pairwise independent, then I can be partitioned into the
pairwise disjoint sets Sb and the set of remaining bits which we write Snone. For any b ∈ B, the
truth of Cb depends only on the variables in Sb, and we denote by Tb the number of assignments
to those variables which make Cb true. Then we have the following formula for the probability
of a path:

Lemma 2. Picking i ∈ {0, 1}I uniformly at random, for any path P , the probability that the
path corresponding to input i is P is given by

Pr [P(i) = P ] =


2|Snone|


 ∏

b∈B(P )

Tb




 ∏

b∈B\B(P )

(
2|Sb| − Tb

)



 /2|I| .

Lemma 2 allows us to compute the probability of any path as a simple product if we know
the quantities Tb. Each of these in turn can be computed with a single call to a model counter,
as done in Algorithm 2.

Theorem 1. Algorithm 2 correctly solves Problem 1, and given SMT and model counter oracles
runs in time polynomial in |F |, |I|, and the number of execution paths of F . The model counter
is only queried |B| times.
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Algorithm 2 FindWeightDistribution(F,weights)

1: if FindConditionSupports(F ) = FAILURE then
2: return FAILURE

3: if the sets Sb are not pairwise disjoint then
4: return FAILURE

5: for all b ∈ B do
6: Tb ← model count of Cb over the variables in Sb

7: dist← constant zero function
8: for all execution paths P do
9: p← probability of P from Lemma 2

10: dist← dist[wt(P ) 7→ dist(wt(P )) + p]
11: return dist

Proof. Follows from Lemmas 1 and 2.

Algorithm 2 improves on path enumeration by using one invocation of the model counter
per branch point, instead of one invocation per path. In total the algorithm may still take
exponential time, since we need to compute the product of Lemma 2 for each path, but if
model counting is expensive there is a substantial savings.

Further savings are possible if we restrict ourselves to Problem 2. For this, we want to
compute the possible values of wt(x) for all inputs x. This is identical to the set of possible
values wt(P ) for all feasible paths P (the paths that are executed by some input). Thus, we do
not need to know the probability associated with each individual path, but only which paths
are feasible and which are not. Lemma 2 implies that all paths are feasible (unless some Tb = 0
or Tb = 2|Sb|, corresponding to a conditional which is identically false or true; then Sb = ∅, so
we can detect and eliminate such trivial conditionals), and this leads to

Lemma 3. Let D be the multiset of differences wt(Bb)−wt(Bnone) for b ∈ B. Then the possible
values of wt(i) over all inputs i ∈ {0, 1}I are the possible values of wt(Bnone) +D+, where D+

is the set of sums of submultisets of D.

To use Lemma 3 to solve Problem 2, we must find the set D+. The brute-force approach of
enumerating all submultisets is obviously impractical unless D is very small. We cannot hope
to do better than exponential time in the worst case3, since D+ can be exponentially larger
than D. However, in many practical situations D+ is not too much larger than D. This is
because the paths Bb often have similar weights, so the variation V = maxD −minD is small
and we can apply the following lemma:

Lemma 4. If V = maxD −minD, then |D+| = O(V |D|2).

Small differences between weights are exploited by Algorithm 3, which as shown in the
Appendix computes D+ in O(|D| |D+|) time. By Lemma 4, the algorithm’s runtime is O(|D| ·
V |D|2) = O(V |D|3), so it is very efficient when V is small. The essential idea of the algorithm
is to handle one element x ∈ D at a time, keeping a list of possible sums found so far sorted so
that updating it with the new sums possible using x is a linear-time operation. For simplicity
we only show how positive x ∈ D are handled, but see the analysis in the Appendix for the
general case.

3Although we note that for channel capacity analysis we only need
∣∣D+

∣∣ and not D+ itself, and there could
be a faster (potentially even polynomial-time) algorithm to find this value.
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Algorithm 3 SubmultisetSums(D)

1: sums← (0)
2: for all x ∈ D do
3: newSums← (sums[0])
4: i→ 1 // index of next element of sums to add to newSums
5: for all y ∈ sums do
6: z ← x+ y
7: while i < len(sums) and sums[i] < z do
8: newSums.append(sums[i])
9: i← i+ 1

10: newSums.append(z)
11: if i < len(sums) and sums[i] = z then
12: i← i+ 1
13: sums← newSums
14: return sums

Using Algorithm 3 together with Lemma 3 gives an efficient algorithm to solve Problem 2,
outlined as Algorithm 4. This algorithm has runtime polynomial in the size of its input and
output.

Algorithm 4 FindPossibleWeights(F,weights)

1: if FindConditionSupports(F ) = FAILURE then
2: return FAILURE

3: if the sets Sb are not pairwise disjoint then
4: return FAILURE

5: Eliminate branch points with Sb = ∅ (trivial conditionals)
6: D ← empty multiset
7: for all b ∈ B do
8: d← wt(Bb)− wt(Bnone)
9: D ← D ∪ {d}

10: D+ ← SubmultisetSums(D)
11: return wt(Bnone) +D+

Theorem 2. Algorithm 4 solves Problem 2 correctly, and given an SMT oracle runs in time
polynomial in |F |, |I|, and

∣∣wt({0, 1}I)
∣∣.

Proof. Clear from Lemmas 1 and 3, and the analysis of Algorithm 3 (see the Appendix).

3.3 More General Program Structure

As presented above, our algorithms are restricted to loop-free programs which have only
unnested, independent conditionals. However, our techniques are still helpful in analyzing
a large class of more general programs. Loops with a bounded number of iterations can be un-
rolled. Unrolling the common program structure consisting of a for-loop with a conditional in
the body yields a loop-free program with unnested conditionals. If the conditionals are pairwise
independent, as in the modexp example, our methods can be directly applied. If the number of
dependent conditionals, say D, is nonzero but relatively small, then each of the 2D assignments
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Figure 2: Timing distribution of 32-bit modexp, computed with Algorithm 2.

to these conditionals can be checked for feasibility with an SMT query, and the remaining
conditionals can be handled using our algorithms. If many conditionals are dependent then
checking all possibilities requires an exponential amount of work, but we can efficiently handle
a limited failure of independence. An example where this is the case is the Mersenne Twister
example we discuss in Sec. 4, where 2 out of 624 conditionals are dependent. A small level
of conditional nesting can be handled in a similar way. In general, when analyzing a program
with complex branching structure, our methods can be applied to those regions of the program
which satisfy our requirements. Such regions do frequently occur in real-world programs, and
thus our techniques are useful in practice.

4 Experiments

As mentioned in Sec. 2, Problem 2 subsumes the computation of the channel capacity of the
timing side-channel on a platform where basic blocks have constant runtimes. To demonstrate
the effectiveness of our techniques, we use them to compute the timing channel capacities of two
real-world programs on the PTARM simulator [4]. The tool GameTime [9] was used to generate
SMT formulae representing the programs, and to interface with the simulator to perform the
timing measurements of the basis paths. SMT formulae for testing cofactor equivalence were
generated and solved using Z3 [2]. Model counting was done by using Z3 to convert SMT
queries to propositional formulae, which were then given to the model counter Cachet [8].
Raw data from our experiments can be obtained at http://math.berkeley.edu/~dfremont/

SMT2014Data/.
The first program tested was the modexp program already described above, using a 32-bit

exponent. With 232 paths, enumerating and model counting all paths is clearly infeasible.
Our new approach was quite fast: finding the branch supports, model counting4, and running
Algorithm 3 took only a few seconds, yielding a timing channel capacity of just over 8 bits. In
fact, although the number of paths is very large, the per-path cost of Algorithm 2 is so low
that we were able to compute modexp’s entire timing distribution with it in 23 hours (effectively
analyzing more than 50,000 paths per second). The distribution is shown in Figure 2.

4We note that for this program, each branch condition had only a single support variable, and thus we have
Tb = 1 automatically without needing to do model counting.
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The second program we tested was the state update function of the widely-used pseudoran-
dom number generator the Mersenne Twister [5]. We tested an implementation of the most
common variant, MT19937, which is available at [7]. On every 624th query to the generator,
MT19937 performs a nontrivial updating of its internal state, an array of 624 32-bit integers.
We analyzed the program to see how much information about this state is leaked by the time
needed to do the update. The relevant portion of the code has 2624 paths and thus would
be completely impossible to analyze using path enumeration. With our techniques the anal-
ysis became feasible: finding the branch supports took 54 minutes, while Algorithm 3 took
only 0.2 seconds because there was a high level of uniformity across the path timings. The
channel capacity was computed to be around 9.3 bits. We note that among the 624 branch
conditions there are two which are not independent. Thus all four truth assignments to these
conditions needed to be checked for feasibility before applying our techniques to the remaining
622 conditionals.

5 Conclusions

We presented a formalization of certain quantitative program analysis problems that are de-
fined over a weighted control-flow graph representation. These problems are concerned with
understanding how a quantitative property of a program is distributed over the space of pro-
gram paths, and computing metrics over this distribution. These computations rely on the
ability to solve a set of satisfiability (SAT/SMT) and model counting problems. Previous work
along these lines has only been applicable to small programs with very few conditionals, since
it typically depends on enumerating all execution paths and the number of these can be expo-
nential in the size of the program. We investigated how in certain situations where the number
of paths is indeed exponential, special branching structure can be exploited to gain efficiency.
When the conditionals are unnested and independent, we showed how the number of expensive
model counting calls can be reduced to be linear in the size of the program, leaving only a
very fast product computation to be done for each path. Furthermore, a special case of the
general problem, which for example is sufficient for the computation of side-channel capacities,
can be solved avoiding exponential path enumeration entirely. Finally, we showed the prac-
ticality of our methods by using them to compute the timing side-channel capacities of two
commonly-used programs with very large numbers of paths.
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Abstract

In this talk, we will present the results reported in our CAV 2013 paper [6] on integrating
support for multiple SMT solvers in the dynamic symbolic execution engine KLEE [2]. In
particular, we will outline the key characteristics of the SMT queries generated during
symbolic execution, introduce an extension of KLEE that uses a number of state-of-the-art
SMT solvers (Boolector [1], STP [4] and Z3 [3]) through the metaSMT [5] solver framework,
and compare the solvers’ performance when run on large sets of QF ABV queries obtained
during the symbolic execution of real-world software. In addition, we will discuss several
options for designing a parallel portfolio solver for symbolic execution tools.
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Abstract

Testing a telecommunication protocol often requires protocol log analysis. A protocol
log is a sequence of messages with timestamps. Protocol log analysis involves checking that
the content of messages and timestamps are correct with respect to the protocol specifica-
tion. We model the protocol specification using constraint programming (MiniZinc), and
we present an approach where a constraint solver is used to perform protocol log analysis.
Our case study is the Public Warning System service, which is a part of the Long Term
Evolution (LTE) 4G standard.

1 Introduction

In this paper we investigate the use of constraint programming to implement a part of a test
harness for equipment involved in the Long Term Evolution (LTE) 4G standard [8, 2] in partic-
ular the broadcast of public warning messages [3]. The protocol includes a number of messages
with complex timing requirements between them. The main novelty is that we use constraint
programming [11] to directly model the protocol and to implement a test harness directly. Fur-
ther, we believe that the protocol itself has independent interest as useful case study for other
formal modelling approaches.

In our previous work [5] we presented an approach where we were testing an existing test
harness written in Java. We generated protocol logs to test the existing Java implementation
in order to find errors in the implementation. We created a model of the protocol in constraint
programming in SICStus Prolog [7] and used the solutions of the constraint program to generate
protocol logs. The model was then modified to produce protocol logs that were nearly correct,
that is we injected faults, and these nearly correct logs were used to test if the test harness
could spot errors in the protocol logs.

However, another approach can be applied in order to check that protocol log contains
correct messages with correct timing: Our new approach is to use constraint solver to analyze
logs directly, and hence implement the test harness using a constraint solver.

In this work, we model a part of the protocol directly in the MiniZinc [9] language (see
Section 2). This approach requires a script that reads the protocol log, creates arrays of
MiniZinc variables, and assigns values to the variables according to the information provided
in the log.

There are a number of advantages of using MiniZinc and constraint programming: first it was
very easy to translate the required parts of the telecommunication specification [3] directly into
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MiniZinc; these MiniZinc specifications are automatically translated into a constraint program
that can be used to test protocol logs for correctness directly; the MiniZinc specification is a
declarative specification of the protocol behaviour rather than the procedural implementation
that was used in the existing Java implementation of the checker; and finally the part of
the protocol modelled here already provides more functionality and requires three times less
lines in MiniZinc than existing Java code, and adding more functionality to the MiniZinc
implementation is simply of adding more constraints.

The rest of this paper is structured as follows: in section 2 we give a very brief overview of
constraint programming and MiniZinc; in section 3 we give the necessary telecommunication
background to understand the case study; and in section 4 we give in some detail the constraint
model that is required to test the protocol logs for correctness.

2 MiniZinc and Constraint Programming

Constraint Programming [11] (CP) is a framework for modelling and solving combinatorial
problems such as verification and optimization tasks. A constraint problem is specified as a
set of variables that have to be assigned values so that the given constraints on these vari-
ables are satisfied, and optionally so that a given objective function is minimised or maximised.
Constraint solving is based on the constructive search for such an assignment. Constraint prop-
agation plays an important role: a constraint is not only a declarative modelling device, but
has an associated propagator, which is an algorithm to prune the search space by removing
values that cannot participate in a solution to that constraint. The removal can trigger other
propagators, and this process continues to fixpoint, at which time the next assignment choice
must be made. A distinguishing feature of CP is the use of global constraints [11, 6]. They cap-
ture commonly occurring combinatorial patterns such as constraints on sequences, constraints
on order, and constraints on placement of objects and tasks in space and time, to name a few.

MiniZinc [9] is a constraint modelling language, which has gained popularity recently due to
its high expressivity and large number of available solvers. The MiniZinc language is a superset
of SMT over quantifier-free formulas with linear arithmetic [10]. It also contains many useful
modelling abstractions such as quantifiers, sets, arrays and a rich set of global constraints.
MiniZinc is compiled into FlatZinc, a constraint solving language which specifies a set of built-
in constraints that a constraint solver must support. The compilation process is based on
flattening by introducing auxiliary variables, substituting them for nested subexpressions, and
selecting the appropriate FlatZinc constraints. Common sub-expression elimination plays an
important role as well. All the constraints presented in this paper are shown in a form that is
very close to their MiniZinc version.

3 Public Warning System for LTE

In our case study we use a constraint solver to test the Public Warning System (PWS). The
Public Warning System is a technology that broadcast Warning Notifications to multiple users
in case of disasters or other emergencies.

3.1 E-UTRAN architecture

LTE (Long Term Evolution) [8] is the global standard for the fourth generation of mobile
networks (4G). Radio Access of LTE is called evolved UMTS Terrestrial Radio Access Network
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(E-UTRAN)[2]. A E-UTRAN consists of eNodeBs (eNBs), which is just another name for
radio base stations. Our setup consists of an eNB, a simulated Mobility Management Entity
(MME) that forwards PWS messages to the eNB, and some simulated User Equipment (UE).
The functions of these entities are described in more detail below.

eNB

MME / S-GW MME / S-GW

eNB

eNB

S
1

S
1

S
1

S
1

X2
X
2

X
2

E-UTRAN

 

Figure 1: This figure is from 3GPP TS 36.300

An eNB connects to User Equipment via the air interface. The eNBs may be interconnected
with each other by means of the X2 interface. The eNBs are also connected by means of the
S1 interface to the EPC (Evolved Packet Core), more specifically to the MME (Mobility Man-
agement Entity) by means of the S1-MME interface, and to the Serving Gateway (S-GW) by
means of the S1-U interface [2]. The functions of eNBs include radio resource management; IP
header compression and encryption, selection of MME at UE attachment; routing of user plane
data towards S-GW; scheduling and transmission of paging messages and broadcast informa-
tion; and measurement and reporting configuration for mobility and scheduling [8]. An eNB
is responsible for the scheduling and transmission of PWS messages received from MME. The
MME performs mobility management; security control; distribution of paging messages; cipher-
ing and integrity protection of signaling; and provides support for PWS message transmission.
S-GW is responsible for packet routing and forwarding.

3.2 ETWS

Earthquake and Tsunami warning system (ETWS) is a part of PWS that delivers Primary and
Secondary Warning Notifications to the UEs within an area where Warning Notifications are
broadcast [3]. We show in Figure 2 the network structure of PWS architecture.

 

UE 

LTE-Uu 

eNodeB 

S1-MME 

MME CBC CBE 

SBc 
 

Figure 2: This figure is from 3GPP TS 23.041

The Cell broadcast Entity (CBE) can be located at content provider and sends messages to
the Cell Broadcast Center. The Cell Broadcast Center (CBC) is part of EPC and connected to
the MME.
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The CBE sends emergency information to the CBC. The CBC identifies which MMEs need
to be contacted and sends a Write-Replace Warning Request message containing the warning
message to be broadcast to the MMEs. The MME sends a Write-Replace Warning Confirm
message that indicates to the CBC that the MME has started to distribute the warning message
to eNBs. The MME forwards Write-Replace Warning Request to eNBs in the delivery area.
The eNB determines the cells in which the message is to be broadcast based on information
received from MME [4]. If a Warning Type IE (information element) is included in a Write-
Replace Warning Request message, then the eNB broadcasts a Primary Notification. If Warning
Message Contents IE is included in a Write-Replace Warning Request message, then the eNB
schedules a broadcast of the warning message according to the value of Repetition Period IE
(rPer) and Number of Broadcasts Requested IE (NumberofBroadcastRequested) [1]. To in-
form UE about presence of an ETWS primary notification and/or ETWS secondary notification,
a paging message is used. UE attempts to read paging at least once every defaultPagingCycle
(dPC). If UE receives a Paging message including ETWS-indication, then it starts receiving
ETWS primary notification or ETWS secondary notification according to schedulingInfoList
contained in SystemInformationBlockType1 (SIB1). ETWS primary notification is contained
in SystemInformationBlockType10 (SIB10) and ETWS secondary notification is contained in
SystemInformationBlockType11 (SIB11). SIB10 and SIB11 are transmitted in System Informa-
tion (SI) messages with different periodicity. If secondary notification contains a large message,
then it is divided in several segments, which are transmitted in System Information messages.

4 Modelling of ETWS notifications acquisition by UE

Our models describe how UE acquires ETWS notifications sent by an eNB after receiving one
Write-Replace Warning Request message from the MME. In Section 4.1 we give an overview of
a model presented in [5]. In Section 4.2 we present a model in MiniZinc that analyzes protocol
logs, and we compare MiniZinc model with a model from [5]. In Table 1 we present a description
of parameters used in models.

4.1 Model for generation of protocol logs

ETWS requires testing that the paging messages, SIB1, SIB10 and SIB11 are transmitted
correctly by the eNB. These messages appear in a UE protocol log. To test functionality auto-
matically, the test harness initiates transmission of Write-Replace Warning Request messages
by the MME simulator; configures the UE simulator and initiate logging; configures the eNB;
and captures and reads a UE protocol log. The use of the MiniZinc model simply requires
plugging into an existing framework that captures and reads the protocol logs.

It is useful to understand our previous work [5] where the goal was to generate UE protocol
logs for ETWS, which consists of sequences of messages with timestamps, where different types
of errors are introduced. To do this, we defined a model in SICStus Prolog consisting of
constraints on arrays of timestamps and message contents, and based on solutions provided by
SICStus Prolog we generated UE protocol logs. The constraints specified ordering constraints
between messages; constraints on the number of messages of a certain type and content; and
temporal constraints on the timestamps. The constraint that defines time difference between
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Table 1: Parameters in the models
delay Time difference between time when eNodeB starts to

transmit primary notification and/or secondary notifica-
tion and the time when UE reads first paging message.

PagPN An array of timestamps of paging messages (also used
in the model in [5]), which are transmitted every paging
cycle. The size of the array is ndPC, which is configured
in eNodeB.

dPC The length of a paging cycle.

PagSN An array of timestamps of paging messages (also used
in the model in [5]), which are transmitted every
repetition period. The size of the array is nBR =
NumberofBroadcastRequested + 1.

PagLog An array of timestamps of paging messages from the log.
The size of the array is nPagLog.

rPer The length of a repetition period.

SIB1SIB10Time An array of timestamps of SIB1 messages during paging
cycles (used only in the model in [5]).

SIB1SIB10Type An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 (used only in the model in [5]).

SIB1SIB11Time An array of timestamps of SIB1 messages during repeti-
tion periods (used only in the model in [5]).

SIB1SIB11Type An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11 (used only in the model in [5]).

SIB1TimeLog An array of timestamps of SIB1 messages from the log.
The size of the array is nSIB1Log.

SIB1TypeLog An array of values from 0 to 3 that indicate whether SIB1
messages contain schedulingInfoList for SIB10 and/or
SIB11. The size of the array is nSIB1Log.

SIB10Time An array of timestamps of System Information messages
with SIB10 (used only in the model in [5]).

SIB10TimeLog An array of timestamps of System Information messages
with SIB10 from the log.

SIB11Time An array of timestamps of System Information messages
with SIB11 (used only in the model in [5]).

SIB11TimeLog An array of timestamps of System Information mes-
sages with SIB11 from the log. The size of the array
is nSIB11Log.

siPer Periodicity of SIB11.

nSeg Number of segments in a secondary notification.

SIB11Segment An array of segment numbers of SIB11 (used only in the
model in [5]).

SIB11SegmentLog An array of segment numbers of SIB11. The size of the
array is nSIB11Log.
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two consecutive paging messages transmitted every repetition period is

(∀1 ≤ i ≤ nBR− 1)
(PagSNi+1 − PagSNi = brPer/dPCc · dPC)
∨
(PagSNi+1 − PagSNi = (brPer/dPCc+ 1) · dPC) (1)

where PagSNi is ith element in the array PagSN. The constraint that guarantees that there is
at least one paging message every repetition period is

(∀2 ≤ i ≤ nBR)
(i− 1) · rPer− dPC < PagSNi − PagSN1 < (i− 1) · rPer + dPC (2)

We have also array PagPN of timestamps for paging messages which are transmitted every dPC.

Timestamps for SIB10 and SIB11 are elements of two-dimensional arrays, since several
messages can be transmitted during the same paging cycle or repetition period. The constraint
that defines that there are n System Information messages with SIB11 during every repetition
period is

(∀1 ≤ i ≤ nBR− 1)(∀1 ≤ j ≤ n)PagSNi < SIB11Timei,j < PagSNi+1 (3)

where SIB11Time is a two-dimensional array of timestamps of System Information messages
with SIB11. It can be that UE reads different number of SIB11 during different repetition
periods, but since we were interested in incorrect behaviour, we did not not model in [5] all
possible correct behaviours.

Secondary notification can come in one or several segments. SIB11Segmentij contains the
segment number of SIB11 with timestamp SIB11Timei,j . The UE should read every segment
at least once during every repetition period.

(∀0 ≤ i < nSeg)(∀1 ≤ j ≤ nBR− 1)(∃1 ≤ k ≤ n)SIB11Segmentj,k = i (4)

We also constrain the time difference between two consecutive SIB10 received by UE in the
same paging cycle and two consecutive SIB11 received by UE in the same repetition period.
The constraint on two consecutive SIB11 received by UE is

∀(1 ≤ i ≤ nBR− 1)∀(1 ≤ j ≤ n− 1)
(SIB11Timei,j+1 − SIB11Timei,j > 0
∧
SIB11Timei,j+1 − SIB11Timei,j mod siPer = 0
∧
((SIB11Timei,j+1 − SIB11Timei,j)/siPer) mod nSeg =
(SIB11Segmenti,j+1 − SIB11Segmenti,j) mod nSeg) (5)

The model contains parameters that represent timestamps and content of SIB1 messages.
SIB1SIB11Time is a array of timestamps of SIB1 messages during repetition periods.

SIB1SIB11Type is array of values from 0 to 3 that indicates whether SIB1 contains
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schedulingInfoList for SIB10 and/or SIB11. Then we post a constraint

∀(1 ≤ i ≤ nBR)
((SIB1SIB11Timei ≤ PagPNndPC ∧ SIB1SIB11Timei ≤ PagSNnBR∧

SIB1SIB11Typei = 1)∨

(SIB1SIB11Timei > PagPNndPC ∧ SIB1SIB11Timei ≤ PagSNnBR∧
SIB1SIB11Typei = 2)∨

(SIB1SIB11Timei ≤ PagPNndPC ∧ SIB1SIB11Timei > PagSNnBR∧
SIB1SIB11Typei = 3)∨

(SIB1SIB11Timei > PagPNndPC ∧ SIB1SIB11Timei > PagSNnBR∧
SIB1SIB11Typei = 0)) (6)

4.2 Model for protocol log analysis

In this section we present our new approach to use a constraint solver to find incorrect behaviour
in protocol logs, by using a MiniZinc model of the correct behaviour of the protocol. There
are some differences between a model in our previous work [5], outlined in Section 4.1 and the
MiniZinc model here.

In Section 4.1 we had arrays PagPN and PagSN of paging messages. We keep the arrays in
the MiniZinc model, but we introduce additional array PagLog of paging messages. PagLog

contains timestamps of all paging messages from the log, and we use a constraint solver to
check which paging message can be primary notification messages, and which can be secondary
notification message. If a paging message is not first in the log we do not assign a value to
PagLog1 and add the constraint PagLog1 > 0, otherwise we assign value 0 to PagLog1. Then

(∀2 ≤ i ≤ nSIB11Log)PagLogi = PagLog1 + δpagi , (7)

where δpagi is difference between timestamp of ith paging message in the log and timestamp
of the first paging message in the log. As in [5] we define constraints on PagPN and PagSN to
model possible time differences between paging messages, where PagPN1 = 0 and PagSN1 = 0.
Then we check if there is a correspondence between PagLog, PagPN and PagSN.

In Section 4.1 we had the constraint (1) that defines time difference between two consecutive
paging messages transmitted every repetition period, and the constraint (2) that guarantees
that there is at least one paging message every repetition period. However, the exact sequence
of timestamps of paging messages which are transmitted every repetition period can be captured
by the constraint

(∀2 ≤ i ≤ nBR)
((rPer · (i− 1)− delay) mod dPC = 0→
PagSNi = rPer · (i− 1)− delay)∧

((rPer · (i− 1)− delay) mod dPC 6= 0→
PagSNi = (((rPer · (i− 1)− delay)/ dPC) + 1) · dPC) (8)

We did not have constraint (8) in [5] since delay can be any value between 0 and dPC and
test harness does not make checks based on (8). However, in the case when test harness is
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implemented as a constraint solver, (8) can be used to check that there is a value for delay

such that the sequence of timestamps of paging messages from the log is a valid sequence.
The constraint that defines that among paging messages from the log there are messages

that correspond to paging messages of primary notification with correct timestamps is

(∀1 ≤ i ≤ ndPC)((∃1 ≤ j ≤ nPagLog)PagLogj = PagPNi)↔ PagPNinci = 0, (9)

where PagPNinci is a boolean variable which indicates that there is paging message in the log
which corresponds to PagPNi.

The constraint that defines that among paging messages from the log there are messages
that correspond to paging messages of secondary notification with correct timestamps is

(∀1 ≤ i ≤ nBR)((∃1 ≤ j ≤ nPagLog)PagLogj = PagSNi)↔ PagSNinci = 0, (10)

where PagSNinci is a boolean variable which indicates that there is paging message in the log
which corresponds to PagSNi.

We also have the constraint

(∀1 ≤ i ≤ nPagLog)
(((∀1 ≤ j ≤ ndPC)PagLogi 6= PagPNj) ∧ ((∀1 ≤ j ≤ nBR)PagLogi 6= PagSNj))
↔ Paginci = 1, (11)

where Paginci is a boolean variable which indicates that ith paging message does not correspond
to paging message of a primary or a secondary notification.

We first check that MiniZinc can find solution such that sum of elements of PagPNinc,
PagSNinc and Paginc is equal to 0. If there is a solution we keep all constraints, but if
MiniZinc does not find a solution we remove all constraints on PagLog.

Then we add constraints on a content and timestamps of SIB1, SIB10 and SIB11 messages.
If a paging message is the first message in the log, then

(∀1 ≤ i ≤ nSIB11Log)SIB11TimeLogi = δpi , (12)

where δpi is difference between a timestamp of ith SIB11 message in log and a timestamp of
first paging message in log.

If a paging message is not the first message in the log, then we have a variable SIB11TimeLog1
that represent timestamp of first SIB11 message in the log and

(∀2 ≤ i ≤ nSIB11Log)SIB11TimeLogi = SIB11TimeLog1 + δsi , (13)

where δsi is difference between a timestamp of ith SIB11 message in the log and a timestamp of
first SIB11 in the log. If a SIB10 message is the first message in the log then SIB11TimeLog1 =
δs10, where δs10 is time difference between first SIB10 message and first SIB11 message. If
a SIB1 message is the first message in the log then SIB11TimeLog1 = δs1, where δs1 is time
difference between first SIB1 message and first SIB11 message.

We assign values to SIB1TimeLog and SIB10TimeLog using the same approach. We also
assign values to SIB1TypeLog and SIB11SegmentLog.

The UE should read every segment at least once during every repetition period. Similar to
(4), we have

(∀2 ≤ i ≤ nBR)(∀1 ≤ k ≤ nSeg)
((∃1 ≤ j ≤ nSIB11Log)SIB11SegmentLogj = k∧

PagSNi−1 < SIB11TimeLogj < PagSNi)
↔ PagSNSegmentinci−1,k = 0, (14)
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where PagSNSegmentinci,k is a boolean variable which indicates that there is kth segment of
secondary notification during ith repetition period.

Similar to (5) we constraint the time difference between to consecutive SIB11 messages

(∀2 ≤ i ≤ nSIB11Log)
((SIB11TimeLogi − SIB11TimeLogi−1) mod siPer = 0∧
((SIB11TimeLogi − SIB11TimeLogi−1)/siPer) mod nSeg =
(SIB11SegmentLogi − SIB11SegmentLogi−1 + nSeg) mod nSeg)
↔ SIB11TimeLoginci = 0, (15)

where SIB11TimeLoginci is a boolean variable which indicates that the timestamp of the ith
SIB11 message is correct.

We check that there are no SIB11 messages after the last paging message of secondary
notification

((∃1 ≤ i ≤ nSIB11Log)SIB11TimeLogi > PagSNnBR)↔ SIB11afterpaginc = 1 (16)

where SIB11afterpaginc indicates that there is SIB11 message after last paging message of
secondary notification.

We have also constraints on the timestamps of SIB10 messages.
In the previous section we had two lists of timestamps of SIB1 messages. Since in protocol

log it can be difficult to differentiate between which SIB1 is after paging for primary notification
and which SIB1 is after paging for secondary notification, we create one array SIB1TimeLog

of timestamps of SIB1 messages in MiniZinc. SIB1TypeLog is list of values from 0 to 3 that
indicates whether SIB1 contains schedulingInfoList for SIB10 and/or SIB11. Similar to (6) we
have the constraint for SIB1TypeLog.

We minimize sum of all “inc” boolean parameters and we use “inc” parameters to indicate
errors in the log.

5 Conclusion

We think that using MiniZinc for protocol log analysis is a promising approach, since it is
easy to model the protocol in MiniZinc and a constraint solver can easily handle complex
requirements on time stamps. In comparison with [5], we do not need to generate random
values for parameters, since we have a solution, that is values from protocol log. Since we have
a solution, constraint solver can handle bigger domains of parameters than in [5]. As a future
work we plan to extend the model to be able to capture behaviour in UE after receiving several
Write-Replace Warning Request messages from MME and to integrate constraint solver into
automation environment.
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Abstract

Set comprehension is a mathematical notation for defining sets on the basis of a property
of their members. Although set comprehension is widely used in mathematics and some
programming languages, direct support for reasoning about it is still not readily available
in state-of-the-art SMT solvers. This paper presents a technique for translating formulas
which express constraints involving set comprehensions into first-order formulas that can
be verified by off-the-shelf SMT solvers. More specifically, we have developed a lightweight
Python library that extends the popular Z3 SMT solver with the ability to reason about the
satisfiability of set comprehension patterns. This technique is general and can be deployed
in a broad range of SMT solvers.

1 Introduction

Reasoning about sets is a frequently occurring exercise when conducting automated verification
of programs and algorithms. While some recent work has focused on automated reasoning about
set (and multiset) cardinality constraints [6, 5] and about arithmetic aggregate computations [4],
little research has been conducted on developing automated tools for reasoning about explicit
set comprehensions. Set comprehension is a mathematical notation for defining sets on the basis
of a property of their members. Although set comprehension is widely used in mathematics
and some programming languages, direct support for reasoning about set comprehension is still
not readily available in state-of-the-art SMT solvers. In this work, we consider the task of
verifying the satisfiability of quantifier-free formulas in the language of set comprehension over
some standard theory Th, supported by typical modern SMT solvers. We denote the resulting
language as SC (Th). Examples of such base theory Th include linear arithmetic over integers
or real numbers, and user-defined theories over constructed data types (e.g., tuples, finite lists).
In this paper, we will demonstrate our techniques on the theory of linear arithmetic over the
integers (LIA). A typical problem in SC (LIA) is given by the following equality:

{10, 20, 30} .= {x ∗ 10 | x < 4}x∈̇X

It asks whether there are instances of the free variables in this formula (here, just the set
variable X) so that the sets on the two sides are equal (we use

.
= to denote set equality). The

left-hand side is the extensional set {10, 20, 30}. The expression on the right-hand side is a set
comprehension: it specifies the set of all the values of the expression x∗10 where the values of x
are drawn from X and are constrained by x < 4. The variable x is bound in the comprehension.
Set comprehensions determine sets intensionally on the basis of transformations such as x ∗ 10
and guards like x < 4. A solution to the satisfiability problem for this equality is a model S
such that

S |=SC (LIA) {10, 20, 30} .= {x ∗ 10 | x < 4}x∈̇X

∗This paper was made possible by grant NPRP 09-667-1-100, Effective Programming for Large Distributed
Ensembles, from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made
herein are solely the responsibility of the authors.
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In particular, the model S carries information on an acceptable value of the set variable X —
in this example, X = {1, 2, 3} is the smallest solution, with X = {1, 2, 3, 4} being another one.

Our goal is to reduce satisfiability in SC (Th) to satisfiability in Th extended with an unin-
terpreted sort for sets and an uninterpreted binary predicate ∈̇, which encodes set membership.
To achieve this, we translate a set formula of interest S in SC (Th) into a formula VSW of this
resulting theory, which we denote by U +Th (Th with Uninterpreted symbols). Specifically,
each appearance of a set comprehension or of a standard set operation in S, is mapped to a
fresh variable together with formulas in the language of U +Th. These formulas ensure that
this variable is associated with the exact elements of the original set structure. Then, we ver-
ify that S is satisfiable in SC (Th) by checking that VSW has a model M in U +Th, i.e., that
M |=U+Th VSW. For a wide range of formulas, this verification step can be carried out using a
state-of-the-art high-performance SMT solver such as Z3 [1]. Finally, we lift M to a model S
of S, such that S |=SC (Th) S. Even though this operation is still undecidable in general [2], it
is nonetheless decidable for many instances of SC (LIA) formulas and can be implemented as
an effective satisfiability test operation. For instance, our work in [3] uses a conservative imple-
mentation of this test operation to determine satisfiability of finite set comprehension formulas
that would guarantee safety of certain compiler optimizations.

To illustrate this technique, here is the (slightly simplified) encoding VSW where S is the
formula from our earlier example:

VSW =





∀z. z ∈̇ X2 ↔ z ∈̇ X3 − F1 : X2 = X3

∀y. y ∈̇ X2 ↔ (y
.
= 10 ∨ y .

= 20 ∨ y .
= 30) − F2 : X2 = {10, 20, 30}

∀x. (x ∗ 10 ∈̇ X3)↔ (x ∈̇ X ∧ x < 4) − F3 : X3 = {x ∗ 10 | x < 4}x∈̇X

The first formula, F1, states that X2 and X3 are extensionally equal. The second formula,
F2, constrains the members of X2 to be the integers 10, 20 or 30. Hence X2 is a precise
representation of the extensional set {10, 20, 30} in U +LIA. The third formula, F3, restricts X3

so that, for each element x in X that is larger than 4, x ∗ 10 must be a member of X3. Hence
F3 constrains the behavior of X3 to that of {x ∗ 10 | x < 4}x∈̇X in U +LIA.

The rest of the paper is organized as follows: Section 2 introduces our source and target
languages, SC (LIA) and U +LIA. Section 3 defines the encoding of SC (LIA) formulas into
U +LIA formulas. Section 4 presents a conservative satisfiability test operation for SC (LIA)
formulas. Section 5 describes our prototype implementation of this operation, a lightweight
Python library that extends Z3. Section 6 discusses our conclusions and future work.

2 Notations, Term Languages and Models

In this section, we introduce meta-notation that we will use throughout this paper and we
define the source and target term languages SC (LIA) and U +LIA.

In discussions, we write ō to denote finite sets of syntactic objects o, with ∅ for the empty
set. We write {ō, o} for the extension of set ō with syntactic object o, omitting the brackets
when no ambiguity arises. Meta-level set membership is denoted as o ∈ ō. We write meta-level
set comprehension as {o : ō | Φ(o)}, which represents the set containing all objects o from ō that
satisfy the condition Φ(o). We write [o′/x]o for the simultaneous replacement within object o
of all occurrences of variable x with o′. When traversing binding constructs and quantifiers,
substitutions implicitly α-rename variables to avoid capture. These are all meta-level notations,
not to be confused with the syntactic objects in our source language, which also features sets.

Figure 1 defines our source language SC (LIA) and the target language U +LIA. Terms in
SC (LIA) are either arithmetic expressions, written t, or set expressions, denoted s. Arithmetic
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Variables x,X Values v

SC (LIA): Set Comprehensions over Linear Integer Arithmetic

Arithmetic Term t ::= x | v | t op t
Arithmetic Formula T ::= t

.
= t | t < t | ¬T | T ∧ T

Set Term s ::= X | {t̄} | {t | T}x∈̇s | s ∪ s | s ∩ s | s \ s
Set Formula S ::= t ∈̇ s | s .

= s | s ⊆ s | ¬S | S ∧ S

U +LIA: Linear Integer Arithmetic and Uninterpreted Sets

Arithmetic Term t ::= x | v | t op t
Arithmetic Formula T ::= t

.
= t | t < t

Uninterpreted Set Term s ::= X
Uninterpreted Set Formula S ::= t ∈̇ s
Formula F,C ::= S | T | ¬F | F ∧ F | ∃x.F | ∀x.F

Figure 1: Object Languages: SC (LIA) and U +LIA

expressions correspond to integers and set expressions to sets of integers. An arithmetic ex-
pression is either a base variable x, a number v in Z, or a binary arithmetic operation t op t
supported in the theory of linear integer arithmetic (e.g., + or ∗). A set expression is either a
set variable X, an extensional set {t̄}, the union, intersection or difference between two sets, or
a set comprehension {t | T}x∈̇s. The empty set {} is the special case of an extensional set {t̄}
where t̄ is empty. In a set comprehension, we refer to t as the comprehension pattern, to T as
the comprehension guard, to x as the binding variable, and to s as the comprehension domain.
The scope of the binding variable x is t and T . Where useful for clarity, we explicitly annotate
this dependency by writing t and T as t(x) and T (x). Formulas T that appear within set com-
prehensions are quantifier-free arithmetic formulas over the integer domain. Atomic arithmetic
formulas include equality, written t1

.
= t2, and other standard predicates, for example t1 < t2.

The arithmetic formulas T in comprehension guards combine them using the standard Boolean
connectives — we display a minimal set consisting of ¬ and ∧ in Figure 1 but will freely use the
full set of Boolean connectives in our examples. The set formulas of SC (LIA), denoted S, are
the Boolean combination of set membership t ∈̇ s, set equality s1

.
= s2 and the subset relation

s1 ⊆ s2.

The language of U +LIA resembles SC (LIA), with two major syntactic differences: first, it
dispenses with all set expressions except for set variables X; second, U +LIA formulas allow the
use of quantifiers over base variables.

A model is a structure M that satisfies the axioms of a theory Th and a formula F .
This is denoted by M |=Th F . A model M contains mappings from the variables of F to
their respective instantiations that satisfy F in Th. The lookup operation M(x) denotes the
instantiated value that x is mapped to. We writeMx 7→v for the model that maps x to v and is
otherwise identical to M. For each predicate symbol p that appears in Th or F , the model M
also contains mappings from p to the set of all valid instances of the predicate relation. The
lookup operationM(p) denotes the set of valid relation instances of p. For simplicity, we assume
predicates have the same arity throughout Th and F . Interpretations of the (sub)formula(s)
of F and terms t that appear in F are obtained from M by the operations MJF K and MJtK.
Unsatisfiability of a formula F is denoted by 6|=Th F .

A model in our source language SC (LIA) is denoted by S and its satisfiability judgment is
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denoted by S |=SC (LIA) S where S is an SC (LIA) formula. We require that SC (LIA) contain
the theory of linear integer arithmetic and general set theory. A model S contains mappings for
integer variables x to integer values v and set variables X to extensional sets {t̄}. The sets of all
integers and sets that appear in S are denoted by domZ(S) and domS(S) respectively. We will
omit standard definitions of integer term interpretation SJtK and integer formula satisfiability
S |=SC (LIA) T . The interpretation SJsK of set terms s is defined as follows:

SJXK = S(X)
SJ{t̄, t}K = {SJt̄K,SJtK}
SJ{}K = ∅

SJ{t(x) | T (x)}x∈̇sK = {Sx 7→aJt(x)K : domZ(S) | a ∈ SJsK and Sx 7→a |=SC (LIA) T (x)}
SJs1 ∪ s2K = {a : domZ(S) | a ∈ SJs1K or a ∈ SJs2K}
SJs1 ∩ s2K = {a : domZ(S) | a ∈ SJs1K and a ∈ SJs2K}
SJs1 \ s2K = {a : domZ(S) | a ∈ SJs1K and a 6∈ SJs2K}

This definition is inductive and makes use of SJtK and S |=SC (LIA) T . The interpretation of a set
comprehension SJ{t(x) | T (x)}x∈̇sK is defined as the set of all (and only) the interpretations
of the comprehension pattern t(x) with the binding variable x mapped to the integers a in
the interpretation of the comprehension domain s such that the corresponding instance of the
comprehension guard T (x) is satisfiable under S. The other cases are standard.

Satisfiability for set formulas, S |=SC (LIA) S, is defined inductively over set formulas and on
top of SJtK, SJSK and S |=SC (LIA) T . The key cases of this definition are as follows:

S |=SC (LIA) t ∈̇ s iff SJtK ∈ SJsK
S |=SC (LIA) s1

.
= s2 iff for all a ∈ domZ(S),

Sx 7→a |=SC (LIA) x ∈̇ s1 iff Sx 7→a |=SC (LIA) x ∈̇ s2
S |=SC (LIA) s1 ⊆ s2 iff for all a ∈ domZ(S),

Sx 7→a |=SC (LIA) x ∈̇ s1 only if Sx 7→a |=SC (LIA) x ∈̇ s2

We omitted the cases for the logical connectives whose interpretations are standard. Note that
membership ∈̇ is an interpreted predicate symbol in U +LIA: t ∈̇ s is satisfiable in S if and only
if the interpretation of t is actually a member of the interpretation of s. Since ∈̇ is interpreted,
S does not contain any mappings for ∈̇ (i.e., S(∈̇) = ⊥). Satisfiability of equality, s1

.
= s2 is

defined in terms of the membership relation: s1 and s2 are equal if and only if they contain
the same integers. In a similar manner, satisfiability of the subset relation s1 ⊆ s2 is defined in
terms of membership ∈̇.

Models of our target language U +LIA are denoted by M, and the satisfiability judgment
is denoted by M |=U+LIA F . We require that U +LIA contains the theory of linear integer
arithmetic and an uninterpreted domain for sets. Unlike S, M contains no mappings for set
variables, since the set domain is uninterpreted. However, M(∈̇) maps to the set of pairs
〈MJtK, X〉 for every valid relation t ∈̇ X from F . The definition ofMJtK andM |=U+LIA F are
standard and therefore omitted.

3 Encoding SC (LIA) into U +LIA

In this section, we define an encoding of SC (LIA) terms and formulas into U +LIA terms and
formulas. This encoding is given by two translation functions, the set term encoding V·Wset and
set formula encoding functions V·Wform .
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VXWset = X � ∅ ; >

V{t̄}Wset =





X � {X} ; ∀x. x ∈̇ X ↔ mem(t̄, x)

where mem({t̄, t}, x) = x
.
= VtW ∨mem(t̄, x)

mem(∅, x) = ⊥

Vs1 op s2Wset =





X � V1,V2, X ; C1 ∧ C2 ∧ constr(op)

where Vs1Wset = xs1 � V1 ; C1

Vs2Wset = xs2 � V2 ; C2

constr(∪) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∨ x ∈̇ X2

constr(∩) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∧ x ∈̇ X2

constr(\) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∧ ¬(x ∈̇ X2)

V{t | T}x∈̇sWset =





X � V, X ; Cdom ∧ Cmax ∧ Crg

where VsWset = X ′ � V ; Cdom

Cmax = ∀x. (x ∈̇ X ′ ∧ VTW)→ VtW ∈̇ X
Crg = ∀z. z ∈̇ X → ∃x. (z

.
= VtW ∧ x ∈̇ X ′ ∧ VTW)

VtW = t VTW = T

Figure 2: Set Term Encoding into U +LIA: VsWset = X � V ; C

The set term encoding of a set expression s is given by a triple (X,V, C) that we write
VsWterm = X � V ; C. Here, X is a fresh variable associated with s (unless s is already
a variable), V is a collection of uninterpreted set variables, and C is a U +LIA formula. We
refer to X as the representative variable of s, C as the extensional context formula and V as
the set variable signature. The context formula C constrains X to capture the extensional
behavior of s, while V contains all local set variables in C created while encoding s. We require
that V contain no duplicates and we rely on implicit α-renaming to enforce this constraint.
This provides an implicit mechanism to guarantee unique assignments of set variables during
encoding.

Figure 2 defines the set term encoding operation. In the case of an extensional set t̄ =
{t1, . . . , tn}, the extensional context formula ∀x. x ∈̇ X ↔ (x

.
= t1 ∨ . . . ∨ x .

= tn) constrains
representative variable X to contain all and only the elements that appear in t̄. We encode
all SC (LIA) terms ti in t̄ by means of the encoding operation VtiW. For the element terms we
consider in this paper, it is sufficient to define their encoding as the identity function. The
entry Vs1 op s2Wset covers the cases for set union, intersection and difference. For each, we first
derive encodings for s1 and s2 to obtain representative variables X1 and X2. The variable X
is assigned to represent the set s1 op s2. This is done with the help of the context formula
constr(op): If op is the union operator ∪, the context formula state that any member x of
X must be a member of either X1 or X2 and vice-versa. The cases where op is ∩ and \ are
similar. Each of these context formulas constrains the extensional behavior X to that of the
union, intersection or set difference of s1 and s2 respectively. Finally, V{t | T}x∈̇sWset encodes
the set comprehension as follows: The comprehension domain s is encoded into X ′ with the
constraints of s captured by Cdom . The comprehension {t | T}x∈̇s is encoded into X with
its constraints captured by context formulas Cmax and Crg . The comprehension maximality
condition Cmax imposes the constraint that every member x of the comprehension domain X ′
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Vt ∈̇ sWform = VtW ∈̇ X � V ; C where VsWset = X � V ; C

Vs1 .
= s2Wform =





∀x. (x ∈̇ X1)↔ (x ∈̇ X2) � V1,V2 ; C1 ∧ C2

where Vs1Wset = X1 � V1 ; C1

Vs2Wset = X2 � V2 ; C2

Vs1 ⊆ s2Wform =





∀x. (x ∈̇ X1)→ (x ∈̇ X2) � V1,V2 ; C1 ∧ C2

where Vs1Wset = X1 � V1 ; C1

Vs2Wset = X2 � V2 ; C2

VS1 ∧ S2Wform =





F1 ∧ F2 � V1,V2 ; C1 ∧ C2

where VS1Wform = F1 � V1 ; C1

VS2Wform = F2 � V2 ; C2

V¬SWform = ¬F � V ; C where VSWform = F � V ; C

Figure 3: Set Formula Encoding into U +LIA: VSWform = F � V ; C

that satisfies the comprehension guard T has its corresponding comprehension pattern t as a
member of X. The comprehension range restriction Crg imposes the constraint that for every
member z of the set comprehensionX, there exists some member x of the comprehension domain
X ′ whose corresponding comprehension pattern t is equal to z and satisfies the comprehension
guard T .

While it is tempting to replace the context formulas Cmax and Crg with the single implication
formula Ccomp = ∀x. (x ∈̇ X ′ ∧T (x))↔ t(x) ∈̇ X (as done in our example in Section 1), Ccomp

would not accurately capture the behavior of set comprehensions with expressions t(x) that
are not injective functions. For instance, consider the comprehension s1 = {x%3 | >}x∈̇s2

,
where % is the modulus operator. Assuming that X and X ′ are the representatives of set
comprehension s1 and set term s2 respectively, the formula Ccomp = ∀x. x ∈̇ X ′ ↔ (x%3) ∈̇ X
is incorrect in the ‘←’ case: it demands any x such that x%3 is a member of X must be a
member of X ′, which is clearly not the behavior of the set comprehension. The combination of
Cmax and Crg on the other hand, is sound as long as t(x) is a total function.

Figure 3 defines the encoding of a set formula S, denoted by VSWform = F � V ; C. It
encodes a SC (LIA) formula S into an U +LIA formula F under the extensional context formula
C with the set variable signatures V. We call F the main encoding formula. Similarly to the
term encoding operation, the formula C specifies the constraints on uninterpreted set variables
and V is the set of local set variables created by the encoding. The case Vt ∈̇ sWform encodes the
membership relation by simply using the term encoding VsWset of s. We then simply check that
the encoding of t is in the representative variable X of VsWset . For Vs1 .

= s2Wform , we encode s1
and s2 by applying the term encoding operation of Figure 3 to each, obtaining X1 and X2 as
representatives of s1 and s2 respectively with extensional context C1 and C2. Following this,
the equality constraint is represented in U +LIA as the formula ∀x. x ∈̇ X1 ↔ x ∈̇ X2, stating
that all members of X1 are members of X2 and vice-versa. Encoding set equality in this manner
exercises the axiom of extensionality of set theory, enforcing the extensional equality of sets with
respect to the membership relation (∈̇). The case Vs1 ⊆ s2Wform is similar, except that it is
encoded into a one-sided extensional membership ‘equality’ (→). The case VS1∧S2Wform defines
the cases for the logical connectives ∧, during which we traverse the respective sub-formulas
and terms containing set terms and derive their encodings. The main formula is simply the ∧
logical connective applied to the respective encoded formulas.
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satCheck(S) =

{
TMU if VSWform = F � V ; C and M |=U+LIA C ∧ F
⊥ otherwise

where TMU(x) = M(x)

TMU(X) =

{
{a : domZ(M) | 〈a,X〉 ∈ M(∈̇)} if X /∈ V
⊥ otherwise

TMU(∈̇) = ⊥
Figure 4: Satisfiability Checking for SC (LIA) Formulas

The encoding of negation requires some care, and is the reason for separating the main
encoding formula F and the extensional context formula C. Our definition in Figure 3 encodes
the negated SC (LIA) formula ¬({1} ⊆ {1, 2}) as follows:

V¬({1} ⊆ {1, 2})Wform = ¬(∀x. x ∈̇ X1 → x ∈̇ X2) � X1, X2 ; X1 = {1} ∧X2 = {1, 2}

Here, we abbreviated the actual encoding of the extensional sets as X1 = {1} and X2 = {1, 2}
for to be succinct. The conjunction of the main formula and context formula (i.e., ¬F ∧ C)
concisely captures the negated formula ¬({1} ⊆ {1, 2}), namely:

¬({1} ⊆ {1, 2}) ≡ ¬(∀x. x ∈̇ X1 → x ∈̇ X2) ∧X1 = {1} ∧X2 = {1, 2}

Assume we had instead collapsed F and C into a single formula component, so that
VSWform = F ∧ C � V. Then we would have to translate the above formula as

¬((∀x. x ∈̇ X1 → x ∈̇ X2) ∧X1
.
= {1} ∧X2

.
= {1, 2}) �X1, X2

which is not the intended meaning of the negation as, propagating the negation,

¬({1} ⊆ {1, 2}) 6≡ ¬(∀x. x ∈̇ X1 → x ∈̇ X2) ∨X1 6= {1} ∨X2 6= {1, 2}

4 Satisfiability Testing for SC (LIA)

In this section, we define a satisfiability test operation of SC (LIA) formulas on the encoding
defined in the previous section. This operation, denoted by satCheck(S), is defined in Figure 4.
If the SC (LIA) set formula S is satisfiable, this operation extracts a model for S from a model
of its encoding VSWform in U +LIA. Such a model of VSWform can be obtained using an off-the-
shelf SMT solver that supports the built-in theory of linear integer arithmetic and uninterpreted
domains. More specifically, given VSWform = F � V ; C, the satisfiability of S is determined
by checking the satisfiability of its U +LIA encoding: i.e., M |=U+LIA C ∧ F . Decidability
of this operation therefore depends on the decidability of |=U+LIA. If S is determined to be
unsatisfiable, satCheck(S) returns ⊥. If S is determined to be satisfiable, it returns a decoded
model TMU, which is an SC (LIA) model inferred fromM. Since this operation is undecidable
in general, it may not return a value at all for some formulas. The decode operator T·U is
defined as follows: for integer variables x, TMU simply maps x to M(x). For a set variable X
however, TMU(X) returns the set of all integers a such that 〈a,X〉 ∈ M(∈̇). The membership
relation of M is stripped away in TMU, i.e., TMU(∈̇) = ⊥.

Lemma 1 determines the soundness of the term encoding: for any set term s, we can extract
a corresponding interpretation of s from its encoding. Soundness for the formula encoding is
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given by Theorem 2. It states that for some SC (LIA) formula S with the encoding VSWform =
F � V ; C, if S is satisfiable under SC (LIA), then C ∧ F is satisfiable under U +LIA.

Lemma 1 (Soundness of the Term Encoding). Let s be a SC (LIA) set term and VsWterm =
X � V ; C its encoding in U +LIA. For any S that contains an interpretation of s (i.e., SJsK),
there exists M such that M |=U+LIA C and S = TMU.

Proof. The proof proceeds by structural induction on the encoding operation of the term s,
with base cases X and {t̄}. For the base case {t̄}, we can infer that X contains all and only
the values in t̄ for the membership relation constraints (x ∈̇ X, such that x ∈ t̄) imposed
by the context formula of the encoding of {t̄} (i.e., SJsK = t̄). Hence, by definition of T.U,
we show that S = TMU. For the inductive case s1 op s2 and {t | T}x∈̇s, we similarly show
S = TMU by observing that their respective interpretations in S correspond to sets built from
the membership relations (x ∈̇ X) captured by C.

Theorem 2 (Soundness of the Formula Encoding). Let S be a SC (LIA) formula S and
VSWform = F � V ; C its encoding in U +LIA. For any S such that S |=SC (LIA) S, there exists
M such that M |=U+LIA C ∧ F and S = TMU.

Proof. The proof proceeds by structural induction on the encoding operation of the formula S,
with base cases t ∈̇ s, s1 .

= s2 and s1 ⊆ s2, whose proofs follow from the soundness of term
encoding (Lemma 1).

Lemma 3 and Theorem 4 state the converse of Lemma 1 and Theorem 2 respectively, hence
providing a completeness guarantee for our encoding.

Lemma 3 (Completeness of the Term Encoding). Let s be a SC (LIA) set term and VsWterm =
X � V ; C its encoding in U +LIA. For any M such that M |=U+LIA C, we have that
TMU |=SC (LIA) X

.
= s.

Proof. This proof is similar to that of Lemma 1. It proceeds by structural induction on the
encoding of s. The main difference is that in each case, we show that interpretations of s
obtained from S (i.e., S(X)) corresponds to that of obtained from TMU, hence TMU = S.

Theorem 4 (Completeness of the Formula Encoding). Let S be a SC (LIA) formula and
VSWform = F � V ; C its encoding in U +LIA. For all M such that M |=U+LIA C ∧ F ,
we have that TMU |=SC (LIA) S.

Proof. Like the proof of Theorem 2, this proof proceeds by structural induction on the encoding
of formula S. The proof for the base cases follows from Lemma 3.

Corollary 1 states the soundness and completeness of the satisfiability test operation
satCheck , and it follows from properties 1, 2, 3 and 4.

Corollary 1 (Soundness and Completeness of satCheck). For any SC (LIA) formula S, we
have the following:

• satCheck(S) = S if and only if S |=SC (LIA) S.

• satCheck(S) = ⊥ if and only if 6|=SC (LIA) S.
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5 Implementation

We implemented the above technique as a lightweight library with Z3 as the underlying SMT
solver. This prototype is available for download at https://github.com/sllam/pysetcomp.
Given an SC (Th) formula, where Th is some theory that the Z3 SMT solver supports, our
Python library implements the encoding operation VSWform = F � V ; C. Formulas F and C
are native Z3 formulas, henceM |=U+Th F ∧C is implemented by simply passing F ∧C to the
Z3 satisfiability checking interfaces. Our prototype also includes a simple combinator library
that provides the programmer with a convenient way to write SC (Th) formulas.

The code that implement our example in Section 1 is as follows:

1 ## Initialize sorts and variables

2 I = z3.IntSort()

3 IntSet = mkSetSort( I )

4 x = z3.Int(‘x’)

5 X = z3.Const(‘X’, IntSet)

6

7 ## {10, 20, 30} .
= { x ∗ 10 | x < 4 }x ∈̇ X

8 S = VSet(I,10,20,30) |Eq| Compre(x*10,x<4,x,X)

9

10 ## VSWform = F � V ; C
11 F, C, V = transForm( S )

12

13 ## M |=U+Th F ∧ C
14 s = z3.Solver()

15 s.add(z3.And([F]+C))

16 print s.check() -- Prints ‘sat’

Z3’s built-in operations are explicitly prepended by z3. Lines 2–5 initializes the Z3 sorts
(data domains) and variables that we need in this example: I abbreviates the Z3 integer sort,
mkSetSort(I) returns a representation of the sort of sets of integer. In line 4, a Z3 integer
variable x is declared, while in line 5 a Z3 variable of the sort of sets of integer is declared.
Line 8 implements the actual SC (LIA) formula: VSet(I,10,20,30) builds the extensional set
{10,20,30}, while Compre(x*10,x<4,x,X) builds the set comprehension {x ∗ 10 | x < 4}x∈̇X .
The infix operator Eq corresponds to the equality predicate

.
=. Line 11 implements the encoding

of S into U +LIA formulas F and C, with the set of local variables V created by the encoding
procedure. Finally, lines 14–15 implements the satisfiability test by feeding F ∧ C to the Z3
satisfiability checker.

Our prototype works on more than just integers. The following example involves tuples of
integers.

X
.
= {〈1, 8〉, 〈2, 5〉, 〈3, 2〉, 〈3, 4〉, 〈4, 8〉} ∧ Y .

= {x ∗ 10 | x ≤ 3}〈x,y〉∈̇X ∧ x ∗ 10 ∈̇ Y ∧ 〈x , y〉 ∈̇ X

The corresponding code in our implementation is as follows:

1 IntPair = mkTupleSort( I, I )

2 tup = IntPair.tup

3 pi1 = IntPair.pi1

4

5 PairSet = mkSetSort( IntPair )

6 IntSet = mkSetSort( I )

7

8 X = z3.Const(’X’, PairSet)
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9 Y = z3.Const(’Y’, IntSet)

10 xy = z3.Const(’xy’, IntPair)

11 x, y = z3.Ints(’x y’)

12

13 cs = [X |Eq| VSet(IntPair, tup(1,8), tup(2,5), tup(3,2), tup(3,4), tup(4,8))

14 ,Y |Eq| Compre(pi1(xy)*10, pi1(xy)<=3, xy, X)

15 ,(x * 10) |In| Y

16 ,tup(x,y) |In| X]

In this example, the set comprehension Y maps a set containing pairs of integers, into a set of
integers, thus requiring our system to handle many-sorted encodings. Lines 1–3 define a new
tuple sort of pairs of integers IntPair, with tup as its data constructor and pi1 as a projection
operator for the left tuple argument. Lines 5–6 declare new set sorts: PairSet is the sort of
sets of integer pairs, while IntSet the sort of sets of integers. Lines 8–11 declare the variables
of the respective sorts, while lines 13–16 define the actual formula. The infix binary relation
In implements the membership relation ∈̇. Encoding cs with the transForm operation and
feeding its output to the Z3 solver yields a satisfiable result, where a satisfiable instance of x
and y can be extracted.

The implementation of the In operator is non-trivial and requires explanation. A call to
x |In| X creates an instance of a Z3 function, named mem, that is interpreted by our encoding
as the binary relation x ∈̇ X in Z3: this function maps the pair x and X to a Z3 Boolean value.
Note that the two instances of In at lines 15–16 are of different sort: At line 15 we have
an instance with the sort Int*IntSet, while at line 16 we have IntPair*PairSet. Since Z3
does not support parametric data types, our implementation must therefore map each instance
to a different Z3 function symbol (here mem IntSet and mem PairSet) that are interpreted
appropriately by our Python library. In order to provide a convenient interface that hides this
mapping, we implement a lookup procedure inside the In operator that is akin to a simplified
run-time version of type dictionary passing during type checking of Haskell type classes.

We have tested our implementation on a suite of set comprehension formulas of varying
complexity. While most are rather small, in the future we intend to provide empirical results
on more practical examples.

6 Conclusion and Future Work

In this paper, we reduced the satisfiability problem for formulas featuring comprehension and
other set operations over a standard theory (linear integer arithmetic in our examples) to solving
satisfiability constraints over this same theory augmented with a single uninterpreted sort. This
technique allows the satisfiability of set-based formulas to be verified by a wide range of off-the-
shelf SMT solvers that support the base theory. We have implemented a lightweight Python
library that utilizes this encoding technique on the popular Z3 SMT solver. This implementation
generalizes the encoding described here to a broad range of data types supported by Z3, which
includes integer, real numbers, tuples, and finite lists.

In the future, we are interested in expanding our results to comprehensions over multisets. A
commonly used representation for multisets relies on array maps, that associate each elements
in the support domain to its multiplicity [5]. An adaptation of the technique presented in this
paper that simply swaps our encoding of sets with this representation of multisets does not
work however. To appreciate the added challenge, consider the task of verifying the following
formula about multiset comprehensions:

M = X1
.
= *x%3 | >+x∈̇X2
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where * · + delimits multisets in the same way as {·} delimited sets in the rest of the paper.
In the suggested encoding, the variables X1 and X2 would be implemented as array maps: for
every element x in the domain, X1[x] gives us the number of times that x occurs in X1 (its
multiplicity), and similarly for X2. A naive adaptation of our technique suggests the following
encoding for the above formula:

VMW =

{
∀x,m. (X2[x] = m ∧m > 0)→ X1[x%3] = m

∀z,m. (X1[z] = m ∧m > 0)→ ∃x.(z = x%3 ∧X2[x] = m)

Although it would be adequate for injective operations on x (e.g., x + 3), this encoding fails
for non-injective operations such as x%3. For instance, the formula M is satisfied for X1 =
*0, 0, 0, 2+ and X2 = *3, 3, 6, 8+, yet the above encoding yields an unsatisfiable formula. The
problem is that we have multiple elements in X2 that are mapped to the same element in X1.
Since 3%3 = 0 and X2[3] = 2, the above encoding entails that X1[0] = 2. However, 6%3 = 0
also, which means that, given that X2[6] = 1, we have that X1[0] = 1 too — an absurdity.
We would need to combine these results by adding the multiplicities of all x that map to the
same value in X1: doing so for all x in X2 such that x%3 = 0 in this example would yield the
expected result, X1[0] = 3. This has proved to be non-trivial in Z3. A possible approach to
reasoning about such arithmetic aggregate operations could be adapted from [4].
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Abstract

The (extensional) theory of arrays is widely used to model systems. Hence, efficient decision pro-

cedures are needed to model check such systems. Current decision procedures for the theory of arrays

saturate the read-over-write and extensionality axioms originally proposed by McCarthy. Various filters

are used to limit the number of axiom instantiations while preserving completeness. We present an

algorithm that lazily instantiates lemmas based on weak equivalence classes. These lemmas are easier

to interpolate as they only contain existing terms. We formally define weak equivalence and show

correctness of the resulting decision procedure.

1 Introduction

Arrays are widely used to model parts of systems. In software model checking, for example,
the heap of a program can be modelled by an array that represents the main memory. A
software model checker using such a model can check for illegal accesses to memory or even
memory leaks. While checking for illegal accesses can be done using only the axioms proposed
by McCarthy, leak checking typically is done using extensionality. In this setting, extensionality
is used to ensure that the memory after executing a program does not contain more allocated
memory cells than it contained at the beginning of the program.

The theory of arrays was initially proposed by McCarthy [8]. It specifies two operations:
(1) The store operation a〈i� v〉 creates a new array that stores at every index different from i
the same value as array a and the value v at index i. (2) The select operation a[i] retrieves the
value of array a at position i. The theory is parametric in the index and element theories.

The store operation only modifies an array at one index. The values stored at other indices
are not affected by this operation. Hence, the resulting array and the array used in the store
operation are weakly equal in the sense that they differ only at finitely many indices. Current
decision procedures do not fully exploit such dependencies between arrays. Instead, they use a
series of instantiations of the axiom proposed by McCarthy to derive weak equivalences.

In this paper we present a new algorithm to decide the quantifier-free fragment of the theory
of arrays. The decision procedure is based on the notion of weak equivalence, a property that
combines equivalence reasoning with array dependencies. The new algorithm only produces a
few new terms not present in the input formula during preprocessing. This is possible since the
decision procedure does not instantiate the axiom proposed by McCarthy, but axioms derived
from them.

∗This work is supported by the German Research Council (DFG) as part of the Transregional Collaborative
Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR14 AVACS)
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Related Work Since the proposal of the theory of arrays by McCarthy [8] several deci-
sion procedures have been proposed. We can identify two basic branches: rewrite-based and
instantiation-based techniques.

Armando et al. [1] used rewriting techniques to solve the theory of arrays. They showed
how to construct simplification orderings to achieve completeness. The benchmarks used in this
paper test specific properties of the array operators like commutativity of stores if the indices
differ. While these benchmarks require a lot of instantiations of McCarthy’s axioms, they are
easy for the decision procedure presented in this paper since the properties tested by these
benchmarks are properties satisfied by the weak equivalence relation presented in this paper.

Bruttomesso et al. [4] present a rewrite based decision procedure to reason about arrays.
This approach exploits some key properties of the store operation that are also captured by
the weak equivalence relation described in this paper. Contrary to our method, the rewrite
based approach is not designed for Nelson–Oppen style theory combination and thus not easily
integratable into an existing SMT solver. They extended the solver into an interpolating solver
for computing quantifier-free interpolants. In contrast to our method their solver depends on
the partitioning of the interpolation problem. We create a SMT proof without any knowledge
of the partitioning and can use proof tree preserving interpolation [7], which only requires a
procedure to interpolate the lemmas.

A decision procedure for the theory of arrays based on instantiating McCarthy’s axioms is
given by de Moura et al. [9]. The decision procedure saturates several rules that instantiate
array axioms under certain conditions. Several filters are proposed to minimise the number of
instantiations.

Closest to our work is the decision procedure published by Brummayer et al. [3]. Their
decision procedure produces lemmas that can be derived from the axioms for the theory of arrays
proposed by McCarthy. They consider the theory of arrays with bitvector indices and prove
soundness and completeness of their approach in this setting. In contrast to our method, they do
not allow free function symbols (i. e., the combination of the theory of arrays with the theory
of uninterpreted function symbols) since they only consider a limited form of extensionality
where the extensionality axiom is only instantiated for arrays a and b if the formula contains
the literal a 6= b. We do not have this limitation, but add some requirements on the index
theory that prevent the procedure presented in this paper from using the theory of bitvectors
as index theory.

2 Notation

A first order theory consists of a signature Σ and a set of models M. We assume the equality
symbol = with its usual interpretation is part of any signature. Every model contains for
every sort interpreted by this model a non-empty domain and a mapping from constant or
function symbol into the corresponding domain. A theory T is stably infinite if and only if
every satisfiable quantifier-free formula is satisfied in a model of T with an infinite universe.

The theory of arrays TA is parameterised by an index theory TI and an element theory TE .
The signature of TA consists of the two functions ·[·] and ·〈·� ·〉. Every model of the theory of
arrays satisfies the select-over-store-axioms proposed by McCarthy [8]:

∀a i v. a〈i� v〉[i] = v (idx)

∀a i j v. i 6= j =⇒ a〈i� v〉[j] = a[j] (read-over-write)

Additionally we consider the extensional variant of the theory of arrays. Then, every model
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has to satisfy the extensionality axiom:

∀a b. a = b ∨ ∃i. a[i] 6= b[i] (ext)

We use a, b to denote array-valued variables, i, j, k to denote index variables, and v, w to
denote element variables. Additionally we use subscripts to distinguish different variables. We
use P to denote a path in a graph. A path in a graph is interpreted as a sequence of edges.

In the remainder of this paper, we consider quantifier-free TA-formulae. Furthermore we fix
the index TI to a stably infinite theory and the element theory TE to a theory that contains at
least two different values1.

3 Towards a Nelson–Oppen-based Array Solver

Multiple theories are usually combined with a variant of the Nelson–Oppen combination pro-
cedure [10]. The procedure requires the participating theories to be stably infinite and to only
share the equality symbol =.

The procedure first transforms the input such that every literal is pure with respect to the
theories. Let f(t) be a term in the input. If f is interpreted by theory T1 and t is interpreted by
theory T2, then f(t) is not pure. The first step of the Nelson–Oppen procedure then generates
a fresh variable v, rewrites f(t) into f(v), and adds the definition v = t as a new conjunct to
the formula. The fresh variable is shared between theories T1 and T2. This step is repeated
until all terms are pure. By abuse of notation, we name the shared variable after its defining
term t, e. g., we use a[i] to denote the shared variable that is defined as a[i].

Let V be the set of fresh variables introduced in the first step of the combination procedure.
The second step of the procedure tries to find an arrangement of V , i. e., an equivalence
relation between variables in V such that T1 and T2 produce partial models that agree with this
equivalence relation. Finding such an arrangement is typically done by propagating equalities
or providing case split lemmas. In the following, we call this arrangement strong equivalence
to distinguish it from weak equivalence defined in the next section. We write a ∼ b to denote
that a and b are strongly equivalent, i.e., that in the current arrangement the shared variables
a and b are equal.

For the theory of arrays, we consider every term of the form ·〈·�·〉 or ·[·] as being interpreted
by the array theory. We consider all array terms, store, and select terms to be shared and thus
they have to occur in the arrangement. Furthermore, every index term that appears in a store
or select is considered shared between the array theory and the index theory. Then the goal
is to find a suitable arrangement to these shared terms such that all theories agree on this
arrangement.

For an array solver to be used in Nelson–Oppen combination we have to propagate equalities
between shared array terms and shared select terms. Furthermore, the other theories have to
propagate equalities between terms used as index in a select or store. In the remainder of this
paper we will first show how to propagate equalities between select terms and afterwards deal
with extensionality to propagate equalities between array-valued terms.

4 Weak Equivalences over Arrays

The theory of arrays has two constructors for arrays: array variables, and store terms ·〈· � ·〉.
Assuming quantifier-free input, we can only constrain the values of a finite number of indices.

1Note that TA is stably infinite under these conditions.
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These constraints can either be explicity like a[i] = v, or implicit like a〈i � v〉 where axiom
(idx) produces the corresponding a〈i � v〉[i] = v. Hence, for quantifier-free input, arrays that
are connected via a sequence of ·〈·� ·〉 can only differ in finitely many positions. We call such
arrays weakly equivalent. In this section we formally define weak equality and show how to
exploit this to produce a decision procedure for the (extensional) theory of arrays.

Let S be the set of all terms of the form ·〈·� ·〉 in the input formula and A be the set of all
array-valued terms that are not in S. Since a〈i�v〉 modifies a only at index i, these two arrays
are guaranteed to be equal on all indices except on index i. We generalise this observation to
chains of the form . . . 〈j �w〉〈i� v〉 to extract a set of indices for which two arrays might store
different values.

Definition 1 (weak equivalence). A weak equivalence graph GW contains vertices S ∪ A and
undirected edges defined as follows:

1. a↔ b if a ∼ b, and

2. a
i↔ b if a has form b〈i� ·〉.

We write a
(P )⇔ b if there exists a path P between nodes a and b in GW . In this case, we call a

and b weakly equal. The weak equivalence class containing all elements that are weakly equal

to a is defined as WeakEQ(a) := {b | ∃P. a (P )⇔ b}.

For a path P we define Stores (P ) as the set of all indices corresponding to edges of the form
·↔, i. e., Stores (P ) := {i | ∃a b. a i↔ b ∈ P}.

Example 1. Consider the formula a = b〈j � v〉 ∧ b = c〈i � w〉 ∧ d = e ∧ c[i] = w. The weak
equivalence graph for this example is shown in Figure 1. Note that the last conjunct is not
important for the construction of the weak equivalence graph.

d e

b c〈i� w〉 cb〈j � v〉a
j i

Figure 1: Weak Equivalence Graph for Example 1

We get two different weak equivalence classes. The first one contains the nodes a, b〈j � v〉,
b, c〈i � w〉, and c. The second contains d and e. Note that d and e are actually strongly
equivalent. Thus, they store the same value at every position. Let P denote the path from a
to c in the weak equivalence graph. Then, Stores (P ) = {i, j}. Thus, arrays a and c can only
differ in at most the values stored at the indices i and j.

If we want to know if a[i] and b[i] should be equal, we check if a
(P )⇔ b for a path P such that

i 6∈ Stores (P ). If this is the case, P witnesses the equivalence between the select terms.

Definition 2 (weak equivalence modulo i). Two arrays a and b are weakly equivalent modulo i
if and only if they are weakly equivalent and connected by a path that does not contain an edge

of the form
j↔ where j ∼ i. We denote weak equivalence modulo i by a ≈i b and define it as

a ≈i b := ∃P. a (P )⇔ b ∧ ∀j ∈ Stores (P ) . j 6∼ i.

Using this definition we can propagate equalities between shared selects if the arrays are
weakly equivalent modulo the index of the select.
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Lemma 1 (read-over-weakeq). Let ∼ be an arrangement satisfying the array axioms. Let a[i]
and b[j] be two selects such that i ∼ j and a ≈i b. Then, a[i] ∼ b[j] holds.

Proof. We induct over the length of the path P witnessing a ≈i b.

Base case. In this case, a and b are the same term. Hence a[i] ∼ b[j] holds by congruence.

Step case. Let the step from c to b be the last step of path P . By induction hypothesis we
know that a[i] ∼ c[j] holds.

If the edge between c and b is due to a strong equivalence (i. e., c ∼ b), then c[j] ∼ b[j]
follows from congruence.

If the edge between c and b is of the form c
k↔ b, then either c is b〈k � ·〉 or b is c〈k � ·〉. In

both cases, we get the lemma j = k ∨ c[j] = b[j] from axiom (read-over-write). Since j ∼ i and
i 6∼ k, we get j 6∼ k and thus c[j] ∼ b[j]. We conclude a[i] ∼ b[j] by transitivity.

This lemma allows us to propagate equalities between shared selects. Note that it depends
upon disequalities between index terms needed to ensure a ≈i b.

If two arrays are weak equivalent modulo i they store the same value at the index i. The
reverse is not necessarily true. Therefore, we define a weaker relation weak congruence modulo i.

Definition 3 (weak congruence modulo i). Arrays a and b are weak congruent modulo i if and
only if they are guaranteed to store the same value at index i. We denote weak congruence
modulo i by∼i and define a ∼i b := a ≈i b∨∃a′ b′ j k. a ≈i a

′∧i ∼ j∧a′[j] ∼ b′[k]∧k ∼ i∧b′ ≈i b.

We use weak congruences to decide extensionality. Intuitively, if for all indices i the weak
congruence modulo i a ∼i b holds, then a = b should be propagated. But this näıve approach
requires checking every index occurring in the formula. To minimise the number of indices we
need to consider, we exploit the weak equivalence graph.

Lemma 2 (weakeq-ext). Let ∼ be an arrangement satisfying the array axioms. Let a and b be

two arrays such that a
(P )⇔ b holds. If for all indices i ∈ Stores (P ) we have a ∼i b, then a ∼ b

holds.

Proof. Follows from Lemma 1, Definition 3 and (ext).

5 A Decision Procedure Based on Weak Equivalences

Our decision procedure is based on weak equivalences and the Nelson–Oppen combination
scheme. It propagates equalities between terms shared by multiple theories. We limit the
propagation to shared array terms and array select terms.

The TA-formulae are preprocessed as follows. For every a〈i� v〉 contained in the input, we
(1) instantiate the axiom (idx) and (2) add a[i] to the set of terms contained in the input2.
Thus, the preprocessing step adds at most two select operations for every store.

We propagate new equalities from weak equivalence relations and weak congruence relations
based on lemmas 1 and 2. These relations depend on the arrangement ∼, which represents
logical equality (=). We now define a function Cond(·) that computes a condition (a conjunction
of equalities and inequalities) under which a weak equivalence or weak congruence holds. To

2This can be achieved by adding the equality a[i] = a[i].
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denote the condition for a path that does not contain an edge labelled with index i we use
Condi(·). For an edge in the weak equivalence graph that represents an equality, the condition
reflects this equality. For an edge that comes from a ·〈j � ·〉, no condition is needed. However,
Condi(·) should ensure that i does not occur on the path, so i 6= j needs to hold.

Cond(a↔ b) := a = b Condi(a↔ b) := a = b

Cond(a
j↔ b) := true Condi(a

j↔ b) := i 6= j

We can extend these definitions to paths by conjoining the conditions for all edges on that path.
Then, we can compute Cond(a ≈i b) using the path that witnesses a ≈i b.

Cond(a ≈i b) := Condi(P ) where a
(P )⇔ b ∧ ∀j ∈ Stores (P ) . i 6∼ j

Finally, to define Cond(a ∼i b), we use the definition of ∼i.

Cond(a ∼i b) :=





Cond(a ≈i b) if a ≈i b

Cond(a ≈i a
′) ∧ i = j ∧ a′[j] = b′[k]

∧ k = i ∧ Cond(b′ ≈i b)
if

a ≈i a
′ ∧ i ∼ j ∧ a′[j] ∼ b′[k]

∧ k ∼ i ∧ b′ ≈i b

Example 2. Consider again the formula a = b〈j � v〉 ∧ b = c〈i � w〉 ∧ d = e ∧ c[i] = w from
Example 1 whose weak equivalence graph is shown in Figure 1. Assume i 6∼ j. Then we have
a ≈i c〈i�w〉 since no edge contains a label that is equivalent to i. We get Cond(a ≈i c〈i�w〉) ≡
a = b〈j � v〉 ∧ i 6= j ∧ b = c〈i� w〉.

From Axiom (idx) we get c〈i�w〉[i] = w. With c[i] = w we conclude a ∼i c since a ≈i c〈i�w〉
and c〈i� w〉[i] = c[i]. We have Cond(a ∼i c) ≡ Cond(a ≈i c〈i� w〉) ∧ c〈i� w〉[i] = c[i].

To decide the theory of arrays we define two rules to generate instances of array lemmas.
We present the rules as inference rules. The rule is applicable if the current arrangement ∼ on
the shared variables V satisfies the conditions above the line. The rule then generates a new
(valid) lemma that can propagate an equality under the current arrangement.

The first rule is based on Lemma 1. Two select terms are equivalent if the indices of the
selects are congruent and the arrays are weakly equivalent modulo that index. We only create
this lemma if the select terms existed in the formula. Note that we create for select terms in
the formula a shared variable with the same name in V .

a ≈i b i ∼ j a[i], b[j] ∈ V

i 6= j ∨ ¬Cond(a ≈i b) ∨ a[i] = b[j] (read-over-weakeq)

The next rule is based on Lemma 2 and used to propagate an equality between two exten-
sionally equal array terms. Two arrays a and b have to be equal if there is a path P such that

a
(P )⇔ b and for all i ∈ Stores (P ), a ∼i b holds.

a
(P )⇔ b ∀i ∈ Stores (P ) . a ∼i b a, b ∈ V

¬Cond(P ) ∨
∨

i∈Stores(P )

¬Cond(a ∼i b) ∨ a = b
(weakeq-ext)

The resulting decision procedure is sound and complete for the existential theory of arrays
assuming sound and complete decision procedures for the index and element theories.
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Lemma 3 (soundness). Rules (read-over-weakeq) and (weakeq-ext) are sound.

Proof. Soundness of the rules follows directly from the lemma with the corresponding name.

Lemma 4 (completeness). The rules (read-over-weakeq) and (weakeq-ext) are complete.

The proof of this lemma can be found in the extended version of this paper [5].

6 Restricting Instantiations

The preprocessor is the only component of our decision procedure that produces new select
terms and thus might trigger new lemmas. These lemmas only generate new (dis-)equality
literals between existing terms. Thus, reducing the number of select terms might reduce the
number of lemmas generated by our decision procedure and speed up the procedure.

If the element theory is stably infinite we can omit the preprocessor step that adds for every
a〈i� v〉 the select a[i]. Instead, we simply assume a[i] to be different than any other b[i] unless
a ∼ b. This method preserves soundness and completeness.

Lemma 5. (soundness of modified procedure) The modified procedure is sound.

Proof. Follows directly from Lemma 3 since it does not rely on the addition of a[i] for every
a〈i� ·〉.

For the completeness lemma we take into account the fact that the element theory is stably
infinite. Thus, if a[i] is not present we use a fresh element in the value domain.

Lemma 6 (completeness of modified procedure). The modified procedure is complete.

The proof of this lemma can be found in the extended version of this paper [5].
This optimisation enables us to limit the number of additional terms in the input. Since

we only need to generate (read-over-weakeq) lemmas if the select terms in the conclusion are
present after preprocessing, this optimisation also reduces the number of lemmas. Furthermore,
it is widely applicable. In fact, the non-bitvector logics defined in the SMTLIB [2] only allow
array sorts where the element theory is stably infinite. Thus, only the terms corresponding to
instantiations of Axiom (idx) are required. In an actual implementation even these terms could
be omitted (see [3]).

7 Implementation and Evaluation

We implemented the decision procedure described in this paper in our SMT solver SMTInter-
pol [6]. Besides the aforementioned preprocessing step that applies (idx) to every ·〈· � ·〉 in
the input, we also simplify TA-formulae by applying (read-over-write) if the index of the store
and the index of the select are syntactically equal. Furthermore, we contract terms of the form
a〈i� v2〉〈i� v1〉 to a〈i � v1〉. We only add a[i] to the set of terms contained in the formula if
we have a〈i� v〉 in the input and the domain of v is finite.

We represent the weak equivalence relation and the weak equivalence modulo i relations in a
forest structure, similarly to the representation of equivalence graph in congruence solvers [11].
Every node has an outgoing edge, and these edges build a spanning tree for every equivalence
class. The edges point from a child node to the parent node. The root node of every tree has
no outgoing edge and is the representative of its equivalence class.
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We have to distinguish between strong equivalence, weak equivalence, and weak equivalence
modulo i. The strong equivalence classes are already handled by the equality solver. In our
implementation of the array solver we treat them as indivisible and create a single node for
every strong equivalence class. To represent the weak equivalence relations the nodes have up
to two outgoing edges, a primary p and a secondary s, see Figure 2. The edges come from a

store operation and correspond to the edges
i↔ in the weak equivalence graph. The index of

the primary edge is stored in the pi field. The primary edge points towards the representative

struct node
p : node
pi : index
s : node

get-rep(n : node)

if n.p = nil then n
else get-rep(n.p)

make-rep(n : node)

if n.p 6= nil then
make-rep(n.p)
n.p.p := n
n.p.pi := n.pi
n.p := nil





invert primary
edge

make-repi(n)

get-repi(n : node, i : index)

if n.p = nil then n
elseif n.pi 6= i then get-repi(n.p, i)
elseif n.s = nil then n
else get-repi(n.s, i)

make-repi(n : node)

if n.s 6= nil then
if n.s.pi 6= n.pi then

n.s := n.s.p
move towards
representative

make-repi(n)
else

make-repi(n.s)
n.s.s := n.s
n.s := nil

}
invert
secondary edge

Figure 2: Data structure and functions to represent weak equivalence relations. A node struc-
ture is created for every strong equivalence class on arrays. It contains two outgoing edges p, s
pointing towards the representative of the weak equivalence classes. The functions get-rep
and get-repi are used to find the representative of the weak equivalence (resp. weak equiv-
alence modulo i) class. The functions make-rep and make-repi invert the edges to make a
node the representative of its weak equivalence classes.

of the weak equivalence class. Every primary edge p connects the node representing (the strong
equivalence class of) a store a〈j� v〉 with the node representing a and the corresponding index
in the pi field is j. Note, however, that the direction of the edge can be arbitrary, as we invert
the edges during the execution of the algorithm. If the primary edge is missing the node is the
representative of its weak equivalence class and of all its weak equivalence modulo i classes.

While the primary edge is enough to represent the weak equivalence relation we need another
edge to represent weak equivalence modulo i. The representative of weak equivalence modulo i
is also found by following the primary edges. However, if the store of the primary edge is on
the index i, the secondary edge is followed instead. If the secondary edge is missing the node
is the representative of its weak equivalence modulo i class.

The equivalence classes are represented as follows. Two arrays a and b are weakly equivalent
iff get-rep(a) = get-rep(b) and a ≈i b iff get-repi(a, i) = get-repi(b, i).

The algorithm proceeds by inserting the store edges one by one, similarly to the algorithm
presented in [11]. The algorithm that inserts a store edge is given in Figure 3. The algorithm
first inverts the outgoing edges of one node to make it the representative of its weak equivalence
class. If the other side of the store edge lies in a different weak equivalence classes, the store
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add-secondary(S : index set, a, b : node)

if a = b then
return

if a.pi /∈ S ∧ get-repi(a, a.pi) 6= b then
make-repi(a)
a.s := b

add-secondary(S ∪ {a.pi}, a.p, b)

add-store(a, b : node, i : index)

make-rep(b)
if get-rep(a) = b then

add-secondary({i}, a, b)
else

b.p := a
b.pi := i

Figure 3: The algorithm add-store adds a new store edge to the data structure updating the
weak equivalence classes. In the else case a new primary edge is added to merge two disjoint
weak equivalence classes. Otherwise, add-secondary inserts new secondary edges to merge
the necessary weak equivalence modulo i classes.

can be inserted as a new primary edge.
If the nodes are already weakly equivalent the procedure add-secondary is called. This

procedure follows the path from the other array a to the array b that was made the represen-
tative. For every node on this path it checks if a secondary edge needs to be added. If the
primary edge of the node is labelled with a store on i, the algorithm first checks if the node is
weakly equivalent modulo i with b due to the new store edge. This is the case if no store on i
occurred on the path so far and the new store is also on an index different from i. We use the
set S to collect these forbidden indices. Then if b is not already the representative of the weak
equivalence modulo i class, the outgoing secondary edges are reversed and a new secondary
edge is added.

The complexity of the procedure add-store is worst case quadratic in the size of the weak
equivalence class. This stems from make-repi being linear in the size and being called a linear
number of times. The overall complexity is cubic in the number of stores in the input formula.
The space requirement, however, is only linear. In our current implementation in SMTInterpol
this procedure was not a bottleneck so far. In SMTInterpol we also keep the stores that created
the primary and secondary edge in the data-structure. This allows for computing the paths
needed for lemma generation in linear time.

Example 3. Figure 4 shows an example of the data structure where the primary edges are
labelled by the index of the corresponding store. This data structure represents only one weak
equivalence class with the representative node 0. The resulting data structure after adding a
store with index k between nodes 0 and 4 is shown on the right. Since nodes 0 and 4 were
already in the same weak equivalence class, secondary edges were added.

These secondary edges are needed to connect the weak equivalence modulo i and modulo
j classes. Figure 5(a) shows how the first secondary edge connects the two weak equivalence
modulo i classes rooted at nodes 0 resp. 3. This is necessary since there is now a new path
using the edge from 4 to 0. Note that no secondary edge is added to node 1, since nodes 1,
2, and 5 are still not weakly equivalent modulo i to the other nodes. Figure 5(b) shows the
connection between the two weak equivalence modulo j classes rooted at nodes 0 resp. 2. The
weak equivalence modulo j class rooted at node 6 is not affected by a new edge between nodes
0 and 4 since these nodes are on a different path.

We implemented this decision procedure in our SMT solver SMTInterpol [6] and tested
it on the benchmarks from the QF AX and QF AUFLIA devisions of the SMTEVAL 2013
benchmarks. We solved all benchmarks in 1:32 resp. 10:45 minutes without running into a
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Figure 5: Secondary edges merge weak equivalence modulo i classes.

timeout of 10 minutes. According to the data from the SMTEVAL, no other solver was able to
solve all benchmarks in these divisions. We defer an up-to-date comparison to the SMTCOMP
2014.

8 Conclusion and Future Work

We presented a new decision procedure for the extensional theory of arrays. This procedure ex-
ploits weak equalities to limit the number of axiom instantiations. The instantiations produced
by the decision procedure presented in this paper can be restricted to terms already present
in the input formula. Furthermore we discussed an implementation based on a graph struc-
ture similar to congruence closure graphs. This decision procedure is implemented in our SMT
solver SMTInterpol [6]. We plan to implement a variant of the quantifier-free interpolation for
arrays [4] based on the lemmas generated by this decision procedure. Since these lemmas only
generate mixed equalities, proof tree preserving interpolation [7] can be used.
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Abstract

This paper describes two syntactic extensions to Smt-Lib scripts: lambda-expressions and poly-

morphism. After extending the syntax to allow these expressions, we show how to update the typing

rules of the Smt-Lib to check the validity of these new terms and commands. Since most Smt-solvers

only deal with many-sorted first-order formulas, we detail a monomorphization mechanism to allow to

use polymorphism in Smt-Lib syntax while retaining a monomorphic solver core.

1 Introduction

Dissemination of Smt-solvers requires they are powerful, trustable and open (i.e. easy to
interface). The Smt-Lib format [BST10] is an initiative from the Smt community to address
the last aspect, by offering both a common language to describe problems and a command
language to interact with the solver.

The Smt-Lib format has evolved in the recent years from version 1.2 to version 2.0 to
simplify the definition of the syntax for the part of the language that is responsible for problem
descriptions (i.e. declaration of the signature and assertion of logic expressions) on the one
hand, and to enrich the commands that allow third-party tools to interact with complying
SMT solvers.

veriT is an open-source solver jointly developed at INRIA and UFRN. Early versions of
the veriT solver implemented several extensions to version 1.2 of the Smt-Lib format: macro-
definitions, λ-expressions and β-reduction. A later extension included polymorphic sorts, sig-
natures and assertions. A successful application of these extensions has been to apply SMT
solving to verify proof obligations stemming from set-based formalisms (namely, B and Event-B)
using standard Smt-Lib logics (AUFLIA) [Dé10, DFGV12, Dé13].

The rationale of this application is essentially the following:

• A set is encoded as its characteristic predicate. For instance, {x · 0 ≤ x ≤ 9} is encoded
as:

(lambda ((x Int)) (and (<= 0 x) (<= x 9))).

• Set operations are encoded as higher-order functions. For instance, set intersection is
encoded as a (polymorphic) macro called inter defined as:

(define−fun (par (X) (inter (lambda ((f (X Bool)) (g (X Bool)) (x X)) (and (f x) (g x ))))) ,

and set membership by the macro named member and defined as:

(define−fun (par (X) (member (lambda ((x X) (f (X Bool))) (f x ))))) ,

in both definitions, X denotes a type variable, its scope being the definition itself.
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To handle such expressions, veriT implements a processor that performs macro-expansion and
β-reduction steps as well as type inference. For instance, the formula 0 ∈ ({x·x ≥ 0}∩{x·x ≤ 0})
would be encoded as (member 0 (union (lambda (x Int) (>= x 0)) (lambda (x Int) (<= x 0)))), and the result of
processing this expression is (and (>= 0 0) (<= 0 0)). In addition, this processor rewrites equalities
between lambda expressions as universal quantifications. Once all steps have been applied, if
the goal is not first-order logic, then veriT emits an error message and halts.

Some of these extensions were included in the Smt-Lib format: polymorphic sorts , though
restricted to theory files, and macro-definition (named function definitions). In this paper,
we thus discuss modifications to the Smt-Lib format 2.0 corresponding to the extensions to
Smt-Lib format 1.2 that were implemented in the solver veriT. It is noteworthy that these
modifications maintain backward compatibility with the existing definition of the Smt-Lib
format. Also we discuss how to rewrite a problem expressed with the proposed extensions to
plain Smt-Lib 2.0.

This paper is organized as follows. Sec. 2 presents the extensions made to Smt-Lib, intro-
ducing polymorphism at the Smt-Lib script level. This leads to an updated set of typing rules,
mainly for Smt-Lib terms, which is discussed in Sec. 3. Using these rules, we detail a strategy
to generate a monomorphic version of our target problem in Sec. 4. Finally, we discuss the pros
and cons of our solution in the context of related work in Sec. 5 and detail ongoing and further
work in Sec. 6.

2 Extensions to Smt-Lib

We propose two extensions to the Smt-Lib format:

• anonymous functions (i.e., λ-abstractions) and their applications;

• parametric polymorphism for assertions and function types.

The Smt-Lib already features two flavors of polymorphism:

• parametric polymorphism for sorts and function signatures, but only for background the-
ories;

• ad-hoc polymorphism because functions can be overloaded.

The extension adds parametric polymorphism to assertions and function definitions and
declarations. The additional introduction of λ gives a very functional, higher-order, flavor to
this extended Smt-Lib. The typing rules presented in Sec. 3.1 even allow let-polymorphism
inside the Smt-Lib.

However, λ-abstractions as we envision them will not add much expressiveness as we want
to be able to get a first-order problem only through the application of β-reduction. Thus, we
will not handle a reduced problem with residual higher-order or partial applications. We see
the addition of λ-abstractions as a convenient mechanism to encode certain problems.

Also, the introduction of polymorphism at the syntactic level does not fundamentally change
the expressive power available for Smt-Lib scripts. Indeed, the combination of type schemes to
express background theories and overloading of functions permitted by the Smt-Lib standard
already covers most functionalities which ML-style let-polymorphism permits. Nonetheless, we
argue that polymorphism in scripts is syntactically more convenient than writing every ground
instances of the expressions we are interested in.

The next section presents the concrete syntax for the two extensions mentioned above.
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2.1 Syntax extensions for Smt-Lib

Anonymous functions are terms introduced using lambda, which becomes a keyword. Polymor-
phic terms reuse the same par keyword as the polymorphic elements of the Smt-Lib theories.
The syntactic extensions are summarized in the BNF extract of Fig. 1.

〈p a r f u n c t i o n a r g s 〉 : : = par (〈symbol〉+ )

〈par command〉 : : = ( define−fun (〈p a r f u n c t i o n a r g s 〉 (〈symbol〉
(〈so r ted va r〉∗ ) 〈s o r t 〉 〈term〉 ) ) )

| ( declare−fun (〈p a r f u n c t i o n a r g s 〉 (〈symbol〉 (〈s o r t 〉∗ ) 〈s o r t 〉 ) ) )
| ( assert (〈p a r f u n c t i o n a r g s 〉 〈term〉 ) )

Figure 1: BNF extensions for Smt-Lib

Function types are allowed as the return type of functions, due to the inclusion of λ-term.
The choice made is to declare a function type as a list of types. For example the function declara-
tion (declare−fun f (Int Int ) Int ) is not the same as the function declaration (declare−fun f ((Int Int )) Int ).
The former is a function which expects two integers and returns an integer, the latter expects
only one argument — a function from integer to integer — and returns an integer. Now, the
only possible problem is to distinguish in a sort expression (X Y) between a sort meant to express
a function type and a sort which is the application of a sort of arity ≥ 1 to its argument, like
(Array Int ). This is not a practical problem as sort arity is explicitly stated. Therefore, if the
arity of X is greater than 1, we say it is a sort application, otherwise it is a function type.

3 Typing extended Smt-Lib

This section details the rules for typing extended Smt-Lib scripts. These rules extend the
current set of rules for Smt-Lib1.

Typing polymorphic terms is a necessary step towards uncovering monomorphic ground
instances of polymorphic terms. Various type instantiations of the same polymorphic functions
will lead in Sec. 4 to the generation of multiple monomorphic versions of the same function.
Fortunately, ad-hoc polymorphism through overloading is permitted by the Smt-Lib standard.

3.1 Typing terms

The type of polymorphism we introduce in the extended Smt-Lib is ML-style prenex polymor-
phism [Pie02]. The typing rules of the system are described in Fig. 3. They can be seen as
an adaptation of a Damas-Hindley-Milner [Mil78, Hin69] type system to the Smt-Lib syntax.
These rules manipulates Smt-Lib sorts, type variables, tuple types and function types:

Definition 1 (Types). Let S be a set of sorts, V be a set of (type) variables. The set of
well-formed types T is defined inductively as follows:

1. if s ∈ S, then s ∈ T

1Detailed in Section 4.2.2 of the Smt-Lib Standard [BST10]
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( set−logic AUFLIA )

( define−fun ( par (X) ( empty ( ( e X ) ) Bool f a l s e ) ) )

( define−fun ( par (Y)
( i n s e r t ( ( e Y) ( s (Y Bool ) ) ) (Y Bool )

( lambda ( ( e1 Y ) ) ( or (= e e1 ) ( s e1 ) ) ) ) ) )

( declare−fun ( par (Z ) ( f l a t ( ( ( Z Bool ) Bool ) ) (Z Bool ) ) ) )

( assert (= ( f l a t empty ) empty ) )

( assert ( par (X)
( f o r a l l ( ( ss ( ( X Bool ) Bool ) ) )
(= ( f l a t ( i n s e r t empty ss ) ) ( f l a t ss ) ) ) ) )

( assert ( par (X)
( f o r a l l ( ( e X) ( s (X Bool ) ) ( ss ( ( X Bool ) Bool ) ) )

(= ( f l a t ( i n s e r t ( i n s e r t e s ) ss ) )
( i n s e r t e ( f l a t ( i n s e r t s ss ) ) ) ) ) ) )

( assert ( f o r a l l ( ( s ( I n t Bool ) ) ) (= ( f l a t ( i n s e r t s empty ) ) s ) ) )

( check−sat )

Figure 2: A polymorphic specification

2. if v ∈ V, then v ∈ T
3. if T1 ∈ T, T2 ∈ T, T1 × T2 ∈ T
4. if T1 ∈ T, T2 ∈ T, T1 → T2 ∈ T

Notations. Type variables will be denoted by α. ᾱ represent a set of type variables (possibly
empty). A type is said to be ground if it has no type variables. A type substitution is a mapping
from type variables to types (ground or not). The application of a type substitution is denoted
using := and extended to variable sets. Hence T [ᾱ := T̄ ′] substitutes in T every member of
ᾱ by a corresponding type in T̄ . A typing environment Γ is a mapping from identifiers to
types. Universal quantification over type variables is denoted ∀T, in order to separate this
quantification from the universal quantifier ranging over term variable. For terms, x or xi will
stand for variables, t or ti will stand for any term.

Typing rules. The rules of Fig. 3 use two additional functions:

• a function to compute the set of free type variables of a type, denoted fvT ;

• a generalization function Gen, which helps compute the most general type possible for a
let-bound variable. This function is defined as follows:

Gen(T,Γ) = ∀T(fvT (T )\fvT (Γ)).T
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The rules distinguish between curried functions (→ type), where partial application is al-
lowed, and uncurried functions, where the arguments are treated as a tuple, thus disallowing
partial application. Curried functions come from explicit λ-abstractions whereas the Smt-Lib’s
define−fun define functions which can only be totally applied.

Γ(x) = ∀Tᾱ.T
Γ ` x : T [ᾱ := T̄ ′]

Ax∀
Γ ` x as T : T

Axas

Γ, x1 : T1, . . . , xn : Tn ` t : bool Q ∈ {∀,∃}
Γ ` Q x1 . . . xnt : bool

Qua

Γ ` x1 : T1 . . . Γ ` xn : Tn Γ ` t : T

Γ ` λx1 . . . xn.t : T1 → . . .→ Tn → T
Lam

Γ ` t1 : T1 . . . Γ ` tn : Tn Γ ` f : T1 → . . . Tn → T

Γ ` f t1 . . . tn : T
App

Γ ` t1 : T1 . . . Γ ` tn : Tn Γ, x1 : Gen(T1,Γ), . . . , xn : Gen(Tn,Γ) ` t : T

Γ ` let ((x1 t1) . . . (xn tn)) t : T
Let

Figure 3: Typing rules

3.2 Typing commands

Smt-Lib commands can — and often do — change the global typing environment by introducing
new function names. Some commands can change the typing environment by introducing new
sorts, new variable names and new functions. In particular, assertions have to be type checked
to verify that the term being asserted is indeed a boolean.

Some commands, such as declaring or defining new sorts can also have an indirect influence
on the typing environment, as they modify the set of well-formed types. In this section, we
suppose that checking the well-formedness of types has been done prior to typing terms.

A Smt-Lib script is formalized as an ordered set of commands C. We represent a program
as a couple 〈Γ, C〉 where Γ represents the current typing environment, initially empty. In the
rules below, we only detail commands whose syntax have been changed.

Note that fundef rule follows the transformation explained in the Smt-Lib Standard (p.59).

〈Γ, {define-fun ∀Tᾱ(f ((x1 T1) . . . (xn Tn)) T t)} ∪ C〉
〈Γ ∪ {f : ∀Tᾱ.T1 × . . .× Tn → T}, {assert ∀Tᾱ ((∀x1 : T1 . . . xn : Tn f x1 . . . xn) = t)} ∪ C〉 fundef

〈Γ, {declare-fun ∀Tᾱ(f (T1 . . . Tn) T )} ∪ C〉
〈Γ ∪ {f : ∀Tᾱ.T1 × . . .× Tn → T}, C〉 fundec

〈Γ, {assert ∀Tᾱ t} ∪ C〉 Γ ` t : bool

〈Γ, C〉 Assert
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The typing system is used in particular to find monomorphic occurrences of polymorphic
terms. In the next section, we will use it in a monomorphization procedure.

4 Monomorphization

Once we have checked that a set of commands is well-typed, we need to generate a Smt-Lib-
compatible version of it, since we do not want to have to change the core of the solver. It means
first that λ-terms must be eliminated and second, that the problem must be monomorphized.
The elimination of λ-terms has been discussed in Sec. 1 and uses β-reduction. Only if the
problem is still first-order after this elimination can we then try to compute a monomorphic
version of it. Otherwise we will simply discard it.

Bobot and Paskevich [BP11] have shown the undecidability of computing a minimal monomor-
phic set formulas equivalent to an original set of polymorphic formulas. However, we still aim
to present here a monomorphization method for polymorphic formulas. If needed, it should
compute an over-approximation of the minimal monomorphic set. Our implied goal is that
we hope monomorphization will be good enough in practice for most of our problems. The
proposed monomorphization is expected to be sound with respect to the original polymorphic
types. Hence, the unsatisfiability of the newly generated problem implies the unsatisfiability
of the original problem but its satisfiability does not in general imply the satisfiability of the
original problem.

Monomorphization example. Let us detail the example of Fig. 2 to show what we would
like to achieve on this specific case. On this example, monomorphization is expected to fail,
so that we can also explain how the procedure works and how we deal with failure. In the
example, three function signatures are defined, where type variables are implicitly universally
quantified:

• emptyset: αe→B

• insert: ((αi×(αi→B))→αi→B)

• flat :(αf→B→B→αf→B)

The first step identifies polymorphic and monomorphic instances of terms through typing.
In the example, we have three polymorphic formulas. These formulas are detailed below. For
the sake of readability, we write type annotations only for co-domains, according to the initial
function signatures, and hide annotations for term variables.

flat〈α→B〉(emptyset〈α→B→B〉) = emptyset〈α→B〉 (4.1a)

∀ss : α→B→B

(flat〈α→B〉(insert〈α→B→B〉(emptyset〈α→B〉, ss)) = flat〈α→B〉(ss))
(4.1b)

∀e : α, s : α→B, ss : α→B→B

(flat〈α→B〉(insert〈α→B→B〉(insert〈α→B〉(e, s), ss))

= insert〈α→B〉(e, flat〈α→B〉(insert〈α→B→B〉(s, ss))))

(4.1c)

In Fig. 2, the unique monomorphic assertion is:

∀s : Z→B (flat〈Z→B〉(insert〈Z→B→B〉(s, emptyset〈Z→B→B〉)) = s)
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Such monomorphic assertions drive the procedure. Basically, they provide the set of ground
types that forms the basis for the generation of monomorphic instances of polymorphic func-
tions.

The second step consists in computing the set of new terms derived from the injection
of monomorphic elements. Using type substitutions, we can generate monomorphic special-
izations F = {emptyset[αe:=Z→B], insert[αi:=Z→B], flat[αf :=Z]} of the polymorphic functions. We
try to substitute the polymorphic occurrences of the three terms emptyset, insert, flat by their
monomorphic counterpart whenever we can in the polymorphic terms 4.1a, 4.1b and 4.1c, using
a leftmost-innermost strategy. This generates the following new set of monomorphic assertions:

flat〈Z→B〉(emptyset〈Z→B→B〉) = emptyset
〈Z→B〉
[αe:=Z] (4.2a)

∀ss : Z→B→B

(flat〈Z→B〉(insert〈Z→B→B〉(emptyset
〈Z→B〉
[αe:=Z], ss)) = flat〈Z→B〉(ss))

(4.2b)

∀e : Z, s : Z→B, ss : Z→B→B

(flat〈Z→B〉(insert〈Z→B→B〉(insert
〈Z→B〉
[αi:=Z](e, s), ss))

= insert
〈Z→B〉
[αi=Z](e, flat〈Z→B〉(insert〈Z→B→B〉(s, ss))))

(4.2c)

The procedure uses all monomorphic terms, and thus generates a number of new monomor-
phic assertions. At this point, one full pass of the procedure has been executed. This is repeated
while new monomorphic type instances are created. For example, the problem after the first
full pass now has uncovered new possible monomorphizations: emptyset[Z/αe] (in 4.2a and 4.2b)
and insert[Z/αi] (in 4.2c).

The procedure thus stops on a final problem if it does not uncover any more monomorphic
instances. There, only two things can happen:

• if polymorphic terms are only found in their original place (i.e. as subterms of the origi-
nal problem) then we have found a monomorphic expression of the original polymorphic
problem, if we remove the original polymorphic assertions and functions from the final
problem.

• if polymorphic terms are still present, then we declare that we have failed to find a
monomorphic expression of the original problem and halt there.

On the example, the procedural steps we have applied will never terminate because in the
term (flat emptyset) = emptyset, a new monomorphic type can be inferred for the leftmost emptyset
at any instantiation of the rightmost emptyset , which will be fed to the rightmost one, thus
looping forever.

Monomorphization fixpoint. The proposed monomorphization procedure is now summa-
rized. Let T represent the set of term occurrences of the original problem. Initially, the sets of
monomorphic and polymorphic term occurrences are empty.

1. Apply type inference and divide the terms in T into two sets M and P of monomorphic
and polymorphic term occurrences. If they are the same as the previous M and P , we
have reached a fixpoint and can stop. Otherwise, go to step 2.

2. Let M = {m1,m2, . . .mn} and P = {p1, p2, . . . pm}. For each (mi, pj), such that mi ∈M ,
pj ∈ P and mi = pj (i.e. mi and pj are two occurrences of the same term), substitute the
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polymorphic pj by its monomorphic mi in the term t where pj occurs as subterm, thus
deriving a new term tij = t[pj := mi].

At the end of this step, we will have a new set of terms from the various possible pairings
between monomorphic and polymorphic occurrences of the same term, generating a new
set of term occurrences T ′. Let the new problem be represented by T ∪ T ′.

Non-termination. The fact that our procedure is possibly non-terminating is mitigated by
the fact that, in practice, we impose restrictions on time or in this case, on the number of full
passes. However, we would like to be able to guess possibly infinite expansions because we know
we will not be able to guarantee a sound and complete monomorphization. To this effect, we
have conjectured the following criterion, which depends on unification [Rob65]:

Conjecture 1 (Non-termination criterion). Let t and s be terms and s1 and s2 be two occur-
rences of s in the term t. Let T1 be the type inferred for s1 and T2 the one of s2. If T1 and
T2 cannot be unified because of a failing occur check then the monomorphization procedure will
not terminate.

5 Related work

The use of polymorphic logics on top of many-sorted or mono-sorted logics has received specific
attention in the last few years.

In the context of the Caduceus and Why [FM07, BFMP11], Couchot and Lescuyer [CL07]
describe how to translate ML-style polymorphic formulas into untyped and multi-sorted versions
of the original problem.

This method is refined by Bobot and Paskevich [BP11] who show a 3-staged treatment of
polymorphic formulas to translate them into many-sorted versions, including various possibili-
ties for the last translating step. Their proposals particularly take care of protecting data types
which are known to be handled by decision procedures by the targeted Smt-solvers. This work
is further detailed in Bobot’s thesis [Bob11].

Leino and Rümmer [LR10] consider the higher-order polymorphic specification language of
the Boogie2 tool [Lei08] that has to be translated to Smt-solvers which in general do not handle
polymorphism. They present two translations, one using type guards, the other adding types
as further function arguments.

These two last approaches already present various advanced techniques to translate poly-
morphism formulas for many-sorted Smt-solvers, each one coming from their experience and
needs, but do not tackle monomorphization. In the case of Bobot and Paskevich, their proof
of the undecidability of the monomorphization makes clear the reason why, while Leino and
Rümmer leave it as a possible further optimization.

Bobot et al. [BCCL08] have added built-in support for polymorphism inside the Alt-Ergo
prover [BCC+08]. Supporting polymorphic types at the solver level would indeed simplify the
addition of polymorphism at the specification level. We chose to keep things separated (for
now).

There is also a large body of work on the translation of typed higher-order-logic into untyped
first-order logic. In the context of using automation to help discharge proofs Hurd [Hur03]
or Meng and Paulson [MP08] can however rely on the type-checking capabilities of higher-
order provers to verify automated but untyped first-order proofs. Therefore they can even use
unsound translations and leave to the higher-order prover the task of checking the soundness of
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the proof. In order to use Smt-solvers inside Isabelle/HOL [Pau94], the monomorphization step
of Blanchette et al. [BBP11] bears a strong similarity to our proposal.

6 Conclusion and further work

We have presented a summary of two backward compatible syntactic extensions made to the
Smt-Lib standard: λ-terms and polymorphism. We have shown how to deal with λ-terms
through β-reduction. We also have presented how we attempt to generate a monomorphic
version of our polymorphic problem using a fixpoint-like procedure. This procedure heavily
uses a Damas-Hindley-Milner like type inference algorithm to discover relevant monomorphic
instances of polymorphic terms.

The support for the proposed syntactic extensions is currently being implemented in the
development version of veriT. λ-terms are already supported and there is preliminary support
for polymorphic Smt-Lib scripts. We are currently testing the monomorphization process to
see how it behaves in practice.

The preservation of satisfiability means that, even in the case of a non-terminating monomor-
phization, we could devise a strategy to correctly use an unsatisfiable result at any step of the
monomorphization process. Indeed, this would mean that we have found an unsatisfiable subset
of the initial problem.

This strategy would be similar to depth-first iterative deepening [Kor85], which has been
heavily used in provers based on the tableau method [Smu95, DGHP99]. In tableaux, this is
used to generate possible term instantiations for universally quantified variables in order to find
a model refuting the original formula. In our case, after each deeper monomorphization step,
the Smt-solver would get to try a partial and new monomorphic problem containing only a
subset of possible type instantiations. If it can prove the unsatisfiability of this new problem,
we can stop. If not, we can — and should to preserve completeness — continue. In practice,
this iterative procedure will be bounded either by a time limit or by a given number of steps.

We believe this work is a step towards a more generalized use of polymorphism in the
context of Smt-solvers. These efforts might converge into an Alt-Ergo-like solution for provers
supporting Smt-Lib, indeed building polymorphism support in the prover and not only at the
syntactic level.

Acknowledgments. We warmly thank the anonymous reviewers for their helpful feedback
and constructive criticism, which already show promises of future fruitful discussions about the
subject of this paper.
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Deductive Program Verification. In Werner Damm and Holger Hermanns, editors, CAV,
volume 4590 of Lecture Notes in Computer Science, pages 173–177. Springer, 2007.

[Hin69] Roger Hindley. The principle type-scheme of an object in combinatory logic. Trans. Amer.
Math. Soc., 146:29–60, 1969.

[Hur03] Joe Hurd. First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In Myla
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Automating the Verification of Floating-point Algorithms

Guillaume Melquiond

Inria Saclay – Île-de-France & LRI, CNRS UMR 8623, Université Paris-Sud
Centre Universitaire d’Orsay, Bâtiment 650 (PCRI), Orsay, F-91405

Floating-point numbers are limited both in range and in precision, yet they are widely used
as a way to implement computations on real numbers. Thus arithmetic operations introduce
small errors which might be amplified during subsequent computations and cause inaccuracies.
As such, proving the correctness of a floating-point algorithm usually entails verifying that
the computed results are still close enough to some ideal values, despite the method error and
the round-off errors. The traditional way to tackle such a verification is to perform an error
analysis, possibly using automated tools.

Unfortunately, when it comes to the low-level functions found in mathematical libraries, the
floating-point code is usually so contrived that this approach falls short. Indeed, just knowing
the code is no longer sufficient to verify it, one also has to know the mathematical reasons that
led to choosing this code in the first place. This excludes any hope of full automation, yet
automated tools are sorely needed, if only because performing a pen-and-paper proof of such
functions is long, tedious, and error-prone.

This talk will show some issues specific to the verification of the floating-point functions
of a mathematical library, and some methods for solving them automatically. These methods
will be exemplified using Gappa, a tool dedicated to proving the logical formulas that arise
during the verification of small yet complicated floating-point algorithms. This tool is based
on interval arithmetic, expression rewriting, and theorem saturation. For increased confidence,
the tool also generates formal proofs which can be verified by the Coq proof assistant.
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Leveraging Linear and Mixed Integer Programming for

SMT

Tim King1, Clark Barrett1, and Cesare Tinelli2

1 New York University
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Abstract

SMT solvers combine SAT reasoning with specialized theory solvers to either find a feasible solution

to a set of constraints or prove that no such solution exists. Linear programming (LP) solvers come from

the tradition of optimization, and are designed to find feasible solutions that are optimal with respect to

some optimization function. Typical LP solvers are designed to solve large systems quickly using floating

point arithmetic. Because floating point arithmetic is inexact, rounding errors can lead to incorrect

results, making inexact solvers inappropriate for direct use in theorem proving. Previous efforts to

leverage such solvers in the context of SMT have concluded that in addition to being potentially

unsound, such solvers are too heavyweight to compete in the context of SMT. In this paper, we

describe a technique for integrating LP solvers that dramatically improves the performance of SMT

solvers without compromising correctness. These techniques have been implemented using the SMT

solver CVC4 and the LP solver GLPK. Experiments show that this implementation outperforms other

state-of-the-art SMT solvers on the QF LRA SMT-LIB benchmarks and is competitive on the QF LIA

benchmarks.
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raSAT: SMT for Polynomial Inequality

(extended abstract)

To Van Khanh1, Vu Xuan Tung2, and Mizuhito Ogawa2

1 University of Engineering and Technology,
Vietnam National University, Hanoi

khanhtv@vnu.edu.vn
2 Japan Advanced Institute of Science and Technology

tungvx@jaist.ac.jp, mizuhito@jaist.ac.jp

Abstract

This paper presents an iterative approximation refinement, called raSATloop, which
solves a system of polynomial inequalities on real numbers. The approximation scheme
consists of interval arithmetic (over-approximation, aiming to decide UNSAT) and testing
(under-approximation, aiming to decide SAT). If both of them fail to decide, input intervals
are refined by decomposition, a refinement step in raSATloop.

The SMT solver raSAT implements the raSATloop, on top of the miniSAT 2.2, with
backend theories in Ocaml. The raSATloop is not only a simple framework, but also allows
us to design mutually refining strategies, e.g., the result of interval arithmetic refines
both test data generation and next refinements, and the result of testing refines next
refinements. We discuss three strategy design choices: dependency to set priority among
atomic polynomial constraints, sensitivity to set priority among variables, and UNSAT core
for reducing learned clauses and incremental UNSAT detection.
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A SAT 
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Figure 1: raSATloop
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Better Answers to Real Questions

Marek Košta1, Thomas Sturm1 and Andreas Dolzmann2
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2 Leibniz-Zentrum für Informatik, 66041 Saarbrücken, Germany
andreas.dolzmann@dagstuhl.de

Abstract

We consider existential problems over the reals. Extended quantifier elimination gener-
alizes the concept of regular quantifier elimination by providing in addition answers, which
are descriptions of possible assignments for the quantified variables. Implementations of
extended quantifier elimination via virtual substitution have been successfully applied to
various problems in science and engineering. So far, the answers produced by these im-
plementations included infinitesimal and infinite numbers, which are hard to interpret in
practice. We introduce here a post-processing procedure to convert, for fixed parameters,
all answers into standard real numbers. The relevance of our procedure is demonstrated
by applications of our implementation to various examples from the literature, where it
significantly improves the quality of the results.
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Towards Conflict-Driven Learning for Virtual

Substitution

Konstantin Korovin1, Marek Košta2 and Thomas Sturm2

1 The University of Manchester, UK
korovin@cs.man.ac.uk

2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
mkosta@mpi-inf.mpg.de, sturm@mpi-inf.mpg.de

Abstract

We consider SMT-solving for linear real arithmetic. Inspired by related work for the
Fourier–Motzkin method, we combine virtual substitution with learning strategies. For the
first time, we present virtual substitution—including our learning strategies—as a formal
calculus. We prove soundness and completeness for that calculus. Some standard linear
programming benchmarks computed with an experimental implementation of our calculus
show that the integration of learning techniques into virtual substitution gives rise to
considerable speedups. Our implementation is open-source and freely available.
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