
Reasoning About Set Comprehensions∗

Edmund S. L. Lam1 and Iliano Cervesato1

Carnegie Mellon University
sllam@qatar.cmu.edu, iliano@cmu.edu

Abstract

Set comprehension is a mathematical notation for defining sets on the basis of a property
of their members. Although set comprehension is widely used in mathematics and some
programming languages, direct support for reasoning about it is still not readily available
in state-of-the-art SMT solvers. This paper presents a technique for translating formulas
which express constraints involving set comprehensions into first-order formulas that can
be verified by off-the-shelf SMT solvers. More specifically, we have developed a lightweight
Python library that extends the popular Z3 SMT solver with the ability to reason about the
satisfiability of set comprehension patterns. This technique is general and can be deployed
in a broad range of SMT solvers.

1 Introduction

Reasoning about sets is a frequently occurring exercise when conducting automated verification
of programs and algorithms. While some recent work has focused on automated reasoning about
set (and multiset) cardinality constraints [6, 5] and about arithmetic aggregate computations [4],
little research has been conducted on developing automated tools for reasoning about explicit
set comprehensions. Set comprehension is a mathematical notation for defining sets on the basis
of a property of their members. Although set comprehension is widely used in mathematics
and some programming languages, direct support for reasoning about set comprehension is still
not readily available in state-of-the-art SMT solvers. In this work, we consider the task of
verifying the satisfiability of quantifier-free formulas in the language of set comprehension over
some standard theory Th, supported by typical modern SMT solvers. We denote the resulting
language as SC (Th). Examples of such base theory Th include linear arithmetic over integers
or real numbers, and user-defined theories over constructed data types (e.g., tuples, finite lists).
In this paper, we will demonstrate our techniques on the theory of linear arithmetic over the
integers (LIA). A typical problem in SC (LIA) is given by the following equality:

{10, 20, 30} .= {x ∗ 10 | x < 4}x∈̇X

It asks whether there are instances of the free variables in this formula (here, just the set
variable X) so that the sets on the two sides are equal (we use

.
= to denote set equality). The

left-hand side is the extensional set {10, 20, 30}. The expression on the right-hand side is a set
comprehension: it specifies the set of all the values of the expression x∗10 where the values of x
are drawn from X and are constrained by x < 4. The variable x is bound in the comprehension.
Set comprehensions determine sets intensionally on the basis of transformations such as x ∗ 10
and guards like x < 4. A solution to the satisfiability problem for this equality is a model S
such that

S |=SC (LIA) {10, 20, 30} .= {x ∗ 10 | x < 4}x∈̇X

∗This paper was made possible by grant NPRP 09-667-1-100, Effective Programming for Large Distributed
Ensembles, from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made
herein are solely the responsibility of the authors.

In particular, the model S carries information on an acceptable value of the set variable X —
in this example, X = {1, 2, 3} is the smallest solution, with X = {1, 2, 3, 4} being another one.

Our goal is to reduce satisfiability in SC (Th) to satisfiability in Th extended with an unin-
terpreted sort for sets and an uninterpreted binary predicate ∈̇, which encodes set membership.
To achieve this, we translate a set formula of interest S in SC (Th) into a formula VSW of this
resulting theory, which we denote by U +Th (Th with Uninterpreted symbols). Specifically,
each appearance of a set comprehension or of a standard set operation in S, is mapped to a
fresh variable together with formulas in the language of U +Th. These formulas ensure that
this variable is associated with the exact elements of the original set structure. Then, we ver-
ify that S is satisfiable in SC (Th) by checking that VSW has a model M in U +Th, i.e., that
M |=U+Th VSW. For a wide range of formulas, this verification step can be carried out using a
state-of-the-art high-performance SMT solver such as Z3 [1]. Finally, we lift M to a model S
of S, such that S |=SC (Th) S. Even though this operation is still undecidable in general [2], it
is nonetheless decidable for many instances of SC (LIA) formulas and can be implemented as
an effective satisfiability test operation. For instance, our work in [3] uses a conservative imple-
mentation of this test operation to determine satisfiability of finite set comprehension formulas
that would guarantee safety of certain compiler optimizations.

To illustrate this technique, here is the (slightly simplified) encoding VSW where S is the
formula from our earlier example:

VSW =


∀z. z ∈̇ X2 ↔ z ∈̇ X3 − F1 : X2 = X3

∀y. y ∈̇ X2 ↔ (y
.
= 10 ∨ y .

= 20 ∨ y .
= 30) − F2 : X2 = {10, 20, 30}

∀x. (x ∗ 10 ∈̇ X3)↔ (x ∈̇ X ∧ x < 4) − F3 : X3 = {x ∗ 10 | x < 4}x∈̇X

The first formula, F1, states that X2 and X3 are extensionally equal. The second formula,
F2, constrains the members of X2 to be the integers 10, 20 or 30. Hence X2 is a precise
representation of the extensional set {10, 20, 30} in U +LIA. The third formula, F3, restricts X3

so that, for each element x in X that is larger than 4, x ∗ 10 must be a member of X3. Hence
F3 constrains the behavior of X3 to that of {x ∗ 10 | x < 4}x∈̇X in U +LIA.

The rest of the paper is organized as follows: Section 2 introduces our source and target
languages, SC (LIA) and U +LIA. Section 3 defines the encoding of SC (LIA) formulas into
U +LIA formulas. Section 4 presents a conservative satisfiability test operation for SC (LIA)
formulas. Section 5 describes our prototype implementation of this operation, a lightweight
Python library that extends Z3. Section 6 discusses our conclusions and future work.

2 Notations, Term Languages and Models

In this section, we introduce meta-notation that we will use throughout this paper and we
define the source and target term languages SC (LIA) and U +LIA.

In discussions, we write ō to denote finite sets of syntactic objects o, with ∅ for the empty
set. We write {ō, o} for the extension of set ō with syntactic object o, omitting the brackets
when no ambiguity arises. Meta-level set membership is denoted as o ∈ ō. We write meta-level
set comprehension as {o : ō | Φ(o)}, which represents the set containing all objects o from ō that
satisfy the condition Φ(o). We write [o′/x]o for the simultaneous replacement within object o
of all occurrences of variable x with o′. When traversing binding constructs and quantifiers,
substitutions implicitly α-rename variables to avoid capture. These are all meta-level notations,
not to be confused with the syntactic objects in our source language, which also features sets.

Figure 1 defines our source language SC (LIA) and the target language U +LIA. Terms in
SC (LIA) are either arithmetic expressions, written t, or set expressions, denoted s. Arithmetic

Variables x,X Values v

SC (LIA): Set Comprehensions over Linear Integer Arithmetic

Arithmetic Term t ::= x | v | t op t
Arithmetic Formula T ::= t

.
= t | t < t | ¬T | T ∧ T

Set Term s ::= X | {t̄} | {t | T}x∈̇s | s ∪ s | s ∩ s | s \ s
Set Formula S ::= t ∈̇ s | s .

= s | s ⊆ s | ¬S | S ∧ S

U +LIA: Linear Integer Arithmetic and Uninterpreted Sets

Arithmetic Term t ::= x | v | t op t
Arithmetic Formula T ::= t

.
= t | t < t

Uninterpreted Set Term s ::= X
Uninterpreted Set Formula S ::= t ∈̇ s
Formula F,C ::= S | T | ¬F | F ∧ F | ∃x.F | ∀x.F

Figure 1: Object Languages: SC (LIA) and U +LIA

expressions correspond to integers and set expressions to sets of integers. An arithmetic ex-
pression is either a base variable x, a number v in Z, or a binary arithmetic operation t op t
supported in the theory of linear integer arithmetic (e.g., + or ∗). A set expression is either a
set variable X, an extensional set {t̄}, the union, intersection or difference between two sets, or
a set comprehension {t | T}x∈̇s. The empty set {} is the special case of an extensional set {t̄}
where t̄ is empty. In a set comprehension, we refer to t as the comprehension pattern, to T as
the comprehension guard, to x as the binding variable, and to s as the comprehension domain.
The scope of the binding variable x is t and T . Where useful for clarity, we explicitly annotate
this dependency by writing t and T as t(x) and T (x). Formulas T that appear within set com-
prehensions are quantifier-free arithmetic formulas over the integer domain. Atomic arithmetic
formulas include equality, written t1

.
= t2, and other standard predicates, for example t1 < t2.

The arithmetic formulas T in comprehension guards combine them using the standard Boolean
connectives — we display a minimal set consisting of ¬ and ∧ in Figure 1 but will freely use the
full set of Boolean connectives in our examples. The set formulas of SC (LIA), denoted S, are
the Boolean combination of set membership t ∈̇ s, set equality s1

.
= s2 and the subset relation

s1 ⊆ s2.

The language of U +LIA resembles SC (LIA), with two major syntactic differences: first, it
dispenses with all set expressions except for set variables X; second, U +LIA formulas allow the
use of quantifiers over base variables.

A model is a structure M that satisfies the axioms of a theory Th and a formula F .
This is denoted by M |=Th F . A model M contains mappings from the variables of F to
their respective instantiations that satisfy F in Th. The lookup operation M(x) denotes the
instantiated value that x is mapped to. We writeMx 7→v for the model that maps x to v and is
otherwise identical to M. For each predicate symbol p that appears in Th or F , the model M
also contains mappings from p to the set of all valid instances of the predicate relation. The
lookup operationM(p) denotes the set of valid relation instances of p. For simplicity, we assume
predicates have the same arity throughout Th and F . Interpretations of the (sub)formula(s)
of F and terms t that appear in F are obtained from M by the operations MJF K and MJtK.
Unsatisfiability of a formula F is denoted by 6|=Th F .

A model in our source language SC (LIA) is denoted by S and its satisfiability judgment is

denoted by S |=SC (LIA) S where S is an SC (LIA) formula. We require that SC (LIA) contain
the theory of linear integer arithmetic and general set theory. A model S contains mappings for
integer variables x to integer values v and set variables X to extensional sets {t̄}. The sets of all
integers and sets that appear in S are denoted by domZ(S) and domS(S) respectively. We will
omit standard definitions of integer term interpretation SJtK and integer formula satisfiability
S |=SC (LIA) T . The interpretation SJsK of set terms s is defined as follows:

SJXK = S(X)
SJ{t̄, t}K = {SJt̄K,SJtK}
SJ{}K = ∅

SJ{t(x) | T (x)}x∈̇sK = {Sx 7→aJt(x)K : domZ(S) | a ∈ SJsK and Sx 7→a |=SC (LIA) T (x)}
SJs1 ∪ s2K = {a : domZ(S) | a ∈ SJs1K or a ∈ SJs2K}
SJs1 ∩ s2K = {a : domZ(S) | a ∈ SJs1K and a ∈ SJs2K}
SJs1 \ s2K = {a : domZ(S) | a ∈ SJs1K and a 6∈ SJs2K}

This definition is inductive and makes use of SJtK and S |=SC (LIA) T . The interpretation of a set
comprehension SJ{t(x) | T (x)}x∈̇sK is defined as the set of all (and only) the interpretations
of the comprehension pattern t(x) with the binding variable x mapped to the integers a in
the interpretation of the comprehension domain s such that the corresponding instance of the
comprehension guard T (x) is satisfiable under S. The other cases are standard.

Satisfiability for set formulas, S |=SC (LIA) S, is defined inductively over set formulas and on
top of SJtK, SJSK and S |=SC (LIA) T . The key cases of this definition are as follows:

S |=SC (LIA) t ∈̇ s iff SJtK ∈ SJsK

S |=SC (LIA) s1
.
= s2 iff for all a ∈ domZ(S),

Sx 7→a |=SC (LIA) x ∈̇ s1 iff Sx 7→a |=SC (LIA) x ∈̇ s2
S |=SC (LIA) s1 ⊆ s2 iff for all a ∈ domZ(S),

Sx 7→a |=SC (LIA) x ∈̇ s1 only if Sx 7→a |=SC (LIA) x ∈̇ s2

We omitted the cases for the logical connectives whose interpretations are standard. Note that
membership ∈̇ is an interpreted predicate symbol in U +LIA: t ∈̇ s is satisfiable in S if and only
if the interpretation of t is actually a member of the interpretation of s. Since ∈̇ is interpreted,
S does not contain any mappings for ∈̇ (i.e., S(∈̇) = ⊥). Satisfiability of equality, s1

.
= s2 is

defined in terms of the membership relation: s1 and s2 are equal if and only if they contain
the same integers. In a similar manner, satisfiability of the subset relation s1 ⊆ s2 is defined in
terms of membership ∈̇.

Models of our target language U +LIA are denoted by M, and the satisfiability judgment
is denoted by M |=U+LIA F . We require that U +LIA contains the theory of linear integer
arithmetic and an uninterpreted domain for sets. Unlike S, M contains no mappings for set
variables, since the set domain is uninterpreted. However, M(∈̇) maps to the set of pairs
〈MJtK, X〉 for every valid relation t ∈̇ X from F . The definition ofMJtK andM |=U+LIA F are
standard and therefore omitted.

3 Encoding SC (LIA) into U +LIA

In this section, we define an encoding of SC (LIA) terms and formulas into U +LIA terms and
formulas. This encoding is given by two translation functions, the set term encoding V·Wset and
set formula encoding functions V·Wform .

VXWset = X � ∅ ; >

V{t̄}Wset =


X � {X} ; ∀x. x ∈̇ X ↔ mem(t̄, x)

where mem({t̄, t}, x) = x
.
= VtW ∨mem(t̄, x)

mem(∅, x) = ⊥

Vs1 op s2Wset =



X � V1,V2, X ; C1 ∧ C2 ∧ constr(op)

where Vs1Wset = xs1 � V1 ; C1

Vs2Wset = xs2 � V2 ; C2

constr(∪) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∨ x ∈̇ X2

constr(∩) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∧ x ∈̇ X2

constr(\) = ∀x. x ∈̇ X ↔ x ∈̇ X1 ∧ ¬(x ∈̇ X2)

V{t | T}x∈̇sW
set =


X � V, X ; Cdom ∧ Cmax ∧ Crg

where VsWset = X ′ � V ; Cdom

Cmax = ∀x. (x ∈̇ X ′ ∧ VTW)→ VtW ∈̇ X
Crg = ∀z. z ∈̇ X → ∃x. (z

.
= VtW ∧ x ∈̇ X ′ ∧ VTW)

VtW = t VTW = T

Figure 2: Set Term Encoding into U +LIA: VsWset = X � V ; C

The set term encoding of a set expression s is given by a triple (X,V, C) that we write
VsWterm = X � V ; C. Here, X is a fresh variable associated with s (unless s is already
a variable), V is a collection of uninterpreted set variables, and C is a U +LIA formula. We
refer to X as the representative variable of s, C as the extensional context formula and V as
the set variable signature. The context formula C constrains X to capture the extensional
behavior of s, while V contains all local set variables in C created while encoding s. We require
that V contain no duplicates and we rely on implicit α-renaming to enforce this constraint.
This provides an implicit mechanism to guarantee unique assignments of set variables during
encoding.

Figure 2 defines the set term encoding operation. In the case of an extensional set t̄ =
{t1, . . . , tn}, the extensional context formula ∀x. x ∈̇ X ↔ (x

.
= t1 ∨ . . . ∨ x

.
= tn) constrains

representative variable X to contain all and only the elements that appear in t̄. We encode
all SC (LIA) terms ti in t̄ by means of the encoding operation VtiW. For the element terms we
consider in this paper, it is sufficient to define their encoding as the identity function. The
entry Vs1 op s2Wset covers the cases for set union, intersection and difference. For each, we first
derive encodings for s1 and s2 to obtain representative variables X1 and X2. The variable X
is assigned to represent the set s1 op s2. This is done with the help of the context formula
constr(op): If op is the union operator ∪, the context formula state that any member x of
X must be a member of either X1 or X2 and vice-versa. The cases where op is ∩ and \ are
similar. Each of these context formulas constrains the extensional behavior X to that of the
union, intersection or set difference of s1 and s2 respectively. Finally, V{t | T}x∈̇sW

set encodes
the set comprehension as follows: The comprehension domain s is encoded into X ′ with the
constraints of s captured by Cdom . The comprehension {t | T}x∈̇s is encoded into X with
its constraints captured by context formulas Cmax and Crg . The comprehension maximality
condition Cmax imposes the constraint that every member x of the comprehension domain X ′

Vt ∈̇ sWform = VtW ∈̇ X � V ; C where VsWset = X � V ; C

Vs1
.
= s2Wform =


∀x. (x ∈̇ X1)↔ (x ∈̇ X2) � V1,V2 ; C1 ∧ C2

where Vs1Wset = X1 � V1 ; C1

Vs2Wset = X2 � V2 ; C2

Vs1 ⊆ s2Wform =


∀x. (x ∈̇ X1)→ (x ∈̇ X2) � V1,V2 ; C1 ∧ C2

where Vs1Wset = X1 � V1 ; C1

Vs2Wset = X2 � V2 ; C2

VS1 ∧ S2Wform =


F1 ∧ F2 � V1,V2 ; C1 ∧ C2

where VS1Wform = F1 � V1 ; C1

VS2Wform = F2 � V2 ; C2

V¬SWform = ¬F � V ; C where VSWform = F � V ; C

Figure 3: Set Formula Encoding into U +LIA: VSWform = F � V ; C

that satisfies the comprehension guard T has its corresponding comprehension pattern t as a
member of X. The comprehension range restriction Crg imposes the constraint that for every
member z of the set comprehensionX, there exists some member x of the comprehension domain
X ′ whose corresponding comprehension pattern t is equal to z and satisfies the comprehension
guard T .

While it is tempting to replace the context formulas Cmax and Crg with the single implication
formula Ccomp = ∀x. (x ∈̇ X ′ ∧T (x))↔ t(x) ∈̇ X (as done in our example in Section 1), Ccomp

would not accurately capture the behavior of set comprehensions with expressions t(x) that
are not injective functions. For instance, consider the comprehension s1 = {x%3 | >}x∈̇s2

,
where % is the modulus operator. Assuming that X and X ′ are the representatives of set
comprehension s1 and set term s2 respectively, the formula Ccomp = ∀x. x ∈̇ X ′ ↔ (x%3) ∈̇ X
is incorrect in the ‘←’ case: it demands any x such that x%3 is a member of X must be a
member of X ′, which is clearly not the behavior of the set comprehension. The combination of
Cmax and Crg on the other hand, is sound as long as t(x) is a total function.

Figure 3 defines the encoding of a set formula S, denoted by VSWform = F � V ; C. It
encodes a SC (LIA) formula S into an U +LIA formula F under the extensional context formula
C with the set variable signatures V. We call F the main encoding formula. Similarly to the
term encoding operation, the formula C specifies the constraints on uninterpreted set variables
and V is the set of local set variables created by the encoding. The case Vt ∈̇ sWform encodes the
membership relation by simply using the term encoding VsWset of s. We then simply check that
the encoding of t is in the representative variable X of VsWset . For Vs1

.
= s2Wform , we encode s1

and s2 by applying the term encoding operation of Figure 3 to each, obtaining X1 and X2 as
representatives of s1 and s2 respectively with extensional context C1 and C2. Following this,
the equality constraint is represented in U +LIA as the formula ∀x. x ∈̇ X1 ↔ x ∈̇ X2, stating
that all members of X1 are members of X2 and vice-versa. Encoding set equality in this manner
exercises the axiom of extensionality of set theory, enforcing the extensional equality of sets with
respect to the membership relation (∈̇). The case Vs1 ⊆ s2Wform is similar, except that it is
encoded into a one-sided extensional membership ‘equality’ (→). The case VS1∧S2Wform defines
the cases for the logical connectives ∧, during which we traverse the respective sub-formulas
and terms containing set terms and derive their encodings. The main formula is simply the ∧
logical connective applied to the respective encoded formulas.

satCheck(S) =

{
TMU if VSWform = F � V ; C and M |=U+LIA C ∧ F
⊥ otherwise

where TMU(x) = M(x)

TMU(X) =

{
{a : domZ(M) | 〈a,X〉 ∈ M(∈̇)} if X /∈ V
⊥ otherwise

TMU(∈̇) = ⊥

Figure 4: Satisfiability Checking for SC (LIA) Formulas

The encoding of negation requires some care, and is the reason for separating the main
encoding formula F and the extensional context formula C. Our definition in Figure 3 encodes
the negated SC (LIA) formula ¬({1} ⊆ {1, 2}) as follows:

V¬({1} ⊆ {1, 2})Wform = ¬(∀x. x ∈̇ X1 → x ∈̇ X2) � X1, X2 ; X1 = {1} ∧X2 = {1, 2}

Here, we abbreviated the actual encoding of the extensional sets as X1 = {1} and X2 = {1, 2}
for to be succinct. The conjunction of the main formula and context formula (i.e., ¬F ∧ C)
concisely captures the negated formula ¬({1} ⊆ {1, 2}), namely:

¬({1} ⊆ {1, 2}) ≡ ¬(∀x. x ∈̇ X1 → x ∈̇ X2) ∧X1 = {1} ∧X2 = {1, 2}

Assume we had instead collapsed F and C into a single formula component, so that
VSWform = F ∧ C � V. Then we would have to translate the above formula as

¬((∀x. x ∈̇ X1 → x ∈̇ X2) ∧X1
.
= {1} ∧X2

.
= {1, 2}) �X1, X2

which is not the intended meaning of the negation as, propagating the negation,

¬({1} ⊆ {1, 2}) 6≡ ¬(∀x. x ∈̇ X1 → x ∈̇ X2) ∨X1 6= {1} ∨X2 6= {1, 2}

4 Satisfiability Testing for SC (LIA)

In this section, we define a satisfiability test operation of SC (LIA) formulas on the encoding
defined in the previous section. This operation, denoted by satCheck(S), is defined in Figure 4.
If the SC (LIA) set formula S is satisfiable, this operation extracts a model for S from a model
of its encoding VSWform in U +LIA. Such a model of VSWform can be obtained using an off-the-
shelf SMT solver that supports the built-in theory of linear integer arithmetic and uninterpreted
domains. More specifically, given VSWform = F � V ; C, the satisfiability of S is determined
by checking the satisfiability of its U +LIA encoding: i.e., M |=U+LIA C ∧ F . Decidability
of this operation therefore depends on the decidability of |=U+LIA. If S is determined to be
unsatisfiable, satCheck(S) returns ⊥. If S is determined to be satisfiable, it returns a decoded
model TMU, which is an SC (LIA) model inferred fromM. Since this operation is undecidable
in general, it may not return a value at all for some formulas. The decode operator T·U is
defined as follows: for integer variables x, TMU simply maps x to M(x). For a set variable X
however, TMU(X) returns the set of all integers a such that 〈a,X〉 ∈ M(∈̇). The membership
relation of M is stripped away in TMU, i.e., TMU(∈̇) = ⊥.

Lemma 1 determines the soundness of the term encoding: for any set term s, we can extract
a corresponding interpretation of s from its encoding. Soundness for the formula encoding is

given by Theorem 2. It states that for some SC (LIA) formula S with the encoding VSWform =
F � V ; C, if S is satisfiable under SC (LIA), then C ∧ F is satisfiable under U +LIA.

Lemma 1 (Soundness of the Term Encoding). Let s be a SC (LIA) set term and VsWterm =
X � V ; C its encoding in U +LIA. For any S that contains an interpretation of s (i.e., SJsK),
there exists M such that M |=U+LIA C and S = TMU.

Proof. The proof proceeds by structural induction on the encoding operation of the term s,
with base cases X and {t̄}. For the base case {t̄}, we can infer that X contains all and only
the values in t̄ for the membership relation constraints (x ∈̇ X, such that x ∈ t̄) imposed
by the context formula of the encoding of {t̄} (i.e., SJsK = t̄). Hence, by definition of T.U,
we show that S = TMU. For the inductive case s1 op s2 and {t | T}x∈̇s, we similarly show
S = TMU by observing that their respective interpretations in S correspond to sets built from
the membership relations (x ∈̇ X) captured by C.

Theorem 2 (Soundness of the Formula Encoding). Let S be a SC (LIA) formula S and
VSWform = F � V ; C its encoding in U +LIA. For any S such that S |=SC (LIA) S, there exists
M such that M |=U+LIA C ∧ F and S = TMU.

Proof. The proof proceeds by structural induction on the encoding operation of the formula S,
with base cases t ∈̇ s, s1

.
= s2 and s1 ⊆ s2, whose proofs follow from the soundness of term

encoding (Lemma 1).

Lemma 3 and Theorem 4 state the converse of Lemma 1 and Theorem 2 respectively, hence
providing a completeness guarantee for our encoding.

Lemma 3 (Completeness of the Term Encoding). Let s be a SC (LIA) set term and VsWterm =
X � V ; C its encoding in U +LIA. For any M such that M |=U+LIA C, we have that
TMU |=SC (LIA) X

.
= s.

Proof. This proof is similar to that of Lemma 1. It proceeds by structural induction on the
encoding of s. The main difference is that in each case, we show that interpretations of s
obtained from S (i.e., S(X)) corresponds to that of obtained from TMU, hence TMU = S.

Theorem 4 (Completeness of the Formula Encoding). Let S be a SC (LIA) formula and
VSWform = F � V ; C its encoding in U +LIA. For all M such that M |=U+LIA C ∧ F ,
we have that TMU |=SC (LIA) S.

Proof. Like the proof of Theorem 2, this proof proceeds by structural induction on the encoding
of formula S. The proof for the base cases follows from Lemma 3.

Corollary 1 states the soundness and completeness of the satisfiability test operation
satCheck , and it follows from properties 1, 2, 3 and 4.

Corollary 1 (Soundness and Completeness of satCheck). For any SC (LIA) formula S, we
have the following:

• satCheck(S) = S if and only if S |=SC (LIA) S.

• satCheck(S) = ⊥ if and only if 6|=SC (LIA) S.

5 Implementation

We implemented the above technique as a lightweight library with Z3 as the underlying SMT
solver. This prototype is available for download at https://github.com/sllam/pysetcomp.
Given an SC (Th) formula, where Th is some theory that the Z3 SMT solver supports, our
Python library implements the encoding operation VSWform = F � V ; C. Formulas F and C
are native Z3 formulas, henceM |=U+Th F ∧C is implemented by simply passing F ∧C to the
Z3 satisfiability checking interfaces. Our prototype also includes a simple combinator library
that provides the programmer with a convenient way to write SC (Th) formulas.

The code that implement our example in Section 1 is as follows:

1 ## Initialize sorts and variables

2 I = z3.IntSort()

3 IntSet = mkSetSort(I)

4 x = z3.Int(‘x’)

5 X = z3.Const(‘X’, IntSet)

6

7 ## {10, 20, 30} .
= { x ∗ 10 | x < 4 }x ∈̇ X

8 S = VSet(I,10,20,30) |Eq| Compre(x*10,x<4,x,X)

9

10 ## VSWform = F � V ; C
11 F, C, V = transForm(S)

12

13 ## M |=U+Th F ∧ C
14 s = z3.Solver()

15 s.add(z3.And([F]+C))

16 print s.check() -- Prints ‘sat’

Z3’s built-in operations are explicitly prepended by z3. Lines 2–5 initializes the Z3 sorts
(data domains) and variables that we need in this example: I abbreviates the Z3 integer sort,
mkSetSort(I) returns a representation of the sort of sets of integer. In line 4, a Z3 integer
variable x is declared, while in line 5 a Z3 variable of the sort of sets of integer is declared.
Line 8 implements the actual SC (LIA) formula: VSet(I,10,20,30) builds the extensional set
{10,20,30}, while Compre(x*10,x<4,x,X) builds the set comprehension {x ∗ 10 | x < 4}x∈̇X .
The infix operator Eq corresponds to the equality predicate

.
=. Line 11 implements the encoding

of S into U +LIA formulas F and C, with the set of local variables V created by the encoding
procedure. Finally, lines 14–15 implements the satisfiability test by feeding F ∧ C to the Z3
satisfiability checker.

Our prototype works on more than just integers. The following example involves tuples of
integers.

X
.
= {〈1, 8〉, 〈2, 5〉, 〈3, 2〉, 〈3, 4〉, 〈4, 8〉} ∧ Y .

= {x ∗ 10 | x ≤ 3}〈x,y〉∈̇X ∧ x ∗ 10 ∈̇ Y ∧ 〈x , y〉 ∈̇ X

The corresponding code in our implementation is as follows:

1 IntPair = mkTupleSort(I, I)

2 tup = IntPair.tup

3 pi1 = IntPair.pi1

4

5 PairSet = mkSetSort(IntPair)

6 IntSet = mkSetSort(I)

7

8 X = z3.Const(’X’, PairSet)

https://github.com/sllam/pysetcomp

9 Y = z3.Const(’Y’, IntSet)

10 xy = z3.Const(’xy’, IntPair)

11 x, y = z3.Ints(’x y’)

12

13 cs = [X |Eq| VSet(IntPair, tup(1,8), tup(2,5), tup(3,2), tup(3,4), tup(4,8))

14 ,Y |Eq| Compre(pi1(xy)*10, pi1(xy)<=3, xy, X)

15 ,(x * 10) |In| Y

16 ,tup(x,y) |In| X]

In this example, the set comprehension Y maps a set containing pairs of integers, into a set of
integers, thus requiring our system to handle many-sorted encodings. Lines 1–3 define a new
tuple sort of pairs of integers IntPair, with tup as its data constructor and pi1 as a projection
operator for the left tuple argument. Lines 5–6 declare new set sorts: PairSet is the sort of
sets of integer pairs, while IntSet the sort of sets of integers. Lines 8–11 declare the variables
of the respective sorts, while lines 13–16 define the actual formula. The infix binary relation
In implements the membership relation ∈̇. Encoding cs with the transForm operation and
feeding its output to the Z3 solver yields a satisfiable result, where a satisfiable instance of x
and y can be extracted.

The implementation of the In operator is non-trivial and requires explanation. A call to
x |In| X creates an instance of a Z3 function, named mem, that is interpreted by our encoding
as the binary relation x ∈̇ X in Z3: this function maps the pair x and X to a Z3 Boolean value.
Note that the two instances of In at lines 15–16 are of different sort: At line 15 we have
an instance with the sort Int*IntSet, while at line 16 we have IntPair*PairSet. Since Z3
does not support parametric data types, our implementation must therefore map each instance
to a different Z3 function symbol (here mem IntSet and mem PairSet) that are interpreted
appropriately by our Python library. In order to provide a convenient interface that hides this
mapping, we implement a lookup procedure inside the In operator that is akin to a simplified
run-time version of type dictionary passing during type checking of Haskell type classes.

We have tested our implementation on a suite of set comprehension formulas of varying
complexity. While most are rather small, in the future we intend to provide empirical results
on more practical examples.

6 Conclusion and Future Work

In this paper, we reduced the satisfiability problem for formulas featuring comprehension and
other set operations over a standard theory (linear integer arithmetic in our examples) to solving
satisfiability constraints over this same theory augmented with a single uninterpreted sort. This
technique allows the satisfiability of set-based formulas to be verified by a wide range of off-the-
shelf SMT solvers that support the base theory. We have implemented a lightweight Python
library that utilizes this encoding technique on the popular Z3 SMT solver. This implementation
generalizes the encoding described here to a broad range of data types supported by Z3, which
includes integer, real numbers, tuples, and finite lists.

In the future, we are interested in expanding our results to comprehensions over multisets. A
commonly used representation for multisets relies on array maps, that associate each elements
in the support domain to its multiplicity [5]. An adaptation of the technique presented in this
paper that simply swaps our encoding of sets with this representation of multisets does not
work however. To appreciate the added challenge, consider the task of verifying the following
formula about multiset comprehensions:

M = X1
.
= *x%3 | >+x∈̇X2

where * · + delimits multisets in the same way as {·} delimited sets in the rest of the paper.
In the suggested encoding, the variables X1 and X2 would be implemented as array maps: for
every element x in the domain, X1[x] gives us the number of times that x occurs in X1 (its
multiplicity), and similarly for X2. A naive adaptation of our technique suggests the following
encoding for the above formula:

VMW =

{
∀x,m. (X2[x] = m ∧m > 0)→ X1[x%3] = m

∀z,m. (X1[z] = m ∧m > 0)→ ∃x.(z = x%3 ∧X2[x] = m)

Although it would be adequate for injective operations on x (e.g., x + 3), this encoding fails
for non-injective operations such as x%3. For instance, the formula M is satisfied for X1 =
*0, 0, 0, 2+ and X2 = *3, 3, 6, 8+, yet the above encoding yields an unsatisfiable formula. The
problem is that we have multiple elements in X2 that are mapped to the same element in X1.
Since 3%3 = 0 and X2[3] = 2, the above encoding entails that X1[0] = 2. However, 6%3 = 0
also, which means that, given that X2[6] = 1, we have that X1[0] = 1 too — an absurdity.
We would need to combine these results by adding the multiplicities of all x that map to the
same value in X1: doing so for all x in X2 such that x%3 = 0 in this example would yield the
expected result, X1[0] = 3. This has proved to be non-trivial in Z3. A possible approach to
reasoning about such arithmetic aggregate operations could be adapted from [4].

References

[1] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] Joseph Y. Halpern. Presburger Arithmetic with Unary Predicates is Π1
1 Complete. Journal of

Symbolic Logic, 56:56–2, 1991.

[3] Edmund S. L. Lam and Iliano Cervesato. Constraint Handling Rules with Multiset Comprehension
Patterns. In 11th Workshop on Constraint Handling Rules, 2014.

[4] K. R. M. Leino and R. Monahan. Reasoning about Comprehensions with First-Order SMT Solvers.
In In Proc. of the 2009 ACM symposium on Applied Computing, pages 615–622. ACM, 2009.

[5] R. Piskac and V. Kuncak. MUNCH — Automated Reasoner for Sets and Multisets. In IJCAR’10,
volume 6173 of Lecture Notes in Computer Science, pages 149–155. Springer, 2010.

[6] P. Suter, R. Steiger, and V. Kuncak. Sets with Cardinality Constraints in Satisfiability Modulo
Theories. In Verification, Model Checking, and Abstract Interpretation, pages 403–418. Springer,
2011.

	Introduction
	Notations, Term Languages and Models
	Encoding SC(LIA) into U+LIA
	Satisfiability Testing for SC(LIA)
	Implementation
	Conclusion and Future Work

