Demonstration of the Online Method Engine

Kevin Vlaanderen, Sandor Spruit, Fabiano Dalpiaz, and Sjaak Brinkkemper

Utrecht University,
Department of Information and Computing Sciences,
P.O. Box 80.089,
3508 TB, Utrecht, the Netherlands,
{k .vlaanderen,a.g.l.spruit, f.dalpiaz,s.brinkkemper}@uu.nl

Abstract. During the past decade, much research has been performed in the ar-
eas of method engineering and process improvement. As a result of this research,
we are developing the online method engine (OME). The OME is a knowledge
management system that provides support during process improvement initia-
tives, using a set of assessments, an extensive method base, and automatic method
assembly mechanisms. The system is designed around four main acivities: knowl-
edge dissemination, method assessment, method improvement, and method en-
actment. In this paper, we demonstrate the core components and the main scenar-
ios for the usage of the online method engine.

Keywords: method engineering; software tools; online method engine

1 Introduction

In an attempt to describe and reuse software development practices, several researchers
have proposed method bases to capture this knowledge [5, 11]. The method fragments
in these method bases are being configured and re-engineered using several techniques
[8, 12], and implemented through a variety of tools [6]. Some of these techniques are in
turn applied to the method engineering activity itself [4].

The online method engine (OME) is the implementation of scientific concepts in the
field of method engineering (ME) and software process improvement (SPI), in combi-
nation with concepts from the field of knowledge kanagement (KM)). The main goal
of the OME is to provide a system that facilitates the sharing of knowledge related
to method fragments for software development, assessing methods that are being used
in practice, improving methods based on assessment results, and adopting (improved)
methods in practice. The main philosophy behind the OME is that incremental (or step-
wise) improvement of processes reduces risks related to process change and improves
the change of success [10, 3, 1].

Following the four goals of the OME, the system is based on four layers of function-
ality; knowledge dissemination, method assessment, method improvement, and method
enactment. Each layer increasingly relies on the previous ones, and all of the layers rely
on a central method base, which forms the backbone of the system. The quality of the
system is ensured by a constant process of validation and review.

170 Pre-proceedings of CAISE’ 14 Forum

2 Architecture

Traditionally, method bases contain fragments of method knowledge, which reside on
the M2 level (according to the MOF framework) [9]. In the context of the OME, the
method base contains some additional elements. In the first place, it contains a set of
situational indicators that can be used to describe an organizational unit. These situa-
tional indicators describe the specifics of the organizational context in terms that are
unrelated to the specific method implementation. The situational indicators can be used
for other purposes, but this will be described later on.

Complimentary to the situational indicators, the method base contains a set of capa-
bilities that can be used to characterize a specific method implementation in a specific
domain. The capabilities relate directly to a domain model, which captures the relevant
process areas in a specific domain.

The situational indicators and the capabilities are related through a domain-dependent
mechanism called the situational factor effect. A situational factor effect describes how
a specific value of a situational indicator typically influences the relevance of a capabil-
ity [2]. These situational factor effects are also captured in the method base.

Online Method Engine

m
N
Method Enactment Layer y
Workflow integration Template generation Data authoring <:—|/
Development Database

- Operational data

N~

Method Improvement Layer
h
Method fragment Method fragment Improvement Method base 0o
selection integration roadmapping improvement w

Method Assessment Layer

[Situational profiling] [Maturity profiling] [Maturity benchmarking } <:

Method Base

- Method fragments

- Capabilities

- Situational Factors

- Assemby Rules
Knowledge Dissemination Layer - Situational Factor Effects

- Experience
[Pmcess/method modeling] [Parg:nizsiﬁﬁgi?;d] [Method base search } <:

AR

N

Fig. 1. Functional Architecture of the OME [17]

The final core element of the method base consists of a set of method fragments.
Method fragments describe a coherent piece of method knowledge that facilitates reach-
ing a specific goal during software development. A method fragment is described in
terms of activities and deliverables. Within the OME, method fragments are currently

Demonstration of the Online Method Engine 171

modeled using process deliverable diagrams (PDDs) [18], which are a combination of
a UML activity diagram and a UML class diagram, connected through a set of links.

3 Scenarios

3.1 Scenario A: Method Assessment

Maturity A B c D E F
Requirements management
Requirements gathering Implemented Implemented IMissing Iissing Missing Irrelevant
Requirements identification Implemented Implemented IMissing Irrefevant
Requirements organizing Implemented Missing Missing
Release planning
Requirements prieritization Implemented Implemented Irrelevant Implemented Missing
Release definition Implemented Missing IMissing Irrefevant Irrelevant
Release definition validation Missing Missing Irrelevant
Scope change management Implemented Missing [rrelevant Irrefevant
Buiid validation Implemented Implemented IMissing
Launch preparation Implemented Implemented Implemented Irrefevant Missing Missing
Product planning
Road map intelligence Implemented Implemented Implemented Iissing Missing
Core asset roadmapping Implemented Implemented IMissing Irrelevant
Product roadmapping Implemented Implemented IMissing Irrefevant Missing
Portfolio management
Market analysis Implemented Implemented Implemented Implemented Missing
Partnering & contracting Implemented Implemented Implemented Iissing Irrelevant
Product life cycle management Implemented Missing IMissing Irrefevant Irrelevant

Fig. 2. Example Areas of Improvement Report

In general, a process improvement effort starts with an assessment of the current
processes. The assessment approach employed within the OME is based on the situa-
tional assessment method (SAM) [2]. This method consists of three phases; data col-
lection, calculcation, and feedback. Data collection is performed through two question-
naires; one to determine the organizational context, and one to determine the current
capabilities of the organization. During the calculcation phase, the former results are
transformed into a current capability profile (CCP) and the latter into an optimal ca-
pability profile (OCP). The delta between these two profiles results in an areas of im-
provement matrix (AIM). During the feedback phase, an evaluation is performed that is
used to improve the quality of the knowledge base (i.e. the method base).

The SAM is realized through two forms within the OME. The first form is used to
capture the organizational context. It consist of 24 questions spread out over 5 pages.
Each question has a short description, a set of answers, and possibly some help text to

172 Pre-proceedings of CAISE’ 14 Forum

indicate the type of answer expected. The second form is used to capture the current
capabilities. This form contains 68 questions, which are spread out over 4 pages. Each
page represents a business function, i.e. a layer from the SPM competence model [19].
The results of the questionnaires can be reviewed using two seperate reports; a situa-
tional profile report and a capability maturity report. The combined results are shown
through an areas of improvement report, which shows both a condensed as well as an
expanded version of the AIM. An example of the condensed areas of improvement re-
port is shown in Figure 2.

3.2 Scenario B: Method Discovery
Echo Approach

Entered date’ do, 26 sep 2013

Method characteristics Details

Goal

UNSTRUCTURED CONTENT

The UNSTRUCTURED CONTENT
contains all present information
which is not yet structured. This
store can be used to see overlooked
assumptions that are not included in
Applying Echo in an agile software development envireonment, Echo supports the user in two things, distinguished in two scenarios. artifacts yet.

To extend and support the existing agile methodologies, researchers from Cambridge (MA) Lee et al. (2003) have developed a fool-
based approach (see figure 1) fo support capturing requirements and their traceability in agile software development projects. This
traceability is essential in helping users both understand the product and maintaining the integrity of the design information
(Macfarlane & Reilly, 1993).

Description

1. The Echo approach assists a user to capture requirements and transform relevant pieces of annotated text into artifacts
2. After the creation of artifacts, the Echo approach allows a user to trace requirements back to their original destination, for
instance a conversation

Associated Keywords
agile | | traceability | | requirements gathering

Business Functions

Gathering
Capabilities

Identifier Description

RG-A Reguirements are being gathered and registered

RG-B All incoming requirements are stored in a central database, which is accessible to all relevant stakeholders

Overview of the method's structure
Process-Deliverable Diagram

CONTENT I

Z

Arrange meeling with customer
Gather information
if meeting takes place] b
e it = =| weommamion s0cumenT
1 is annotated in
v

1.0
e MEETING MINUTE

,,,,,,,,,,,, is annotated in|
A il

Annotate infarmation in Echo
-
| ARTEAGT
:

Review cuslomers' document

Annotele meetings
‘conversation

CONVERSATION STORE

Fig. 3. Example Method Fragment Description

The results of the method assessment activity indicate the areas within the current
process that are open for improvement. This is done in the form of a set of capabili-
ties that are divided over various process areas, such as requirements prioritization or
product roadmapping, and ordered based on an associated maturity level. This makes it
possible to match these missing capabilities, or a subset of them, to existing methods
that are stored in the method base.

The OME facilitates method discovery by providing tools to search the method
base based on several filters. These filters include the focus area, the business function,

Demonstration of the Online Method Engine 173

the relevant capabilities, and keywords. The result is a set of method fragments that
fit these filters. Each result can be expanded into a detailed description of the method
fragment. The main components of these descriptions are a textual summary of the
method fragment, a detailed description that can contain both text and illustrations, a
list of the relevant situational factors and capabilities, a PDD, descriptions of the main
activities and deliverables, and a list of reference. An example excerpt of a method
description for the Echo approach [7] is shown in Figure 3.

Within the OME, the user is aided in this discovery process as much as possible.
Elements within the PDD and items within the situational factor and capability lists
are hyperlinks to more detailed descriptions. This makes it possible to obtain a quick
overview, while allowing the user to go into more depth or to find related method frag-
ments.

3.3 Scenario C: Method Improvement

An important goal of the OME is to assist during a process improvement effort. In many
cases, there are various solutions available to solve a specific problem, such as require-
ments prioritization. Not all of these solutions are applicable to any given situation,
and it is hard for the method engineer to determine which solutions are likely optimal.
The knowledge available within the method base allows for an automated approach to
selecting appropriate method fragments. This selection can be based on the structural
aspects of the method fragment (activities, deliverables), required capabilities, and sit-
uational factors.

Method Fragment Selection Defars

Based on your assessment results, we suggest the following method fragments to be incorporated in your process. You can review the
fragments by clicking on the title. Once reviewed, select all fragments that you would like to use to build an improvement roadmap RGE

Customer and prospect
requirements are being gathered
and registered. and the customer or

Gustomer Involvement

The method fragments below implement similar capabilities. You should pick one

Scrum

Summary

Scrumis an iterative and
incremental agile software
development framework for
managing software projects and
product or application
development. It defines “a flexible.
holistic product development
strategy where a development
team works as a unit to reach a
common goal"

Relevant capabilities
+ RG:D - Internal Stakeholder
Involvement
« RG:E - Customer
Involvement

Relevant situational factors
« Development philesophy
- Agile
+ Size of business unit
team - 10 < x <50

V-Modiel

Summary

The V-model represents a software
development process (also
applicable to hardware
development) which may be
considered an extension of the
waterfall model. Instead of moving
down in a linear way, the process
steps are bent upwards after the
coding phase, to form the typical V
shape

Relevant capabilities
» RIB - Requirements
Validation
« RI:D - Uniformity

Relevant situational factors
+ Development philosophy
- Waterfall

Hierarchical Cumulative

prospect is informed of the

. development concerning their
Voting requirements.
Summary

Hierarchical cumulative voting

(HCV) is a method for

reguirements prioritization with its

primary target software

engineering. HCV is a method that

has come forth by combining the

methods Cumulative Voting (CV)

and Analytical Hierarchy Process

(AHP) which are ratio scaled

requirements prioritization methods

(RPM)

Relevant capabilities
+ RP:B - Prioritization Method

Relevant situational factors
+ New requirements rate - <
50 per month
« Gustomer invelvement -
low or medium

Fig. 4. Method Fragment Selection

174 Pre-proceedings of CAISE’ 14 Forum

The OME can propose a set of relevant method fragments based on the requirements
of the user. It is possible to select method fragments that focus on one or more specific
business functions, that implement capabilities up to a certain maturity level, or for the
entire process. The selected fragments are presented to the user so that they can be
reviewed using the tools described above (under method discovery). A prototype of the
selection step is shown in Figure 4.

Once the user has selected the method fragments that he deems relevant, these frag-
ments need to be assembled. In most cases, this means that they need to be integrated
within the existing process. This activity can be partially performed automatically based
on the structural aspects of the method fragments. In many cases, conflicts will arise
during this assembly. For instance, multiple method fragments can include similar or
incompatible deliverables. A report of these issues is presented to the user for further
review.

Improvement Roadmapping Details

Based on the structural characteristics of the improved method. we suggest the following enactment scenario's
Method Increment
Method Improvement Path A Path A: F3

Intreduce activities
+ Retrospective meeting

= Sprint backlog
Remove deliverables
« Project planning document

Increment #1 Increment #2 Increment #3 Increment #4

Method Improvement Path B

Increment #1 Increment #2

Method Improvement Path C

Increment #1 Increment #2 Increment #2

Fig. 5. Improvement Roadmapping

The overarching goal of the OME is to allow for incremental improvement. This
is a very important characteristic, as the implementation of many process changes
at the same time is often unrealistic and unfeasible within an organization. Process
changes are always prone to resistance among employees, unforeseen complications,
and changes within the environment. Therefor, the system generates a series of imple-
mentation plans [14]. These plans consist of a series of increments. Each increment
consists of a set of small changes, such as inclusion or removal of activities and de-
liverables. Plans are generated based on a set of parameters, including the available
resources and temporal constraints such as the need for a certain capability to be imple-
mented within a certain amount of increments [14].

Demonstration of the Online Method Engine 175

The generated plans are presented to the user as a set of timelines. Each timeline
contains the proposed increments with a summary of their contents. Once again. the
user can review these changes to gain a detailed understanding of their contents and
impact (see Flgure 5 for an example of these timelines).

3.4 Scenario D: Method Enactment

The final activity within a process improvement effort, apart from the review, is the
enactment of process changes. Although this is an activity that is mainly dependend on
social and managerial aspects, it is possible to support parts of it through automated
means. Within the context of the OME, enactment support focuses on the generation of
templates and the automated migration of development tools.

3.5 Scenario E: Method Administration

All functionality within the OME is based on the contents of the method base. This
method base consists of method fragments, capabilities, situational factors, situational
factor effects, and experience reports. For the creation of method fragments, we employ
specialized tools instead of developing functionality within the OME itself. MetaEdit+
[13] is used to model the process-deliverable diagrams, which can be annotated with
relevant capabilities. Textual descriptions can be created with appropriate textual edi-
tors. References are stored in the BibTex format.

4 Discussion and Future Research

Both the conceptual design as well as the initial prototype of the OME have been vali-
dated in earlier studies [16, 15]. In its current iteration, the OME does not fully support
all of the described scenarios. Development follows the layers as described in Figure 1
from bottom to top. The method base has been adequately implemented, as is function-
ality related to method discovery. The method assessment layer has also been realized,
making it possible to assess current methods and link the results to method fragments
proposal.

On the method improvement layer, we have realized partial planning functional-
ity. This makes it possible to generate a set of improvement plans based on a goal
method. However, more research is needed to incorporate the removal and replacement
of method fragments, and to support more complex situations including improvement
based on an existing method.

For the method enactment layer, no functionality has been implemented sofar. Tech-
niques are currently under development to translate method changes into concrete en-
actment actions.

References

1. Baddoo, N.: De-motivators for software process improvement: an analysis of practitioners’
views. Journal of Systems and Software 66, 23-33 (Apr 2003)

176

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Pre-proceedings of CAISE’ 14 Forum

Bekkers, W., Spruit, M., van de Weerd, 1., van Vliet, R., Mahieu, A.: A situational assessment
method for software product management. In: Alexander, T., Turpin, M., van Deventer, J.
(eds.) Proceedings of the European Conference on Information Systems. pp. 22—34. Pretoria,
South-Africa (2010)

. Diaz, M., Sligo, J.: How software process improvement helped Motorola. Software, IEEE

14(5), 75-81 (1997)

. Hug, C., Front, A., Rieu, D.: A Process Engineering Method Based on Ontology and Patterns.

In: Proceedings of the International Conference on Software and Data Technologies (2008)

. Jarke, M., Gallersdorfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase - A deduc-

tive object base for meta data management. Journal of Intelligent Information Systems 4(2),
167-192 (Mar 1995)

. Karlsson, E,, A gerfalk, P.J.: MC Sandbox: Devising a tool for method-user-centered method

configuration. Information and Software Technology 54(5), 501-516 (May 2012)

. Lee, C., Guadagno, L., Jia, X.: An agile approach to capturing requirements and traceabil-

ity. In: International Workshop on Traceability in Emerging Forms of Software Engineering
(2003)

. Nehan, Y.R., Deneckere, R.: Component-based Situational Methods: A framework for un-

derstanding SME. In: Situational Method Engineering: Fundamentals and Experiences. vol.
244, p. 161. Springer (2007)

. Object Management Group: Meta Object Facility (MOF™). Tech. rep., Object Management

Group (2011)

Pino, FJ., Pedreira, O., Garcia, F., Luaces, M.R., Piattini, M.: Using Scrum to guide the
execution of software process improvement in small organizations. Journal of Systems and
Software 83(10), 1662—-1677 (Oct 2010)

Ralyté, J.: Reusing scenario based approaches in requirement engineering methods: CREWS
method base. In: International Workshop on Database and Expert Systems Applications
(DEXA). pp. 305-309. No. Dexa 1999, Ieee (1999)

Ralyté, J., Rolland, C., Plihon, V.: Method enhancement with scenario based techniques. In:
Proceedings of CAiSE. pp. 103-118 (1999)

Smolander, K., Lyytinen, K.: MetaEdit—a flexible graphical environment for methodology
modelling. In: International Conference on Advanced Information Systems Engineering. pp.
168-193 (1991)

Vlaanderen, K., Dalpiaz, F., Brinkkemper, S.: Finding Optimal Plans for Incremental Method
Engineering. Manuscript accepted for publication. In: International Conference on Advanced
Information Systems Engineering (2014)

Vlaanderen, K., Dalpiaz, F., van Tuijl, G., Spruit, S., Brinkkemper, S.: Online Method En-
gine: a Toolset for Method Assessment, Improvement, and Enactment. Manuscript accepted
for publication. International Journal of Information System Modeling and Design (IJISMD)
(2014)

Vlaanderen, K., van de Weerd, 1., Brinkkemper, S.: On the Design of a Knowledge Man-
agement System for Incremental Process Improvement for Software Product Management.
International Journal of Information System Modeling and Design (IIISMD) 3(4), 21 (2012)
Vlaanderen, K., van de Weerd, I., Brinkkemper, S.: Improving software product manage-
ment: a knowledge management approach. International Journal of Business Information
Systems (IJBIS) 12(1), 3-22 (2013)

van de Weerd, 1., Brinkkemper, S.: Meta-modeling for situational analysis and design meth-
ods. In: Handbook of Research on Modern Systems Analysis and Design Technologies and
Applications, chap. III, pp. 35-54. Information Science Publishing (2008)

van de Weerd, 1., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards a
Reference Framework for Software Product Management. 14th IEEE International Require-
ments Engineering Conference (RE’06) pp. 319-322 (Sep 2006)

