
Understanding Service Variability for Profitable
Software as a Service: Service Providers’

Perspective

Eng Lieh Ouh1 and Stan Jarzabek2

1 Institute of Systems Science,
National University of Singapore

25, Heng Mui Keng Terrace, Singapore 119615
englieh@nus.edu.sg

2 Department of Computer Science, School of Computing,
National University of Singapore

Computing 1, 13 Computing Link, Singapore 117417
dcssj@nus.edu.sg

Abstract. The number of tenants that subscribe to and pay for a ser-
vice, and the cost of the SaaS computing infrastructure are the main
factors that drive service profitability. In many application domains ten-
ants’ requirements for service vary. Service variability is the degree of
the actual variability provided by the Service Provider over the vari-
ability required by the tenants for the service. With growing number
of tenants, the likelihood of facing more diverse tenants’ requirements
increases. We conducted a study of how choices regarding service archi-
tecture affect service variability and the cost of supporting a service. We
identified positive and negative impacts of service architectural choices
on service variability and on Service Provider’s costs. We illustrated how
the knowledge of those impacts can help Service Providers analyze ser-
vice profitability based on different service architecture models, leading
to more-informed decisions regarding adoption of SaaS.

Keywords: Software as a Service, SaaS, service variability, service ar-
chitecture, Profitability

1 Introduction

Service variability is the degree to which Service Provider can accommodate
tenant-specific requirements into a service. The Service Provider tries to accom-
modate these requirement variations into the service so as to better fit the service
to the tenants. As the unfit costs for the tenant decreases, the relative economic
advantage of the SaaS business model increases [1]. If tenants’ requirements
for service vary only moderately, it is possible to engineer required variability
into a service on cost-optimal (from Service Provider perspective) SaaS archi-
tectural model whereby all the tenants share the same service instance during



10 Pre-proceedings of CAISE’14 Forum

service execution. Dynamic binding techniques may be sufficient to address mod-
est variations in service requirements. However, such cost-optimal SaaS solution
may not be feasible if tenants’ requirements differ in more drastic way. Shared
service instance and dynamic binding techniques impose limits on how far we
can vary service requirements. Then, a Service provider might consider SaaS
architectural model with dedicated service instance for each tenant. Operational
cost of such architecture is higher than that of shared instance, but dedicated
instance architecture opens much more powerful options for engineering high-
variability, adaptable services with static binding techniques.
To come up with a SaaS solution that maximizes profits, a Service Provider must
weigh the revenue from selling a service to potentially many tenants, against
the cost of SaaS computing infrastructure to support the service. Given inter-
dependencies among factors that collectively determine profitability of service
offering, the task is not easy.
We conducted a study of how choices regarding service architecture affect ser-
vice variability and the cost of supporting a service. We identified positive and
negative impacts of service architectural choices on service variability and on
Service Provider’s costs. We illustrated how the knowledge of those impacts can
help Service Providers analyse service profitability based on different service
architecture models, leading to more-informed decisions regarding adoption of
SaaS. Our study is qualitative. In future work, we will extend it with quantita-
tive analysis and models that more precisely correlate SaaS costs and benefits,
giving more accurate insights into profitability of SaaS from service variability
perspective.
The paper is organized as follows: We first describes the architectural choices of
SaaS relevant to service variability in Section 2. In Section 3, we introduce the
architectural models and further analysis the scenarios related to service vari-
ability in Section 4. Section 5 is on related work and Section 6 is our conclusion.

2 Techniques and Saas Architectural Choices Relevant to
Service Variability

2.1 Service Engineering

1. Static Binding Variability Techniques (SBVT) - Static binding techniques
instrument service code for adaptability to tenants’ variant requirements at
the design time. During (pre-)compilation or build time, variant require-
ments are bound to the variation points in service code to produce a custom
service. Commonly used variation techniques include preprocessing (macros),
Java conditional compilation, commenting out feature code, design patterns
, templates and parametrisation, and build tools (e.g., make or Ant). XVCL
[2] extends the concept of macros to provide better support for variability
management in terms of generic design and separation of concerns.

2. Dynamic Binding Variability Techniques (DBVT) - Using dynamic bind-
ing techniques, we design a service that can adapt itself to the needs of



Understanding Service Variability for Profitable SaaS 11

different tenants at runtime. Design patterns, reflection and parameter con-
figuration files consulted during service hosting exemplify dynamic binding
techniques. One common technique is using Aspect-Oriented Programming
which involves specifying of aspects point cuts and advices that will describe
the variability. Another common technique is Service Oriented Architecture
Service Binding and Registry Lookup which involves registering of variants
in the registry. Application components lookup the registry at runtime to
dynamically bind variants to a service.

2.2 Service Packaging

As new tenants are on-boarded and requirements of existing tenants or service
functions change, service must be adapted to accommodate evolving needs of
tenants. Service adaptation has to be done without affecting existing tenants.

1. Service Level Encapsulation (SLE) - For Service Level Encapsulation, a ser-
vice is implemented with identified shared service components. There is clear
separation of components for each service, but not between tenants. The
tenants who are using the service can be temporary affected during service
modification but the tenants who are not using the service will not be af-
fected.

2. Tenant Level Encapsulation (TLE) - For Tenant Level Encapsulation, a ser-
vice is implemented with specific service components for each tenant. There
is clear separation of components for each tenant. During service modifica-
tion, only the specific tenants are affected.

2.3 Service Hosting

A service can be hosted on single or multiple application instances. Applica-
tion instance is a software process (executable application code) running on an
infrastructure platform.

1. Shared Instance (SI) - For Shared Instance, tenants access a service through
a common application instance. The Service Provider considers this option
typically to maximize resource utilization.

2. Dedicated Instance (DI) - For Dedicated Instance, each tenant accesses the
service on its own dedicated application instance. The Service Provider con-
siders this option due to high variation in tenants’ requirements or for com-
pliance to service level agreements.

A summary of the architectural choices is shown in a tree structure in Fig. 1.

2.4 Impact of the Architectural Choices

The architectural choices for service variability impact the degree, costs and
benefits of the service variability. Table 1 summarize these relationships.



12 Pre-proceedings of CAISE’14 Forum

Fig. 1. Architectural choices

1. Degree of Service Variability - The degree of service variability is the ex-
tent and scope to which variations in service requirements can be handled.
To understand the possible variations in service requirements, we use the
entity-controller-boundary pattern to break down each service into its service
components. Each service can be represented by interactions among a set of
service components in terms of boundary, controller and entity components.
Boundary components are used to interface externally with information el-
ements and can varies with the elements and its representation termed as
Interface Variability. Controller components manage the interactions among
components. The composition of components including the flow of interac-
tions and processing logic can varies among tenants result in Composition
Variability and Logic Variability. Entity components represent the data of
the service and can varies in the type of data elements and its structures.
We termed this as Data Variability. The variations in service requirements
for each service is the sum of all the variations of its service components for
that service. A service is able to achieve high degree of service variability if
it has the ability to handle high variations of service requirements.

2. Costs and Benefit of (Profitability of investing in) Service Variability - The
cost incurred includes the cost for designing or re-designing the service bind-
ing in service engineering and service packaging. It also includes the infras-
tructure cost for service hosting to support service variability. High degree
of service variability can be better supported by static binding (service engi-
neering), dedicated instance (service hosting) and tenant level encapsulation
(service packaging). However, these decisions requires higher costs in terms
of design efforts and computing resources to run the service. The benefit of
managing service variability is to increase the revenue by widening the ten-
ants base. By being able to support higher degree of service variability, the
tenant base can be increase easily. In a given situation, the Service Provider
needs to make decisions to minimize the cost of service engineering/service
packaging/service hosting and maximize the revenue (by widening the tenant
base), ultimately affecting the profitability of a service.

3 SaaS Architectural Models

SaaS Architectural Models differ in how the service code is managed during ser-
vice engineering, service execution and service hosting. For the purpose of this
paper, we assume three architectural models. The Fully-Shared model is based
on a shared application instance and service components being shared by tenants



Understanding Service Variability for Profitable SaaS 13

Table 1. Impact of the Architectural Choices on Service Variability

Degree of Cost of Benefit of
Service Service Service

Variability Variability Variability

Service Engineering

Static High Degree High Cost Large
Binding Tenant base

Dynamic Low Degree Low Cost Small to Medium
Binding Tenant base

Service Packaging

Service Level Low Degree Low Cost Small to Medium
Encapsulation (SLE) Tenant base

Tenant Level High Degree High Cost Large
Encapsulation (TLE) Tenant base

Service Hosting

Shared Instance (SI) Low Degree Low Cost Small to Medium
Tenant base

Dedicated Instance (DI) High Degree High Cost Large
Tenant base

during service execution. The Partially-Shared model is based on shared appli-
cation instance but as compared to Fully-Shared model the software components
in Partially-Shared model can be tenant-specific (TLE) or service-specific (SLE)
or both. For example, the boundary components can be tenant-specific while
the controller components are service-specific. The No-Shared model is based
on each tenant having own, dedicated application instance and the service com-
ponents are tenant-specific. The Fully-Shared model can only adopt dynamic
binding techniques while the Partially-Shared and No-Shared models can adopt
both static and dynamic techniques. Table 2 summarize these relationships.

Table 2. SaaS Architectural Models

Models Service Hosting Service Packaging Service Engineering

Fully-Shared Shared Instance Service Level Dynamic Binding
Encapsulation

Partially-Shared Shared Instance Service or Tenant Level Static or
Encapsulation Dynamic Binding

No-Shared Dedicated Instance Tenant Level Static or
Encapsulation Dynamic Binding

The approach to determine the architectural model depends on the variations
of service requirements, architectural choices and the cost/benefit analysis of the
Service Providers. Fig. 2 illustrates this approach.



14 Pre-proceedings of CAISE’14 Forum

Fig. 2. Determination of the SaaS Architectural Model

4 Variability-Related Scenarios - Service Provider
Perspective

Service Provider wants to employ SaaS solution that maximizes profitability of
selling her application as a service. Therefore, the Service Provider needs an
architectural model for a service that would lower the cost of the service offering
and widen the tenants base.

1. Lowest cost - The Service Provider chooses the architectural model that
incurs lowest cost to maximize profits. In particular for service variability,
the Service Provider has to make decision to support service variability with
the lowest cost. Based on Table 1 and 2, the Service Provider is likely to go
for the Fully-Shared Model to minimize the cost. However, the lower degree
of service variability imply that some tenants with high variations of service
requirements cannot be met.

2. Maximize Revenue - The Service Provider needs to fulfill the tenant’s expec-
tations to widen the tenants base and increase revenue. The tenant expects
their requirements to be fulfilled as if the service is single tenant. The higher
degree service variability implies greater extent of the tenant’s requirements
that can be fulfilled. The Service Provider can go for No-Shared Model.
The associated higher cost incurred by the Service Provider imply that the
tenants have to be able to afford the higher fee.

3. Tenant On-boarding (Low degree of service variability) - The Service Provider
wants to on board as many tenants as possible. However, the benefit of on
boarding new tenants (increased revenue) should be weighed against the cost
of adapting the service to possibly new requirements (i.e., the cost of service
variability). In this example assuming there is an initially small number of
tenants (e.g. 30 tenants) with low variation of requirements. In this case,
the Service Provider chooses the Fully-Shared model to minimize the cost of
service variability. If InfraSharedCost(30) is the shared infrastructure cost of
supporting 30 tenants and CostDVTDesign(30) is the cost to implement the
dynamic binding variability techniques, then the cost of offering an applica-
tion as a service is:

InfraSharedCost(30) + CostDVTDesign(30)



Understanding Service Variability for Profitable SaaS 15

4. Tenant On-boarding (High degree of service variability) - Assuming there are
50 more tenants (more diverse requirements) interested in the service with
30 existing tenants. The Service Provider can provide dedicated service in-
stances for new tenants and applying both static and dynamic binding tech-
niques to cater for variant requirements. In this case, the Service Provider
needs to evaluate the overall cost of providing dedicated instances and imple-
menting the static and dynamic binding techniques for a No-Shared model. If
CostSDVTDesign(50) is the cost to re-design for static and dynamic binding
and InfraDedicatedCost(50) is the dedicated infrastructure cost of supporting
50 tenants, then the cost of offering an application as a service is:

InfraSharedCost(30) + CostDVTDesign(30) + InfraDedicatedCost(50) +
CostSDVTDesign(50)

The Service Provider can also chooses to place the 50 tenants on with exist-
ing tenants in a Partially-Shared model. In this case, the Service Provider
needs to evaluate the impact due to the higher variability of requirements.
If CostDVTRedesign(50) is the cost to re-design for dynamic binding, then
the cost equation for service variability is:

InfraSharedCost(30) + CostDVTDesign(30) + InfraSharedCost(50) +
CostDVTRedesign(50)

To on-board the 50 tenants, the Service Provider can make decisions based
on the minimum cost of both choices.

Min (InfraSharedCost(50) + CostDVTRedesign(50) , InfraDedicatedCost(50)
+ CostSDVTDesign(50) )

If the Service Provider is aware of the need to support up to 80 tenants(30
tenants with low variation of requirements and another 50 tenants having
high degree variation of requirements), the service provider can alternatively
plan to support the 80 tenants directly with No-Shared for all 80 tenants.
If InfraDedicatedCost(80) is the cost for dedicated infrastructure to support
80 tenants and CostSDVTDesign(80) is the cost to implement the static and
dynamic binding variability techniques, then the cost equation for service
variability is:

InfraDedicatedCost(80) + CostSDVTDesign(80)

5. Service Isolation - To many organizations, security and privacy are still the
top issues in adopting SaaS. The No-Shared model would be most suitable
with software components and process instance being tenant-specific. Service
Providers might want to propose Partially-Shared model (e.g. only the entity
components are tenant-specific) for the group of tenants who are more price-
sensitive.



16 Pre-proceedings of CAISE’14 Forum

5 Related Work

The profitability model for SaaS is an area that attracts much interest. The
author of [1] propose an analytical SaaS cost model based on user’s fit and exit
costs. In [3], the author analysis the pricing strategies for SaaS and COTS. The
authors of [4] attempts to maximize Service Provider’s profit and tenant func-
tional commonality for tenant onboarding in terms of contracts. In comparison,
we evaluate profitability from both the costs and revenue perspectives with the
architectural choices.

6 Conclusion

We addressed the problem of profitability of SaaS solutions in view of the rev-
enues from selling the service, and the cost of SaaS computing infrastructure
to offer a service to tenants. The first depends on the number of tenant who
pay for the service. The latter is determined by the cost of computer resources
utilization, and the cost of service engineering. We identified trade offs involved
in Service Provider decisions regarding the choice of service variability (i.e., the
ability to satisfy the diversity of tenants’ requirements) and SaaS architecture for
the service. With the growing number of tenants, the likelihood of facing more
diverse tenants’ requirements increases. We found that high service variability
may call for more costly SaaS architectures (e.g., dedicated service instance as
opposed to shared instance), and more costly techniques for service variability
management (e.g., static binding as opposed to dynamic binding). We summa-
rized the results of our analysis in tables that show influences among factors
that determine profitability of the SaaS solution. We believe our results can help
Service Providers make more informed decisions regarding service offering.
Our current study is qualitative. In future work, we will extend it with quanti-
tative analysis and models that more precisely correlate SaaS costs and benefits,
giving more accurate insights into profitability of SaaS from service variability
perspective. We plan to decompose cost and benefit of SaaS solution into more
detailed factors that will include the effort of migrating an existing application
into a service and on-board new tenants.

References

1. Ma, Dan. ”The business model of” software-as-a-service”.” Services Computing,
2007. SCC 2007. IEEE International Conference on. IEEE, 2007.

2. Jarzabek, Stan, et al. ”XVCL: XML-based variant configuration language.” Software
Engineering, 2003. Proceedings. 25th International Conference on. IEEE, 2003.

3. Ma, Dan, and Abraham Seidmann. ”The pricing strategy analysis for the Software-
as-a-service business model.” Grid Economics and Business Models. Springer Berlin
Heidelberg, 2008. 103-112.

4. Lei Ju, Bikram Sengupta, and Abhik Roychoudhury. ”Tenant Onboarding in Evolv-
ing Multi-tenant SaaS.” (2011).


