
Mining SQL Execution Traces for Data
Manipulation Behavior Recovery

Marco Mori?, Nesrine Noughi, and Anthony Cleve

PReCISE Research Center, University of Namur
{marco.mori,anthony.cleve,nesrine.noughi}@unamur.be

Abstract. Modern data-intensive software systems manipulate an in-
creasing amount of heterogeneous data in order to support users in
various execution contexts. Maintaining and evolving activities of such
systems rely on an accurate documentation of their behavior which is
often missing or outdated. Unfortunately, standard program analysis
techniques are not always suitable for extracting the behavior of data-
intensive systems which rely on more and more dynamic data access
mechanisms which mainly consist in run-time interactions with a database.
This paper proposes a framework to extract behavioral models from data-
intensive program executions. The framework makes use of dynamic anal-
ysis techniques to capture and analyze SQL execution traces. It applies
clustering techniques to identify data manipulation functions from such
traces. Process mining techniques are then used to synthesize behavioral
models.

Keywords: data-manipulation behavior recovery, data-oriented process
mining, data-manipulation functions

1 Introduction

Data-intensive systems typically consists of a set of applications performing fre-
quent and continuous interactions with a database. Maintaining and evolving
data-intensive systems can be performed only after the system has been suffi-
ciently understood, in terms of structure and behavior. In particular, it is nec-
essary to recover missing documentation (models) about the data manipulation
behavior of the applications, by analyzing their interactions with the database.
In modern systems, such interactions usually rely on dynamic SQL, where au-
tomatically generated SQL queries are sent to the database server.

The literature includes various static and dynamic program analysis tech-
niques to extract behavioral models from traditional software systems. Exist-
ing static analysis techniques [19,18,22,7,20], analyzing program source code,
typically fail in producing complete behavioral models in presence of dynamic
SQL. They cannot capture the dynamic aspects of the program-database in-
teractions, influenced by context-dependent factors, user inputs and results of

? beneficiary of an FSR Incoming Post-doctoral Fellowship of the Académie universi-
taire ‘Louvain’, co-funded by the Marie Curie Actions of the European Commission



42 Pre-proceedings of CAISE’14 Forum

preceding data accesses. Existing dynamic analysis techniques [10], analyzing
program executions, have been designed for other purposes than data manipu-
lation behavior extraction. Several authors have considered the analysis of SQL
execution traces in support to data reverse engineering, service identification or
performance monitoring [8,9,12,11,23]. Such techniques look very promising for
recovering an approximation of data-intensive application behavior.

In this paper, we propose a framework to recover the data manipulation
behavior of programs, starting from SQL execution traces. Our approach uses
clustering to group the SQL queries that implement the same high-level data
manipulation function, i.e., that are syntactically equal but with different input
or output values. We then adopt classical process mining techniques to recover
data manipulation processes. Our approach operates at the level of a feature, i.e.,
a software functionality as it can be perceived by the user. A feature corresponds
to a process enabling different instances, i.e., traces, each performing possibly
different interactions with a database.

The reminder of this paper presents in Section 2 our approach along with a
tool-supported validation. Finally, Section 3 discusses related work and Section
4 ends the paper showing possible future directions.

Motivating Example. We consider an e-commerce web store for selling
products in a world-wide area. The system provides a set of features requiring
frequent and continuous interactions with the database by means of executing
SQL statements. For instance, the feature for retrieving products (view products)
accesses information about categories, manufacturers and detailed product in-
formation. Which data are accessed at runtime depends on dynamic aspects
of the system. For example, given that a certain feature instance retrieves the
categories of products before accessing product information we can derive that
it corresponds to a category-driven search. If a certain instance accesses man-
ufacturer information before product information we analogously derive that
it corresponds to a manufacturer-driven search. By capturing and mining the
database interactions of multiple feature instances, it is possible to recover the
actual data manipulation behavior of the feature, e.g., a process model with a
variability point among two search criteria.

2 Data Manipulation Behavior Recovery

Our framework supports the extraction of the data manipulation behavior of
programs by exploiting several artifacts (see Fig. 1). We assume the existence
of a logical and possibly of a conceptual schema with a mapping between them.
The conceptual schema is a platform-independent specification of the application
domain concepts, their attributes and relationships. The logical schema contains
objects (tables, columns and foreign keys) implementing abstract concepts over
which queries are defined. The conceptual schema and the mapping to the logical
schema can be either available, or they can be obtained via database reverse en-
gineering techniques [13]. Queries defined over the logical schema materialize the
interactions occurring between multiple executions (traces) of a feature and the



Mining SQL Execution Traces for Data Manipulation Behavior Recovery 43

underlying database. Once the source code related to a feature has been iden-
tified [14], different techniques can capture SQL execution traces. Those tech-
niques, compared in [9], range from using the DBMS log to sophisticated source
code transformation. Among others, the approaches presented in [1,17] recover
the link between SQL executions and source code locations through automated
program instrumentation, while [6] makes use of tracing aspects to capture SQL
execution traces without source code alteration. Once a sequence of queries is
captured, it is necessary to identify the different traces, each corresponding to a
feature instance. This problem has been tackled in the literature of specification
mining by analyzing value-based dependencies of methods calls [3].

Fig. 1. Basics models: artifacts and components

Our approach is independent from the adopted trace capturing techniques. For
each feature, it requires as minimal input a set of execution traces, each trace
consisting of a sequence of SQL queries.
Query parsing (1). We characterize SQL queries according to (1) the infor-
mation they recover or modify and (2) the related selection criteria. To this end,
for each query we record a set of data-oriented properties according to the query
type. For a select query we record a property with the select clause while for
delete, update, replace or insert queries we record a property with the name of
the table. If the query is either update, replace or insert we also record a prop-
erty with the set clause and all its attributes. Finally for all query types but the
insert we add a property for the where clauses along with their attributes. By
means of these properties we ignore the actual values taken as input and pro-
duced as output by each query. Figure 2 shows three SQL traces along with their
corresponding properties. For instance, query q1 is a select query over attribute
Password of Customer table (property p1) and it contains a where clause with
an equality condition over Id attribute (p2); query q3 is a select over attributes
Id and Price of Product (property p4), it contains two where clauses, i.e., a nat-
ural join between Product.Id and PCategory.Product Id (p5) and an equality
condition over PCategory.Category Id attribute (p6).
Query filtering (2). We remove from the input traces the queries that do not
express end-user concepts, i.e., the ones referring to database system tables or
log tables appearing only in the logical schema. In our example we remove q10



44 Pre-proceedings of CAISE’14 Forum

Trace 1:

q1: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’Mark27 ’; [p1 ,p2]

q2: SELECT Category.Id , Category.Image FROM Category; -> [p3]

q3: SELECT Product.Id, Product.Price FROM Product , PCategory WHERE Product.Id=PCategory.Product_Id AND

PCategory.Category_Id =’1’; -> [p4,p5,p6]

q4: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.Product_Id

=’1A23 ’ AND Language.Name=’Italian ’; -> [p7,p8 ,p9,p10]

q5: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’1A23 ’; -> [p11 ,p12 ,p13]

q6: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’1A23 ’; -> [p14 ,p15 ,p13]

q7: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.Product_Id

=’1F32 ’ AND Language.Name=’Italian ’; -> [p7,p8 ,p9,p10]

q8: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’1F32 ’; -> [p11 ,p12 ,p13]

q9: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’1F32 ’; -> [p14 ,p15 ,p13]

q10: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’021’,’PrAcc1A23 -1F32 ’,’2013-02-22’,’12:21:00’); -> [

p16]

Trace 2:

q11: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’JennyMa ’; [p1,p2]

q12: SELECT Category.Id, Category.Image FROM Category; -> [p3]

q13: SELECT Product.Id , Product.Price FROM Product , PCategory WHERE Product.Id=PCategory.Product_Id AND

PCategory.Category_Id =’2’; -> [p4,p5,p6]

Trace 3:

q14: SELECT Customer.Password FROM Customer WHERE Customer.Id = ’DanWer ’; [p1,p2]

q15: SELECT Manufacturer.Id, Manufacturer.Name FROM Manufacturer -> [p17]

q16: SELECT Product.Id , Product.Price FROM Product WHERE Product.Manufacturer_Id=’AppleNamur01 ’ -> [p4,p18]

q17: SELECT PLang.Description FROM PLang , Language WHERE PLang.Language_Id=Language.Code AND PLang.

Product_Id =’2D11 ’ AND Language.Name=’Italian ’; -> [p7,p8,p9 ,p10]

q18: SELECT SpecialProduct.NewPrice FROM SpecialProduct ,Product WHERE SpecialProduct.Product_Id=Product.Id

AND Product.Id=’2D11 ’; -> [p11 ,p12 ,p13]

q19: SELECT Manufacturer.Name FROM Manufacturer ,Product WHERE Manufacturer.Id=Product.Manufacturer_Id AND

Product.Id=’2D11 ’; -> [p14 ,p15 ,p13]

q20: INSERT INTO Log(IdEvent ,Event ,Date ,Time) VALUES (’022’,’PrAcc2D11 ’,’2013-02-28’,’14:00:03’); -> [p16]

SQL-statements properties:

p1=" SELECT Customer.Password", p2=" Customer.Id.EQ_VALUE", p3=" SELECT Category.Id Category.Image",

p4=" SELECT Product.Id Product.Price", p5=" Product.Id=PCategory.Product_Id",

p6=" PCategory.Category_Id.EQ_VALUE", p7=" SELECT PLang.Description", p8="PLang.Language_Id=Language.Code",

p9="PLang.Product_Id.EQ_VALUE", p10=" Language.Name.EQ_VALUE", p11=" SELECT SpecialProduct.NewPrice",

p12=" SpecialProduct.Product_Id=Product.Id", p13=" Product.Id.EQ_VALUE", p14=" SELECT Manufacturer.Name",

p15=" Product.Manufacturer_Id=Manufacturer.Id", p16=" INSERT INTO Log",

p17=" SELECT Manufacturer.Id Manufacturer.Name", p18=" Product.Manufacturer_Id.EQ_VALUE"

Fig. 2. Web Store: Traces of SQL statements with data-oriented properties

and q20 accessing table Log without a counterpart in the conceptual schema.
Query clustering (3). We cluster queries having the same data-oriented prop-
erties thus producing disjoint partitions, related to different database accesses.
We report in Table 1 the clusters obtained from queries in Fig.2.

Table 1. Web Store: Clusters of SQL queries

C1 C2 C3 C4 C5 C6 C7 C8

{q1, q11, q14} {q2, q12} {q3, q13} {q4, q7, q17} {q5, q8, q18} {q6, q9, q19} {q15} {q16}
{p1, p2} {p3} {p4, p5, p6} {p7, p8, p9, p10} {p11, p12, p13} {p13, p14, p15} {p17} {p4, p18}

Cluster labeling (4). We identify the data manipulation function implemented
by each cluster by analyzing the conceptual schema fragment corresponding to
the logical subschema accessed by the cluster queries. For determining the labels
we adopt the same naming convection proposed in [5] to associate conceptual
level operations to SQL query code. In addition, we associate the label with
a set of input/output (I/O) parameters (see Table 2). Input parameters are



Mining SQL Execution Traces for Data Manipulation Behavior Recovery 45

the attributes involved in equality or inequality conditions that appear in the
data-oriented properties of the queries, while output parameters are the set of
attributes appearing within the select query property.

Table 2. Web Store: Clusters with data manipulation functions and I/O parameters

Cluster Input Output

C1:getCustomerById {Id} {Password}
C2getAllCategory − {Id, Image}
C3:getAllProductOfCategoryViaPCategory {Category Id} {Id, Price}
C4:getAllLanguageOfProductViaPLang {Product Id,Name} {Description}
C5:getSpecialProductOfProductViaSProd {Product.Id} {NewPrice}
C6:getManufacturerOfProductViaPManufact {Product.Id} {Name}
C7:getAllManufacturer − {Id,Name}
C8:getAllProductOfManufacturerViaPManufact {Manufacturer Id} {Id, Price}

Process mining (5-6). We generate a process starting from a set of SQL
traces of a single feature. The traces abstraction phase replaces SQL traces with
the corresponding traces of data manipulation functions. The process extraction
phase exploits a process mining algorithm to extract the feature behavior as a
sequence of function executions with sequential, parallel and choice operators.
In the following we show how to recover the data manipulation behavior of the
view products web-store feature starting from the traces of data manipulation
functions in Table 3 (corresponding to queries in Fig.2).

Table 3. Web Store: Traces of data manipulation functions

Trace 1
getCustomerById(C1) - getAllCategory(C2) - getAllProductOfCategoryViaPCategory(C3) -
getAllLanguageOfProductViaPLang(C4) - getSpecialProductOfProductViaSProd(C5) -
getManufacturerOfProductViaPManufact(C6) - getAllLanguageOfProductViaPLang(C4) -
getSpecialProductOfProductViaSProd(C5) - getManufacturerOfProductViaPManufact(C6)

Trace 2 getCustomerById(C1) - getAllCategory(C2) - getAllProductOfCategoryViaPCategory(C3)

Trace 3
getCustomerById(C1) - getAllManufacturer(C7) - getAllProductOfManufacturerViaPManufact(C8) -
getAllLanguageOfProductViaPLang(C4) - getSpecialProductOfProductViaSProd(C5) -
getManufacturerOfProductViaPManufact(C6)

Trace 1 gets customer information (C1), it performs a category-driven search of
products by means of getting all the product categories (C2) and all the products
of a certain selected category (C3). For each retrieved product, three functions
are iterated: C4 retrieves product description, C5 extracts special product infor-
mation and C6 extracts related manufacturer information. Trace 2 is different
from Trace 1 because after function C3 no products are retrieved and the process
ends. If we apply a mining algorithm to Trace 1 and 2 we obtain a process (Fig.
3(a)) which performs consecutively functions C1, C2 and C3 before entering in
the loop iterating C4, C5, and C6. The process ends after zero, one or more
iterations of the loop. Let us now assume to include into the process Trace 3
which is equal to Trace 1 except that it searches products based on their man-
ufacturer (functions C7 and C8) instead of searching by category (C2 and C3).



46 Pre-proceedings of CAISE’14 Forum

If we mine the process model by considering as input all the traces (Fig. 3(b)),
we end up with a new alternative branch: the customer can now perform either
a manufacturer-driven search or a category-driven search.

(a) (b)

Fig. 3. Web Store: process mined with (a) Trace 1 and 2 and (b) Trace 1, 2 and 3.

Tool support. The presented approach is implemented into an integrated tool
which takes as input a set of SQL traces (each representing an instance of the
same feature), the logical schema and optionally the conceptual schema and the
conceptual-to-logical schema mapping. A SQL parser extracts the data-oriented
properties while a clustering component exploits the colibri-Java Formal Con-
cept Analysis tool1 to cluster queries according to those properties. A labeling
component generates data manipulation functions (i.e., cluster signatures) while
a trace abstraction component uses a Java library2 to create standardized event
logs. Finally we rely on the de-facto standard process mining tool (ProM tool3)
to create a Petri net from standardized event logs. ProM supports different pro-
cess mining algorithms providing different trade-offs between completeness and
noise [4] to be chosen according to specific application needs.

We applied our tool together with ProM and the ILP miner algorithm [21]
(complete models with low noise) to extract data-oriented processes of a e-
restaurant web application and we conducted a set of preliminary experiments to
assess the sensitivity of our technique in producing correct processes depending
on the traces log coverage. The tool supported the identification of correct fea-
tures processes in a semi-automatic manner along with the help of the designer.
A complete list of SQL statements grouped by feature with different traces, ex-
tracted data manipulation functions and corresponding processes are publicly
available at the companion website4. The conceptual and logical schemas, acces-
sible through the DB-MAIN5 CASE tool, are also provided.

3 Related Work

In the literature different approaches use dynamic analysis of SQL queries with a
different goal than data manipulation behavior understanding. The approaches

1 http://code.google.com/p/colibri-java/
2 http://www.xes-standard.org/openxes/start
3 http://www.promtools.org/
4 http://info.fundp.ac.be/~mmo/MiningSQLTraces
5 DB-MAIN official website, http://www.db-main.be

http://code.google.com/p/colibri-java/
http://www.xes-standard.org/openxes/start
http://www.promtools.org/
http://info.fundp.ac.be/~mmo/MiningSQLTraces
http://www.db-main.be


Mining SQL Execution Traces for Data Manipulation Behavior Recovery 47

presented in [8,9] analyze SQL statements in support to database reverse engi-
neerinf, e.g., detecting implicit schema constructs [9] and implicit foreign keys
[8]. The approach presented by Di Penta et al. [12] identifies services from SQL
traces. The authors apply FCA techniques to name services I/O parameters thus
supporting the migration towards Service Oriented Architecture. Debusmann et
al. [11] present a dynamic analysis method for system performance monitoring,
i.e., measuring the response time of queries sent to a remote database server.
Yang et al. [23] support the recovery of a feature model by means of analyz-
ing SQL traces. Although the former approaches analyze (particular aspects of)
the data access behavior of running programs, none of the former approaches
[8,9,12,11,23] is able to produce process models expressing such a behavior at a
high abstraction level, as we do in this paper.

Other approaches (e.g., [16,15]) extract business processes by exploiting/com-
bining static and dynamic analysis techniques, but they are not designed to deal
with dynamically generated SQL queries. The most related approach, by Alalfi
et al. [2], extracts scenario diagrams and UML security models by considering
runtime database interactions and the state of the PHP program. These models
are used for verifying security properties but they do not describe the generic
data manipulation behavior of the program, they only analyze web-interface in-
teractions. In addition they have not considered different possible instances of a
given scenario as we claim it is necessary to extract a complete and meaningful
model. Understanding processes starting from a set of execution traces is at the
core of process mining. This paper does not make any additional contributions
as far as process mining is concerned, but it is the first to apply such techniques
to analyze program-database interactions.

4 Conclusion and future work

Our paper presented a tool-supported approach to recover the data manipula-
tion behavior of data-intensive systems. The approach makes use of clustering,
conceptualization and process mining techniques starting from SQL execution
traces captured at runtime. The approach is independent from the type of sys-
tems considered, provided that a query interception phase is possible. It could,
for instance, be applied to legacy cobol systems, Java systems with or without
Object-Relational-Mapping technologies, or web applications written in PHP.
As for future work we plan to enrich the input traces with multiple sources of
information like user input, source code and queries results with the aim of iden-
tifying the conditions that characterize decision points within process models.

References

1. M. Alalfi, J. Cordy, , and T. Dean. WAFA: Fine-grained dynamic analysis of web
applications. In WSE 2009, pages 41–50, 2009.

2. M. H. Alalfi, J. R. Cordy, and T. R. Dean. Recovering role-based access control
security models from dynamic web applications. In ICWE, pages 121–136. 2012.



48 Pre-proceedings of CAISE’14 Forum

3. G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. In ACM Sigplan
Notices, volume 37, pages 4–16, 2002.

4. J. Buijs, B. Dongen, and W. Aalst. On the role of fitness, precision, generalization
and simplicity in process discovery. In OTM, volume 7565 of LNCS, pages 305–322,
2012.

5. A. Cleve, A.-F. Brogneaux, and J.-L. Hainaut. A conceptual approach to database
applications evolution. In ER, pages 132–145, 2010.

6. A. Cleve and J.-L. Hainaut. Dynamic analysis of SQL statements for data-intensive
applications reverse engineering. In WCRE 2008, pages 192–196, 2008.

7. A. Cleve, J. Henrard, and J.-L. Hainaut. Data reverse engineering using system
dependency graphs. In WCRE 2006, pages 157–166, 2006.

8. A. Cleve, J.-R. Meurisse, and J.-L. Hainaut. Database semantics recovery through
analysis of dynamic sql statements. J. Data Semantics, 15:130–157, 2011.

9. A. Cleve, N. Noughi, and J.-L. Hainaut. Dynamic program analysis for database
reverse engineering. In GTTSE, pages 297–321, 2011.

10. B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A
systematic survey of program comprehension through dynamic analysis. IEEE
Trans. Software Eng., 35(5):684–702, 2009.

11. M. Debusmann and K. Geihs. Efficient and transparent instrumentation of ap-
plication components using an aspect-oriented approach. In DSOM 2003, volume
2867 of LNCS, pages 227–240, 2003.

12. C. D. Grosso, M. D. Penta, and I. G. R. de Guzmán. An approach for mining
services in database oriented applications. In CSMR, pages 287–296, 2007.

13. J.-L. Hainaut, J. Henrard, V. Englebert, D. Roland, and J.-M. Hick. Database
reverse engineering. In Encyclopedia of Database Systems, pages 723–728. Springer
US, 2009.

14. H. Kazato, S. Hayashi, T. Kobayashi, T. Oshima, S. Okada, S. Miyata, T. Hoshino,
and M. Saeki. Incremental feature location and identification in source code. In
CSMR, pages 371–374, 2013.

15. Y. Labiche, B. Kolbah, and H. Mehrfard. Combining static and dynamic analyses
to reverse-engineer scenario diagrams. In ICSM, pages 130–139, 2013.

16. H. R. M. Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation
for process discovery from web service interaction logs. VLDB, 20(3):417–444,
2011.

17. M. N. Ngo and H. B. K. Tan. Applying static analysis for automated extraction
of database interactions in web applications. Information and software technology,
50(3):160–175, 2008.

18. J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut, and F. Toumani. Using queries to
improve database reverse engineering. In ER, pages 369–386, 1994.

19. J. C. Silva, J. C. Campos, and J. Saraiva. Gui inspection from source code analysis.
ECEASST, 33, 2010.

20. H. van den Brink, R. van der Leek, and J. Visser. Quality assessment for embedded
sql. In SCAM, pages 163–170, 2007.

21. J. M. E. van derWerf, B. F. van Dongen, C. A. Hurkens, and A. Serebrenik. Process
discovery using integer linear programming. Fundamenta Informaticae, 94(3):387–
412, 2009.

22. D. Willmor, S. M. Embury, and J. Shao. Program slicing in the presence of a
database state. In ICSM 2004, pages 448–452, 2004.

23. Y. Yang, X. Peng, and W. Zhao. Domain feature model recovery from multiple
applications using data access semantics and formal concept analysis. In WCRE,
pages 215–224, 2009.


	Mining SQL Execution Traces for Data Manipulation Behavior Recovery
	Introduction
	Data Manipulation Behavior Recovery
	Related Work
	Conclusion and future work


