
RESTful or RESTless –
Current State of Today’s Top Web APIs

Frederik Bülthoff, Maria Maleshkova

AIFB, Karlsruhe Institute of Technology (KIT), Germany
frederik.buelthoff@student.kit.edu, maria.maleshkova@kit.edu

Abstract. Recent developments in the world of services on the Web
show that both the number of available Web APIs as well as the ap-
plications built on top is constantly increasing. This trend is commonly
attributed to the wide adoption of the REST architectural principles [1].
Still, the development of Web APIs is rather autonomous and it is up to
the providers to decide how to implement, expose and describe the Web
APIs. The individual implementations are then commonly documented
in textual form as part of a webpage, showing a wide variety in terms of
content, structure and level of detail. As a result, client application de-
velopers are forced to manually process and interpret the documentation,
and to implement individual solutions with low level of interoperability
and reuse. Before we can achieve a higher level of automation and can
make any significant improvement to current practices and technologies,
we need to reach a deeper understanding of their similarities and dif-
ferences. Therefore, in this paper we present a thorough analysis of the
most popular Web APIs through the examination of their documenta-
tion. We provide conclusions about common description forms, output
types, usage of API parameters, invocation support, level of reusability,
API granularity and authentication details. The collected data builds a
solid foundation for identifying deficiencies and can be used as a basis for
devising common standards and guidelines for Web API development.

1 Introduction

Recent developments in the world of services on the Web show that both the
number of available Web APIs as well as the applications built on top is con-
stantly increasing1. Often this proliferation of programmable interfaces that rely
solely on the use of URIs, for both resource identification and interaction, and
HTTP for message transmission, is attributed to the wide adoption of the REST
architectural principles [1]. In particular, Web APIs are characterised by their
relative simplicity and their natural suitability for the Web, employing the same
technology stack, and these characteristics are exploited by many Web sites like
Facebook, Google, Flickr and Twitter who offer easy-to-use, public APIs that
provide simple access to some of the resources they hold, thus enabling third-
parties to combine and reuse heterogeneous data coming from diverse services
in data-oriented service compositions called mashups.

1 http://blog.programmableweb.com/2013/04/30/9000-apis-mobile-gets-serious/

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 42



Despite their popularity, currently there is no widely accepted understanding
of what a Web API is. In fact, while the term ’Web Service’ is quite clearly defined
[2], Web APIs still lack a broadly accepted definition. Currently the term Web
API has a general, sometimes even controversial, meaning and is used for de-
picting HTTP-based component interfaces, frequently being inconsistent about
the specific technical and design underpinnings. This situation is undoubtedly
driven by the fact that, as opposed to Web service technologies, work around
Web APIs has evolved in a rather autonomous way and it is up to the providers
to decide how they are going to expose the interface, how they are going to docu-
ment them and what characteristics these documentations have. As a result, the
majority of the Web APIs are described only in human-oriented documentation
in textual form, as part of webpages, which is very diverse in terms of struc-
ture, content and level of details. Therefore, since there is no widely established
interface definition language, currently developers have to manually search for
suitable documentation, interpret the provided details and implement custom
solutions, which are hardly reusable. Such an approach to using Web APIs is
very time and effort consuming and will not scale in the context of the growing
number of exposed interfaces.

Before any significant impact and improvement can be made to current Web
API practices and technologies, we need to reach a deeper understanding of
these. This involves, for instance, figuring out how current APIs are developed
and exposed, what kind of descriptions are available, how they are represented,
how rich these descriptions are, etc. It is only then that we shall be able to clearly
identify deficiencies and realise how we can overcome existing limitations, how
much of the available know-how on Web services can be applied and in which
manner. To this end, we present a thorough analysis over the most popular Web
APIs in ProgrammableWeb directory2.

The remainder of this paper is structured as follows: Section 2, describes the
methodology used for conducting our Web API study, while Section 3 gives the
collected data and provides a discussion on identified correlations and trends.
Section 4 presents an overview of existing work on analysing Web services and
Section 5 presents future work and concludes the paper.

2 Survey Setup

The survey was conducted by a single domain expert during December 2013
and January 2014. The dataset, which comprises 45 Web APIs3 in total, was

2 http://www.programmableweb.com
3 Amazon Product Advertising, Amazon S3, BitBucket, Azure (Blob Service), Bal-

anced Payments, Bing Maps REST Services, Bitly, Box, del.icio.us, Disqus, Do-
cuSign Enterprise, Dropbox (Core API), eBay (Shopping API), Etsy, Eventful,
Facebook (Graph API), Flickr, Foursquare, Freebase (Search/Reconcile), Geonames,
GitHub, Google Custom Search, Google Maps API Web Services, Google Places API,
Groupon, Heroku, Instagram, Last.fm, LinkedIn, OpenStreetMap (Editing API),
Panoramio, Paypal, Reddit, Salesforce, Tropo, Tumblr, Twilio, Twitpic, Twitter,
Wikipedia/Mediawiki, Yahoo! BOSS, Yahoo! BOSS Geo, Yammer, Yelp, Youtube

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 43



primarily composed through the use of the ProgrammableWeb directory. This
popular directory provides basic information about Web APIs in general as well
as their use in mashups. The latter was used as a metric for the popularity of
the Web API. Since we wanted to capture the Web API characteristics that
developers are most frequently faced with, we mostly chose the analysed APIs
by taking those with the most mashups. This metric is however biased towards
older established Web APIs, for which reason we included a third of the entries
at random and through other popularity measures4.

While ProgrammableWeb is considered the largest directory of its kind and,
therefore, best suited for this task, the information itself turned out to be in
some cases incomplete or out of date, which made some changes to the dataset
necessary. These problems included Web APIs that had been discontinued or
replaced by others. In addition, similar Web APIs from the same provider, such
as the various maps related from Google and Bing, were grouped together as a
single entry. As a result, we retained a dataset containing 45 Web APIs.

The survey was conducted by manually analyzing the documentation made
available by the Web API providers. The features, which were taken under con-
sideration can be grouped into six categories, which include general Web API
information, URI use, HTTP use, input and output data, security and policies
as well as common design decisions. The examined criteria were gained from the
key architectural principles of REST, the use of the underlying HTTP protocol
and from common challenges and design decisions of Web API providers. The
results from the survey, as given in Section 3 can, therefore, be used as a basis
for judging to what extent todays top Web APIs are actually RESTful. The
presented categories contain the following features:

– General Web API Information – the APIs size in terms of operations, avail-
ability of other protocols and interface descriptions and the type of function-
ality provided.

– URL and Resource Links – the kind of design schema used in the URL of
the Web API and the use of links between API resources.

– HTTP Use – the used HTTP methods and support for alternative HTTP
methods, how update operations are implemented, if meaningful HTTP sta-
tus codes are used in cases of failure and how caching is addressed.

– Input and Output Data – which mechanisms are used for the transmission of
input data, what types of input are there and what kind of output formats
can be expected.

– Security and Policies – are limitations on the degree of utilization posted
and enforced, is authentication necessary and if yes, which authentication
scheme is supported.

– Common Design Decision – how are versioning and the selection of the out-
put format realized.

The procedure for gathering the data was straightforward. For each Web
API the corresponding ProgrammableWeb webpage and the provider’s docu-
mentation were opened and examined. The heterogeneous nature of both the

4 Alexa.com rank and number of tagged questions on StackOverflow.com

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 44



media and the structure of the documentation, as well as various different ways
of conveying the same information made any kind of automation of the process
unfeasible. Furthermore, some cases of unclear or missing information made it
necessary to perform some test interactions with the Web APIs.

3 Survey Results

In this section we describe the results that have been collected as part of the sur-
vey on Web APIs. The recorded features have been grouped into six categories,
each of which addresses a different aspect of the Web APIs.
General Web API Information. Counting the number of operations sup-

ported by the Web API gives us some measure of its size and, therefore, complex-
ity. This metric is easily attained for RPC-style APIs. In the case of resource-
oriented or RESTful Web APIs each combination of a resource and a HTTP-verb
was counted as an operation. The majority (62%) of the entries in our dataset
had between eleven and one hundred operations, with 38% in the 11-50 and 24%
in the 51-100 range. The remaining Web APIs were roughly equally divided into
a group of smaller (less than 11 operations, 20%) and larger (more than 100
operations, 18%) ones. Only two entries (4%) provided a single operation.

Only a small percentage (20%) of the Web APIs provided the same service
using alternative protocols. For example, Flickr is available through SOAP and
through XML-RPC as well, next to their request format self-described as REST.
In most cases if an alternative was available, it had been declared as a legacy
protocol, not guaranteed to be up to date in functionality and developers were
urged to switch to its HTTP-based Web API equivalent. In most cases these were
alternative protocols – SOAP or XML-RPC implementations, and had existed
before the introduction of their Web API counterparts.

Interface descriptions in a machine-readable format, which in contrast to
the textual documentation targeted at humans, can be automatically processed
were available for only five Web APIs (11%) – three using a custom format and
one case of JSON Hyper-Schema respectively WSDL. Links to related resources
embedded in the response data of Web APIs, which is an alternative to interface
descriptions were available in eight cases (18%). This is necessary for fulfilling
the HATEOAS constraint of REST architecture, which requires, that, instead
of interacting through a fixed predefined interface the client of a RESTful Web
API will transition through application states by following links embedded in
the resource representations.

We can draw two main conclusions based on the gathered data. First, once an
HTTP-based Web API is made available, providers tend to abandon and move
away from previous interaction protocol implementations, such as SOAP. Second,
machine-interpretable interface description formats are rather an exception than
a rule. Most providers still prefer to document APIs directly as part of webpages.

URLs and Resource Links. It can be argued that for truly RESTful Web
APIs that follow the principle of HATEOAS5 the URL design is opaque be-

5 Hypermedia as the Engine of Application State. A hypermedia-driven Web API
provides information to navigate the site’s resources dynamically by including hy-

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 45



cause the user of the Web API will never have to construct URLs manually.
Nonetheless, the design or structure of the URLs remains a good indicator for
the type of the Web API. In addition, we will see that only a small percentage of
the Web APIs under consideration in this survey aim to follow the HATEOAS
principle. We differentiated between three main types of URL design, those that
were structured around resources (resouce-oriented), those that focused on the
operations (RPC-style) and those in between (mixed). The latter category con-
tains cases in which some parts, for example search was built in an RPC-style
while the rest was structured around resources. The data in Table 1 shows that
the majority was resource-oriented, followed by those in RPC-style, with the
smallest group being those sorted into the mixed category.

The availability of resource links was previously presented as part of the
analysis on interface descriptions. The data in Table 2 incorporates that number
in addition to two further use cases: Web APIs with self links include the URL
of resources as part of their representation and pagination links provide the user
of the Web API with precomposed URLs for paging through datasets. Both help
reduce the complexity of using the Web APIs but were only available in 13% of
the analyzed Web APIs.

Table 1. URL Design

Description Number In %

RESTful 21 47
RPC 15 33
Hybrid 9 20

Table 2. Resource Links

Description Number In %

Used at all 11 24

Related Resources 8 18
Self 6 13
Pagination 6 13

The data indicates that HATEOAS remains one of the most poorly sup-
ported constraints of the REST architecture with less than a fifth of the ana-
lyzed Web APIs providing links to related resources. A possible explanation is
that HATEOAS signifies the largest departure from the previous approaches on
Web Services, which heavily relied on predefined interfaces. Notable exceptions
include PayPal and Github, which explicitly feature HATEOAS respectively hy-
permedia links prominently in their documentation.

HTTP Use. As it is to be expected, the two most commonly used HTTP verbs
are GET and POST (see Table 3), since both are used by resource-oriented and
RPC-style Web APIs. The least popular verb is PATCH. Most Web APIs (58%)
that feature update functionality use PUT or PATCH while 30% use POST.
The remaining 12% break the idempotency of the GET verb by misusing it for
update operations.

In some cases the more uncommonly used HTTP verbs, such as PATCH, are
not supported by existing tools and frameworks. Some Web API providers offer,
therefore, functionality that allows users to swap out the originally requested

permedia links with the responses and, therefore, avoiding the necessity of predefined
out-of-band descriptions of interfaces.

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 46



HTTP verb with another one, usually POST. Table 4 shows that the most
popular way for indicating the original verb is by using a query parameter in the
URL of the request. Others simply make no difference between the verb used or
allow the requested verb to be set in either a custom header or the URL path.
In total, a method override was provided by 42% of the Web APIs.

Error handling plays a large role in any application. How Web APIs present
errors is therefore of particular importance. 71% of the surveyed Web APIs
reused the various predefined status codes of HTTP to indicate an error. In all
of those cases the body of the HTTP response did contain further information.

One advantage of using Web APIs and subsequently HTTP is the built-
in support for caching, for which only 27% of the Web APIs explicitly stated
their support. Further manual analysis through test invocations showed that an
additional six Web APIs did indeed support caching without having documented
it.

Table 3. Method Support

Description Number In %

GET 45 100
POST 34 76
DELETE 21 47
PUT 17 38
HEAD 6 13
PATCH 3 7

Table 4. Method Override

Description Number In %

Override Supported 14 42

Query parameter 6 43
Interchangeable 3 21
Header 3 21
URL path 2 14

Web APIs which build upon the REST architectural principles should em-
brace the HTTP protocol6. Adopting the various aspects of HTTP enables the
reuse of know-how and best practices gained in making the Web the way it is
today. One part of adopting HTTP, means using the status codes defined in
the standard, especially those for indicating the various types of errors, which
may occur. We found out that the majority of the Web APIs use standard error
codes. In contrast, cache support is not widely present, even though it is a fea-
ture, which Web API providers can easily support using the built-in mechanisms
of HTTP.

Input and Output Data. Using Web APIs means interacting with data.
Most requests to Web API will incorporate some input, which can be transmitted
in many ways. Table 5 shows that the analyzed Web APIs use four different
ways for sending the input, the most popular one being input transmitted as
parameters in the query string of the request URL. Another popular transmittal
technique encodes the input in the request body, often by using the standard
form encoding used by HTML forms on web pages or one of the supported output
formats, such as JSON or XML. Many APIs support more than one type input
encoding, especially when the output format itself can also be freely chosen.

6 REST is not tied to HTTP, but HTTP it is the base for communication on the world
wide web and thus the most popular protocol which REST is applied to.

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 47



The input can further be differentiated into several types (see Table 6). All
Web APIs under considerations had at least one case in which an input pa-
rameter was optional and almost all featured required parameters. In most cases
information on which parameters must be provided, which ones are optional and
what their associated default values are, is only provided out-of-band in textual
documentation (see the section above featuring interface descriptions). Building
valid requests which feature the expected data therefore require careful consider-
ation. Further complexity arises from the fact that most Web APIs incorporate
input parameters that i) state a list or range of valid values ii) expect data to
be encoded using a specific standard (e.g. dates as ISO 8601). iii) or are of com-
plex nature (e.g. comma separated lists of values). Further difficulties that were
recorded while conducting the survey include deprecated parameters and those
with dependencies (e.g. the user may supply either parameter A or B but not
both).

Table 5. Way of transmitting input

Description Number In %

Query 43 96
Body 34 76
Path 25 56
Header 8 18

Table 6. Input datatypes

Description Number In %

Optional 45 100
Required 44 98
Alternative/Range 43 96
Specified 40 89
Complex 38 84

In contrast to SOAP and XML-RPC, which both use XML as the transport
and output format, Web APIs most commonly (89%) feature support for the
more compact data representation format JSON7. Still, XML remains the sec-
ond most used data format (58%). The increasing popularity of JSON is further
reflected by the fact that about half of the Web APIs using it, do not provide
XML support. Less than a fifth also supported other formats8. All of the Web
APIs supported either JSON or XML as their primary data representation for-
mat. Two Web APIs used their own custom data output format, which in both
cases was based on JSON and provided a general structure for all responses.

Our results show that preparing the input in the right format requires ad-
ditional effort. Each request to a Web API demands careful consideration on
which parameters to send, their format and ultimately how to transmit them.
In addition, there is no general consensus in Web APIs on how to format even
frequently occurring input such as date and time, thus requiring careful manual
effort when doing service composition. On the other side of the request are JSON
and XML the two main established data interchange formats for output, with
JSON rapidly gaining on importance.

Security and Policies. Security and policies or terms of use play an impor-
tant part in the context of using Web APIs, since they determine the conditions

7 JavaScript Object Notation, an open standard for data interchange derived from the
JavaScript language.

8 e.g. including CSV, RDF, YAML, PHP, RSS, Atom, WDDX or form encoded values

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 48



and limits for actually accessing the APIs. Only two of the examined Web APIs
did not use any kind of authentication. Roughly a third of the Web APIs require
authentication only for operations, which perform data modification, but do not
require authentication for reading resources. The most common way of identify-
ing the client application or user is via an API key (also called application id,
client id or by similar terms) which is passed along with each request. Other,
more secure approaches, are listed in Table 7. The most common approach, used
by two thirds of the Web APIs is OAuth in its various protocol versions followed
by the basic authentication protocol of HTTP. In those Web APIs that used
basic authentication, which sends the provided credentials in plaintext as part
of a HTTP header, this authentication method was almost always combined
with SSL9. In total, SSL was available for 91% of the Web APIs and its use was
mandatory for 41% of those.

Most Web APIs (89%) state and implement rate limitations, which restrict
the number of invocations in a specific time frame. Consumers of the API have
to follow these restrictions in order to prevent their requests or the entire ap-
plication from being blocked. The limitations are either written down, as part
of the documentation, or included with the general terms and conditions. A
fifth of the Web APIs use custom HTTP headers to convey information about
the remaining quota in every response, thus allowing the client application to
dynamically adapt its use pattern.

Table 7. Common Web API Authentication Approaches

Authentication Mechanisms Number In %

OAuth 1.0 20 44
OAuth 2.0 11 24
Custom OAuth 2 4
HTTP Basic 8 18
Session 5 11
Custom HMAC 3 7
Other 4 9

We can conclude, that the majority of Web APIs use authentication in some
form, requiring adopters of these services to both register their application in
advance and tackle the individual authentication scheme used. Our results show
that OAuth has the potential to emerge as universally adopted standard for au-
thentication. Almost as common as authentication are limitations on the number
of requests per time period that applications can send to Web APIs.

Common Design Decisions. The motivation behind versioning is that Web
APIs may change over time and by explicitly distinguishing between versions,
new releases will not break compatibility with older API clients. This issue was
addressed by 73% of the examined Web APIs. The most common technique, as

9 Secure Sockets Layer, a cryptographic protocol which aims to provide communication
security over the Internet

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 49



shown in Table 8, includes the API version as a prefix in the URL path. Further
techniques include a custom HTTP header, standard content negotiation, the
specification of versions in the body of the request and switching subdomains.
The latter technique was used by Facebook to differentiate their deprecated
REST API from their new Graph API.

The way of selecting the output format is another common design decision
for Web APIs. Four different techniques (see Table 9) were identified during the
survey. In six cases did the Web APIs support more than one way of requesting
a specific format. The two most common methods include specifying the format
as part of the URL, either as part of the path or as a query parameter. The
standard mechanism of HTTP for this purpose, content negotiation (also used
for versioning purposes as seen above), was supported by six APIs, followed by
the use of a custom HTTP header by two.

Table 8. Common Web API Version-
ing Techniques

Description Number In %

Yes 33 73
No 12 27

URL Path 26 79
Custom Header 2 6
Content-Negotiation 2 6
Body 2 6
Subdomain change 1 3

Table 9. Representation Format Selec-
tion

Description Number In %

Yes 28 62
No 12 27

Path/File extension 15 54
Query Parameter 11 39
Content-Negotiation 6 21
Custom Header 2 7

Our results show that even though HTTP defines content negotiation using
the accept header as the mechanism for representation format selection, is it only
supported by a minority of Web APIs. Instead, most Web APIs allow the format
to be specified in some way as part of the URL, which allows basic requests to
be easily tested in a common web browser. For versioning, including the version
identifier as part of the URL is by far the most popular technique.

4 Related Work

The first study on the state of Web APIs was presented by [3] and features a
comprehensive overview through the analysis of 222 Web APIs in 2010. While
Maleshkova et al. aim to draw conclusions on the state of the entire world of
APIs on the Web, we focus on the most popular and common ones, substituting
a larger dataset for more and other types of features. Another more recent study
from 2012 was provided by Renzel et al. [4], wherein the authors analyze a
dataset of twenty Web APIs by a broad range of features, some of which were
incorporated in our survey. Similar to our study, the dataset was gained by
selecting top ranked entries from the ProgrammableWeb directory, using the
number of mashups as the sorting criteria. The rather limited dataset and fast
moving developments in the world of services on the web necessitate taking

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 50



another look at the current state of Web APIs. Other older studies, devoted
to investigating Web Services exist. The authors in [5] provide a study on Web
services but their data is restricted to only a few characteristics and a single
source.

5 Conclusions and Future Work

The results of our survey indicate that Web APIs feature a large amount of het-
erogeneity in their individual designs, ranging from cases, following the architec-
tural style of REST and its constraints, such as HATEOAS, to those featuring a
more RPC-like style. Common service tasks such as composition and invocation,
therefore, require more manual effort to smooth over differences in implemen-
tations, compared to Web Services that follow a strict standard such as SOAP.
Even though REST is only an architectural style, in contrast to a strict standard
such as SOAP whose conformity can be validated, a stricter compliance with its
guidelines and constraints would already significantly reduce friction in adopting
Web APIs for more complex tasks such as the automation of composition and
invocation. While some more readily understandable concepts such as using the
HTTP verbs have gained widespread adoption, other concepts such as resource
linking (HATEOAS) are hardly ever applied. For today’s top Web APIs we,
therefore, have to conclude that they most commonly remain RESTless.

This area of research has a lot of potential for further work. By building
upon the data gained as part of this survey and the previous ones mentioned in
the related work section, we could quantify the changes in Web API design over
time and possibly gain insight over future developments. Another idea would be
to take those parts of the REST principles that we have shown to be poorly
applied and work on the problems surrounding their adoption.

Acknowledgments The work presented in this paper is partially supported
by EU funding under the project xLiMe (FP7 - 611346).

References

1. R. T. Fielding: Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, 2000.

2. Robert Daigneau: Service design patterns: fundamental design solutions for
SOAP/WSDL and RESTful web services. ACM SIGSOFT Software Engineering
Notes, volume 37. Addison-Wesley (E), 2012.

3. M. Maleshkova, C. Pedrinaci, J. Domingue: Investigating web apis on the world
wide web. In Web Services (ECOWS), 2010 IEEE 8th European Conference on, pp.
107-114. IEEE, 2010.

4. D. Renzel, P. Schlebusch, R. Klamma: Today’s top “RESTful” services and why
they are not RESTful. In Web Information Systems Engineering-WISE 2012, pp.
354-367. Springer Berlin Heidelberg, 2012.

5. Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie, and J. Sun: An Exploratory Study of Web
Services on the Internet. In Proceedings of ICWS, pp. 380-387, 2007.

SALAD 2014 Workshop – Services and Applications over Linked APIs and Data 51




