Exploiting Linguistic Indices and Syntactic
Structures for Multilingual Question Answering:
ITC-irst at CLEF 2005

Hristo Tanev, Milen Kouylekov, Bernardo Magnini, Matteo Negri, and Kiril Simov*
Centro per la Ricerca Scientifica e Technologica ITC-irst
* Bulgarian Academy of Sciences
tanev, kouylekov, magnini, negri@itc.it
* kivs@bultreebank.org

Abstract

This year we participated at 4 Question Answering tasks at CLEF: the Italian mono-
lingual (I), Italian-English (I/E), Bulgarian monolingual (B), and Bulgarian-English
(B/E) bilingual task. While we did not change the approach in the Italian task (I), we
experimented with several new approaches based on linguistic structures and statistics
in the B, I/E, and B/E tasks.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries; H.2.3 [Database
Managment|: Languages— Query Languages

General Terms

Algorithms, Measurement, Experimentation

Keywords

Question answering, Multlinguality, Syntactic index, Syntactic structures, Syntactic network, Tree
edit distance, Dependency trees

1 Introduction

This year we participated at 4 QA tracks: the Italian monolingual (I), Italian-English (I/E),
Bulgarian monolingual (B), and Bulgarian-English (B/E) bilingual task.

Regarding the Italian monolingual task (I) we did not modify our system with respect to the
previous year.

In the task B we participate for the first time, therefore we had to build a new QA system for
Bulgarian using some tools and resources from the on-line QA system “Socrates”.

This year we augmented the role of the linguistic processing in our QA system DIOGENE.
In particular we experimented in the cross-language tasks with two novel approaches: a tree edit
distance algorithm for answer extraction and syntactic based Information Retrieval (IR). Although
these syntactic based approaches did not bring improvements in terms of performance, we regard
these experiments as a step towards strengthening the linguistic framework on which our QA
system is based. Moreover, we tested a new model for indexing of syntactic structures.

The rest of the paper is structured as follows: section 2 provides a brief overview of the
QA approaches based on syntactic structures, section 3 describes the syntactic tree edit distance
algorithm which we used for answer extraction, section 4 introduces our syntactic indexing and In-
formation Retrieval (IR) model, section 5 describes our new system for QA in Bulgarian “Socrates
2”7 section 6 provides overview of our CLEF results, and section 7 outlines our directions for
research in the future.

2 Using the syntax in a Question Answering system. State
of the art

Two consecutive years we participated at the CLEF competition with a QA system which mostly
relies on a multilingual statistical module which mines the Web to validate the answer (see
[Magnini 2002] for details). This year we decided to augment the role of the linguistic knowl-
edge in the process of answer extraction and validation. We carried out two experiments for
considering the syntactic structure of the sentence. Our experiments were inspired by the fact
that many QA systems consider the syntactic structures of the question and the sentences which
may contain the candidate answer. For example, the top performing system of the last years in
the TREC QA track [Vorhees 2004] - the LCC System [Moldovan et al. 2002] uses deep syntactic
parsing and representation in logical form for answer extraction. Deep syntactic analysis is used
also by the Shapaga system [Buchholz 2001] and DIMAP-QA system [Litkowski 2001].

One of the best performing in the TREC 2004 track is a QA group from the university of
Singapore [Cui et al. 2005]. They base the answer extraction module of their system on pre-
extracted syntactic patterns and approximate dependency relation matching. The authors point
that a weakness of the QA systems that incorporate parsing is that they rely on exact matching of
relations. They claim that although this approach has high precision it has problems with recall.
They propose a corpus based evaluation of similarities of the dependency relations using point
wise mutual information (PMI) [Church and Hanks 1989]. In this way they calculate the cost of
transforming the syntactic tree of the question to a candidate syntactic tree of the document.

In [Punyakanok et al. 2004] the authors build a QA system based on a mapping algorithm
that is a modification of the edit distance algorithm presented in [Zhang and Shasha 1990] for
syntactic trees. Their approach is handling the language variability problem by calculating the
cost of missing or changed information. The authors propose the following cost operations: insert
tree; delete tree; change tree. They make rough approximation of the operations cost. The authors
prove, that with this approach they outperform the simple bag-of-word approach.

3 Answer extraction using Tree-Edit Distance

We carried out this experiment in the Italian-English cross-language task. First, we used AltaVista
to translate the questions from Italian to English (we used also some pre-processing and post-
processing translation rules). Second, using sentence-level IR from our syntactic index SyntNet
(see section 4.2), we acquired already parsed sentences which contain question keywords. Third, we
used a tree edit distance between the affirmative form of the question and the candidate sentences
to extract the answer.

3.1 Translation from Italian to English

We used the Altavista interface to Systran (http://translate.av.com) to translate the questions
from Italian into English. A set of pre-processing and post-processing transformation rules was
applied to correct some of the wrong output produced by the automatic translation. Example:

e Pre-processing rule - Dov ' e ... — > Dove é

e Post-processing rule - Which thing — > What

We also used a Collins dictionary to translate the words that were not translated by Altavista.

3.2 Edit distance on dependency trees

After we extract candidate sentences which may contain the answer, we used a modification of the
tree edit distance algorithm presented in [Punyakanok et al. 2004] and [Zhang and Shasha 1990],
in order to identify the sentence closest to the question in terms of edit distance and to extract the
answer from it. We adapted our algorithm to use syntactic trees already indexed in our syntactic
index (we used MiniPar [Lin 1998] to obtain the parse trees in the index).

Since the [Zhang and Shasha 1990] algorithm does not consider labels on edges, while depen-
dency trees provide them, each dependency relation R from a node A to a node B has been
re-written as a complex label B-R concatenating the name of the destination node and the name
of the relation. All nodes except the root of the tree are relabeled in such way. The algorithm is
directional: we aim to find the best (i.e. less costly) sequence of edit operations that transform
the dependency tree of the candidate answer sentence into the dependency tree of the question
affirmative form. According to the constraints described above, the following transformations are
allowed:

e Insertion: insert a node from the dependency tree of question into the dependency tree of
the candidate answer sentence.

e Deletion: delete a node N from the dependency tree of the answer sentence. When N is
deleted all its children are attached to the parent of N. It is not required to explicitly delete
the children of N as they are going to be either deleted or substituted on a following step.

e Substitution: change the label of a node N1 in the answer sentence tree into a label of
a node N2 of the question tree. Substitution is allowed only if the two nodes share the
same part-of-speech. In case of substitution the relation attached to the substituted node is
changed with the relation of the new node.

To adapt the algorithm we addressed the following problems:

1. Transform the dependency tree of question into the dependency tree corresponding to it’s
affirmative form.

2. Reorder the tree nodes to create an order of the children.
3. Estimate the costs of the delete, insert and replace operations.

The dependency tree of the question is transformed into affirmative form using a set of hand
written rules whcih are activated according to the question and answer types. For some answer
types a simple hand-crafted pattern that represents the most frequent syntactic relations between
the question focus and the answer of the question was used. Questions with such answer types
are questions that have a measure as an answer (height, length, etc.)

The edit distance algorithm presented in [Punyakanok et al. 2004] and [Zhang and Shasha 1990]
requires an ordering on the children of the syntactic tree. We imposed an order on the children
of a node in the tree based on the label of the dependency relations and the lexicografic order of
the words in the children nodes.

In [Punyakanok et al. 2004] the authors use add-hoc weights of the basic edit operations. In
our approach we decided to use cost based on statistic measures. To estimate such cost, we define
a weight of each single word representing its relevance through the inverse document frequency
(idf), a measure commonly used in Information Retrieval. If N is the number of documents in a
text collection and N, is the number of documents of the collection that contain word w then the
idf of this word is given by the formula:

if () = log 1~ 1)

leh G SN2

by , by(4,5)
stop|s stop|lg —— absorbingls stop|1,4
obj obj 0bj(1,3)(4,7)
isub\ J(subj\ (1,2)(4,6)lsubj
sunscreen|s cancer|s sunscreenl|g cancer|z sunscreen|s g

Figure 1: Two parse trees and their Syntactic Network.

The weight of the insertion operation is the idf of the inserted word. The most frequent words
(e.g. stop words) have a zero cost of insertion. In the current version of the system we are still
not able to implement a good model that estimates the cost of the deletion operation. In the
current experiments we set the cost of deletion to 0. To determine the cost of substitution we used
a dependency based thesaurus available at http://www.cs.ualberta.ca/lindek/downloads.htm. For
each word, the thesaurus lists up to 200 most similar words and their similarities. The cost of a
substitution is calculated by the following formula:

subs(wy, wa) = ins(wsy) * (1 — sim(wy, ws)) (2)

where w; is the word from text that is being replaced by the word wsy from hypothesis and
sim(wy,ws) is the similarity between w; and ws in the thesaurus multiplied by the similarity
between the corresponding relations. The similarity between relations is stored in a database of
relation similarities obtained by comparing dependency relations from a parsed local corpus. The
similarities have values from 1 (very similar) to 0 (not similar). If there is no similarity, the cost
of substitution is equal to the cost of inserting the word w2.

3.3 Answer Extraction

All the sentences retrieved by the IR module of the system are sorted based on the edit distance
between their syntactic trees and the affirmative form of the question. As candidate answers we
extracted noun phrases part of the syntactic tree of the sentences with the lowest edit distance
score.

4 Syntactic Based Information Retrieval

4.1 Syntactic Network

The Syntactic Network (SyntNet) is a formalism for representation of a set of dependancy syntactic
graphs (input graph set) produced from a dependency parser. Equal sub-structures from the
input graph set are merged in one structure in SyntNet. This property facilitates identification
of repeating subs-structures, allows for efficient calculation of their frequency, and makes possible
efficient mining of structures which span over certain words. This last property was extensively
used in our syntactic based IR experiment.

SyntNet models an input graph set, in which each of the graphs represents the syntax of a
sentence from a text corpus. In a dependency syntactic graph the vertices are labeled with words
or word lemmas and part of speech. In the dependency graphs each two words w and w’ are
connected with a directed arc if and only if w governs w’ . Arcs in the dependency graph are
labeled with syntactic relations (see figure 1).

When the SyntNet is built from the input graph set, all vertices labeled with the same word
and part of speech are merged in one vertex. Moreover, all equally labeled dependency arcs which
connect equally labeled vertices in the same direction are merged in one arc. Therefore, in SyntNet

absorbingls

cancer|s 7

each vertex and arc usually represents more than one vertex and arc from the input graph set. On
figure 1 two dependency graphs G; and G5 are merged in one SyntNet SN(1,2). Each vertex in Gy
and G is labeled with an unique number (e.g. cancer|s, cancer|7). Arcs are labeled with number
pairs - the number of the vertex from which the arc begins and the number of the vertex in which
the arc enters (e.g. the arc stop)y — sunscreen|s in Gy is labeled with the pair (4,6)). When the
vertices and arcs from G and G are merged in the SyntNet SN(1,2) on figure 1 their numerical
labels are also merged (e.g. cancer|s ;) in sets of numerical labels. These numerical labels in the
SyntNet allow for tracing repeating structures and calculating their frequency. For example on
figure 1 we may trace the numerical labels in the sub-structure sunscreen <« stop — cancer and
we can see that two possible paths exist following the numerical labels on the arcs on SN(1,2) :
(21,1 —3) and (6 «— 4,4 — 7). Each of these paths corresponds to one occurrence of the
sub-structure in the input graph sequence, therefore the above mentioned substructure appears
two times.

4.2 Indexing the English CLEF collection

We parsed the English CLEF collection of texts with MiniPar [Lin 1998] and built a SyntNet
representation from the parsed sentences. The SyntNet model was implemented as a relational
database under the MySQL platform.

4.3 Retrieving and Ranking Sentences

When the question keywords are translated from Italian or Builgarian to English (see [Negri et al. 2003]
and [Osenova et al. 2004] for details) we use the syntactic index SyntNet to retrieve the best sen-
tences.

The retrieving process begins with identification of the vertices in SyntNet which represent
the question keywords. For example if the question is “What stops cancer?” and the SyntNet is
SN(1,2) on figure 1, we will take the vertices stop and cancer. We call them keyword vertices.
Each keyword vertex has a weight assigned - derived from its IDF.

Tracing the SyntNet up from a keyword vertex kv we record for each vertex v we encounter on
our way what is the distance between v and kv. This distance is calculated from the sum of the
IDF of the vertices which stay between kv and v. We will call these vertices intermediate vertices.

Keyword vertices which appear as intermediate vertices contribute 0 to the distance. Moreover,
if there is some similarity (we measure similarity between words using a syntactic distributional
approach similar to [Lin 1998a]) between an intermediate vertex and any of the key vertices, this
intermediate vertex contributes to the distance only a part of its IDF.

We will denote thus calculated distance by |kv v|. Obviously, as many informative vertices stay
between kv and v, as bigger their distance is. As less informative these intermediate vertices are,
as low the distance is. On the other hand, as similar the intermediate vertices are to the question
keywords, as lower the distance is. Actually, |kv v| models the quantity of information in the path
between kv and v which is not shared with the question.

For each vertex v from the SyntNet which is a root of a tree spanning over a set of question
keywords kwQuy, kwQus, ..., kwQu, we define:

kaQvi IDF (kwQu;)
(Q) + X pwqu, kwQu; v[+ IDF(v)

In this formula I(Q) is the sum of the IDF of all the question keywords. If v is a keyword vertex,
IDF(v) in the above formula is considered to be 0. This score we call syntactic context score and
it evaluates a tree spanning over some the question keywords and rooted in a vertex v. In this
formula the distance between the keywords in the syntactic tree as well as the informativeness of
the words are taken into consideration.

Finally, the score of a sentence S is calculated as:

syntscore(v) = 7

score(s) = max syntscore(v).j(?(g)s)

In this formula I(Q N S) is the sum of the IDF of the question keywords which appear in the
sentence. This formula combines the highest syntactic context score in the sentence and the
relative quantity of the information that the question shares with that sentence.

For the next processing steps only the top ranked sentences are considered. As a last stage
DIOGENE system performs answer extarction and Web based answer validation to choose the
best answer [Magnini 2002] from the retrieved sentences.

5 A QA system for Bulgarian - “Socrates 2”

In order to participate in the monolingual Bulgarian task we decided to build a QA system for
Bulgarian which uses certain templates from the “Socrates” on-line QA system [Tanev 2004], but
also incorporates answer extraction techniques for questions for which no patterns exist. We call
this system “Socrates 2”. Moreover, we decided to build a linguistic index of the Bulgarian CLEF
collection in which each word is represented with its lemma and part of speech. In this index the
separate sentences were represented rather than whole documents.

5.1 Question processing

“Socrates 2”7 performs question classification on the basis of simple superficial templates. It clas-
sifies the question into one of the following categories: definition questions and questions which
require person, location, organization, year, date, manner, reason, or generic name as an answer.

5.2 Building Linguistic Index

Instead of relying on standard search engines, we developed our own sentence retrieval engine and
linguistic index of the Bulgarian CLEF collection. The text collection was split into sentences and
automatically annotated with part-of-speech tags and word lemmas using the LINGUA system
[Tanev and Mitkov 2002]. This linguistic annotation and the IDF of each word were encoded in
the linguistic index which backs up our sentence retrieval module.

We think that such an approach is more appropriate for the QA task than the traditional
document indexing approaches since it leads to more focused IR. Moreover, a sentence usually
provides enough context for answer justification, which makes reasonable to perform IR on this
level. In this way, however, some phenomena like intrasententional anaphora are ignored which
may potentially lead to the lost of some answers. Another shortcoming of the linguistic indexing
model is the probability of errors in the part-of-speech tagging and the sentence splitting processes.

5.3 Sentence retrieval

All the sentences which contain at least one of the question keywords are taken into consideration.
Sentences are ranked using the following formula:

_I(QnS)
score(S) = Q)

, where I(Q) is the quantity of the information in the question and I(Q N S) is the quantity of
the information which the question and the sentence share. The formula finds what percent of the
question information content is found in the sentence. Information content of the question I(Q)
is measured as a sum of the IDF of its keywords. The quantity of the shared information content
I(Q N S) is the sum of the IDF of the question keywords which appear in the sentence. This can
be written in the following way:

Q)= > IDF(kw)

kw; ckwQ

1QnS)= > IDF(kw)
kw; ckwQNuwsS
, where kw(@ are the question keywords and wS are the words from the sentence. A keyword from
the question is considered to be equal to a word from the sentence if both words have the same
lemma and part of speech. This sentence ranking approach turned out to work rather satisfactory
in practice.

5.4 Answer extraction

For definition questions we adapted and used templates and rules already implemented in the
“Socrates” on-line demo. Since these templates were already tested and tuned using real on-line
users questions submitted to the Socrates Web site (http://tanev.dir.bg/Socrat.htm), we did not
make any significant improvements in the system of rules.

We did not develop any specific strategy for the temporal questions, rather they were treated
as factoid ones. For identification of factoid answers we created rules for extraction of generic
names (without specifying if the name designates location, person, organization, or other entity),
dates, and numbers. All other answer candidates (for example noun phrases which are not names
or verb phrases) were ignored.

When extacting candidate answers for factoid and temporal questions, “Socrates 2”7 considers
the top 200 ranked sentences whose score is greater than 0.5 (score(S) > 0.5). Moreover, only the
sentences which have score greater than 0.1 of the score of the top ranked sentence are taken into
consideration. In this way, we avoid to extract answers from sentences which does not contain
enough question keywords.

Name identification In the general case our system for identification of names classifies as a
candidate for a name each sequence of words which begin with capital letters. However, a capital-
ized word in the beginning of the sentence is considered a part of a name only if it is found in the
dictionary of proper names integrated in the LINGUA morphological processor [Krushkov 1997
or it is an unknown word. Usually this strategy recognizes properly the names, however we
noticed that often two names appear next to each other, which causes errors in the name recog-
nition. For example, the above mentioned heuristics will extract from the text “poslanikat na
Shvecia Sten Ask” (“the ambassador of Sweden Sten Ask”) the name candidate “Shvecia Sten
Ask” (“Sweden Sten Ask”), while “Shvecia” (“Sweden”) and “Sten Ask” are two separate names.
To overcome this problem, we developed a name splitting strategy which is activated in cases we
have a sequence of more than two capitalized names: N1N>N3...IN,,. In such cases we check if Ny
is a part of the sequence or should be treated as a separate name. Although the sequence can
be splitted in each point, we empirically observated that in most cases the sequence should be
splitted after Ni. Therefore, in order to simplify the task and augment the processing speed we
checked only if the sequence can be splitted after N7 or no. The test is based on the assumption
that if P(N1|N2N3) < limit then a splitting after Ny will take place, i.e. Ny and NaNs...N,
will be treated as separate names. We set experimentally limit = 0.8. After we introduced this
name splitting strategy the name recognizer became quite accurate and the number of errors was
significally decreased.

Answer scoring and ranking The score of a candidate answer A in a sentence S is calculated
considering the distance in tokens between the candidate A and each of the question keywords
(kw;) which appear in the sentence and the IDF of the keywords:

score(A, S) = Z [DF(kw:)

kw; €kwQnNwS L+ 1% |A sz|

This formula gives higher score to the candidate answers which appear close to the most important
question keywords. When two candidate answers have equal score, the system prefers the one
which appears more often in the top ranked sentences.

6 Evaluation

Task Overall accuracy | Definition (%) | Factoid (%) | Temporal (%)
Italian (run 1) 22.0 38.0 19.2 6.7
Italian (run 2) 19.0 14.2 19.2 6.7
Bulgarian 27.5 40.0 25.0 17.7
Italian/English (run 1) 23.5 38.0 19.8 13.8
Italian/English (run 2) 13.0 38.0 5.8 0
Bulgarian/English 18.5 20.0 17.4 20.7

Table 1: QA Performance at CLEF 2005

We submitted one run at the monolilngual Bulgarian task using our new system “Socrates2”.
We produced two runs in the Italian monolingual task. In the first run the answer ranking for
the factoids and temporal questions for which no answer-extraction patterns exist was delegated
exclusively to the Web-based answer validation module. In the second run we considered the
keyword density also. As in the previous year, it turned out that considering keyword density
deteriorates the result. Regarding the Italian-Englisg task, we run the two experiments described
in the previous sections. In the first run we used syntactic IR for factoid and temporal questions
and in the second run we used tree edit distance algorithm for factoids. We used syntactic based
IR also in the Bulgarian-English cross-language task.

In all the tasks we used the multilingual template-based approach for answering definition
questions [Tanev et al. 2004].

With respect to the previous year our overall accuraccy on the monolingual Italian task dropped
from 28% to 22%. In particular, the performance on the factoid questions was decreased by about
7% while the accuracy on the definition questions dropped only by 2%. Since the monolingual
Ttalian system is the same as the one used the previous year, the decrease of the performance may
be due to increased difficulty of this year questions. For the monolingual Bulgarian task we have
27.5% overall accuracy (25% factoid questions, 40% definition, and 17,65% temporal questions).
These results are promissing taking into account the scarce resources we used this year and the
non-refined named-entity recognition we performed.

Regarding the Italian-English cross-language task, our experiments with linguistic indices and
tree-distance did not bring the expected results in terms of performance. The first run in which
syntactic based IR was used for factoids and temporal questions resulted in 19.83% accuracy for
factoids and 13.79% for temporal questions. The accuracy on the factoid questions is decreased
by 2% from the previous year. The accuracy on the factoids in the second run where we tested
tree-edit distance algorithm was only 5.8%. We have further to study how the tree edit distance
algorithm will be integrated in the overall QA process.

In the Bulgarian-English cross-language task we have some performance improvement for the
factoid questions with respect to the previous year: 17.4% vs. 11.7%. In this task we used syntactic
based IR. The translation Bulgarian-English dictionaries were also enriched with person names.
We have further to study if the improvement in the performance is due to the new IR approach,
the improved translation, or the difficulty of the questions in the B/E task is lower with respect
to the previous year.

7 Conclusions and future direction

This year we experimented with linguistic indices for Bulgarian and English. The Bulgarian QA
system based on the linguistic index achieved promising results considering the simplicity of the
QA approach. We tested two novel approaches based on the syntax: one for IR and one for
answer extraction. Although the syntactic based approaches did not show high performance, we
continue our research in the exploitation of syntactic structures in QA. We believe that the methods

which use linguistic knowledge are potentially more accurate than superficial ones. However, our
experience at CLEF 2005 showed that different problems have to be overcome when using syntax
in QA: parsing errors, syntactic paraphrases, efficiency issues, etc.

In our future work we intend to study better the use of tree edit distance algorithms. We
would like also to study deeper the potential of the SyntNet model: Building on this model, we
intend to develop algorithms for pre-selection of the candidate answers. We intend also to use the
SyntNet in different lexical acquisition experiments, which will support the development of our
QA system.

8 References

Buchholz, S. 2001. Using Grammatical Relations, Answer Frequencies and the World Wide Web
for TREC Question Answering. In Proceeding of the TREC-10 Conference 2001, pages 496-503.

Church, K. and Hanks, P. 1989. Word Association Norms, Mutual Information, and Lexicography.
In Proceedings of ACL-89, pages 76-83. Vancouver, Canada.

Cui, H., Li, K., Sun, R., Chua, T., Kan, M 2005. University of Singapore at the TREC-13
Question Answering Main Task In Proceedings of the TREC-13

Krushkov, H. 1997. Modelling and Building of Machine Dictionaries and Morphological processors
Ph.D. Thesis, University of Plovdiv (in Bulgarian)

Lin, D. 1998. Dependency-based evaluation of MINIPAR. In Proceedings of the Workshop on
Evaluation of Parsing Systems at LREC-98. Granada, Spain.

Lin, D. 1998a. Automatic Retrieval and Clustering of Similar Words In Proceedings of COLING-
ACL98 Montreal, Canada

Litkowski, K. 2001. CL Research Experiments in TREC-10 Question Answering In proceeding of
the TREC-10 Conference 2001, pages 251-260.

Magnini, B., Negri, M., Prevete, R., Tanev, H. 2002. Is it the Right Answer? Exploiting Web
Redundancy for Answer Validation. Association for Computational Linguistics 40th Anniversary
Meeting (ACL-02), of Pennsylvania, Philadelphia.

Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Lacatsu, F., Novischi, A 2002-2003. LCC
Tools for Question Answering. NIST Special Publication: SP 500-251 The Eleventh Text Retrieval
Conference (TREC 2002).

Negri, M., Tanev, H., Magnini, B. 2003. Bridging Languages for Question Answering: DIOGENE
at CLEF 2003 In Proceedings of CLEF-2003, Trondheim, Norway

Osenova, P., Simov, A., Simov, K., Tanev, H., Kouylekov, M. 2004. Bulgarian-English Question
Answering: Adaptation of Language Resources In Proceedings of CLEF-200/4, Bath, UK
Punyakanok., V.,Roth, D. and Yih, W., 2004 Mapping Dependencies Trees: An Application to
Question Answering Proceedings of AI €& Math 2004

Tanev, H. 2004. Socrates: A Question Answering Prototype for Bulgarian Recent Advances in
Natural Language Processing III, Selected Papers from RANLP 2003 John Benjamins, Amster-
dam/Philadelphia

Tanev, H. an Mikov, R. 2002. Shallow Language Processing Architecture for Bulgarian In
Proceedings of COLING 2002 Taipei, Taiwan

Tanev, H., Kouylekov, M., Negri, M., Coppola, B., Magnini, B. 2004. Multilingual Pattern
Libraries for Question Answering : a Case Study for Definition Questions In Proceedings of LREC
2004 Lisbon, Portugal

Vorhees, E. 2004 Q&A Track Guidelines In proceeding of TREC-13 2004

Zhang, K., Shasha, D. 1990 Fast algorithm for the unit cost editing distance between trees.
Journal of algorithms, vol. 11, p. 1245-1262, December 1990.

