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Abstract

This year, ImageCLEF2007 data provided multiplalemtces that can be explored in
many different ways. In this paper we describerdarmation retrieval framework
that combines image, text and geographic data. dieadlysis implements the vector
space model based on non-geographic terms. Geagraphlysis implements a
placename disambiguation method and placenameasdared by their Getty TGN
Unique Id. Image analysis implements a query byasgitt example model. The
paper concludes with an analysis of our resultsalii we identify the weaknesses
in our approach and ways in which the system cbaldptimised and improved.
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1 Introduction

This paper presents a system that integrates yixdland geographic data. Such systems are at gesmand

as the richness of metadata information increagetier with the size of multimedia collections. Waluated

the system on the ImageCLEF Photo IAPR TC-12 phafugc collection to assess some of the evidence
combination strategies and other design aspeatsiro$ystem. As the system implemented a set ofnpirery
algorithms we were able to clearly see the diffeneypacts of each component of our system.

This paper is organized as follows: section 2 dises the dataset characteristics; sections 3 tesgem our
system: the text data processing algorithms, thegmgghic data processing algorithms, the image data
processing algorithms, and the combination stratedresults are presented in section 7 and fisaltyion 8
presents the conclusions.

2 ImageCLEF Photo Data

ImageCLEF Photo dataset is ideal to test our systantludes metadata information (both textuadaetions
and geographic information), and visual informatidime dataset has 20,000 images with the correspgpnd
metadata. The photos vary in quality, levels obapand illustrate several concepts, actions antev&letadata
enriches the images by adding information suchhaddct that a street is in some location or tledgssion of
one of the persons in the photos. A more thorowggtidption of the dataset can be found in [4].

The goal of this dataset is to simulate a scenahiere collections have heterogeneous sources afatat users
submit textual queries together with visual exarsplEhis is similar to TRECVID search task with &ylst



difference concerning geographic data and actidmst tare only possible to detect on videos (e.g.
walking/running).

DOCNO annotations/00/60.eng

TITLE Palma

NOTES The main shopping street in Paraguay
LOCATION Asuncion, Paraguay

DATE March 2002

IMAGE images/00/60.jpg

THUMBNAIL thumbnails/00/60.jpg

Table 1 — Example of metadata information availablen the collection.

3 System

The implemented system has two separate indexéméges related data and another one for metadkat®d
data. Next we will describe how information is grs&ld and stored on both indexes.

3.1 Metadata Indexes

The indexing stage of Forostar begins by extractiagned entities from text using ANNIE, the Inforioat
Extraction engine bundled with GATE. GATE is Shelffi University's General Architecture for Text
Engineering. Of the series of tasks ANNIE is abl@érform, the only one we use is named entitygeitmn.
We consider ANNIE a “black box” where text goesand categorised named entities are returned; beaafu
this, we will not discuss the workings of ANNIE faer here but rather refer you to the GATE manghl [

3.1.1 Named Entity Fields

We index all the named entities categorised by GATE “Named Entity” field in Lucene (e.g.“Police City
Council,” or “President Clinton”). The named emftitagged as Locations by ANNIE we index as “Named
Entity — Location” (e.g. “Los Angeles,” “Scotlandt “California”) and as a Geographic Location (désed in
Section 3.1.3). The body of the GeoCLEF articled the article titles are indexed as text fieldsisTgrocess is
described in the next section.

3.1.2 Text Fields

Text fields are pre-processed by a customised s@akimilar to Lucene’s default analyser [1]. Tisxsplit at
white space into tokens, the tokens are then cten/éo lower case, stop words discarded and stemwvitedhe
“Snowball Stemmer”. The processed tokens are Imeldicene’s inverted index.

3.1.3 Geographic Fields

The locations tagged by the named entity recograser passed to the disambiguation system. We have
implemented a simple disambiguation method baseldeanistic rules. For each placename being classifie
build a list of candidate locations, if the placemabeing classified is followed by a referent lamatthis can
often cut down the candidate locations enough tkenthe placename unambiguous. If the placenametis n
followed by a referent location or is still ambigisowe disambiguate it as the most commonly ocagirrin
location with that name.

Topological relationships between locations arekémbup in the Getty Thesaurus of Geographical Names
(TGN) [5]. Statistics on how commonly different pdaames refer to different locations and a seyobsyms

for each location are harvested from our Geograiieoccurrence model, which in turn is built bywliag
Wikipedia [13].

Once placenames have been mapped to unique losatitime TGN, they need to be converted into Gqagca
fields to be stored in Lucene. We store locationsvo fields:
» Coordinates The coordinate field is simply the latitude andditude as read from the TGN.

* Unique strings. The unique string is the unique id of this locatipreceded with the unique id of all
the parent locations, separated with slashes. THeisinique string for the location “London, UK” is
the unique id for London (7011781), preceded byéesent, Greater London (7008136), preceded by



its parent, Britain (7002445). . . until the root#tion, the World (1000000) is reached. Giving the
unique string for London as 1000000\1000003\70085#12445\7008136\7011781.

Note the text, named entity and geographic fields reot orthogonal. This has the effect of multiptyithe
impact of terms occurring in multiple fields. Foxaenple if the term “London” appears in text, th&eo
“london” will be indexed in the text field. “Londérwill be recognised by ANNIE as a Named Entity and
tagged as a location (and indexed as Location \Entitondon”). The Location Entity will then be
disambiguated as location “7011781” and correspundeographic fields will be added.

Previous experiments conducted on the GeoCLEF setan [11] showed improved results from having
overlapping fields. We concluded from these experits that the increased weighting given to locaticaused
these improvements.

3.2 Images Indexes

The image indexing part of our system creates leghl semantic indexing units that allow the useatcess
the visual content with query-by-keyword or quegydemantic-example. In our ImageCLEF experiments we
only used query by semantic example.

Following the approach proposed in [9], each keylvoorresponds to a statistical model that represtat
keyword in terms of the visual features of the iemgrhese keyword models are then used to indegesa
with the probability of observing the keyword onckagarticular image. Next we will describe the eliéfnt
steps of the visual analysis algorithm, see [9]dietails.

3.2.1 Visual Features

Three different low-level features are used in moplementation: marginal HSV distribution momerds12
dimensional colour feature that captures the histmgof 4 central moments of each colour component
distribution; Gabor texture, a 16 dimensional textfeature that captures the frequency responsan(raed
variance) of a bank of filters at different scaéexl orientations; and Tamura texture, a 3 dimeasitaxture
feature composed by measures of image’s coarseswmdsast and directionality. We tiled the image8iby 3
parts before extracting the low-level features.sTias two advantages: it adds some locality infaomand it
greatly increases the amount of data used.

3.2.2 Feature Data Representation

We create a visual vocabulary where each term sporeds to a set of homogenous visual characteristic
(colour and texture features). Since we are gaingst a feature space to represent all imageseaa a set of
visual terms that is able to represent them. Thues,need to check which visual characteristics acgem
common in the dataset. For example, if there dat af images with a wide range of blue tones wguie a
larger number of visual terms representing theediffit blue tones. This draws on the idea thatamla good
high-dimensional visual vocabulary we would ben&fim examining the entire dataset to look for thest
common set of colour and texture features.

We build the high-dimensional visual vocabularydhystering the entire dataset and representing eaohas a
cluster. We follow the approach presented in [Siere the entire dataset is clustered with a hibieat EM
algorithm using a Gaussian mixture model. This apph generates a hierarchy of cluster models that
corresponds to a hierarchy of vocabularies withiferént number of terms. The ideal number of @ustis
selected via the MDL criterion.

3.2.3 Maximum Entropy Model

Maximum entropy (or logistic regression) is a stétal tool that has been applied to a great wanétfields,
e.g. natural language processing, text classifinafmage annotation. Thus, each keywardis represented by
a maximum entropy model,

p(w; | V) = MaxEnt(8" F(V)),

where F (V') is the feature data representation defined omptbeious section of visual feature vectior, and
B is the vector of the regression coefficients feyword w; .

We implemented the binomial model, where one dmsdwvays modelled relatively to all other classey] not
a multinomial distribution, which would impose a ded that does not reflect the reality of the profuléhe



multinomial model implies that events are exclusiwereas in our problem keywords are not excludice
this reason, the binomial model is a better chag&documents can have more than one keyword adsigne

3.2.4 Images Indexing by Keyword

ImageCLEF data is not annotated with keywords, theisised a different dataset. This dataset was ibeairipy
Duygulu et al. [3] from a set of COREL Stock Ph@Ds. The dataset has some visually similar keyw(jets
plane, Boeing), and some keywords have a limitettbar of examples (10 or less). Each image is atetbta
with 1-5 keywords from a vocabulary of 371 keywomfswhich we modelled 179 keywords to annotate
ImageCLEF images.

4  Query Processing

The previous sections described how the datasetniaition is processed and stored. This sectiondegcribe
how the user query is processed and matched tindlezed documents. Similarly to the documents Esiog
the user’s query is divided into its text and ima&jements. Figure 1 illustrates the query procgsaimd how
multiple evidences are combined.

Named Entities ——3] ;f:éeci‘;‘fnr; L5 TextRank —l

Geographic TGN =
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Figure 1 — Query processing and evidence combinatio

The textual part is processed in the same way awlaking time and a combination strategy fusesréseilts
from the different textual part processing (textnte, named entities and nameplaces). Each imagésds
processed in the same way as previously describ@é @ombination strategy fuses the results frarintages.
Thus, only the documents-query similarity and thieence combination is new in the query procespindg.

4.1 Text Query Processing

The querying stage is a two step process: (1) nignocanstructed queries are expanded and convénted
Lucene’s bespoke querying language; (2) then weyghe Lucene index with these expanded queries.

4.1.1 Manually Constructed Query

The queries are manually constructed in a simifiarcture to the Lucene index. Queries have theofalig
parts: a text field, a Named Entity field and aalhen field. The text field contains the query with alteration.
The named entity field contains a list of nameditiesst referred to in the query (manually extractetihe
location field contains a list of location — retatship pairs. These are the locations containddermuery and
their to the location being searched for. A logatican be specified either with a placename (oplipna
disambiguated with a referent placename), a bogndiox, a bounding circle (centre and radius), or a
geographic feature type (such as “lake” or “cityR).relationship can either be “exact match,” “conéal in
(vertical topology),” “contained in (geographic ayg or “same parent (vertical topology)”. The ngga of
relationships can also be expressed i.e. “exclydiogtside,” etc.

We believe such a manually constructed query cbaldutomated with relative ease in a similar fashdiothe
processing that documents go through when indéXeid.was not implemented due to time constraints.



4.1.2 Expanding the Geographic Query

The geographic queries are expanded in a pipe-lihe. location — relation pairs are expanded in.t(rme
relation governs at which stage the location enteespipeline. At each stage in the pipeline theggephic
query is added to. At the first stage an exact m#dc this location’s unique string is added: ftwothdon” this
would be 1000000\1000003\7008591\7002445\7008138W7®1. Then places within the location are added,
this is done using Lucene’s wild-card characteratioh: for locations in “London” this becomes
1000000\1000003\7008591\7002445\7008136\7011780ken places sharing the same parent location are
added, again using Lucene’s wild-card characteatiwot. For “London” this becomes all places wittreater
London,” 1000000\1000003 \7008591\7002445\7008136ivially the coordinates of all the locations ifadl
close to this location are added. A closeness veduemanually be set in the location field, howedefault
values are based on feature type (default valuge wikosen by the authors). The feature of “Londisn”
“Administrative Capital,” the default value of ckrsess for this feature is 100km. See [12] for fritiscussion

on the handling of geographic queries.

4.1.3 Combining using the VSM

A Lucene query is built using the text fields, nanaatity fields and expanded geographic fields. Ex¢ field

is processed by the same analyzer as at queryatish€ompared to both the notes and title fieldhiénLucene
index. We define a separate boost factor for e@mtti. \We define a separate boost factor for easld.fiThese
boost values were set by the authors during initgahtive tests (they are comparable to similaigivéng in

past GeoCLEF papers [10] and [14]). The title hdmbast of 10, the notes a boost of 7, named enttiboost
of 5, geographic unique string a boost of 5 andyggguhic co-ordinates a boost of 3. The geograpéid,and
named entity relevance are then combined usingriaisé/ector Space Model.

4.2 Image Query Processing

In automatic retrieval systems, processing tima [@essing feature that directly impacts the ugghilf the
system. We envisage a responsive system that pexasquery and retrieves results within 1 secendiger,
meaning that to support multiple users it must lehrless than 1 second. Figure 2 presents thetectine of
the system. We implemented a query by semantic pbeaatgorithm [7] that is divided into three parts:

e Semantic Multimedia Analyser: The semantic multimedia analyser infers the kegsagrobabilities
and is designed to work in less than 100ms. Anoitmgortant issue is that it should also support a
large number of keywords so that the semantic spaceaccommodate the semantic understanding
that the user gives to the query. Section 3.2 ptedethe semantic multimedia analyser used in this
paper, see [9] for details.

Concept models
Semantic example
. . . analysis requests/results
Semantic multimedia analyser

Semantic multimedia
analysis requests/results

A
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Figure 2 — Query by semantic example system.

* Indexer: Indexer uses a simple storage mechanism capaldeofig and providing easy access to
each keyword of a given multimedia document. Ihdd optimised for time complexity. The same
indexing mechanisms used for content based imageva can be used to index content by semantics.




* Semantic Multimedia Retrieval: The final part of the system is in charge of eatimg the documents
that are semantically close to the given querstiirmust run the semantic multimedia analysethen
example to obtain the keyword vector of the qudiyen it searches the database for the relevant
documents according to a semantic similarity medriche semantic space of keywords. In this part of
the system we are only concerned with studying tfans that mirror human understanding of
semantic similarity. See [7] for details.

4.2.1 Semantic Space

In the semantic space multimedia documents areesepted as a feature vector of the probabilitieefT
keywords (179 in our case),

A= [y, |,
where each dimension is the probability of keywardbeing present on that document. Note that theovext
keywords is normalised if the similarity metric deeso (normalisation is dependent on the metribesé
keywords are extracted by the semantic-multimedelyser algorithm described in Section 3.2.

It is important that the semantic space accommasdatenany keywords as possible to be sure thatséheidea
is represented in that space without losing anycepts. Thus, systems that extract a limited nundder
keywords are less appropriate. This design req@rgrpushes us to the research area of metrics gin hi
dimensional spaces.

We use the tf-idf vector space model. Each docunemnépresented as a vectdr, where each dimension
corresponds to the frequency of a given term (kegijvas; from a vocabulary ofi" terms (keywords). The
only difference between our formulation and theditianal vector space model is that we uBéw; | d)
instead of the classic term frequen€¥ (w; | d) . This is equivalent because all documents areesepted by
a high-dimensional vocabulary of length and

P(w; |d) T ~TF(w; | d).
Thus, to implement a vector space model we set éiachnsion: of a document vector as
di = P(w; | d)- IDF(w;).

The inverse document frequency is defined as tharithm of the inverse of the probability of a keyrel over
the entire collectiorD,

IDF (w;) = —log (P (w; | D)).

4.2.2 Semantic Similarity Metric

Documentsd and gueriesg are represented by vectors of keyword probatsliteat are computed as was
explained in the previous section. Several distanegrics exist in the tf-idf representation thatnpute the
similarity between a docume@ vector and a query vectar. We rank documents by their similarity to the
guery image according to the cosine-distance méfhe cosine similarity metric expression is:

R S ad,
sun(q,d):lf — 21 — =
lel(%‘) ' lel(di)

4.2.3 Multiple Images Query Combination

The semantic similarity metric gives us the distabetween a single image query and the documeritgein
database. There are two major strategies of comtpimiultiple examples of a query: (1) merging tharegles

into a single query input and produce a single ré?ksubmit several queries and combine the rabksiously
each of these two types of combinations uses diftealgorithms. For ImageCLEF2007 we implemented a
simple and straight forward combination strategg submit one query for each example and combine the
similarity values from all individual queries:

—_— —

sim(ql,qg,qg,D) = {sim(a,D),sim(g,D),sim(g,D)}.



This is an OR operation while an AND operation vabbk achieved with a query vector that is the pcodd
all individual query image vectors. We return thp 1000 results.

4.3 Rank Combination

The text query and the image query are processdehéndently and are later combined by a simpleatine
combination. Previous work on this area has foursktaof good weights to combine text and image sank
Applying these weights we reach the expressiondbiatbines ranks:

CombinedRank; = 0.375 - (1000 — ImageRankPos; ) + 0.675 - (1000 — TeztGeoRankPos; ) .

The different metric spaces hold different simthafunctions, thus producing incompatible numeritaasures.
Thus, we used the document rank position (égageRankPos;) to compute the final rank. The produced
metric gives the importance of each documet the given query. This linear combination onbnsiders the
top 1000 documents of each rank. Documents beyaagosition are not considered.

5 Results and Discussion
We ran 5 experiments:

e Text: The Text part of the query only;
» TextNoGeo: The Text part of the query with geographic eleraeamoved;
* ImageOnly: The Image part of the query only;
» Geo: The geographic part of the image only; and
» Combination: A combination of the Text, ImageOnly and Geo runs.
Note the TextNoGeo, ImageOnly and Geo runs ar@gahal. Results are presented on Figure 3.

We can see that TextNoGeo results achieved thedmdts. Next was the Text results, however gligmnot a
significant difference (using the Wilcoxon SignedrR Test [6]). This was a bit surprising as one ldi@xpect
to improve results when you add location informatio the query and to the documents. We believettiwa
decrease in performance was due to the fact tina¢ spieries use the geographic part as inclusiexdusive.

\ \ \
Text |

TextNoGeo |

ImageOnly

Geo

Combination |
\ \

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Figure 3 — Retrieval results for the different type of analysis.

The Geo results were statistically significantlyremthan all the other results with a confidenc8@298%. This

is due to minimal information being used (generallljst of placenames). Only 26 of the 60 quermstained
geographic references. Across these geographitegube Geo method achieved an MAP of 0.062 cordpare
0.085 for TextNoGeo and 0.025 for ImageOnly. Irt facross these 26 queries there is no significéietrence
between Text, TextNoGeo, Combination and Geo methdtis shows that (for the geographic queries) the
geographic component of the query is extremely irt@uo.

Image results also achieved very low results, wtgdren the scope of the evaluation might seem a bit
surprising. This is related to the uses of the iasag illustrate keywords that are not obvious. &ample from
Figure 4 we can see that in some cases it is vfrgult to guess the query or how images shouldbmbined.



ey

Figure 4 — Image examples for query “people in SaRrancisco”.

Summing up all these problems that we faced onlesimigta-type evidences, together with unbalanced
combinations of the different types of evidences,faund that the final rank is almost an averagmditidual
ranks.

6 Conclusions and Future Work

Most of our work was done on the documents anabsisindexing part of the evaluation. However etéme
evident that our single combination strategy domscover all possible types of queries. In somesasages
should be combined with AND, others with OR openagi The same happened with text and geograpkic, e.
locations can be inclusive (“in San Francisco”egclusive (“outside Australia”). Moreover, some gea only
illustrate part of the query (“people in San Franoil’, Figure 4) and it is obviously difficult toadtify correct
results with only the visual part of the query.

All these lessons show that it is essential to mgéed use of the different algorithms by combinthgm
properly according to the query text. Moreover, thgery analysis must produce an accurate logical
combination of the different entities of the quéryachieve a good retrieval performance. In ouwnrfutvork we
would like to repeat the experiments describechis paper using a combination strategy based ofotiieal
structure of the query.
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