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Abstract

This paper presents a revised version of an unsupervised and knowledge-free morpheme
boundary detection algorithm based on letter successor variety (LSV) and a trie clas-
sifier [5]. Additionally a morphemic analysis based on contextual similarity provides
knowledge about relatedness of the found morphs. For the boundary detection the
challenge of increasing recall of found morphs while retaining a high precision is tack-
led by adding a compound splitter, iterating the LSV analysis and dividing the trie
classifier into two distinctly applied clasifiers. The result is a significantly improved
overall performance and a decreased reliance on corpus size. Further possible improve-
ments and analyses are discussed.
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1 Introduction

The algorithm presented in this paper1 is a revised version of the letter successor variety (LSV)
based algorithm [13, 12, 10] described and implemented previously [4, 5]. The additional compo-
nent of morpheme analysis is based on a prototypical implementation described in [7].

The morpheme segmentation algorithm attempts to find morpheme boundaries within word
forms. For a given input word form it results in a segmentation into morphs (as opposed to
morphemes). It is based on the assumption that any grammatical function is expressed with only
a small amount of different affixes. For example, plural is expressed with only five different morphs
in German -en, -s, -e, -er (and zero).

In essence, the algorithm measures the amount of various letters occuring after a given substring
with respect to some context of other words (in this case semantically similar ones), weighting
that value according to bi- and trigram probabilities and comparing the resulting score to a
threshold. Hence it is designed to handle concatenative morphology and it is likely to fail in
finding morpheme boundaries in languages with other types of morphology. The algorithm is not
rooted in any particular (linguistic) theory of morphology, especially since such theories tend to
omit the fact that morphemes, as their basic units of interest, are not as simply observable as
words. The knowledge about where a morph begins and ends is usually assumed to be given a
priori.

The present implementation of the morpheme boundary detection consists of three distinct
major parts: a compound splitter, a letter successor variety algorithm using contextual similarity
of word forms and a trie based machine learning step. Apart from the improved modularity, this
version differs from earlier implementations in several aspects. Due to the low performance of the

1A recent implementation of this algorithm is available at http://wortschatz.uni-leipzig.de/∼sbordag/



LSV based method in splitting longer words, in a pre-processing step a simple compund splitter
algorithm is applied. The LSV part is iterated to increase recall with only a moderate loss of
precision. The machine learning part (using a trie) is split into two parts, one with high precision
and a subsequent one with high recall.

According to an evaluation using the German Celex [1], each change improves the overall
performance slightly. Several possibilities of further improvements and analyses are discussed.
Any of the major three parts (compound splitter, LSV algorithm, trie classifier) of the described
algorithm can be replaced by or merged with a different algorithm, which should facilitate the
combination of this algorithm with others.

The morpheme analysis part is based on statistical co-occurrence of the found morphs and
subsequent contextual similarity and a basic rule learning algorithm. The rules are then used to
find related morphs where groups of related morphs represent a morpheme.

2 Letter Successor Variety

LSV is a measure of the amount of different letters encountered after (or before) a certain substring,
given a set of other strings as context. It is possible to use the entire word list as context for each
string and its substrings [12, 10]. Alternatively, only a specific set of words may be used as
context [5], if a method for the selection of relevant words is included. In order to use LSV to
find true morpheme boundaries, this set ideally consists only of relevant words that share at least
one grammatical feature with the input word. For example, if the input word is hurried, then
relevant words are past tense forms. It is obvious that in such a case the amount of different
letters encountered before the substring -ed is maximized.

As has been shown earlier [7], using the entire word list for morpheme boundary detection
(global LSV) is inferior to using a simulation of semantic similarity (contextual similarity based
on comparing statistically significant co-occurrences) of words to find the relevant ones (local LSV).
However, due to the power-law distribution of word frequencies, most words occur very rarely. This
makes it impossible to compute a proper representation of their usage and accordingly compare
such words for usage similarity. Hence, local LSV based morpheme boundary detection might
have a high precision, but is guaranteed to have a low recall.

Additionally, it is possible to first globally find a set of contextually similar word pairs and
then analyze their differences [18]. Whereas this method also appears to have high precision, its
recall is even lower than that of the LSV method.

2.1 Trie classifier

In order to increase the recall of the local LSV method, a machine learning method was proposed.
It is based on training a patricia compact trie (PCT) [17] with morpheme segmentations detected
by the local LSV methods. The trained trie can then be used to recursively split all words into
morphs, irrespective of their frequency.

Training the trie, as also depicted in Figure 1, is performed as follows: Each known morpheme
boundary is reformulated as a rule: The entire word is the input string, whereas the shorter half
of the word (according to the morpheme boundary) is the class to be learned. The trie learns
by adding nodes that represent letters of the word to be learned along with increasing the count
of the class for each letter (see Figure 1). If more than one morpheme boundary is given in
a word, then training is applied recursively, peeling off the outmost and shortest morphs first
(from right to left). Hence, the word mis-under-stand-ing results in the three training instances
misunderstanding -ing, misunderstand mis- and understand -stand.

Two distinct tries, a forward-trie and a backward-trie are used to separately learn suffixes
and affixes. The decision which trie to use for any given training instance is based on the length
of the morphs. The longer half of the word probably contains the stem, whereas the shorter half
is used as the class. In the case of the backward-trie, the word itself is reversed. Hence, in the
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Figure 1: Illustration of training a PCT and then using it to classify previously unseen words.

example above, the first newly learned node for misunderstanding -ing is the node containing g
with the class -ing and a frequency of 1 in the backward-trie.

The classification is applied recursively as well: For an input string both the backward and
forward tries are used to obtain the most probable class. This results up to two identified morpheme
boundaries and hence three parts of the original words. Each part is the subject to the same
mechanism recursively until no further classifications can be found.

In the Morpho Challenge 2005 [15], both the local LSV and a subsequent application of the
trie learning were submitted separately. As expected, the LSV method had a high precision, but
extremely low recall (only 1.9% for Finnish, for example). The application of the trie increased
recall, but also lowered precision. The precision decreased due to overgeneralization, which occurs
mostly because the algorithm receives only positive examples. Even for a well-represented input
word, the contextually similar words do not share grammatical information with it. Therefore, a
high-frequent input word, for example matter, where the LSV algorithm did not find any morpheme
boundaries, cannot be taken as an example of a word where -er is not a suffix.

3 Refined Implementation

The above mentioned weaknesses of the LSV + trie combination hold uniformly over all tested
languages. The following modifications attempt to address some of these weaknesses, while trying
to avoid language-specific rules or thresholds. The new version contains several changes: a recur-
sive compound identifier, an iteration of the LSV algorithm and splitting the trie classification
into two steps.

3.1 Identifying compounds

The LSV algorithm is good at finding affixes, because the set of contextually similar words often
contains words with the same affix. However, words contextually similar to a compound do not
necessarily contain other compounds, or compounds sharing parts with the input word. Partic-
ularly for semantically opaque compounds (i.e. the meaning of the parts is not related to the
meaning of the compound) this is guaranteed to be the case. Therefore it is mostly impossible
for the LSV algorithm to find morpheme boundaries between the parts of a compound, unless the
compound contains a very productive part, such as teacher (Mathelehrer, Physiklehrer, ...).



Since only a small sample set is sufficient for the trie to correctly classify most compounds
later, it is not necessary to find all compounds at this point. The following simple mechanism
tests whether a certain partition of the input word at the position i is a possible correct compound
division:

testDiv(word,i)
minl = 4
if ( leftPart.length > minl
and rightPart.length > minl
and freq(leftPart) > 20
and freq(rightPart) > 20 )
leftPart = findComp(leftPart)
rightPart = findComp(rightPart)
return leftPart - rightPart

else
return null

Assuming testDiv(word, i) also returned the sum of the frequencies of all parts, it is then pos-
sible to take the one partition of the input word that maximizes the frequency of the participating
parts. In other words, this mechanism recursively divides a long word into shorter units. If both
shorter units exist, their length is at least 4 and frequency no lower than 20, then that partition is
a candidate and the one with the highest overall score is taken as a (probably) valid partition of
the compound. As Table 1 shows, the algorithm (as expected) has a high precision, but very low
recall. In fact, it may have even lower recall for other languages. It also shows that training the
trie classifier with this data directly indeed increases recall, but also incurs a rather strong loss
in precision. It can be assumed that if compounding exists in a language, then this algorithm in
combination with the trie classifier helps to find the parts of a large part of compounds. However,
a more elaborate implementation is desirable at this point, especially since this algorithm is unable
to partition any compounds containing linking elements.

3.2 Iterated LSV algorithm

For the LSV algorithm, the ideal case is achieved when all contextually similar words to a given
input word carry the same grammatical information. However, due to data sparseness, compounds,
overly high co-occurrence frequency and other factors, this ideal state is achieved only for few
words. In many cases only a few contextually similar words actually share grammatical information
with the input word. Running the LSV algorithm may thus find some morpheme boundaries
correctly and not find many others. It is important that in tis setup (using contextually similar
words as context) it nearly never finds from morpheme boundaries. Table 1 shows that the first run
of the LSV algorithm found very few (but very precisely) morpheme boundaries. The boundaries
that were found are based on the ideal cases where most contextually similar words indeed share
grammatical information with the input word.

In order to facilitate the boundary identification for some of the remaining words, it is pos-
sible to iterate the LSV algorithm by incorporating knowledge produced in earlier iterations. A
straightforward way of doing this is adding an additional factor to the computation of the LSV
score: Given a substring -ly of the input word clearly, if the same substring was identified as a
morph in any (or all) of the contextually similar words, then increase the LSV score. However,
some very frequent words such as was or do-es are contextually similar to a large amount of words,
which in turn means that these frequent words might influence the analyses of many other words
adversely, such as James to Jam-es. Therefore the increase of the LSV score has to be normalized
against the number of words with the same substring and the number of contextually similar
words.

To recall from [7], the formula to compute the left LSV score for the word w at the position i
(the formula for the right score is likewise) is:



R P F
compounds 10.30 88.33 18.44
lsv iter 1 17.88 88.55 29.76
lsv iter 3 23.96 84.34 37.31
saveTrie 31.09 82.69 45.19

Table 1: Iterating the LSV algorithm and applying the modified trie classifier increases recall while
keeping precision at high levels.

lsvl(w, i) = plsvl(w, i) · fwl(w, i) · ib(w, i) (1)

This takes anomalies such as phonemes represented my several letters into account in a straight-
forward way. It assumes that plsvl(w, i) is the plain number of different letters found to the right
of the substring between the beginning of the word w and the position i. fwl(w, i) is the bi- or
trigram based frequency weight of the substring, whereas ib(w, i) is the inverse bigram weight. The
previously acquired knowledge about morpheme boundaries can be used to compute prevl(w, i) as
the number of previously identified morphs pfl(w, i) divided by 2 and multiplied with the quotient
of the number of words containing the same substring subfl(w, i) and the size of the pruned list
of contextually similar words prune:

prevl(w, i) = pfl(w, i) · 0.5 · (subfl(w, i)/prune) (2)

To prevent the previous analyses from overriding the analysis of the present word, the new
LSV score is computed as a multiplication of the LSV score with the previous knowledge, which
is at most as high as lsvl(w, i) -1:

lsv2l(w, i) = min(lsvl(w, i) − 1, prevl(w, i)) · lsvl(w, i) (3)

The same is reversely applied to the right LSV score lsvr(w, i) and both lsvl(w, i) and lsvr(w, i)
are again summed to produce the final lsv2(w, i) and compare it to a threshold (for example 6)
to obtain a decision whether the position i in the word w is a morpheme boundary.

For example, the analyses of the most similar words of clear-ly might result in the following
morpheme boundaries: closely, white, great-ly, legal-ly, clear, linear-ly, really, weakly, .... Hence,
for the position 5 (which corresponds to -ly) in clearly, the amount of previously identified morphs
pfr(w, i) is 3. The number of such substrings subfl(w, i) is 5 and the amount of contextually
similar words was 150. Hence, prevr(clearly, 5) = 3 · 0.5 · (5/150) = 0.05 and thus the absolute
increase of the LSV score is only 0.05 in this case.

As Table 1 shows, there are, however, many cases where the influence was sufficiently strong
for the resulting LSV score to reach the threshold. The table also shows that iterating the LSV
algorithm increases Recall. However, it also incurs a certain Precision loss associated with words
such as James that happen to be contextually similar to many other words where -es is really a
suffix (and also was identified as such).

3.3 Split trie classification

Irrespective of its source, the obtained knowledge (i.e. from a simple compounds identifier, the
original LSV algorithm, or the improved LSV algorithm) is used to train the trie classifier and
then apply the trained classifier to identify more morpheme boundaries. In the original version the
trie produces a most probable class for an input string simply by searching for the deepest node
in the trie. Since no further checking was introduced, decisions were made without considering
further context in many cases. For example, the LSV algorithm found the morpheme boundary
drama-tic. When analyzing plas-tic, the trie classifier would first find t as the deepest matching
node. Since that node has only a single class stored with the frequency count of 1, the classifier



R P F
compounds 27.93 66.45 39.33
lsv iter 1 57.66 71.00 63.64
lsv iter 3 62.72 68.96 65.69
saveTrie 66.10 68.92 67.48

Table 2: Applying the unmodified classifier increases recall by a large amount, but also lowers
precision considerably.

would decide in favor of -tic being a morph with a maximal value of 1. In other words, no further
context from the word is considered and the decision is made on grounds of only a single training
instance.

However, simply forbidding all decisions that do not take a certain amount of the word into
account, would result in extremely low recall, such as 31% for German in Table 1. The trie
classification is thus split into two parts, a modified trie classifier and subsequently an original
unmodified trie classifier. The modified trie classifier returns a decision only if all of the following
conditions are met:

• The deepest matching node must be at least two letters deeper than the class to be returned.

• The matching node must have a minimal distance of three from the root of the trie.

• The total sum of the frequency of all classes stored in the deepest matching node must be
larger than 5.

Table 1 shows that applying the modified trie classifier saveTrie increases recall by 8% while
reducing precision by less than 2%. Table 2 additionally shows that the subsequent application
of the original trie classifier further increases recall to a total of 66% while lowering precision to
roughly 69%. The table also shows that applying the original trie classifier directly on any of the
LSV iterations or even the compound identification algorithm results in lower overall performance.

3.4 Assessing the improvements

In order to measure the influence of the various improvements proposed, a number of experiments
were run on the 3 million sentences German corpus available for the Morpho Challenge 2007. The
results of each improvement were measured and are depicted in Table 1. Additionally, the original
trie classifier was applied to the results of each modification as depicted in Table 2.

These evaluations show that ultimately, the local LSV implementation could be significantly
improved. As such, it reaches similar performance as reported in [5] despite being run on a
significantly smaller corpus (3 million sentences vs. 11 million). On the other hand, the relatively
small improvements achieved indicate that a significantly better morpheme boundary detection
may only be achieved by combining this method with an entirely different approach, possibly one
combining the various hitherto described approaches.

The results of the Morpho Challenge 2007 also show that currently the MDL based approaches
to morpheme boundary detection [8, 2] mostly outperform the LSV based approach, especially
in the more important Information Retrieval task evaluation. The most porbable reason is that
the LSV algorithm is good at detecting boundaries within high-frequent words, whereas the MDL
based algorithms are better at detecting boundaries in longer words. Longer words tend to be
less frequent and thus more important for Information Retrieval as opposed to the more frequent
words.

A manual analysis of the resulting word list revealed several possible improvements:

• An algorithm specifically designed to identify compounds by means of finding both parts of
a word as single words in the same sentence (reformulations) might help to find the linking
elements that currently remain undetected, such as in mitglieds-laend-er.



• In a post-processing step, an algorithm based on affix signatures such as proposed by [11],
might find errors or generalize known morpheme boundaries better than the trie classifiers
and ultimately avoid mistakes such as in-fra-struktur.

• A global morpheme vocabulary control mechanism, such as the MDL [9, 14, 8, 2] might pro-
vide further evidence for or against certain morpheme boundaries and subsequently inhibit
mistakes such as schwa-ech-er.

However, apart from the morpheme boundary detection, a clustering algorithm is needed that
would cluster various found morphs according to their grammatical function. The contextual
similarity on which the local LSV algorithm is based possibly already provides the corresponding
information. Once the morpheme boundary detection achieves a sufficient quality, the contextually
similar words of an input word could be taken as probably carrying a suffix with the same function,
despite the suffix having a different form, such as the plural endings in German -en, -s, -e, -er. The
alternation identification algorithm reported earlier [7] shows that such paradigmatic operations
are principially possible on the morphological level (using only knowledge-free methods).

4 Morpheme analysis

Under the assumption that morpheme boundaries were correctly detected, it is possible to treat
every single morph separately (similarly to a word) in a statistical co-occurrence analysis. This
allows computing contextual similarity between morphs, instead of words. The following algorithm
uses this procedure to find rules that relate various morphs to each other and then applies these
rules to produce morphemic analyses of the words that originally occurred in the corpus:

for each morph m
for each cont. similar morph s of m
if LD_Similar(s,m)
r = makeRule(s,m)
store(r->s,m)

for each word w
for each morph m of w
if in_store(m)
sig = createSignature(m)
write sig
else
write m

For each morph, the function LD Similar(s,m) filters from the contextually most similar
morphs those that differ only minimally, based on Levenshtein Distance (LD) [16] and word
lengths. This step could be replaced by a more elaborate clustering mechanism. Pairs with short
morphs are only accepted if LD = 1, pairs with longer morphs may have a larger distance. The
function makeRule(s,m) creates a hypothetical rule that explains the difference between two con-
textually similar morphs. For example, the morphs ion and ions have a Levenshtein Distance of
1 so the function creates a rule -s (or n -ns to take more context into account) which says that s
can be added to derive the second morph from the first one. This rule is then stored and associated
with the pair of morphs that produced it. This allows deciding between probably correct (if many
morph pairs are associated with it) and incorrect rules later.

The second part of the morphemic analysis then applies the acquired knowledge to the original
word list. The goal is an analysis of the morphemic structure of all words, where a morpheme
is represented by all its allomorphs. In the first step, each word is thus split into its morphs,
according to the LSV and trie based algorithm described above. In the next step, all related
morphs as stored by the first part of the morphemic analysis are retrieved for each morph of the



input word. The function createSignature(m) produces a representation of each morpheme. For
example, the original word fracturing was found to have two morphs: fractur and ing. The first
morph is related to two morphs fracture and fractures. The second morph is related to inag, ingu
and iong. This results in the following analysis:

fracturing
> fractur.fracture.fractures
> inag.ing.ingu.iong

It is noteworthy that this algorithm cannot distinguish between various meanings of a single
morph. In English, the suffix -s may be a plural marker if used with a noun or the third person
singular marker if used with a verb. Given the extremely high frequency of some these ambiguous
morphs, the number of (at least partially) wrong analyses produced by the algorithm is likely
to be high. Further research may evolve around using an unsupervised POS tag inducer [3] to
distinguish between different word classes or using a word sense induction algorithm [6] applied
to morphs in order to induce the various meanings.

The results from the Morpho Challenge 2007 are surprising in that the morpheme analysis did
not yield any significant changes to the evaluation results. This is despite the fact that on average
nearly every single morpheme is represented by several morphs. After exploring the word lists for
German, the most probable reasons for this appear to be any of the following:

• During construction of the rules no context is taken into account. This often results in
morphs to be found as correlated despite them just incidentally looking similar and sharing
some contextual similarity. Hence, benefit of the analysis and error might be cancelling each
other out.

• Many of the morphs representing a morpheme are, in fact, only artifacts of the mistakes of
the morpheme boundary detection algorithm. Thus, the morpheme analysis appears to be
strongly influenced by the quality of the detected boundaries.

• When determing the validity of a rule, the amount of morph pairs is taken into account, but
not their frequency. This results in many extremely rare morphs (without any impact on
the evaluation) to be merged correctly into morphemes, but many very frequent ones (with
actual impact on the evaluation) to be missed.

5 Conclusions

Whereas the changes introduced to the morpheme boundary detection improve the overall per-
formance, they also add several more parameters to the entire process. The paramaters do not
have to be set specifically for each language, but a large number of parameters often indicates
the possibility of overfitting. Yet, despite the improvements and the possibility of overfitting, the
performance of knowledge-free morpheme boundary detection is far below what knowledge-rich
systems (i.e. rule-based) achieve. Nevertheless, the significant improvements achieved in the In-
formation Retrieval evaluation task in the Morpho Challenge 2007 sufficiently demonstrate the
usefulness of such algorithms even in the current state.

Compared to other knowledge-free morpheme boundary detection algorithms, the version of
the LSV algorithm described in this paper produces good results. The modular design of this
algorithm allows for a better interoperability with other algorithms. For example, the significant
performance boost achieved by adding a compound splitter indicates that combining various un-
derlying hypotheses is more likely to yield significant improvements than changes to any single
method. Also, given that the most simple combination of algorithms in the form of a voting
algorithm in the Morpho Challenge 2005 demonstrated an extraordinary increase in performance,
it is reasonable to assume that more direct combinations should perform even better.

The noise produced during the morpheme boundary detection, the missing method for dis-
tinguishing ambiguous affixes and other factors resulted in the subsequent morphemic analysis



to produce apparently insignificant results. It becomes obvious that adding further algorithmic
solutions representing other hypotheses about morpheme boundaries, as well as a more elaborate
morphemic analysis, should be a significant step towards a true morphemic analysis similarily to
what can be done manually.
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[10] Hervé Déjean. Morphemes as necessary concept for structures discovery from untagged cor-
pora. In D.M.W. Powers, editor, Workshop on Paradigms and Grounding in Natural Language
Learning at NeMLaP3/CoNLL98, pages 295–299, Adelaide, Australia, January 1998.

[11] John Goldsmith. Unsupervised learning of the morphology of a natural language. Computa-
tional Linguistics, 27(2):153–198, 2001.

[12] Margaret A. Hafer and Stephen F. Weiss. Word segmentation by letter successor varieties.
Information Storage and Retrieval, 10:371–385, 1974.

[13] Zellig S. Harris. From phonemes to morphemes. Language, 31(2):190–222, 1955.

[14] Dimitar Kazakov. Unsupervised learning of word segmentation rules with genetic algorithms
and inductive logic programming. Machine Learning, 43:121–162, April-May 2001.



[15] Mikko Kurimo, Mathias Creutz, Matti Varjokallio, Ebru Arisoy, and Murat Saraclar. Un-
supervised segmentation of words into morphemes - Challenge 2005 An Introduction and
Evaluation Report. Proceedings of the PASCAL Challenges Workshop on Unsupervised Seg-
mentation of Words into Morphemes, Venice, Italy, 2006.

[16] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and rever-
sals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

[17] David R. Morrison. Patricia - practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM, 15(4):514–534, October 1968.

[18] Patrick Schone and Daniel Jurafsky. Knowledge-free induction of inflectional morphologies.
In Proceedings of the 2nd Annual Meeting of the North American Chapter of Association for
Computational Linguistics, Pittsburgh, PA, USA, June 2001.


