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Abstract. This paper presents a pattern-based question answering system for 
the Romanian-Romanian task of the Multiple Language Question Answering 
(QA@CLEF) track of the CLEF 2007 campaign. We show that working with a 
good Boolean searching engine and using question type driven answer 
extraction heuristics, one can achieve acceptable results (30% overall accuracy) 
using simple, pattern-based techniques. Furthermore, we will present an answer 
extraction algorithm that aims at finding the correct answer irrespective of the 
question and answer type. 
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1   Introduction 

Question Answering (QA) is a long-standing goal of Natural Language Processing 
(NLP) field of Artificial Intelligence. Currently it is viewed as an almost 
indispensable tool of Information Extraction (IE) with which one can seek the exact 
answers to the natural language questions that potentially need immediate attention 
using a large collection of documents. QA shifted the focus from Information 
Retrieval (IR), which gathers user’s documents of interest in response to a specific 
query to IE and answer searching and extraction. This way, users are relieved of 
formulating complex queries to retrieve the documents in which they will have to 
look the answer for themselves. This last operation can be time consuming and 
because of it, most of the time, users of simple IR engines easily give up the search if 
they cannot find the answer in the first few passages of the top (at most 10) document 
hits of the engine. 

In this context, QA engines offer the much expected way out for the users: 
formulate the queries in natural language and offer an answer or a list of answers from 
the retrieved list of candidate documents. To do this, the typical QA system 
implements the following components: 

• a question analysis component which usually identifies the type of the 
question (factoid, definition, enumeration, etc.) and the type of the expected 
answer (specifically for factoid questions: person, location, date, 
organization, etc.); 



• a paragraph extraction and ranking component which is responsible for 
selection of those paragraphs that may contain the sought answer to the 
user’s query extracted from the documents that were returned by the text 
searching engine; 

• an answer extraction module which scans the list of best ranked paragraphs 
in order to retrieve the complete, minimal and syntactically well-formed 
string(s) that constitute(s) the answer(s) to the user’s natural language query. 

All of the three components above are by no means easy to implement nor have 
they already been successfully implemented by the hard to meet standards of the 
human evaluation. To solve the QA problem, one has a multitude of natural language 
“problems” to deal with. Some of these such as part of speech tagging or syntactic 
analysis received satisfactory algorithmic solutions but others, ranging mainly in the 
semantic realm of natural language, may still receive better solutions to meet human 
level acceptance. Out of the latter problems, meaning equivalence and textual 
entailment between different natural language expressions is of outmost importance to 
QA. Consider for instance the question “When did Elvis Presley die?” and the text 
snippet “The King of Rock & Roll died on August 16, 1977”. If only the QA algorithm 
could “know” that the “King of Rock & Roll” is a denomination of Elvis Presley, it 
could answer the question. 

Current research in QA acknowledges these problems and it is no wonder that 
modern QA systems are almost incredibly complex comprising modules that deal 
with different levels of natural language representations. The semantic processing is 
playing a central role in answer determination. Systems such as FALCON ([3]), 
COGEX ([7]), PowerAnswer ([2,6]), LaSIE ([1]) and QUARK ([11]) use some form 
of logical representation of both question and candidate answers so as to be able to 
logically prove that the selected answers can be justified in terms of the question 
premises. The most recently published results on the QA track from the Text 
REtrieval Conference (TREC)1, and also the results published in the previous years, 
show that QA systems using abduction as a form of validating answers are the best. 
For instance, PowerAnswer 3 achieved an accuracy of 0.578 for factoid questions at 
TREC 2006 ([6]) and PowerAnswer 2 scored 0.713 at TREC 2005 ([10]) for the same 
type of questions. 

Although semantic processing is the next logical step in improving QA systems 
(and indeed any NLP system), occasionally QA may get away without it. For 
instance, LASSO ([8]) is the QA system that preceded FALCON and PowerAnswer 
and the answer was extracted using the parse tree of the candidate sentence and 
different heuristics to match keywords from the questions with those of the sentence. 
We call these types of QA systems, pattern or template-based QA systems. 

In this paper we will describe a pattern-based QA system, which is a combination 
of two separate QA systems that use the same text search engine and different 
question analysis and answer extraction modules. Our system (denoted with the 
“ICIA” indicative in the runs we have submitted), participated in the Romanian QA 
task at the QA@CLEF 2007 where it obtained a 30% global accuracy. In what 
follows, we will give a description of each QA system along with their combination 

                                                            
1 http://trec.nist.gov/pubs/trec15/t15_proceedings.html 



and we will also describe our text searching engine that is a Boolean query engine 
based on the open source Apache Lucene2 full text searching engine. 

2   The Document Collection 

The document collection was composed of 43486 Romanian language documents 
from Wikipedia3. The files provided for the competition were available both in HTML 
and XML formats (http://ilps.science.uva.nl/WikiXML/). We chose to use the XML 
files due to their well-formed and valid properties. As the original XML contained a 
lot of pictures, tables and other elements which were not relevant for the QA task, we 
transformed the files, using a XSLT schema, into XMLs preserving only the relevant 
information needed for IR and IE, organized and structured in such a way so as to be 
easily exploited both by Lucene and the IE tools we developed. The new files 
obtained have the following structure: 

<wiki pgname="…" …> 
 <title>…</title> 
 <article> 
  <title>…</title> 
  <overview> <p>…</p> … <p>…</p> </overview> 
  <section> <title>…</title> 
 <content> <p>…</p> … <p>…</p> </content> 
 </section> 
 </article> 
 <clinks> 
 <cat pageid = “…”> … </cat> 
 … 
 <cat pageid = “…”> … </cat> 
 </clinks> 
</wiki> 

Under the clinks tag we put the articles related to the current one. The titles and 
contents from each document in the collection were preprocessed so as to obtain 
sentence and word splitting, part of speech tagging (POS tagging) and lemmatisation 
using the Tokenizing, Tagging and Lemmatizing free running text module (TTL4, 
[4]). TTL also incorporates a regular expression based named entity recognizer but 
due to its inceptive status, it has not been used. Thus, we rely on the output of the part 
of speech tagger for rough entity recognition: numeral (integer or real) and proper 
names, which are likely candidates for factoid questions. 

After the TTL run, we parsed the entire document collection using our link 
analyser LexPar ([5]). The link analyser, or linker, does a dependency-like analysis of 
every sentence of every document in the collection. This dependency-like analysis is 
called a linkage and it is produced with a link filter adaptation (LexPar) of the Lexical 
Attraction Models (LAM) of Deniz Yuret ([12]). In principle, a LAM tries to assign 
the most likely undirected, acyclic, planar and connected graph to one sentence given 
that the vertexes of this graph are the words of the sentence and its edges are the 
dependency relations that hold between the matched words pairs. To exemplify the 

                                                            
2 http://lucene.apache.org/ 
3 http://ro.wikipedia.org/ 
4 Also available online at http://nlp.racai.ro/ for English and Romanian. 



output of LexPar, the linkage of the sentence “The King of Rock & Roll died on 
August 16, 1977” is depicted in Figure 1 (punctuation is not included in the linkage):  

 
Fig. 1. The result of LexPar on one sentence. 

In this figure, we can see that the linker does not follow the usual dependency rules in 
that this analysis makes its own assumptions about the structure of the dependency 
graph. For instance, we can see that the preposition “on” is not linked to the verb 
“died” as it should be but instead, the head of the noun phrase “August” is the one 
directly linked to the verb. This is because the linker computes the scores for the 
content words links using association scores so as to be able to detect correct pairings 
and uses rules of pairing for links involving functional words so that these kinds of 
links are consistent over all analyses5. For example, a determiner will always be 
attached to a noun subject to agreement rules, other attachments being forbidden (for 
a detailed explanation of a LAM the reader is referred to [12, 4]). 

3   Document Indexing and Searching 

The RACAI QA system uses a C# port of the Apache Lucene full-text searching 
engine. Lucene is a Java-based open source toolkit for text indexing and searching. It 
is one of the projects of Apache Jakarta and is licensed under the Apache License. 

In Lucene, everything is a document. A Lucene document resembles to a row in a 
relational database and it supports several fields (rows). The type of index used in 
Lucene and other full-text searching engines is an “inverted index” – every term in 
the index is associated with a frequency and is mapped to the documents in which it 
occurred. The index allows Lucene to quickly locate every document associated with 
a given set of search terms. An important feature of Lucene is the flexibility of the 
query syntax. We used only a subset of the types of queries supported by Lucene: 
term, phrase, field-specific and Boolean queries. Field-specific queries can be used to 
target specific fields in the document index and Boolean queries are used to group the 
results of the individual queries. 

The score of query Q for document D is based on the document term frequency 
and inverse document frequency expression: 

∑
∩∈

⋅⋅⋅⋅=
DQt

DtnormtidfttfQqnormDQcoordDQscore ),()()()(),(),( 2  (1) 

− coord(Q,D) is a factor based on how many of the query terms are found in the 
specified document (a ratio between the terms found in the document and the 
number of terms in the query) 

                                                            
5 When more than one rule is applicable at one given time, association scores are used as in the 

case of content words to select one pairing. 



− qnorm(q) is a normalizing factor used to make scores between different queries 
comparable (it is the sum of the squared weights of each of the query terms and it 
does not affect document ranking since all document weights are multiplied by the 
same factor); 

− tf(t in d) is the term frequency in a given document; 
− idf(t) is the inverse document frequency; 
− norm(t,d) is a normalization factor associated to a specific document (it is a value 

computed at index time using the length of the document and the weight given to 
each field). 

3.1   Indexing 

Although the Lucene toolkit comes with several already-made tokenizers, stemmers 
and stop word filters, we preferred to deploy a custom indexing scheme using our 
own annotated resources. There were considerable improvements when we used the 
Romanian tokenizer instead of Lucene’s default tokenizer because most of the words 
with hyphen and the abbreviations were handled in a consistent manner. Usually 
stemming improves the recall to an IR system. We used lemmatization backed by 
POS-tagging – in most of the cases lemma disambiguates the part of the speech of a 
word (in Romanian). Instead of filtering the index terms using a stop words list we 
used the information from POS-tagging to keep only the content words (nouns, main 
verbs, adjectives, adverbs and numerals). We used the sentence and chunk annotation 
to insert phrase boundaries into our term index; a phrase query cannot match across 
different chunks or sentences. 

In our implementation every document has different fields for the surface form of 
the words and their corresponding lemmas. This kind of distinction applies to titles 
and document text resulting in four different index fields: title word form (title), 
title lemma (ltitle), document word form (text) and document lemma (ltext). 

Table 1. Example of indexed terms for the sentence “Din originea lingvistică se poate 
observa caracterul istoric al ideii de logică” (“From the linguistic origin one can notice a 

historical feature for the concept of logic.”). 

Word Lemma POS Chunk Word form field Lemma field 
Din Din Spsa Pp#1 
originea origine Ncfsry Pp#1,Np#1 
lingvistică lingvistic Afpfsrn Pp#1,Np#1,Ap#1 

din originea 
lingvistică 

origine 
lingvistic 

se Sine Px3--a--------w Vp#1 
poate Putea Vmip3s Vp#1 
observa observa Vmnp Vp#1 se poate observa putea observa 
caracterul caracter Ncmsry Np#2 
istoric Istoric Afpms-n Np#2,Ap#2 
al Al Tsms Np#2 
ideii Idée Ncfsoy Np#2 

caracterul istoric al 
ideii 

caracter istoric 
idee 

de De Spsa Pp#2 
logică Logică Ncfsrn Pp#2,Np#3 de logică logică 
. . PERIOD    



3.2   Searching 

To acquire better precision in ranking the documents and their content we used two 
indexes: (i) one for the documents (43486 documents, 694467 terms) and (ii) one for 
the sections of the documents (90819 sections, 700651 terms). 

Given a Boolean query with several conjunctive clauses, the system will first try to 
match all of the query clauses against the document index. If the search does not have 
a result, the system will recursively try to match n - 1 of the conjunctive clauses until 
the query returns at least one result from the document index. The returned documents 
from the conjunctive Boolean query are used to select the corresponding sections in 
which the query terms occur. The sections are ranked using a query with clauses of 
the maximal conjunctive Boolean. The clauses from this new query are joined with 
the disjunctive operator. The ranking is made against the sections index. For instance, 
for the query in Figure 2, in the first step the system tries to match all the 26 query 
clauses, but after a few recursive iterations, the maximal query has only 15 matches. 
The sections from the matched documents are ranked using the maximal query, this 
time using the operation of disjunction. 
 
Original 
query: 

ltitle:"serial Twin Peaks" AND ltext:"serial Twin Peaks" AND ltitle:"Twin Peaks" AND 
ltext:"Twin Peaks" AND ltitle:"serial Twin" AND ltext:"serial Twin" AND ltitle:Peaks 
AND ltext:Peaks AND ltext:crea AND ltitle:serial AND ltext:serial AND ltitle:Twin AND 
ltext:Twin AND title:"serialul twin peaks" AND text:"serialul twin peaks" AND title:"twin 
peaks" AND text:"twin peaks" AND title:"serialul twin" AND text:"serialul twin" AND 
title:peaks AND text:peaks AND text:creat AND title:serialul AND text:serialul AND 
title:twin AND text:twin 

Maximal 
query: 

ltitle:"Twin Peaks" AND ltext:"Twin Peaks" AND ltitle:Peaks AND ltext:Peaks AND 
ltext:crea AND ltext:serial AND ltitle:Twin AND ltext:Twin AND title:"twin peaks" 
AND text:"twin peaks" AND title:peaks AND text:peaks AND text:serialul AND 
title:twin AND text:twin 

Results: 

 

Fig. 1. Example of a query. 



4   QA System A 

In the IR phase, this system generates queries for every question given which are used 
to interrogate Lucene. As previously described, for each question the search engine 
returns a list of snippets in a descent order according to their relevance regarding the 
provided query. In the IE stage, we first identify the type of the answer required by 
each question using a Maximum Entropy approach. Based on the answer types and 
the document and paragraph scores provided by Lucene, the most probable answers 
are then extracted in a manner that will be described below. 

4.1   Query Generation 

As previously mentioned, in order to interrogate the search engine for relevant 
snippets we need to construct a query for each question. The query directly influences 
the precision and the recall of the engine. Although we primarily aim for a high recall, 
a good precision will decisively influence the IE phase, as the top outputs are those 
with highest matching scores. For the current problem, we considered the recall to be 
the percentage of the questions for which the engine returns good snippets (snippets 
that contain correct answers), from the total number of questions that can be 
answered, and the precision to be the proportion of good snippets from those that 
have been returned as first ranked. 

For generating the queries, the A System uses the content words found in the 
questions, the noun phrases formed by them and all the subparts of the noun phrases 
that start with a content word. All these are searched in lemma and word forms both 
in the title and the text fields of the indexed documents. The query is finally obtained 
by concatenated all the terms with the logical operator AND (the whitespace separator 
between terms has AND semantics). As an example, for the question “Cu ce identifică 
panteismul divinitatea?” (“What does Pantheism identify divinity with?”), the 
generated query is: 

 
ltitle:"panteism divinitate" ltext:"panteism divinitate" 
ltext:identifica ltitle:divinitate ltext:divinitate ltitle:panteism 
ltext:panteism title:"panteismul divinitatea" text:"panteismul 
divinitatea" text:identifică title:divinitatea text:divinitatea 
title:panteismul text:panteismul 

 
As mentioned in section 3, the search engine was programmed to return the 

snippets that contain the majority of the terms. One should know that in the process of 
query generation we did not take into account those verbs which can be auxiliaries 
(ex.: fi – be, avea – have). Also, we have to mention that all questions had been 
previously tokenized, tagged and chunked. The following picture shows the output of 
Lucene for the previously generated query. 
 



 
Fig. 2. Lucene output for the example query. 

The queries should have been enriched with synonyms extracted from the 
WordNet lexical ontology, but our tests revealed that, for the given questions, this did 
not improve the results. This seemed very strange, but we discovered that the reason 
for this lies in the fact that the answers contained almost all the content words found 
in the questions. So, expanding the queries with synonyms led to poorer results as a 
consequence of the noise introduced in this way. 

4.2   Question Type Classification 

For each question, it is necessary to identify the type of the answer one should 
search for, meaning that a question needs to be classified with respect to its answer 
type. In order to recognize the type of the answer, we used a Maximum Entropy 
approach. Extensively used in NLP for different problems like sentence boundary 
detection, tagging or text categorization [9], the Maximum Entropy framework is well 
suited for our task since it can combine diverse forms of contextual information in a 
principled manner. It is a machine learning technique, originally developed for 
statistical physics, used for the analysis of the available information in order to 
determine a unique probability distribution. Similar to any statistical modeling 
method, it relies on empirical data sample that gives, for some known sets of input, a 
certain output. The sample is analyzed and a model is created, containing all the rules 
that could be inferred from the data. The model is then used to predict the output, 
when supplied with new sets of input that are not in the sample data. The maximum 
entropy method constructs a model that takes into account all the facts available in the 
sample data but otherwise preserves as much uncertainty as possible. 

Our problem may be formulated as any classification problem: finding the 
distribution probability p, such that p(a|b) is the probability of class a given the 
context b. In our case, the context b is formed by certain features extracted for every 
question. We took into account features like: the first WH word (cine - who, unde - 
where, când - when, care - which, ce - what, cum - how, cât - how many), the 
existence of other words before the WH word, the existence of certain verbs at the 
start of the sentence (like numi – name), the existence of a word denoting 
measurement units, the existence of a word denoting temporal units, the number of 
the first noun, the part of speech of the first content word (noun, verb or numeral), the 



existence of the verb “to be” as the first verb, the existence of at least two non-
auxiliary verbs, the existence of a proper noun as the first noun or not, the punctuation 
mark at the end of the question if different from question mark. For the question given 
as an example above, the features extracted are: “ce”, “firstVerbNonDef” and “n” 
while for a question like “Numiţi trei autori americani ai căror opere au fost 
influenţate de filozofia existenţială.” (“Name three American writers whose work was 
influenced by the existential philosophy.”), the features would be: “firstIsVerb”, 
“numi”, “Number”, “firstNounIsPlural”, “firstVerbNonDef”, “multiVerb” and “.”. 

We manually identified the type of answers for 500 questions, and each of the 
answer type, along with the features extracted, was used for training. It is clear that 
we did not had enough examples in order to reliably specify p(a|b) for all (a, b) pairs 
and we needed a method which makes use of the partial evidence to find the best 
estimation for the distribution p. We took into consideration 8 classes meaning that 
we might identify 8 types of possible answers: temporal (TMP), time interval (ITMP), 
definition (DEF), measure (MES), list (LST), location (LOC), names (N) and explanation 
(WHY). As Ratnaparki showed in [9], this is the typical situation when a ME approach 
can be employed. The literature describes in detail the mathematical and statistical 
principles behind this method and we will not further detail them here. 

The classifier was tested only on the training data and the questions given for the 
competition, and, for latter data, its precision was 99.5%, which means that 199 
questions from 200 were correctly classified with respect to their type answer. 

4.3   Answering the Questions 

The determination of the right type of the answer is very helpful in adopting a correct 
strategy for finding it in the set of snippets returned by the search engine. Among the 
types we took into account, we identified two as the most problematic: the definitions 
and the lists. Due to the small amount of time, the A System focused on finding the 
answers only for those questions that were categorized as requiring definitions as 
answers. Usually the answer of a question is only several words length but in the case 
of a definition, a whole sentence may be what we are looking for. The document and 
section scores provided by Lucene are very important as they provide the strongest 
evidence regarding the existence of possible answers in the returned snippets. Another 
important role in finding the answer, no matter the type of the questions, is played by 
the focus of the question. For the DEF questions in Romanian, we noticed that, 
usually, the focus of the question is the first NP found in the question starting with a 
common noun, a proper noun, or an adjective. This is the reason for which we chose 
the first NP that has those properties as the focus of the question. We discriminated 
between cases in which the NP has one or more words. 

We searched the word form or the lemma form of the focus in every sentence of 
the sections of the documents returned by Lucene and we looked for several positive 
or negative clues: 

- the existence of “to be” verb (together with a possible auxiliary) immediately 
following the focus and the existence or not of indefinite articles or 
demonstrative pronouns or articles (cel in cel care – the one who or cel mai – 
the most) after the verb; (positive) 



- the existence of an opened left bracket immediately after the focus, followed 
or not by a noun; (positive) 

- the existence of a comma in front or after the focus; (positive) 
- the existence of  certain prepositions before the focus (la – at, pentru - for ); 

(negative) 
- the existence of a definite oblique article in front of the focus; (negative) 

Usually in a document the definitions are given in the beginning so we expect that the 
first sentences of the documents contain them. This is why we penalize the candidates 
as we find them farther and farther in the document (the length in sentences counts) 
(sentence_score = 1.0 – current_sentence_index * 1.0 / number_of_sentences * 2). 
The rank of a candidate is taken into account, no matter the document, or the section 
(last_added_score = 1.0 – rank_of_candidate * 0.015). The formula also includes, as 
previously stated, the document and section scores for the snippets in which the 
candidates were found (total_score_for_a_candidate = doc_score * section_score * 
sentence_score * last_added_score). Finding the focus only in lemma form or finding 
only parts of the focus will penalize the newly added candidates (the candidate score 
is weighted with 0.75, respectively 0.6). Different combinations of the positive clues 
led to the weighting of the total score with values between 0.6 and 1.5. All the 
weights were empirically set by tuning the system from the previous CLEF 
competition. 

5   QA System B 

This QA system is the second of the two QA systems that were combined in order to 
obtain the final result. This system uses the linkage of the question to determine the 
question focus and topic and their dependants and also to generate the formal query to 
the text searching engine. In what follows, we will describe how the question is 
analyzed (i.e. focus/topic identification, query expansion) and how the answer is 
extracted from the text passages returned by the text searching engine. 

5.1   Question Analysis 

The input question is first preprocessed with TTL to obtain word tokenization, part of 
speech tagging and lemmatization and then, it is analyzed using LexPar. The linkage 
of the sentence is used to extract the focus-topic articulation of the question along a 
pattern, which is a sequence of parts of speech belonging to words that are directly 
linked in the question. Here are the most important patterns for Romanian (considered 
from the beginning of the question): 

1 [preposition], {WH determiner}, {noun(FOCUS)}, {main 
verb}, {noun(TOPIC)} i.e. “În(English In)/preposition ce(what)/WH 
determiner an(year)/noun s-a născut(been born)/main verb 
Mihai(Mihai)/noun Eminescu?”; 



2 {WH pronoun(FOCUS)}, {main verb}, {noun(TOPIC)} i.e. 
“Cine(Who)/WH pronoun este(is)/main verb Mihai(Mihai)/noun 
Eminescu?”; 

3 {WH adverb(FOCUS)}, {main verb}, {noun(TOPIC)} i.e. 
“Unde(Where)/WH adverb se află(is)/main verb lacul(the lake)/noun 
Baikal?”; 

4 {main verb}, {noun(FOCUS)} i.e. “Numiţi(Name)/main verb 
culorile(the colors)/noun steagului României.”. 

After the focus and topic are extracted, the query to the Lucene full-text searching 
engine is created by following the links in the linkage of the question so as to extract 
all the links that are formed between content words (nouns, main verbs, adjectives and 
adverbs). With this list of links at hand, the query is computed as a logical disjunction 
of terms in which each term corresponds to a content word to content word link and it 
is equal to a logical conjunction of the lemmas at the end points of the link. For 
instance, for the question “În/prep ce/wh-det an/noun s-/refl-pron a/v-aux 
născut/v-part Mihai/noun Eminescu/noun?” with the linkage {<În, an>, <ce, an>, 
<an, născut>, <s-, născut>, <a, născut>, <născut. Mihai>, <Mihai, Eminescu>}, the 
list of the links between content words is {<an, născut>, <născut. Mihai>, <Mihai, 
Eminescu>} and the resulting query is: 

(ltext:an AND ltext:na•te) OR (ltext:na•te AND ltext:Mihai) OR 
(ltext:Mihai AND ltext:Eminescu) 

As previously explained, our text searching engine does not use this query directly but 
it heuristically tries to replace the OR operators with AND operators until it gets one 
or more hits (in other words, it tries to refine the initial query until it finds one or 
more documents that satisfy the refined query). If replacing doesn’t help, the initial 
query is tried and the results are returned to the QA application. 

5.2 Answer Extraction 

Answer extraction is basically the best structural match between the linkage of the 
question and the linkages of the sentences in the paragraphs that have been returned 
by the text searching engine in response to the automatically formulated query (see 
previous section). 

Because the linkage is not a full dependency parse, we do not know which word in 
the sentence is the root word of the dependency tree. We solve this problem by 
choosing the first main verb in the sentence/question to be the root of the linkage. To 
better explain how structural scoring is made between the linkage of the question and 
the linkage of one document sentence, is best to see an example (see Figure 3). 



 
Fig. 3. Structural match between the question “În ce an s-a născut Mihai 

Eminescu” and one candidate sentence. 

To follow the same example, for the question “În ce an s-a născut Mihai Eminescu?”, 
the text searching engine returns among other paragraphs, one which begins with the 
sentence “Mihai Eminescu s-a născut la Botoşani la 15 ianuarie 1850.” (the 
keywords from the question are bolded). In Figure 3, on the left side we have the 
linkage of the question (functional words removed) and on the right, we have the 
linkage of the candidate sentence (functional words also removed). Structural match 
means going depth-first through the question tree one node at the time and for each 
such node (let it be Nq), going depth-first through the sentence tree searching from the 
current node in the question tree (let Ns be the matching node). When such a node is 
found, a matching score S is increased by 1/(1 + |depth(Nq) – depth(Ns)|) such that if 
the nodes are at the same depth in the two trees, the value of S increases by 1. 
Otherwise, the value of S increases by the inverse absolute difference of depths at 
which matching nodes are found. For the two trees in Figure 3, S = 3 (see the dotted 
arrows which mark 3 matching nodes at the same depths). 

After the structural match score S is computed, we extract all the subtrees from the 
candidate sentence tree such that: a) subtrees do not contain already matched nodes 
and b) they are at the same depth as the focus node of the question (marked with the 
“?” in Figure 3). For our example, we have two such subtrees: “Botoşani” and “15 
ianuarie 1850”, which, in the absence of a proper named entity recognition 
(“Botoşani” is the city of birth of Mihai Eminescu and “15 ianuarie 1850” is his full 
date of birth), are equal answer candidates. To solve this problem and remembering 
that the POS tags are the only indications as to the type of entities we are dealing 
with, we have assigned to each focus-topic extraction pattern a POS indicating the 
type of answer we are searching. In our example, this question pattern has a numeral 
POS attached, so we choose the answer that contains numeral(s), namely “15 ianuarie 
1850” which is a bit longer than the exact answer: 1850. 

Structural match occurs between the linkage of the question the linkage of each 
sentence of each paragraph that was returned by the text searching engine. We want to 
order the candidate sentences by the S score but also by the score of the paragraph in 
which the sentence occurred (we want to also give credit to the text searching engine). 



This way, the final candidate sentence score is A = αS + (1 – α)P where P is the score 
of the paragraph containing the candidate sentence6. Answers are thus extracted (as 
explained above) from the top candidate sentences ordered by the A score. 

5   Results and Conclusions 

The results obtained should be analyzed considering both Information Retrieval and 
Information Extraction phases. As in the IE stage we used the output of the IR when 
looking for the correct and exact answers, it is clear that the two systems (A and B) 
could not answer a number of questions greater than that for which the search engine 
returned good snippets. Besides the manner the documents were indexed and the 
engine’s parameters tweaked, its results depend on the way the queries are 
constructed. Although the queries were built in two different ways, as described in the 
sections about the two systems, it turns out that the outputs obtained were very 
similar. The experiments showed that we got somehow improved results with the 
query generated by the A System. In most of the cases, using these queries meant 
finding the right snippet higher in the search engine’s list of the returned snippets. 
This lead to an increased precision, the difference between the precisions of the two 
systems being around 4%. However, in very few cases, when the right snippet was 
hard to find and the queries obtained using the A Systems’ method did not get it at all, 
the queries produced with the B Systems’ technique made the search engine return it, 
but only in the end of the findings list. So, we got a 2% higher recall for the B 
System. The actual figures for the two systems were manually computed as described 
in 4.1 section and they are shown in the table below. 

Table 2. The evaluation of the IR phase for both of the systems. 

 Precision Recall F-measure 
A System 68% (136 questions) 77.72% (150 qs) 72.53% 
B System 64% (128 qs) 79.79% (154 qs) 71.02% 

 
We should mention that some of the questions given to be answered were related. 

These questions were arranged into groups, for most of the questions, to retrieve 
relevant results we had to take into account information found in the previous 
questions. We managed to handle this situation by adding the query generated for a 
new question to the query of the first question of the group. 

Due to the small amount of time, in the IE phase we used the strategy of splitting 
the tasks between the two systems. The A System focused on answering the DEF type 
questions, while the B System concentrated on answering the other questions. 
However, the B System did not use the information provided by the classifier 
described in the 4.2 section in searching for the correct answers. 

From the total of 200 questions, 31 were identified as requiring a DEF type answer 
but only 30 were in fact of this nature. The A System answered correctly with the first 

                                                            
6 Actually, because 0 < P ≤ 1 and S > 1, we replaced P by 10×P to get P in the same range as S. 

With this setting, the best experimental value of α is 0.4. 



returned output in 25 cases although in 3 situations the answers were considered 
inexact (possibly because of their length). However, for another 4 questions one could 
have found the correct answer among the first three replies.  

For the question “Ce este Selena?” / “What is Selene?”, the top 3 answers returned 
by the system were: 

1. “o actriţă şi cântăreaţă americană , născută pe 24 iulie 1969 , în cartierul Bronx 
din New York .” / “an American actress and singer, born on July 24, 1969 in Bronx, 
New York .”; 

2. “satelitul natural al Pãmântului .” / “the natural satellite of the Earth”; 
3. “cauza mareelor şi a modificat continuu durata mişcării de rotaţie .” / “the 

cause of the tidal and continually modified the length of the rotational motion”. 
The second answer was considered the correct one, although we believe that the 

first one is also good enough. Obviously, the third answer is wrong since it’s not even 
sufficiently coherent. 

The answers extracted by the B System for the non-DEF type questions, were 
handled in two ways, which correspond to the two runs we sent to the organizers. 
First we considered the first answer as the good one. The second approach was to 
construct the good answer by concatenating the majority of the answers coming from 
the same snippet. In this way we managed to transform 4 wrong answers into inexact 
ones, as shown in the table below. However, the total score remained unchanged. 

Table 3. The official results. 

 First Run Second Run 
Total - 60 Right 

- 105 Wrong 
- 34 ineXact 
- 1 Unsupported 
Overall accuracy = 60/200 = 30.00% 

- 60 Right 
- 101 Wrong 
- 39 ineXact 
- 0 Unsupported 
Overall accuracy = 60/200 = 30.00% 

Factoids Total Factoids: 160 
Right: 38; Wrong: 90 
Unsupported: 1; InExact: 31 
Accuracy = 38/160 = 23.75% 

Total Factoids: 160 
Right: 38; Wrong: 86 
Unsupported: 0; InExact: 36 
Accuracy = 38/160 = 23.75% 

Lists Total List Questions: 10 
Right: 0; Wrong: 10 
Unsupported: 0; InExact: 0 
Accuracy = 0/10 = 0.00% 

Total List Questions: 10 
Right: 0; Wrong: 10 
Unsupported: 0; InExact: 0 
Accuracy = 0/10 = 0.00% 

Definition 
Questions 

Total Definition Questions: 30 
Right: 22; Wrong: 5 
Unsupported: 0; InExact: 3 
Accuracy = 22/30 = 73.33% 

Total Definition Questions: 30 
Right: 22; Wrong: 5 
Unsupported: 0; InExact: 3 
Accuracy = 22/30 = 73.33% 

Temporally 
Restricted 
Questions 

Total Temp. Restricted Questions: 51 
Right: 10; Wrong: 31 
Unsupported: 0; InExact: 10 
Accuracy = 10/51 = 19.61% 

Total Temp. Restricted Questions: 51 
Right: 10; Wrong: 31 
Unsupported: 0; InExact: 10 
Accuracy Questions = 10/51 = 19.61% 

NIL 
Answers 
Returned 

Total NIL Returned: 54 
Right: 7; Wrong: 47 
Unsupported: 0; InExact: 0 
Accuracy = 7/54 = 12.96% 

Total NIL Returned: 54 
Right: 7; Wrong: 47 
Unsupported: 0; InExact: 0 
Accuracy = 7/54 = 12.96% 

 
We should notice that we did not answer correctly to any of the Lists questions 

because there was no separated strategy in this direction. The improvements can 
definitely come from using the question classifier and from adopting specific 
strategies in searching for different types of answers. 
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