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Abstract

This paper describes the participation of Tel Aviv Uniugréiledical Image Processing
Laboratory group at the ImageClef 2008 medical retrianal medical annotation tasks. In
both tasks we have used the bag-of-words approach foeirepgesentation. We submitted
two purely visual automatic runs to the medical retriewkt which used different
normalization in the feature extraction stage. Images weneected to a histogram of
visual words, and were compared using L1 distance. Otrrbesvas ranked first among
the automatic visual based retrieval systems, with M&Breof 0.042 For the medical
annotation task we submitted four runs, all used suppottivetachines trained on the
visual word histograms. The runs differ in image resofytand in the way classifiers of
two resolutions were combined. In this task our result was debasst among the
participating groups, with error scores between 105.75 aAdL7.

1 Introduction

In the last several years, "patch-based" representadioths'bag-of-features" classification techniques have been
proposed for general object recognition tasks [1 - 6]. In thppeoaches, a shift is made from the pixel entity to a
"patch" — a small window centered on the pixel. In its nsirsiplified form, raw pixel values (intensities) withinet
window are used as the components of the feature védcismpossible to take the patch information as a cideamf
pixel values, or to shift the representation to a diffesmttof features based on the pixels, such as SIFT ésdri,
and reduce the dimensionality of the representation ungernsionality reduction techniques, such as principle-
component analysis (PCA) [8].

A very large set of patches are extracted from an inageh small patch shows a localized "glimpse" afrttege
content; the collection of thousands and more such patememly selected, have the capability to identify thigre
image content (similar to a puzzle being formed from itcqse A dictionary of words is learned over a large
collection of patches, extracted from a large set ofgesa Once a global dictionary is learned, each image is
represented as a collection of words (also known &s@ 6f words", or "bag of features"), using an indexed giata
over the defined words. The matching between images, or beameiemage and an image class, can then be defined as
a distance measure between the representative histograoaegjorizing an image as belonging to a certain image
class, well-known classifiers, such as the k- nearéghber and support-vector machines (SVM) [9], are used.

Patch-based methods have evolved from texton methods in texiaisesis [1, 2] and were motivated from the text
processing world [3]. In the classical bag-of-featurepreach, spatial information and geometrical relationship
between patches is lost. Recent works have shown thatlinglthe spatial information as additional features per patch
may provide additional mage characterization strength. paeh-based, bag-of-features approach is simple,
computationally efficient, and shows robustness to occlusiadsspatial variations. Using this approach, a substantia
increase in performance capabilities in general compug@rv object and scene classification tasks has been
demonstrated [e.g., 4, 5]. Motivated by these works, thedby success of works based on similar approach in
ImageClef2007 challenges [10, 11] we have developediava&tand classification system for large medical biases,
and put it to the test in ImageClefMed 2008 tasks.



2 Medical Image Retrieval

In this task we are presented with 30 query topics, eadh amié or more example images, and a short textual
description in several languages. Our objective is to returgniked set of images from a database of over 66,000
images, sorted by their relevance to the presented qu&@me query examples are seen in Figure 4. We have
submitted two purely visual automatic runs to this taBARU_norm and TAU_orig. The two runs differ in the
normalization process in the feature extraction stage.

2.1 Method

We model an image as a collection of local patches, whepedch is a small rectangular sub region of the image.
Each patch is represented as a codeword index out of a finabuwlacy of visual codewords. Images are compared and
classified based on this discrete and compact representation.

We selected a random set of 400 images from the datalbassampled patches of a fixed size of 9x9 pixels with a
grid of 6 pixels spacing. We then computed a covariancex@tthis set of roughly 2,000,000 patches, and applied
PCA to find its eigenvectors. The 6 vectors with the higkasrgy are shown in Figure 2. These eigenvectors tare la
used as a base for the rest of the patches in the database.

Fig. 2: PCA components
2.1.1 Feature extraction

In TAU_norm run, sampled patches are normalized to Raweean and 1 variance. This procedure gives some
invariance to lighting and contrast. The normalized patcl lgneel is dimensionally reduced to 6 features using the
basis vectors calculated previously. Patch mean gray Yeagllost in the normalization and PCA process; henise it
added as an additional seventh feature.

In TAU_orig, sampled patches undergo PCA dimensionalityuctton to 7 features, without the initial
normalization step. In this case the mean gray levstrissically included as the first PCA component.

In both runs, in order to preserve spatial information, thehpegniter coordinates were added as two additional
features.

2.1.2 Dictionary

A dictionary of visual words is built using k-means clustgralgorithm on the set of sampled patches. The k-means
is performed in the feature space, using the L2 distallcsters centers initialized by an iterative procHsst selects
the patch which is furthest from previously selected cemteis new cluster center. Figure 3 shows the centersgerketu
from the clustering process, after the patches were dewvieack to image space, and placed in their x,y coordinates



Fig. 3: Dictionary layout

Once a dictionary is ready, we sample every image iddtsbase, and represent the image as an indexed histogram
of visual words. In this step images are sampled witbrser grid, using a spacing of 2 pixels.

2.1.3 Query process

For image comparison distance measures between the reptiesehistograms are used. Retrieved images are
ranked by the distance between a target histogram andstiograim of the query image. When there are several query
images we use the minimal distance between the targethenduery set. Experiments on the ImageClef medical
annotation challenge database indicated that L1 implsiand effective distance measure.

2.2 Experiments and Results

The runs were ranked according to mean average precisioP)M#hich is the arithmetic mean of average
precision (AP) values over the 30 individual topics. AP iswdated by averaging the precision in the togetrieved
images, where the valuesrofire taken after each relevant image is returnedddfition bpref score [12] is calculated,
and precision scores using 5, 10, 15, 20 and 30 retrievegina

Results of our two submitted runs are shown in Table 1. TAlnman ranked first among the automatic visual

retrieval runs, according to MAP, bpref, P5, P10, P15R2@ scores, and second according to P30 stédd. orig
run ranked % according to MAP score, indicating that normalizing the pasztance improves the retrieved results.

Table 1: Ranking of submitted medical image retrieval runs

Rank Run MAP bpref P5 P10 P15 P20 P30
(purely visual)

1 TAU_MIPLAB-TAU_norm 0.042 0.094 0.220 0.170 0.169 0.162 0.146
4 TAU_MIPLAB-TAU_orig 0.031 0.077 0.160 0.143 0.133 0.123 0.112

Using a system that is entirely visual based gives quanditegsults which are overall much reduced as compared
to text-based systems and mixed runs. This can be sdaée isystems comparative table in which all visual based
systems are ranked last (provided by the competitiomaegs). Using the MAP score, the proposed system aisove
ranked 95 out of 113 total runs. The system is computditjosificient, with average retrieval time of lessith400ms
per query on a dual quad-core Intel Xeon 2.33 GHz.



It is interesting to note that on several query topicsptioposed system proved highly accurate: On visual topics
number 6 and 7 the TAU_norm system rank&dad 17", respectively. On the mixed topics number 15 and 16 it
ranked f and &', respectively, among the entire runs. These query togadisplayed in Fig. 4, and the retrieval result
returned by TAU_norm for query 15 is displayed in Fig. 5.

6. Show me images of a frontal he 15. Show me chest-ray images of case¢
MRI. with tuberculosis

T

16. Show me all x-ray images containing
one or more fractures.

Fig. 4: Query topics on which our system was effective

The topics in Figure 4 display body parts with distinct visuaiufes. Our system performed well on these queries
because its parameters were tuned using the ImageClef ahedinotation challenge database, and as such it
specialized in identifying body parts in x-ray images.



Fig. 5: Top 15 retrieved images, for topic #15. Top left image igjtieey sample image. On this query topic
TAU_norm run had the highest MAP score from the entire submsssextual, visual, or mixed.

3 Medical Image Annotation

In this task we are presented with 12,089 classified xmages, and our aim is to classify a set of 1000 prsiyou
unseen images, using the hierarchical IRMA code. We sulohfidgte runs to this task, based on the same bag-of-words
image representation presented in the previous sectiimnsupport-vector-machine classifiers.

3.1 Method

For the annotation challenge we used a dense samplingagpatch was extracted around every pixel. The
dictionary size in this section was larger, with 700 visuaids. Feature extraction, dictionary building and image
representation was carried out as in the TAU_norn retriemaldescribed in sections 2.1.1 and 2.1.2.

3.1.1 Run Descriptions

Four different runs were provided, as described nexsvin_fulla support vector machine classifier is trained
directly on the image word histograms, using one-vs-one techifdguenulti-class classification, with radial basis
function kernel. Each IRMA code in the training set istedas a different category label.

In svm_smalthe same method as in svm_full is applied to a 4 timeledaown version of the image, while the
patch size remains 9x9 pixels.

In svm_votehe full scale and 1/4 scale classifiers are mergesiunyming up the votes for each category as was
returned from the one-vs-one SVMs.

In svm_probwe calculate a probabilistic output of the SVM cliess using [13], and multiply the probabilities
from the full scale and 1/4 scale classifiers. The categareshen sorted by their combined probability. We finally



return an IRMA code from the entire hierarchy that minimizes eéxpected error score on the 5 most probable
categories. When the most probable categories have corgparatabilities, the IRMA code returned using this
method is often partial, with ‘*' replacing lettersstme location along the IRMA code.

3.2 Experiments and Results

As in ImageCLEF 2007, the medical automatic annotation riatgld the classification success according to a
penalty score that takes into account the hierarchicadtare of the IRMA code- the penalty is greaterdioors made
in higher levels of the hierarchy.

The results of our runs are shown in Table 2. Our four ssgdonis ranked in places 7 to 10 out of the 24 submitted

runs, with error scored between 105.75 and 117.17. This resitdtdnly runs from the Idiap research institute group,
which submitted the first 6 best runs, and had the badtsédast year [10].

Table 2: Ranking of submitted medical image annotation runs

Rank Run Error score
7 TAU-BIOMED-svm_full 105.75
8 TAU-BIOMED-svm_prob 105.86
9 TAU-BIOMED-svm_vote 109.37
10 TAU-BIOMED-svm_sma 117.17

Our top ranking runs, svm_full and svm_prob, had a veryectosre, although they are defined quite differently.
The errors in svm_full were due to misclassificationsoates point in the IRMA code, where in svm_prob the errors
where often due to partial classification.

In this challenge there was a slight advantage to svnstblihission over the rest of the runs, meaning that in our
case combining the output of a lower resolution classifidn’t improve the error score.

The total running time for the whole system, training aledsification, was approximately 40 minutes on the full
resolution images, and 3 minutes on the 1/4 scaled dowageisn Times were measured on dual quad-core Intel Xeon
2.33 GHz.

4  Summary

We presented an image retrieval and classification sykietarge medical databases, based on compact bag-of-
features image representation. The system achieves comelgrgthod results in the ImageClefMed 2008 challenges,
while maintaining efficient computation times. These digaienable effective scaling to larger image colbei
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