
The LogAnswer Project at CLEF 2008: Towards
Logic-Based Question Answering

Ingo Glöckner1 and Björn Pelzer2
1 Intelligent Information and Communication Systems Group (IICS),

University of Hagen, 59084 Hagen, Germany
ingo.gloeckner@fernuni-hagen.de

2 Department of Computer Science, Artificial Intelligence Research Group
University of Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz

bpelzer@uni-koblenz.de

Abstract

LogAnswer is a logic-oriented question answering system jointly developed by the AI research group
at the University of Koblenz-Landau and by the IICS at the University of Hagen. The system was de-
signed to address two notorious problems of the logic-based approach: Achieving robustness and accept-
able response times. The main innovation of LogAnswer is its use of logic for simultaneously extracting
answer bindings and validating the corresponding answers. In this way the inefficiency of the classical
answer extraction/answer validation pipeline is avoided. The prototype of the system, which can also
be tested on the web, demonstrates response times suitable for real-time querying. Emphasis was also
placed on developing techniques for making the logic-based approach more robust against gaps in the
background knowledge and against errors of linguistic analysis. To this end, the optimized deductive
subsystem is combined with shallow techniques by machine learning. The same background knowledge
as in the MAVE validator of the IICS presented at CLEF 2007 was used: 10,000 lexical-semantic re-
lations (e.g. describing nominalizations), 109 logical rules, and a list of synonyms covering more than
111,000 lexical constants which is also utilized for determining the shallow features. Two monolingual
runs of LogAnswer for German were submitted to QA@CLEF 2008. The results of 29 correct answers
in the best run (accuracy: 0.145) indicate that further development of the current prototype is neces-
sary. An error analysis shows that the linguistic processing and also the coreference resolution generally
performed quite well. The rudimentary implementation of answer extraction based on the answer substi-
tution determined by the prover must be improved, though, since extracted answers for appositions and
constructions involving a defining verb are not reliable yet.3

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Search Process, Selec-
tion process; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods—Predi-
cate Logic, Semantic networks; I.2.7 [Artificial Intelligence]: Natural Language Processing

General Terms
Experimentation, Measurement, Verification

Keywords
Logical Question Answering, Real-Time Question Answering, Answer Selection, Robust Inference

3Funding of this work by the DFG (Deutsche Forschungsgemeinschaft) under contracts FU 263/12-1 and HE 2847/10-1 (LogAn-
swer) is gratefully acknowledged.

ingo.gloeckner@fernuni-hagen.de
bpelzer@uni-koblenz.de

Figure 1: System architecture of the LogAnswer prototype

1 System Description
The system architecture of the LogAnswer QA system is shown in Fig. 1. In the following we describe the
processing stages of the system.

Question Input In normal operation of the system, the natural language question of the user is entered
into the LogAnswer web search box.4 For QA@CLEF, a batch querying option was added.

Deep Linguistic Processing of the Question The question is analyzed by the WOCADI parser [7],
which generates a semantic representation of the question in the MultiNet formalism [8]. The standard
coreference resolution module of WOCADI is used for treating follow-up questions involving pronouns
and nominal anaphora.

Question Classification The question classification of LogAnswer, based on 127 recognition rules, iden-
tifies the category (factual vs. definition) and the expected answer type (e.g. PERSON) of the question. The
descriptive core of the question is also identified. Consider Nennen Sie einige einfache Elementarteilchen!
(‘Name some elementary particles!’). Then nenne (‘name’) is not treated as part of the query content since
it only specifies what the system should do but does not describe the correct answers.

Support Passage Retrieval The document collection of LogAnswer comprises the November 2006
snapshot of the German Wikipedia; for QA@CLEF, the news collection of CLEF was also added. In
order to avoid parsing of documents at query time, all documents are pre-analyzed by the WOCADI parser.
The resulting MultiNet representations are segmented into passages and stored in a Lucene-based retrieval
module.5 An interesting aspect of LogAnswer is the kind of information stored in the index:

4The system is available online at www.loganswer.de.
5Notice that at present, only single-sentence snippets are considered, but an extension to larger passages is planned for the future.

• The system uses lexical concepts (word senses from the lexicon) rather than word forms or word
stems for indexing. At the moment, all possible word senses for each word are indexed.

• Synonymy relationships are utilized for replacing all possible synonym variants by a canonical
representation.6 For example, the lexical concept attacke.1.1 (attack) is replaced by the canonical
angriff.1.1 during indexing. A similar normalization at query time ensures that all synonym variants
can be used for retrieval.

• Nominalizations are utilized for indexing: if the text contains erfindung.1.1 (invention), for example,
then erfinden.1.1 (word sense of ‘to invent’) is also added to the index, and vice versa.

• Compound decompositions are added to the index. For example, if the text contains an occurrence
of verteidigungsminister.1.1 (minister of defence), then minister.1.1 is also indexed.

• Adjective-attribute relationships are expanded. Thus, an occurrence of hoch.1.1 (high) results in
höhe.1.1 (height) to be indexed as well.

Moreover all answer types contained in a sentence are indexed. In order to improve retrieval results for def-
inition question, information about the containment of appositions, relative clauses, copula constructions,
and defining verbs like stehen für (‘stand for’), is also stored in the index. Notice that only sentences with
a successful parse were indexed since the subsequent logic-based answer extraction requires the semantic
representation constructed by the parser. For generating the submitted runs, the system was configured to
retrieve 100 supporting snippets per question.

Shallow Feature Extraction and Reranking In order to avoid logical processing of all retrieved pas-
sages, LogAnswer tries to identify the most promising cases by reranking passages using shallow features
which can be computed very quickly without the help of the prover. These features comprise: failedMatch
(number of lexical concepts and numerals in the question which cannot be matched with the candidate
document); matchRatio (relative proportion of lexical concepts and numerals in the question which find a
match in the candidate document); failedNames (proper names mentioned in the question, but not in the
passage); containsBrackets (the passage contains a pair of parentheses); knownEat (the expected answer
type is known); testableEat (the expected answer type is fully supported by the current implementation
of the answer type check); eatFound (an occurrence of the expected answer type has been found in the
snippet); isDefQuestion (the question is a definition question). The defLevel feature is useful for definition
questions. A value of defLevel = 2 indicates that the snippet contains a defining verb or apposition, and
defLevel = 1 indicates a relative clause. Finally, there is an irScore feature which provides the retrieval
score determined by Lucene. The machine learning approach used for reranking the retrieved snippets
based on the shallow features is the same as in [5, 6]. The Weka toolbench [12] was used for implemen-
tation. The training data consisted of 17,350 annotated snippets retrieved in a run of LogAnswer on the
QA@CLEF 2007 questions.

Logical Query Construction The semantic network for the question is turned into a conjunctive list
of query literals. For example, Wie hoch ist der chilenische Berg La Silla? (‘How high is the Chilean
mountain La Silla?’) translates into the following logical query (with the FOCUS variable representing
the queried information):

modp(X1, FOCUS, hoch.1.1), sub(X2, berg.1.1), prop(X2, X1), attr(X2, X3),

prop(X2, chilenisch.1.1), val(X3, la silla.0), sub(X3, name.1.1).

During query construction, concept identifiers of synonyms are normalized by replacing the original con-
cept identifiers with canonical synset representatives (however, no replacement occurs in the example).

6The system uses 48,991 synsets (synonym sets) for 111,436 lexical constants.

Robust Logic-Based Processing LogAnswer uses logic for simultaneously extracting and validating an-
swers. To this end, the system tries to prove the logical representation of the question from the representa-
tion of the passage and the background knowledge.7 Robustness is gained by using relaxation: if a proof is
not found within a time limit, then query literals are skipped until a proof of the remaining query succeeds,
and the skip count indicates (non-)entailment [3, 6]. For efficiency reasons, relaxation is stopped before
all literals are proved or skipped; a maximum of 3 relaxation cycles was chosen for the QA@CLEF runs.
Notice that relaxation does not necessarily find the largest provable query fragment, since it only inspects a
single sequence of simplification steps. Moreover the choice of skipped literals usually depends on factors
like internal literal order of the prover which are arbitrary to some degree. It therefore makes sense to
abstract from such idiosyncratic aspects, by combining relaxation results of different provers. LogAnswer
has interfaces to two provers in order to permit such a combination:

• The system includes a native prover for MultiNet representations, which is part of the MWR+ tool-
bench.8 The MultiNet prover is very limited in expressive power (it only supports inferences over
range-restricted horn formulas), but its specialization to the task ensures high efficiency [4].

• E-KRHyper [10] is the latest version in the KRHyper-series of theorem provers and model generation
systems for first-order logic with equality developed at the University Koblenz-Landau. It is an
implementation of the E-hyper tableau calculus [2], which integrates a superposition-based handling
of equality into the hyper tableau calculus [1]. E-KRHyper is capable of handling large sets of
uniformly structured input facts, and it can rapidly switch and retract input clause sets for an efficient
usage as a reasoning server. Embedded in the LogAnswer system, E-KRHyper is supplied with the
MultiNet axioms transformed into first-order TPTP syntax [11]. The inference process then operates
on the axioms and the negated query literals, with a refutation result indicating a successful answer
and providing the binding for the queried variable. If the reasoning is interrupted due to exceeding
the time limit, then partial results can be retrieved that can guide in the relaxation process [9].

Answer Extraction If a proof of the question from a passage succeeds, then LogAnswer obtains an
answer binding which represents the queried information. In order to find more answers, LogAnswer
also tries to determine a substitution when a strict proof of the query fails. The system then resorts to
the intermediate substitution of the prover for the largest proven fragment of the query. LogAnswer uses
word alignment information provided by WOCADI for extracting the corresponding answer string from
the supporting text passage.

Logic-Based Feature Extraction In the following it will be assumed that the answer extraction was
successful, i.e. a binding to the queried variable was found and the system has managed to determine the
corresponding answer string. Based on the results of the relaxation proof and on the extracted answer, Log-
Answer then determines the following logic-oriented features: skippedLitsLb (number of literals skipped
in the relaxation proof); skippedLitsUb (number of skipped literals, plus literals with unknown status);
litRatioLb (relative proportion of actually proved literals compared to the total number of query literals,
i.e. 1− skippedLitsUb/allLits); litRatioUb (relative proportion of potentially provable literals vs. all query
literals, i.e. 1 − skippedLitsLb/allLits); npFocus (the queried variable was bound to a constant which
corresponds to a nominal phrase in the text); focusEatMatch (the answer type of the answer binding found
by the prover matches the expected answer type). The focusDefLevel feature is relevant for definition
questions. A value of focusDefLevel = 2 indicates that the answer binding found by the prover corresponds
to an apposition, and focusDefLevel = 1 occurs if the answer binding corresponds to a noun phrase
involving a relative clause.

Logic-Based Scoring The logic-based answer scores are computed by the same ML approach also used
for the shallow reranking. However, the shallow and logic-based features are now combined for better
precision. In regular operation of LogAnswer, passages are considered in the order determined by the

7The background knowledge of LogAnswer comprises 10,000 lexical-semantic facts (e.g. for nominalizations) and 109 logical
rules, which define main characteristics of MultiNet relations and also handle meta verbs like ‘stattfinden’ (take place) [3].

8See http://pi7.fernuni-hagen.de/research/mwrplus

http://pi7.fernuni-hagen.de/research/mwrplus

Table 1: Results of LogAnswer in QA@CLEF 2008

Run #Right #Unsupported #Inexact #Wrong CWS MRR
loga081dede 29 1 11 159 0.032 0.194
loga082dede 27 1 9 163 0.029 0.179

shallow feature-based ranking, and the logical processing is stopped after a pre-defined time limit. For
QA@CLEF, this mechanism was switched off, i.e. all passages were considered for deep processing and
answer extraction.

Support Passage Selection Depending on user preferences, the system answers the question either by
presenting supporting text passages only, or alternatively, by presenting exact answers together with the
supporting passage. For QA@CLEF, only the precise answer mode was relevant.

Sanity Checks Two sanity checks are applied in order to eliminate false positives: A triviality check
eliminates answers which only repeat contents of the question. For the question ‘Who is Virginia Kelley?’,
this test rejects trivial answers like ‘Virginia’ or ‘Virginia Kelley’. A special sanity check also rejects
incomplete answers to definition questions. For example, ‘the mother of Bill Clinton’ is a correct answer
to the above question, but ‘the mother’ must be rejected as incomplete. Notice that the compatibility of
expected and found answer type is not treated as a strict sanity check but rather encoded by answer-type
related features passed to the machine learning method.

Aggregation and Answer Selection The answer integration module computes a global score for each
answer, based on the local score for each passage from which the answer was extracted. The aggregation
method is detailed in [5]. The k = 3 distinct answers with the highest aggregated scores were selected
for the submitted QA@CLEF runs. For each answer, the supporting passage with the highest score was
selected as the justification for the considered answer.

2 Results on the QA@CLEF Test Set for German
The results of LogAnswer in the QA@CLEF 2008 task are shown in Table 1. The first run, loga081dede,
used only the native prover of the MultiNet toolkit for logical processing. The second run, loga082dede,
used a combination of the MultiNet prover and of the E-KRHyper prover based on the ‘OPT’ method
described in [6]. The motivation for using more than one prover is that following several relaxation paths by
applying several provers might increase the chance of discovering a good provable query fragment. While
the combination of both provers worked well in earlier experiments based on cross-validation reported in
[6], results in the QA@CLEF 2008 task were slightly worse for the combined method compared to the first
run which used only one prover.

3 Error Analysis
An error analysis was made for the loga081dede run in order to identify the main deficits of the subsys-
tems of LogAnswer. Concerning the linguistic processing stage, it was found that parsing of the question
failed for 4 out of the 200 questions. Moreover the coreference resolution produced useless results (like
unresolved pronouns) for 5 questions. Thus, the linguistic processing of the question was successful for
191 out of 200 questions in the QA@CLEF test set for German. Turning to the passage retrieval stage,
the 19,064 retrieved supporting sentences (95.32 per question) were assessed for containment of a correct
answer. The annotation revealed that for 119 of the questions, at least one passage which provides a correct
answer was retrieved (see Fig. 2 for more details on the performance of the passage retrieval module). This
means that, assuming perfect answer extraction and validation, the system can theoretically answer 119

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

#q
ue

st
io

ns

#retrieved passages with correct answer

Figure 2: Number of questions with a given number of retrieved passages that answer the question

non-NIL questions correctly. In order to improve this number, the retrieval stage should be optimized. The
following improvements are likely the most urgent:

• The retrieval module of LogAnswer is configured to return only 100 support sentences per question.
Increasing this number will improve recall at the cost of more processing effort. Experiments should
be made in order to find a good trade-off for these factors.

• The restriction to single-sentence snippets must be dropped. The system should use coreference
resolution for elaborating the content analysis of the text. Moreover the document date should be
taken into account for resolving deictic temporal expressions (like ‘yesterday’).

• At present, the system only indexes sentences with a perfect parse. This means that only about 60%
of all sentences in the corpus are visible to LogAnswer. In order to improve recall, non-parseable
answers should be indexed as well and a fallback method for answer extraction from answers without
a parse must be added.

Another significant source of errors is answer extraction. LogAnswer found 26 correct non-NIL answers.
However, 46 of the supporting snippets for the top-1 answers actually contain a correct answer. Assuming
perfect selection, the system would therefore be able to correctly answer 46 non-NIL questions. This
means that the success rate of answer extraction for sentences at top-1 position is 56.5%. Considering all
top-3 results, we find that the achieved MRR for 120 questions with multiple answers was 0.1944, while
for perfect extraction, an MRR of 0.3222 would have been possible in the loga081dede run. In practice,
the ranking is not fixed though, but rather depends on the results of answer extraction. Therefore the
overall success rate of the answer extraction stage for arbitrary snippets is even lower. The reason of these
problems are two phenomena not adequately treated in LogAnswer yet:

• The answer is often expressed by an apposition, as in Albert Einstein, der Begründer der Rela-
tivitätstheorie (‘Albert Einstein, the founder of the theory of relativity’). In this case, the answer ex-
tractor must not return the full noun phrase which corresponds to the answer binding of the queried
variable. By contrast, it is necessary to split the extracted noun phrase and identify the relevant part.

• Copula constructions and constructions involving defining verbs also pose problems for the logic-
based extraction method. If the sentence has a form such as ‘X is Y ’ or ‘X means Y ’, then the
logic-based answer extraction will often extract X even though the question targets at Y .

These problems result in wrong or inexact extractions, as witnessed by the relatively large number of 11
inexact answers of LogAnswer in the loga081dede run.

4 Conclusion
With LogAnswer, we have developed a logic-based QA system suitable for real-time question answering.
Earlier experiments on the QA@CLEF 2007 questions for German confirm that the system works well
when used for finding supporting sentences that contain an answer to the question [4, 6]. However, the
naive solution for extracting exact answers that was added for generating runs for QA@CLEF 2008 is
not yet reliable enough. Especially appositions, copula constructions and defining verbs pose problems to
the current implementation of logic-based answer extraction. Nevertheless, the simultaneous extraction of
answer bindings and validation features from a relaxation proof of the question from the supporting snippet
should be investigated further, since it avoids the extraction of a large number of answer candidatates from
which the few correct ones must then be selected by extensive validation. An intrinsic problem of logic-
based answer extraction is that the method only works for snippets with a full parse. For the remaining
sentences, there is no meaning representation of the snippet on the logical level and the prover cannot be
applied. In order to overcome this limitation, the logic-based extraction should be complemented with a
shallow QA technique which can be used for finding answers in snippets with a failed parse.

References
[1] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux. In JELIA’96, Proceedings,

pages 1–17, 1996.

[2] Peter Baumgartner, Ulrich Furbach, and Björn Pelzer. Hyper Tableaux with Equality. In Automated
Deduction - CADE-21, Proceedings, 2007.

[3] Ingo Glöckner. University of Hagen at QA@CLEF 2007: Answer validation exercise. In Working
Notes for the CLEF 2007 Workshop, Budapest, 2007.

[4] Ingo Glöckner. Towards logic-based question answering under time constraints. In Proc. of the 2008
IAENG Int. Conf. on Artificial Intelligence and Applications (ICAIA-08), Hong Kong, 2008.

[5] Ingo Glöckner. University of Hagen at QA@CLEF 2008: Answer validation exercise. In Working
notes for the CLEF 2008 workshop, Århus, Denmark, 2008.

[6] Ingo Glöckner and Björn Pelzer. Exploring robustness enhancements for logic-based passage filtering.
In Proc. of KES-2008, Lecture Notes in Computer Science. Springer, 2008 (to appear).

[7] Sven Hartrumpf. Hybrid Disambiguation in Natural Language Analysis. Der Andere Verlag, Os-
nabrück, Germany, 2003.

[8] Hermann Helbig. Knowledge Representation and the Semantics of Natural Language. Springer, 2006.

[9] Björn Pelzer and Ingo Glöckner. Combining theorem proving with natural language processing. In
Workshop on Practical Aspects of Automated Reasoning (PAAR-08), Sydney, Australia, August 2008.

[10] Björn Pelzer and Christoph Wernhard. System Description: E-KRHyper. In Automated Deduction -
CADE-21, Proceedings, pages 508–513, 2007.

[11] Geoff Sutcliffe and Christian Suttner. The TPTP Problem Library: CNF Release v1.2.1. Journal of
Automated Reasoning, 21(2):177–203, 1998.

[12] Ian H. Witten and Eibe Frank. Data Mining. Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005.

