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Abstract

The University of Amsterdam (UAms) team carried out the Vid2RSS classification task, the
primary sub-task of the VideoCLEF track at CLEF 2008. This task involves the assignment of
thematic category labels to dual language (Dutch/English) television episode videos. UAms
chose to focus on exploiting archival metadata and speech transcripts generated by both the
Dutch and English speech recognizers. Exploratory experimentation completed prior to the
start of the task on external data motivated choosing a Support Vector Machine (SVM) with
a linear kernel as the classifier. As a SVM toolbox to carry out the experiments, the Least
Square-SVM (LS-SVM) toolbox was selected. Wikipedia was chosen as the source of the
training data because it is multilingual and contains content with broad thematic coverage.
The results of the experimentation showed that archival metadata improves performance of
classification, but the addition of speech recognition transcripts in one or both languages does
not yield performance gains. Although the overall performance of the classifiers was less than
satisfactory, adequate performance was achieved in several classes, suggesting that there is
concrete potential for future work to achieve performance improvements, especially if more
suitable training data could be obtained.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Information
Search and Retrieval; H.3.4 Systems and Software; H.3.7 Digital Libraries

General Terms

Measurement, Performance, Experimentation
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1 Introduction

In this paper we describe our participation in the VideoCLEF track of the Cross Language Evaluation
Forum, CLEF The University of Amsterdam (UAms) organized the VideoCLEF 2008 track together with
Dublin City University and also took part in the track as a task participant. The goal of the University
of Amsterdam’s involvement in the VideoCLEF track is to further our understanding of the problem of
providing intelligent access to large audio-visual archives and to spoken audio content on the internet. We
aim to continue refinement of our techniques for classification and retrieval of conversational speech in
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a multilingual setting. Such technologies are being developed within the framework of the MultiMatch
project [1]]. Development of and participation in benchmark tests that help to coordinate research progress
across sites are an important part of this framework.

In this year’s VideoCLEF track, the task, called VidZRSSE] is classification performed on a video
corpus containing episodes of dual language television programs. The video corpus was provided by the
audio/video archive Netherlands Institute of Sound and VisionE] in Dutch called Beeld & Geluid. The
videos are predominantly documentaries. Dutch is the main language, which we call the matrix language,
and English, which we call the embedded language, is spoken during interviews. The classification task
is formulated as follows: given a number of thematic categories (Archeology, Architecture, Chemistry,
Dance, Film, History, Music, Paintings, Scientific research and Visual arts), the participants should assign
the right category label or labels to each video. For each category, an topic-based RSS-feed is then created.
A topic-based feed consists of a concatenation of XML items that represent the videos that were assigned
a particular thematic category label. The feed item for a video contains its title and description drawn from
the archival metadata, as well as a hand-picked keyframe. The generation of the RSS-feed is trivial and the
challenge of the task lies with the classification. The data set includes speech recognition transcripts and
archival metadata for each video. Two sets of speech transcripts are provided, one generated by a Dutch
speech recognizer and one by an English speech recognizer. Each recognizer transcribed the entire spoken
content of each video: no separation of content by language was performed. The archival metadata is Dutch
only. A final characteristic of the task is the lack of training data: participants should develop methods of
collecting their own training data for training a classifier.

In the next section we address the dimensions the Vid2RSS task offers us. Section[3|provides details on
the training data we use and our choice of classifier. These decisions are both based on initial exploratory
experiments. Section [4] describes our experimental set up. Sections and report on the results
of our approach on different dimensions, and finally we draw some preliminary conclusions and present
discussion in Section [6l

2 Task dimensions

Given the task at hand, classifying dual language video based on speech recognition transcripts and meta-
data, without training data provided, we identify four dimensions that are worth exploring. These dimen-
sions are discussed in this section. Since the number of runs in CLEF is limited (to five), we need to chose
a highly restricted number of dimensions for our experiments. As reported below, we ultimately arrive at
the decision to explore only the dimensions metadata and language.

First we take a step back and look at the four dimensions we identify: (i) classifier, (ii) training data,
(iii) metadata, and (iv) language. The classifier dimension focuses on the choice of classifier and, the
even more detailed decision of the parameter settings of each classifier. This dimension can be expected
to influence the experiments. We did some limited exploratory tests to support ourselves in making our
choice, but in the end we decided that this is not the most interesting aspect of the task and we fix this
dimension. Training data refers to the different sources we can use as training data in this task, how to
collect the data, and what the performance is of different sources. Although this dimension will certainly
have a high impact on performance, we choose to fix this dimension. We note that in order to have an
exact match between the training data and the test data for this task, it would be necessary to be able to
collect training data that consists of speech recognition transcripts from Dutch television documentaries.
Since such data is not available in large quantities, we are faced with the situation that the match of test
and training data will be necessarily approximative. Instead of exploring the variation due to different data
sources, which we expect to be wide, we chose to fix the source of the training data and to devote our
Vid2RSS runs to exploring other issues. In Section[3] we discuss our choices on both the classifier and the
training data dimension.

The two remaining dimensions are the main focus of our participation this year: metadata and language.
Exploring the metadata dimension involves attempting to understand the impact of using the archival meta-
data associated with the video as a source of features for classification. The rationale behind choosing this
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dimension is quite straightforward. Archival metadata is often available with television programs and, if
available, it should be exploited in order to perform classification. Unlike speech recognition transcripts,
metadata is very clean, nearly error-free, nicely structured text. Archival metadata is created by archivists
with the goal of annotating video with high-level semantics and making video retrievable from the archive.
For this reason, the terms contained in archival metadata can be expected to be meaning bearing and reflect
the thematic content of the video. In contrast, the terms contained in the speech recognition transcripts
can be expected to be characteristic of the interviews and discussions contained in the television programs.
Although terms that reflect video topic are with out doubt present, speech transcripts are diluted with
the kinds of vocabulary typical of conversational speech, namely reflecting social convention, expressing
feelings and opinions and drawing connections between entities and concepts not always explicitly men-
tioned. We expect that using metadata in the classification process will increase performance. The second
dimension, language, refers to the fact that the the videos contain two languages and that each video is
accompanied by both a Dutch and a English speech transcript. As task participants, we can chose which
transcript to use. As mentioned before, we distinguish between the matrix language (the underlying, main
language of the program) and the embedded language(s). In our case, Dutch is the matrix language, used
to introduce the foreign speakers and to glue the program together, and English is the embedded language.
Using an embedded language might introduce more noise, but it could also add specific information re-
garding the topic that is not present in the matrix language transcript. We expect that using both matrix and
embedded language in classifying videos will lead to better results than using only one (matrix) language.
Based on the choices described in this section we end up with five runs based on the different combi-
nations given the two dimensions. Table|[T]lists these five runs and their division over the dimensions.

Table 1: Submitted runs and their division over two dimensions.

Run Dutch transcripts English transcripts metadata
uams08m X
uams(08asrd X

uamsO8masrd X X
uams(O8asrde X X

uamsO8masrde X X X

3 Fixed dimensions

Although we are not exploring the impact of the two previously mentioned dimensions, the classifier and
the training data, we do need to decide on how to fix these dimensions for our experiments. In order to arrive
at a basic intuition about the performance of different options, we use the development set made available
to the participants for exploratory experimentation. This development set only contains ten videos and
results on this set can therefore only be seen as indications, and do not allow us to draw strong conclusions.
Below, we first discuss the classifier, followed by the training data.

3.1 Choice of classifier

As mentioned before, we set the choice of classifier as one of the fixed dimensions, we stick to a Support
Vector Machine (SVM) classifier for all our runs. We chose SVM since it has been reported perform well
in general on text classification problems [3} 2] and this performance has been demonstrated to transfer to
speech recognition transcripts that contain a significant level of noise [15]. The results of exploratory exper-
imentation suggested that the correct choice of a kernel was a linear kernel. These results were consistent
with previous work [5]. Since our training data and test data are from very different resources, the gener-
alization ability is more important than fitting the training data very well. We believe that this mismatch
contributes to the fact that the linear kernel out-performed other kernel choices during the exploratory
experimentation phase.



3.2 Training data

Because no training data is supplied with the Vid2RSS task, we are left with the problem of selecting
appropriate data. Four considerations play a role in selecting training data: (i) data should be thematically
similar to the test data, i.e., treat the same topics (ii) data should be similar in style to the test data, i.e.,
reflect the particular mix of planned and conversational speech characteristic of the test collection (ii) data
should be dual language, containing the same proportions of Dutch and English that are present in the test
data (iv) data should be available. Ideally, we would construct training data from speech transcripts of
television documentary videos on the right topics, with the right mixture of Dutch and English; such a data
set is not available, however. Note that we do not mention the issue of speech recognition errors in our
list of considerations. Previous work has shown that classifiers that are used to classify speech transcripts
(high error rates) can be trained on appropriate born text data (vanishingly low error rates) [5]]. For this
reason, we assumed that text data would appropriately serve our needs for classifier training. In order to
chose training data, we decided to ease the first two constraints, opening up more options of sources for
training data, e.g., news collections, blogs, and encyclopedic sources.

The collection that seems most suitable is online encyclopedia WikipediaE] The data from this source
is freely available, contains material treating the right topics, and is available in multiple languages (in-
cluding Dutch and English). Additionally, Wikipedia offers high quality content and and a structure (i.e.
categories) that makes it possible to automatically extract articles in particular thematic categories. These
two additional characteristics make Wikipedia an interesting option for collecting training data. The main
disadvantage of using Wikipedia is its dissimilarity to the test data: Wikipedia content is created to be
read and is much more structured and uses a language style more formal than that of the conversational
speech present in the task video. Throughout our experiments we use crawls of the Dutch and English
Wikipedia from August 2007. The Dutch Wikipedia contains 590,385 pages, the English Wikipedia con-
tains 515,884.,4 pages.

Given Wikipedia as our document collection, we need a way of selecting the proper content for each
category (or label). We experiment with two ways of selecting this content: (i) selecting pages that belong
to Wikipedia categories similar to the Vid2RSS thematic category label, and (ii) retrieving pages using the
Vid2RSS thematic category label as query. We tested both methods on the development set and decided on
using the second option, the label as query. Besides its slightly better performance, this method can also be
used on other sources that do not have a category structure like Wikipedia.

4 Experiments

4.1 Settings

For the implementation of the SVM classifier, we use the Least Square-SVM (LS-SVM) toolbox The
LS-SVM is similar to Vapnik’s SVM formulation, but instead of solving the Quadratic Programming (QP)
problem, it solves a set of linear equations.

As discussed in previous section, we select the training data by performing retrieval in the Wikipedia
collection using the class label as the query. For each class, we collect top 200 relevant Wikipedia pages
as positive examples. Since the task is a multi-class problem, we use the “one-against-all” strategy to
construct the training set, i.e., using the target class as positive example and all the rest of the classes as
negative examples. Therefore, for each class, a classifier is trained.

For tuning the parameters, we do a grid search with leave-one-out cross-validation on the training data.
In this case, since we are using the linear kernel, the only parameter needs to be estimated is the C' which
is used to control the error rate.

4.2 Feature selection

After initial experiments, we decide to perform a feature selection prune away the irrelevant features. Al-
though in SVM, the model complexity depends on the number of data points, instead of the dimensionality
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measure uams08m uams08asrd uamsO8masrd uams(O8asrde uams(O8masrde

micro average precision 0.13 0.08 0.11 0.07 0.07
micro average recall 0.28 0.16 0.23 0.14 0.14
micro f-score 0.18 0.10 0.15 0.09 0.09
macro average precision 0.11 0.44 0.44 0.09 0.32
macro average recall 0.38 0.38 0.46 0.35 0.35
macro f-score 0.17 0.41 0.45 0.14 0.33

Table 2: Classification results for various runs

of the original dataset, reducing the dimensionality would still speed up the processing time as well as
improving the classification result.

In our experiments, we use the y? statistics to select the relevant features for each class. The 2
approach is not the only method we could have chosen for feature selection, but we take this approach
since it has proven useful in previous work [4]]. Specifically, x? feature selection functions as follows: for
each class, we calculate the y? value for each term and rank them in decreasing order. The x? measures
the degree of dependence (independence) between an observed probability distribution and an expected
distribution. In the context of text classification, it measures the dependency between the observed term
frequency distribution in the training set and its expected frequency distribution across classes. The high
value of x? of a term with respect to certain class indicates high dependency between the term and the
class. For our experiments, we heuristically select 80 top features given the x? values.

5 Results and observations

The results of the official runs submitted by UAms are listed in Table@ Below, we discuss our observation
for the dimensions metadata and language.

5.1 Impact of metadata

The first dimension we explore is the impact of metadata on the classification of videos. When data is eval-
uated using micro-averaging, the use of archival metdata clearly shows a positive impact on performance
(i.e., cf. uamsO8m vs. uamsO8asrd). The classifiers have the tendency to assign their thematic category
labels to too many documents, reflected in the relatively high recall compared to the precision. The pic-
ture is different, when results are evaluated using macro-averaging. Here, results are best when metadata
is combined with speech transcripts. The reason for the difference between macro-averaging and micro-
averaging is that macro-averaging can assign disproportionately large weights to thematic categories whose
classifiers perform well, even though these classifiers are relevant to only a small number of videos. For
uams08masrd, the classifiers over-assignment of class labels to videos is concentrated in a smaller number
of classes. This behavior can be desirable or undesirable depending on the application. We would like to
note some of our best performing single classifiers are the “music” classifier and the “history” classifier
for uamsO8m. The “music” classifier achieves a precision of 0.57 and a recall of 0.36 and the “history”
classifier achieves precision of 0.36 and recall of 0.40. We believe that this relatively high performance is
due to satisfactory match between the vocabulary used by the archivists to create the archival metadata and
the vocabulary used in Wikipedia to describe music. Both with respect to micro-averaging and to macro-
averaging, adding metadata to the speech recognition transcripts improves, or at least does not hurt results
(i.e., compare runs uamsO8asrd vs. uamsO8masrd, and uamsO8asrde vs. uamsO8masrde). In general, the
results point to the conclusion that archival metadata serves to enhance classification performance.

5.2 Impact of speech transcripts from two languages

The second dimension that we explore is the impact of using both Dutch and English speech recognition
transcripts for classification. Recall that the videos for the task contain two languages: Dutch as matrix



language (the underlying, main language of the show), and English as embedded language. The run using
Dutch speech transcripts alone (uams08asrd) is not improved by the addition of English speech transcripts
(cf. uamsO8asrde). Nor is the run using Dutch speech transcripts with archival metadata (uamsO8masrd)
improved by the addition of English speech transcripts (cf. uamsO8masrde).

We had anticipated that there would be more useful Dutch features than English features in the data
since more Dutch than English is spoken in the collection. However, we believed that it would be possible
to also exploit information present in the English features. It proved, however, not to be the case that the
speech transcripts of the embedded language improved classification performance.

6 Conclusions

In this pilot year of the VideoCLEF track, the University of Amsterdam participated in the Vid2RSS clas-
sification task and explored two dimensions: the use of archival metadata and the use of speech transcripts
from both the matrix and the embedded language in the video. We drew our training data from the Dutch
and the English editions of Wikipeida and used an SVM with a linear kernel to carry out classification.

The results show that metadata is very useful in classifying videos in topic classes: highest scores on
both macro and micro level are achieved by runs using metadata. Regarding the use of one (matrix) or two
(matrix and embedded) languages in the classification process, we conclude that adding an extra language
does not lead to improved results. Performance of runs using only the matrix language are consistently
higher than using two languages.

Overall, the results achieved on this task fell short of being satisfactory. However, individual classifiers
in individual runs proved promising (e.g., “music” and “history” in the metadata only run), suggesting that
further development of our methods could be successful in generalizing this performance to more topic
classes. In the future, we would like to examine the classes that performed the poorest in order to ascertain
the reason for their failure. We suspect that the root of the problem lies in the mismatch between the training
data and the test data. However, we will also prioritize the optimization of our feature selection method
and of our parameters settings. Additionally, we would also like to experiment with methods to filter the
speech recognition transcripts and discard those portions where the Dutch recognizer is producing output
while English is being spoken and vice versa. We believe that a more judicious selection of speech-based
features from the transcripts will serve to make them useful to the classification process.
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