
UNGRADE:UNsupervised GRAph DEcomposition

Bruno Goĺenia, Sebastian Spiegler and Peter Flach

Machine Learning Group, Computer Science Department, University of Bristol, UK

{goleniab, spiegler, flach }@cs.bris.ac.uk

Abstract

This article presents an unsupervised algorithm for word decomposition called UNGRADE (UNsu-
pervised GRAph DEcomposition) to segment any word list of any language. UNGRADE assumes that
each word follows the structure prefixes, a stem and suffixes without giving a limit on the number of pre-
fixes and suffixes. The UNGRADE’s algorithm works in three steps and is language independent. Firstly,
a pseudo stem is found for each word using a window based on Minimum Description Length. Secondly,
prefix sequences and suffix sequences are found independently using a graph algorithm called graph-
based unsupervised sequence segmentation. Finally, the morphemes from previous steps are joined to
provide a segmented word list. We focus purely on the segmentation of words, thus, we employ a trivial
method for labeling each morpheme which is the segment of the morpheme itself. UNGRADE is applied
to 5 languages (English, German, Finnish, Turkish and Arabic) and results are provided according to
their gold standard.

Categories and Subject Descriptors

I.2 [ARTIFICIAL INTELLIGENCE ]: H.3.1 Learning; I.2.7 Natural Language Processing; I.2.8 Graph
and tree search strategies

General Terms

Algorithms, Performance, Experimentation

Keywords

MDL, Unsupervised learning, Word morphology, Word decomposition, Stopping criterion

1 Introduction

Morphological analysis is concerned with the process of segmenting a given corpus of words into a set of
morphemes. Morphemes are the smallest units bearing a meaning in a word. In a corpus, the quantity of
different morphemes is usually smaller than the quantity of different words. The purpose of the Morpho
Challenge is to learn these morphemes using an unsupervised algorithm on different languages. Such a
morphological analyser is useful for various applications like speech synthesis, information retrieval or
machine translation where a dictionary of morphemes must be provided. Indeed, creating a dictionary of
morphemes for a speech synthesis application cannot be directly carried out from raw data on all languages.
The reason is that for languages like Turkish, there are many possible combinations of morphemes, there-
fore the number of words becomes too large to be used naively as a dictionary in a application. Basically,
using millions of words as a dictionary instead of set of morphemes is not feasible. The development of
a such morphological analyser to segment words can be realised by linguistic experts or with a machine.
Unfortunately, linguistic experts are rare and an expensive resource for some languages such as Zulu. As
a result, it is worth to study machine learning approaches to reduce the quantity of work needed to create
a vocabulary of morphemes by linguistic experts. In the past, research in computational linguistics mainly



focused on unsupervised morphological analysis for large datasets with approaches like Linguistica [9] and
Morfessor [4]. Recently, Shalonova et al. [14] have introduced an efficient semi-supervised approach for
small data sets. Afterwards, Spiegler et al. compared the approach with Morfessor [15]. In this paper, we
extend the semi-supervised approach for large data sets and make it unsupervised through a pre-process
based on a window. We make the assumption that each word for any language has prefixes, a stem and
suffixes. We do not restrict the number of prefixes and suffixes for our algorithm. We decide to label mor-
phemes by their segment and not their grammatical categories. The method that we propose can be broken
down into three phases and be processed to any unlabeled corpora. The first step consists of identifying the
stem in each word, we propose the utilisation of a window with Minimum Description Length (MDL) to
cover the problem. In second step for finding sequences of prefixes and suffixes, we apply an unsupervised
algorithm which has been simplified for large datasets. Finally, in last step we aggregate the results from
the first and the second step.

2 Stem extraction using a window of letters

Extraction of morpheme sequences are a hard task in languages where the word form includes sequences
of prefixes, stem and sequences of suffixes. However, by finding the boundaries of the stem first, it is
possible to extract prefix sequences and suffix sequences efficiently. In order to extract the stems, we look
for a pseudo stem in the middle of each word, which is most often a position overlapping the real stem.
We develop a heuristic to seek the most probable stem given a word through a window by using the MDL
principle. We define a window by two boundaries within a word between letters. In other words, a window
is a sub string of a word. During initialisation, the width of the window is defined as a letter in the middle of
a word. Thereafter, an algorithm is used to shift or increase the width of the window from its initial point to
its left and/or to its right side. Consequently, an evaluation function is used for each window and repeated
for the best windows up to no better windows are found. The final boundaries are considered as the limit
of the stem in the word. We iterate the algorithm for each word in the corpus, the evaluation function used
is theMDL window score.

Definition 1. Let win= (lwin,uwin) be a window with a lower boundary lwin and an upper boundary uwin.
Given a word w and a window win theMDL window scoreis defined by:

MDL WindowScore(win,w) = log2(uwin− lwin +1)+ log2(np substring(w, lwin,uwin)) (1)

where npsubstring denotes the n-gram probability of the window win in the word w.

As soon as the algorithm has been applied to each word from a corpus, we process the left side of each
window to extract the prefixes. In a similar way, we process the right side of the window to extract the
suffixes. To do so, we use an extension of the GBUSS algorithm presented in the next section.

3 Graph-Based Unsupervised Morpheme Segmentation

The algorithm GBUSS (Graph-Based Unsupervised Suffix Segmentation) was developed in [10] to extract
suffix sequences efficiently and applied for Russian and Turkish languages on a training set in [10, 14].
Afterwards, we use GBUSS to extract independently both prefix and suffix sequences, instead of only suf-
fix sequences. We refer to prefixes and suffixes generally as morpheme. We call L-corpus (R-corpus) the
list of words obtained from the left-side (right-side) of the windows. In an independent manner, we use
the term M-corpus for a L-corpus (R-corpus) in a prefix (suffix) graph-based context. We call GBUMS
(Graph-Based Unsupervised Morpheme Segmentation) the extended version of the GBUSS algorithm for
morpheme extraction. Moreover, we present one improvement from GBUSS, a simplified evaluation func-
tion for merging nodes which replace FPPEdgeL (An evaluation measure for context score and suffix
frequency adapted from Yoshida et al. [16]). In this section, we describe GBUMS to extract sequence of
morphemes.

2



3.1 Morpheme graph for agglomerative morpheme extraction

GBUMS uses a morpheme graph in a bottom-up fashion. Similar to Harris [11], we base our algorithm
on letter frequencies. However, where Harris builds on successor and predecessor frequencies, we use
position-independent n-gram statistics to merge single letters to morphemes until a stopping criterion has
been met. In the morpheme graph, each node represents a morpheme and each directed edge the concate-
nation of two morphemes labeled with the frequencies in a M-corpus.

Definition 2. Let M= {mi |1≤ i ≤ n} be a set of morphemes, let fi be the frequency with which morpheme
mi occurs in a M-corpus X of morpheme sequences, let vi = (mi , fi) for 1≤ i ≤ n, and let fi, j denote
the number of morpheme sequences in the corpus in which morpheme mi is followed by morpheme mj .
Themorpheme graphG = (V,E) is a directed graph with vertices or nodes V= {vi |1≤ i ≤ k} and edges
E = {(vi ,v j)| fi, j > 0}. We treat fi, j as the label of the edge from vi to vj .

In G, each node is initialised with a letter according to a M-corpusX, then, step by step nodes are
merged to create the real morphemes. To merge nodes an evaluation function is necessary. In [14],
Shalonova et al. proposed one based on frequency and entropy. For large data sets, due to high com-
putational costs we simplify the equation and do not take in account the entropy. Moreover, a pair(m1,m2)
adequate for merging was characterised by the following constraints:

• low frequency for the individual morphemesm1 andm2

• high frequency of the concatenationm1 ·m2

• short sequencesm1 ·m2

The approach that we present does not take in consideration the last constraint and can be viewed as the
lift of a rule for association rules in data mining [3]. Consequently, we name the evaluation function
Morph Lift.

Definition 3. Morph Li f t is defined for a pair of morphemes m1 and m2 as follows:

Morph Li f t (m1,m2) =
f1,2

f1 + f2
(2)

From now on, we know how to merge nodes. Now, we need to figure out the most important part of
GBUMS which is the stopping criterion. The stopping criterion is to prevent over-generalisation. In other
words, we need to stop the algorithm before getting the initial M-corpus (since no merging is possible).
Four stopping criteria have been presented in [14] to treat this issue. Only the most efficient has been
utilised in this article. The criterion comes from [12]. This criterion is based on the Bayesian information
Criterion (BIC) and Jensen-Shannon divergence. The latter is defined as follows [5]:

Definition 4. TheJensen-Shannon divergenceis defined for two morphemes m1 and m2 as the decrease in
entropy between the concatenated and the individual morphemes:

DJS(m1,m2) = H(m1 ·m2)−
Lm1H(m1)+Lm2H(m2)

N
(3)

where H(m) =−P(m) log2P(m), N = ∑mFreq(m) and Lm is the string length of m.

Stopping criterion SC1requires that∆BIC < 0 which translates to:

max
s1,s2

DJS(s1,s2)≤ 2log2N (4)

We stress that the BIC is equal to MDL except that the BIC sign is opposite [8]. To sum up, the GBUMS
(Algorithm 1) follows these steps:

1. build a morpheme graph from all one-letter morphemes.

3



Algorithm 1 The GBUMS morpheme segmentation algorithm
input M-Corpus = List of Strings
output M-CorpusSeg = List of Strings

M-CorpusSeg← SegmentInLetters(M-Corpus);
Graph← InitialiseGraph(M-CorpusSeg);
repeat

Max← 0;
for all (p,q)∈ Graphdo

ML Max← Morph Lift(p, q);
if ML Max > Max then

Max← ML Max;
pMax← p;
qMax← q;

end if
end for
Graph← MergeNodes(Graph, pMax, qMax);
M-CorpusSeg← DeleteBoundariesBetween(M-CorpusSeg, Label(Maxp), Label(Maxq));
Graph← AdjustGraph(M-corpusSeg, Graph);

until StoppingCriterion(pMax, qMax, Max)

2. search a pair that maximisesMorph Li f t .

3. merge the pair found by step 2.

4. test stopping criterion, if valid go back to step 2 else stop.

Note that the M-Corpus is completely segmented at the beginning of the algorithm. Then, the bound-
aries in the segmented M-Corpus are removed step by step according to a pair found in the graph with
the maximum value forMorph Li f t . Since, the stopping criterion is violated the segmented M-Corpus
represents the sequence morphemes. In this section, we have presented a method to extract sequences of
prefixes and sequences of suffixes. In the next section, we show the final step and the full algorithm to
obtain a segmented corpus from raw words.

4 UNsupervised GRAph DEcomposition

In previous sections, we showed how to find prefix sequences, pseudo stem and suffix sequences without
linking them. The final step of the segmentation algorithm is straightforward, it is made up of the aggre-
gation (concatenation) of the sequence of prefixes, pseudo stem and sequence of suffixes found with the
MDL Window and GBUMS for each word. The complete algorithm called UNGRADE (UNsupervised
GRAph DEcomposition) including all phases is summarized in (Algorithm 2).

Algorithm 2 The UNGRADE algorithm
input Corpus = List of Strings
output SegmentedCorpus = List of Strings

for all word∈ Corpusdo
win← (MiddlePosition(word), MiddlePosition(word));
MDL Window Score(win, word);

end for
(L-Corpus, pseudostem, R-Corpus)← SplitCorpusByWindow(Corpus);
L-CorpusSeg← GBUMS(L-Corpus);
R-CorpusSeg← GBUMS(R-Corpus);
SegmentedCorpus← Aggregate(L-CorpusSeg, pseudostem, R-CorpusSeg);

4



Note that the execution of GBUMS for L-corpus and R-corpus can be processed in parallel to reduce
significantly the running time.

5 Related work

Much research onUnsupervised segmentation of morphologyhas focused on statistical approaches accord-
ing to the work of Harris [11, 6] and tuning of parameters according to a language like Gaussier [7]. Brent
(1993) presented the MDL theory for Computational linguistic problems with a probabilistic approach
using the spelling of words [1]. Afterwards, Brent (1995) defined an approach for finding suffixes in a
language [2]. Unfortunately, Brent’s approach required a special tagging of the data. Subsequently, Gold-
smith (2001) used MDL [9] to combine the results of multiple heuristics based on statistic like [6, 7] in
a software calledLinguistica. Goldsmith defined a model for MDL withsignature. However, Linguistica
was only focused on European languages. More recently, Creutz et al. [4] (2002) presentedMorfessorwith
two new approaches to discover morphemes namedMorfessor baselineandMorfessor Categories-MAP.
The former method was based on MDL in a recursive method. The latter one, the most efficient, combined
Maximum Likelihood and Viterbi for an optimal segmentation. Morfessor was developed independently
of languages and provided good results. Lately, Paramor (2007) developed by Monson, in a similar way to
Goldsmith withsignaturesusedparadigmwithout using MDL. Paramor worked in two steps and provided
results as good as Morfessor. In 2008, Results from Paramor and Morfessor were combined and provided
better results than one of them alone [13].

6 Processing and results

In order to test UNGRADE, we used the Morpho Challenge data sets of 2009 which contains English
(384903 words), German (1266159 words), Finnish (2206719 words), Turkish (617298 words), Arabic
non-vowelized (14957 words) and Arabic vowelized (19244 words). Before running UNGRADE on the
different data sets, we decided to use a pre-processing algorithm to remove marginal words and potential
noise. To do so, we analysed the word length distribution to remove infrequent short and long words. We
came up to the following length range for each data set (Table 1). Therefore, we used smaller data sets as
input to UNGRADE. After running UNGRADE, in order to segment the remaining words of the original
data sets, we used a segmented corpus from the output of UNGRADE as a model of segmentation. Thus,
we applied this model to each word not present in the input data set of UNGRADE.
The evaluation measure used is theF-measurewhich is the harmonic mean between the Precision and the
Recall.

F−measure=
2·Precision·Recall
Precision+Recall

(5)

The precision is computed as follows: A sample of words is randomly chosen from the result file. Then,
a pair of words is defined for each morpheme of each word in the sample randomly by a word sharing the
same morpheme from the result file. Finally, each pair of words is compared to the same pair in the gold
standard to check if they have the same morphemes in common.
Similarly, the recall is calculated except that the sampling and the pairs are defined using the gold standard.
Also, the checking of morphemes is carried out on the result file and not on the gold standard.
We stress that the morphemes labels that we use are the spelling of the morphemes and not their gram-
matical categories. The final results used a linguistic morpheme analysis gold standard and are showed on
(Figure 1 and Table 2).

The F-measure for German, English, Turkish and Finnish are of the same order of magnitude (be-
tween 33.44% and 37.11%). Surprisingly, Arabic non-vowelized provided the worst (26.78%) and Arabic
vowelized the best (54.36%) F-measure among all languages. The divergence in F-measure for Arabic is
explained by the average word length. For Arabic, the non-vowelized words are almost on average twice
shorter for the same amount of morphemes on average. We can note that the precision is higher than recall
for all data sets except English. The low level of precision in English is due to the low morpheme number
distribution on average. This observation is confirmed in Arabic (vowelized) where the morpheme number

5



distribution on average is higher and therefore gives a high precision. It is interesting to remark that even if
the starting point to look for a pseudo stem of the UNGRADE algorithm is less correct for Turkish (Turkish
does not have prefixes), the results are quite competitive with Finnish. To sum up, UNGRADE is more
efficient for a language with long words on average and a high number of morphemes by word on average.

Table 1: Pre-processing of data sets
Language Minimum length Maximum length
English 3 13
German 5 18
Finnish 5 25
Turkish 5 16
Arabic (non-vowelized) 2 9
Arabic (vowelized) 3 18

Table 2: Results from the Morpho Challenge 2009
Language Precision Recall F-Measure
English .2829 .5389 .3711
German .3902 .2925 .3344
Finnish .4078 .3305 .3651
Turkish .4667 .3016 .3664
Arabic (non-vowelized) .8348 .1595 .2678
Arabic (vowelized) .7215 .4361 .5436

7 Conclusion and future directions

An unsupervised three-step algorithm for word segmentation UNGRADE has been presented. UNGRADE
is defined on the general assumption on the structure of words for languages that each word contains pre-
fixes, a stem and suffixes. UNGRADE uses a basic labeling of the morphemes which is by their segment.
Results on the Morpho Challenge 2009 for 5 languages (English, German, Turkish, Finnish, Arabic vow-
elized and Arabic non-vowelized) show encouraging payoff for this simple algorithm on all languages.
Results point out that UNGRADE performs on average with 35.92% of F-measure for English, German,
Turkish and Finnish. Particularly, outcomes demonstrate that UNGRADE work well on Arabic vowelized
with more than 54% of F-measure. UNGRADE illustrate high performance for languages with long words
including a high number of morphemes. An important future work should use different starting points for
looking to the pseudo stem at for instance the beginning of the word, the end of the word, etc. Afterwards, a
committee could choose the best segmentation under some MDL criterion which may improve significantly
the results.

Acknowledgments

We would like to thank our team colleagues Roger Tucker and Ksenia Shalonova for consultations on
general morphological analysis. The work was sponsored by EPSRC grant EP/E010857/1Learning the
morphology of complex synthetic languages.

6



English German Finnish Turkish Arabic NV Arabic V
0

10

20

30

40

50

60

70

80

90
Results Morpho Challenge 2009

%

 

 
Precision
Recall
F−measure

Figure 1: Results from the Morpho Challenge 2009

References

[1] M. R. Brent. Minimal generative models: A middle ground between neurons and triggers. In15th
Annual Conference of the Cognitive Science Society, pages 28–36, 1993.

[2] Michael R. Brent, Sreerama K. Murthy, and Andrew Lundberg. Discovering Morphemic Suffixes
A Case Study In MDL Induction. InIn Fifth International Workshop on AI and Statistics,Ft, pages
264–271, 1995.

[3] S. Brin, R. Motwani, J. D.Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. InSIGMOD ’97: Proceedings of the 1997 ACM SIGMOD international
conference on Management of data, pages 255–264, New York, NY, USA, 1997. ACM.

[4] M. Creutz and K. Lagus. Unsupervised discovery of morphemes. InProceedings of the ACL-02
workshop on Morphological and phonological learning, pages 21–30, Morristown, NJ, USA, 2002.
Association for Computational Linguistics.

[5] I. Dagan, L. Lee, and F. Pereira. Similarity-Based Methods for Word Sense Disambiguation.Pro-
ceedings of the Thirty-Fifth Annual Meeting of the Association for Computational Linguistics and
Eighth Conference of the European Chapter of the Association for Computational Linguistics, pages
56–63, 1997.

[6] H. Déjean. Morphemes as Necessary Concept for Structures Discovery from Untagged Corpora,
1998.

[7] E. Gaussier. Unsupervised Learning of Derivational Morphology From Inflectional Lexicons. InACL
’99 Workshop Proceedings: Unsupervised Learning in Natural Language Processing, 1999.

7



[8] Y. Geng and W. Wu. A Bayesian Information Criterion Based Approach for Model Complexity Selec-
tion in Speaker Identification. InAdvanced Language Processing and Web Information Technology,
2008. ALPIT ’08. International Conference on, pages 264–268, July 2008.

[9] J. Goldsmith. Unsupervised Learning of the Morphology of a Natural Language.Computational
Linguistics, 27:153–198, 2001.

[10] B. Golénia. Learning rules in morphology of complex synthetic languages. Master’s thesis, University
of Paris V, 2008.

[11] Z. Harris. From Phoneme to Morpheme.Language, 31(2):190–222, 1955.

[12] W. Li. New Stopping Criteria for Segmenting DNA Sequences.Physical Review Letters,
86(25):5815–5818, 2001.

[13] C. Monson, J. Carbonell, A. Lavie, and L. Levin.ParaMor: Finding Paradigms across Morphology.
Springer Berlin / Heidelberg, 2008.

[14] K. Shalonova, B. Golénia, and P.Flach. Towards Learning Morphology for Under-Resourced Fu-
sional and Agglutinating Languages.IEEE Transactions on Audio, Speech, and Language Process-
ing, 17(5):956–965, July 2009.

[15] S. Spiegler, B. Golénia, K. Shalonova, P. Flach, and R. Tucker. Learning the morphology of Zulu
with different degrees of supervision. InSpoken Language Technology Workshop, 2008. SLT 2008.
IEEE, pages 9–12, Dec. 2008.

[16] M. Yoshida and H. Nakagawa. Automatic Term Extraction Based on Perplexity of Compound Words.
Natural Language Processing IJCNLP 2005, pages 269–279, 2005.

8


