
External Plagiarism Detection Based on Standard IR
Technology and Fast Recognition of Common

Subsequences
Lab Report for PAN at CLEF 2010

Thomas Gottron

WeST – Institute for Web Science and Technologies
University of Koblenz-Landau

56070 Koblenz, Germany
gottron@uni-koblenz.de

Abstract The plagiarism detection system described in this paper is aiming at
bringing external plagiarism detection to the desktop. The main ideas are to in-
corporate standard IR technologies for the candidate selection and efficient data
structures for the detailed analysis between a suspicious and a candidate docu-
ment. Given that the system so far has only reached prototype status, the first
results look promising.

1 Introduction

The plagiarism detection system described in this paper was designed following two
main aims. First, to implement candidate selection based on standard IR engines. The
intention of this aim is to substitute the candidate selection used for the PAN competi-
tion with the search API of a web search engine. In this way it is easily possible to lift
the competition system to a real world scenario, e.g. to check essays or term papers at
university courses for plagiarism from the web. The second aim was to design a system
that can run on commodity hardware. Also this intention was motivated by practise,
where teachers in educational institutions do not have access to high-end computing
machinery, but rather run plagiarism detection software on their laptop or desktop ma-
chines.

Both aims were realised. The candidate selection process was implemented based on
using Lucene with an out of the box configuration. By using an efficient data structure
to mine similar sub-sequences from a pair of documents, also the detailed analysis is
running remarkably fast. Scaling the run-time to a scenario of analysing 20 student
papers of 10,000 words each, the whole process can be completed in less than one
minute, which is acceptable in practise.

1.1 Related Work

In last years competition, Zechner et.al. [15] was the only team employing a standard
model of textual IR for candidate selection. The source documents were indexed on a

sentence level and sentences of suspicous documents were used as queries. Similarity
was calculated via the well established cosine measure. The mapping between sentences
from the suspicious document to the sentences of source documents also provided the
alignment of similar subsequences.

All other approaches used task specific index structures. Malcolm and Lane [9]
used the desktop plagiarism detection system Ferret, which is based on common word
tri-grams. Word n-grams are also the method of choice of the WCopyFind tool em-
ployed by Vallés Balaguer [13]. Instead, Basile et.al. [1] encoded texts as a word length
sequence and used a downstream vector-based n-gram distance measure for candidate
selection. Kasprzak et.al. [6] incorporate common text shingles in the pre-selection pro-
cess and Shcherbinin and Butakov [10] employed hash-based fingerprints for candidate
retrieval. A very different approach was taken by Grozea et.al [3]. They used string
kernels to compute a complete similarity matrix for each pair of source and suspicious
document.

Finding similar subsequences in strings is a problem commonly addressed in bioin-
formatics. Algorithms finding longest common subsequences, like the Hirshberg Algo-
rithm [4] are based on the Levenshtein edit distance [7] and aim at finding a globally
optimal alignment. The Smith-Waterman algorithm [11] is capable of finding also lo-
cally similar subsequences.

In the context of plagiarism detection, Kasprzak et.al. [6] detect regions that are
densely populated with common shingles in both documents. Malcolm and Lane [9]
compute the Jaccard coefficient for similarity on word sequences. A detailed analysis
based on a T9-like word encoding and detecting and merging squared shapes in the
dotplot [8] representation was employed by Basile et.al. [1]. Grozea et.al [3] have de-
veloped an alternative to dotplots: the encoplot representation. The detailed analysis is
based on detecting continuous lines in the encoplot.

Concerning performance optimization, the most common approach is to parallelize
the algorithms. Grozea et.al [3] followed this road and Kasprzak et.al. explained in [5]
in detail how their pre-selection mechanism has been extended to a distributed version
running on a cluster-architecture.

2 External Plagiarism Detection

The plagiarism detection system presented in this paper follows the standard designed
as described e.g. in [12]. When provided with a suspicious document the pre-selection
component uses the Lucene engine to retrieve candidate documents from the source
collection for a detailed comparison. The detailed analysis then provides tuples of se-
quences from suspicious and candidate documents that already represent detected pla-
giarised contents. A series of post-processing filters takes care to remove pathological
cases.

Prior to building the Lucene index, all non-English documents were translated into
English using Google’s translation-service. Essentially, this corresponds to a standard
cross-language indexing approach. To be able to easily map the translated parts back
onto the original texts, they were translated in small chunks of a few paragraphs. The

information which parts of the texts correspond to each other was stored for a later on
backward resolution of character positions in plagiarised parts.

2.1 Pre-Selection

The Lucene index for pre-selection covers only English documents – either English
originals or the translations of documents written in other languages. To cope with
Lucene’s feature of indexing only the first l token in a text, each document dn was split
up into smaller parts dm

n of a fixed length of ld < l terms. Each part dm
n was submitted

to the indexing engine as an individual document, but with a reference to the source it
was taken from.

A similar step was taken for finding candidate documents to compare with a given
suspicious document. The suspicious document si was split into even smaller parts sj

i

of length lq < ld. These parts were used as queries to retrieve relevant documents from
the index. For each query the top-k results are collected, that have scored a relevance
value ρLucene(s

j
i , d

m
n) above a certain threshold value θ. This process is iterated over

all parts sj
i of a suspicious document. For each source document dn a total candidate

score c(si, dn) is computed by summing over all obtained scores for all parts of that
document and all parts of the suspicious document, so:

c(si, dn) =
∑

j

∑
m

ρLucene(s
j
i , d

m
n) (1)

Ordering the source documents by decreasing candidate scores c(si, dn) creates a
ranking of candidate documents for a particular suspicious document si. This ranking
is the input to the next step: the detailed analysis.

2.2 Detailed Analysis

The ranking computed by the last step has the advantage of assigning a priority to the
candidate documents. This can be used to balance time constraints of a fast analysis
against completeness, simply be considering more or less documents of the ranked list
in a detailed analysis.

The comparison of a pair consisting of a suspicious and a candidate document
comes down to finding similar local token sub-sequences. Talking about tokens in this
case is intentionally general, as it can be realised in different ways. The methods de-
scribed here can be applied to tokens that correspond to characters, terms or larger
constructs like n-grams. The setup described in this paper eventually used sorted term
5-grams, where the purpose of sorting the terms in each 5-gram was to partially over-
come local changes in word order.

The problem of finding similar local sub-sequences is commonly known in bio-
informatics, where DNA sequences have to be compared for similar fragments. Hence,
the first approach was to apply the Smith-Waterman algorithm [11]. But, given its
quadratic complexity, it can only be run on small documents or, again, parts of doc-
uments. This turned out not be suitable for a plagiarism detection scenario with book-
length documents. We investigated applying Smith-Waterman to local areas in the token

sequence around cooccurrances of word n-grams. This approach lead to low values for
both, recall and precision, and high values of granularity (see the results in section 3).
Also, execution time was still around twice as long as for the solution we eventually
applied.

Another typical approach is to plot the positions at which each token from a candi-
date document occurs in a suspicious document. This leads to a graph like the one in
Figure 1, sometimes referred to as a dotplot [8]. While random cooccurrences appear
as noise in this kind of plot, regions of plagiarism point out as longer lines. Such a plot
can be generated efficiently, by building an inverting index of tokens and their positions
in the suspicious document and then looking up each token from the candidate in this
index. The advantage of building the index over the suspicious document is, that it can
be reused over several candidate documents.

Essentially, the Smith-Waterman algorithm should detect the lines in such a dot-
plot, while being flexible enough to tolerate small perturbations in the lines caused by
replaced, inserted or deleted words. Other error tolerant line-detection algorithms like
RANSAC [2] are capable to find such lines as well, but still require several iterations
over the data during the computation.

Figure 1. A dotplot plots the positions of terms from a candidate document against their positions
in the suspicious document.

These algorithms, however, provide more flexibility than actually needed. Effec-
tively, looking for longer common sub-sequences of high similarity corresponds in our
case to finding lines in the dotplot which approximately have a 45 degree angle with
both axis. Hence, when subdividing the dotplot in stripes as shown in Figure 2, one can
expect each of the lines – which correspond to cases of plagiarism – to lie completely
in one stripe.

Figure 2. Lines in the dotplot cause by plagiarism lie in stripes of 45 degree angle.

Figure 3. The stripe index for storing token cooccurrences.

Each stripes can be represented by a line xi in its centre (cf. the dotted lines in
Figure 3). These lines can be formulated by using a normal vector ~w, that also includes
a definition of the width of the stripes:

xi : 〈~p, ~w〉+ 2 · i · |~w| = 0 (2)

The advantage of this representation for the stripes is, that for each cooccurrence
of a single token in the suspicious and candidate document it is possible to identify
immediately, which stripe it falls in. For a cooccurrance at the point (j, k), where j is

the position in the source sequence and k the position in the suspicious sequence, the
stripe can be determined by essentially calculating the distance of this point to the line
x0:

stripe(j, k) =
⌊

1
−2 · |~w|

〈(
j
k

)
, ~w

〉
− 0.5

⌋
(3)

This lead to the idea, not to compute the dotplot at all, but rather a stripe-index. This
stripe index stores all cooccurrences of tokens lying in the same stripe as a linked list
of entries.

In this way, it is sufficient to consider only those stripes for line detection where
a lot of elements are stored in. The stripes with few entries can be skipped as they
presumably contain only random cooccurrences. To identify the lines, dots in a stripe
are mapped onto the line in its centre, so that in the end, it is enough to consider densities
in a one-dimensional data structure.

Lines caused by plagiarism correspond to dense regions in the stripes and are found
by comparing the distances between single points on the central stripe lines. If the
distance between nmin consecutive points is not larger then δmin each, this is considered
the start of a dense region, until the next point in the sequence is further away than δmin.

One issue to take care of was the special case of a line in the dotplot falling exactly
on the border between two stripes. In this case and due to the already mentioned pos-
sibility of small perturbations in the line, it might happen that some cooccurrences are
captured in one stripe and some in the neighbour stripe. This might cause a dense re-
gion to be split into smaller parts across two stripes that individually might become too
short or not dense enough to be detected. The solution to this problem is to design the
stripes to have an overlapping margin. Though, in extreme cases a dense region might
still be split in parts, each of them is long enough to be detected individually. One of
the post-processing steps described below takes care to join the parts in this case. The
improvements obtained in this way depend on the width of the stripes. Given the width
eventually chosen for the stripes here, the improvements were marginal.

During the entire process of transforming cooccurrences into points in a stripe, the
original positions of the tokens are kept in mind. In this way it is possible to recon-
struct for a dense region, what are the corresponding first and last token in the original
suspicious and candidate document respectively.

The sub-sequences detected in this way are already a detected region of plagiarism
and are resolved into character positions. Before reporting these regions, however, they
undergo a few steps of post-processing.

2.3 Post-Processing

Post-processing in the current system consists of three steps:

1. The first step checks for too short regions. As it might happen that very short similar
sub-sequences occur by chance, each region that consists of less than a certain
number of characters is dropped.

2. The second step merges close regions. If regions lie close to each other or even
overlap, they are combined into one region. This happens if the distance between
the first and last character of two regions is lower than a threshold.

3. Last, when dealing with a translated document, the positions in the translated En-
glish version need to be mapped back to the positions of the original text. This is
done via a simple linear interpolation based on the positions of the corresponding
chunks of text created during the initial translation process.

3 Evaluation

As the system contains a lot of parameters, a subset of the first 2,000 suspicious docu-
ments of the PAN-09 [14] corpus was used to optimise performance. Additionally, the
pre-selection process, the detailed analysis and the post processing step were technically
split up and intermediary results were serialised to a simple file based representation.
This allows individual analysis and evaluation of the steps.

The pre-selection was analysed on how well the Lucene approach is capable of
finding good candidates. The gold-standard candidates from the training corpus were
used to compute recall-based measures. As the quality of the ranking based on the
candidate scores c(si, dn) is of interest as well, recall@10, @20, and @30 as well as
the recall over all selected candidates were determined. It turned out that the overall
recall differed little from recall@30. So, it seems sufficient to consider only the first 30
candidate documents for a detailed analysis. The recall obtained with the Lucene index
was around 0.7. The length ld of the parts for indexing a document and lq for searching
the index seemed to have little influence on this values. In the end, ld was set to 5,000
terms and lq to 50 terms. The threshold θ had been set to 0.5 and retrieval was limited
to the top-10 documents for each query.

In the phase of the detailed analysis there are other parameters to tune. The width
of the stripes in the stripe-index was set to an equivalent of 50 token, with the stripes
having an overlapping margin of 20%. A dense region consisted of at least 5 token with
a distance of no more than the equivalent of 10 token.

The post-processing phase used settings chosen according to results reported in
previous years [3]. Plagiarised sequences of less than 175 characters were considered
random cooccurrences and were discarded. Sequences with a distance of less than 500
characters were merged into one plagiarised content covering also the characters in
between.

The performance of this setup can be seen in Table 1. On the training corpus recall
and precision obtain quite balanced values and granularity is acceptable. The individual
measures as well as the overall score does not reach the best-performing system of last
year. But, as the system is a relatively quickly drafted prototype, we did not expect to
beat those results.

For comparison, the table also includes the performance of the shortly mentioned
approach based on the localized Smith-Waterman algorithm mentioned above. The per-
formance is much lower under all aspects. However, it remains to be said, that this
approach was not followed intensively and that a better performance can be expected
when tuning the parameters.

Table 1. Evaluation of the system on Training and Test corpus

Corpus Detailed Analysis Recall Precision Granularity Overall Score
PAN-09 localized Smith-Waterman 0.2354 0.0789 3.2941 0.0562
PAN-09 Stripe-Index 0.4689 0.4027 1.1402 0.3947
PAN-10 Stripe-Index 0.3174 0.5059 1.8701 0.2564

The performance on the PAN-10 test corpus was different, though. Here recall was
lower while precision was higher. The reason for the lower recall can be explained with
the lack of an intrinsic analysis component. Evaluating the results of the detection solely
against the external cases of plagiarism, recall lies at 0.3905 and, thus, much closer to
the values obtain on the training corpus.

Surprising was the increase in granularity, which clearly contributes to the overall
lower performance of 0.2564 compared to 0.3947 on the training data. New obfuscation
strategies and potentially a different distribution and density of the plagiarised contents
could be an explanation. However, this unexpected behaviour remains to be investigated
in detail.

Besides the evaluation of effectiveness, also efficiency and run-time performance
was of interested. The system was run on commodity hardware: an Lenovo notebook
computer with a 2.67 GHz Core i7 processor and 4GB RAM. So far, the system is single
threaded and does not make use of parallel execution on several processing cores.

Building the Lucene index for the PAN-10 corpus is negligible and took less than 7
minutes. The pre-selection of candidates was the longest part in the process and required
about 28 hours and 21 minutes. The detailed analysis and post-processing was much
faster and took a total of 10 hours and 4 minutes. This leads to a total run-time of 38
hours and 32 minutes. Exploiting the inherit potential of parallelising each step of the
process, a speedup factor closely correlated to the number of parallel threads can be
expected.

4 Conclusion

The system presented in this paper makes two main contributions. First, it uses and
evaluates a Lucene index for the candidate selection process. Though, the idea of using
standard search systems for plagiarism detection is not new, it had not been applied or
evaluated by any system in the PAN plagiarism detection competition of last year. Fur-
ther, and unlike special purpose indexes that are used in other systems [6,13,1,9,3,10],
this allows to easily adapt the system to search the web for candidate documents via
web search engines. Second, with the stripe-index used in the detailed analysis step,
we obtained good run-time improvements in detecting similar sub-sequences from two
documents, compared to the Smith-Waterman and the RANSAC approach.

As the system is in an early prototype stage, the results are far from being com-
petitive with other systems. However, there are several components that offer a lot of
potential for improvements:

– Post-processing is working solely on the position and length information of pla-
giarised parts. No information from the real texts is used. Incorporating the actual

contents of the documents into this process will allow a more elaborated analysis
and better decisions on when to discard or merge plagiarised parts.

– The dotplot was built on sorted term 5-grams. Choosing different tokens as base
for the dotplot – especially more fine-grained structures – will lead to a higher
recall. It remains to analyse how the trade-off in precision and granularity can be
counterbalanced, either by improving the line detection method, or by improving
the post-processing steps.

– The alignment of positions between the translated and original documents was done
in a very simple way. A more fine-grained resolution will improve accuracy for
cross-lingual plagiarism detection.

– Semantic changes, like replacing words with synonyms, have not been considered
at all so far. They might be incorporated into the inverted index structure over the
token positions in the suspicious document.

– Another interesting question could be to replace the vector space model underlying
Lucene with a different standard IR model. Given long texts and queries, a promis-
ing approach could be to look into retrieval based on language models.

– Finally and as mentioned above, the system can be expected to be sped up also on
commodity hardware by implementing thread-based parallelisation.

Overall, as several components so far were designed to provide merely basic func-
tionality, the system can benefit from several improvements, which might contribute to
a far better performance in future competitions.

A Acknowledgements

Some of the initial ideas leading to the system described in this paper, especially con-
sidering candidate selection based on standard IR techniques, were developed and dis-
cussed with students of a course given at the University of Mainz. Hence, I would
like to thank Ricard Anufriev, Christian Auth, Florian Feyand, Willy-Roland Monkam,
Christian Sigel and Florian Sturm for their contribution in this course.

References

1. Basile, C., Benedetto, D., Caglioti, E., Cristadoro, G., Degli Esposti, M.: A plagiarism
detection procedure in three steps: Selection, matches and "squares". In: Proceedings of the
SEPLN’09 Workshop on Uncovering Plagiarism, Authorship and Social Software Misuse.
pp. 19–23 (2009)

2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395
(1981)

3. Grozea, C., Gehl, C., Popescu, M.: Encoplot: Pairwise sequence matching in linear time
applied to plagiarism detection. In: Proceedings of the SEPLN’09 Workshop on Uncovering
Plagiarism, Authorship and Social Software Misuse. pp. 10–18 (2009)

4. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences.
Commun. ACM 18(6), 341–343 (1975)

5. Kasprzak, J., Brandejs, M., Brandejsova, J.: Distributed aspects of the system for
discovering similar documents. In: ITA’09: Proceedings of the 3rd International Conference
on Internet Technologies and Applications (2009)

6. Kasprzak, J., Brandejs, M., Kripac, M.: Finding plagiarism by evaluating document
similarities. In: Proceedings of the SEPLN’09 Workshop on Uncovering Plagiarism,
Authorship and Social Software Misuse. pp. 24–28 (2009)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

8. Maizel, J.V., Lenk, R.P.: Enhanced graphic matrix analysis of nucleic acid and protein
sequences. Proceedings of the National Academy of Sciences of the United States of
America 78(12), 7665–7669 (1981)

9. Malcolm, J.A., Lane, P.C.R.: Tackling the pan’09 external plagiarism detection corpus with
a desktop plagiarism detector. In: Proceedings of the SEPLN’09 Workshop on Uncovering
Plagiarism, Authorship and Social Software Misuse. pp. 29–33 (2009)

10. Shcherbinin, V., Butakov, S.: Using microsoft sql server platform for plagiarism detection.
In: Proceedings of the SEPLN’09 Workshop on Uncovering Plagiarism, Authorship and
Social Software Misuse. pp. 36–37 (2009)

11. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of
Molecular Biology 147(1), 195 – 197 (1981)

12. Stein, B., Lipka, N., Meyer zu Eissen, S.: Meta analysis within authorship verification. In:
DEXA ’08: Proceedings of the 2008 19th International Conference on Database and Expert
Systems Application. pp. 34–39. IEEE Computer Society, Washington, DC, USA (2008)

13. Vallés Balaguer, E.: Putting ourselves in sme’s shoes: Automatic detection of plagiarism by
the wcopyfind tool. In: Proceedings of the SEPLN’09 Workshop on Uncovering Plagiarism,
Authorship and Social Software Misuse. pp. 34–35 (2009)

14. Webis at Bauhaus-Universität Weimar, NLEL at Universidad Politécnica de Valencia: PAN
Plagiarism Corpus 2009 (PAN-PC-09). http://www.webis.de/research/corpora (2009),
Martin Potthast, Andreas Eiselt, Benno Stein, Alberto Barrón-Cedeño, and Paolo Rosso
(editors)

15. Zechner, M., Muhr, M., Kern, R., Michael, G.: External and intrinsic plagiarism detection
using vector space models. In: Proceedings of the SEPLN’09 Workshop on Uncovering
Plagiarism, Authorship and Social Software Misuse. pp. 47–55 (2009)

