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Abstract Nowadays, plagiarism has been presented as one of the main distresses that the information
technology revolution has lead into our society for which using pattern matching algorithms and intel-
ligent data analysis approaches, these practices could be identified. Furthermore, a fast document copy
detection algorithm could be used in large scale applications for plagiarism detection in academia, scien-
tific research, patents, knowledge management, among others. Notwithstanding the fact that plagiarism
detection has been tackled by exhaustive comparison of source and suspicious documents, approxi-
mated algorithms could lead to interesting results. In this paper, an approach for plagiarism detection
is presented. Results in a learning dataset of plagiarized documents from the PAN’09, and its further
evaluation in the PAN’10 plagiarism detection challenge, showed that the trade-off between speed and
performance could improve other plagiarism detection algorithms.

1 Introduction

Plagiarism in academia is rising and multiple authors have worked to describe this phenomena [11, 12, 20].
As commented by Hunt in [11], “Internet Plagiarism” is referred sometimes as a cataclysmic consequence
of the “Information Technology revolution”, as it proves to be a big problem in academia. In [20], plagiarism
is analyzed from various perspectives and considered as a problem that is growing bigger over time. In [12],
the author analyzes different statistical data and the implications of the “IT age”.

To tackle this problem, one approach is to try to detect plagiarism. Different methods involving computer
aided plagiarism detection have been under research [6, 8, 10, 14, 16, 24, 25], from which different system
for automatic plagiarism detection have been developed. However, different ways for neutralizing such
detection systems have been presented. Such methods usually involve modifying the text in such way that
the presentation of the document remains the same, but the underlying code is different and normally this
differentiation render the detection systems useless [19].

Plagiarism detection for document sources can be classified into several categories [7]. From exact
document copy, to paraphrasing, different levels of plagiarism techniques can been used in several contexts
[14, 28]. Likewise, pairs of documents can be described into different categories as unrelated, related, partly
overlapped, subset, and copied.

When comparing a suspicious document against a collection of possible sources, it is tried to identify the
sentences, paragraph or ideas that have been copied. This is called external plagiarism detection [22], and
multiple efforts are being oriented in this area. Another approach, is to determine within features extracted
from just one given document. However, this work is mainly focused on external plagiarism detection,
without considering elements from the intrinsic plagiarism detection case.

The main contribution of this work is a technique for plagiarism detection based on a two step evalua-
tion. First, a filter evaluation which considers a fast generation of segments of n-grams for an approximated
decision. And second, an obfuscation and exhaustive search process for the offset and length of the pla-
giarized extraction between two previously classified documents is performed. This two-step algorithm is
based on different document pre-processing strategies and decision thresholds which gives a large number
of parameters or degrees of freedom to be determined.

This paper is structured as follows: In Section 2 an overview of plagiarism detection algorithms and
related work is presented. Then, in Section 3 the proposed FAST Document Copy Detection (FASTDOCODE)
method is introduced. Afterwards, in Section 4, the experimental setup and evaluation performance criteria
are described. In Section 5 results are discussed. Finally, in Section 6 the main conclusions are presented.
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2 Related Work

According to Schleimer et al. [23], copy prevention and detection methods can be combined to reduce
plagiarism. While copy detection methods can only minimize it, prevention methods can fully eliminate it
and decrease it. Notwithstanding this fact, prevention methods need the whole society to take part, thus its
solution is non trivial. Copy or plagiarism detection methods tackle different levels, from simple manual
comparison to complex automatic algorithms [22]. Among these techniques, document similarity detection,
writing style detection, document content similarity, content translation, multi-site source plagiarism, and
multi-lingual plagiarism detection methods have been previously proposed [6, 7, 14, 18, 22, 23, 26].

2.1 Intrinsic Plagiarism Detection

When comparing texts against a reference set of possible sources, comes the complication of choosing the
right set. And now more than ever, with the possibilities the internet bring to plagiarists, this task becomes
more complicated to achieve. For this, intrinsic plagiarism detection algorithms have been developed [28].

The writer style can be analyzed within the document and an examination for incongruities can be done.
The complexity and style of each text can be analyzed based on certain parameters such as text statistics,
syntactic features, part-of-speech features, closed-class word sets, and structural features [28]. Whose main
idea is to define a criterium to determine if the style has changed enough to indicate plagiarism.

It is important to note that using intrinsic plagiarism detection for both, automated and manual, it is not
demonstrated that a paragraph or a part of the document is being copied, because there is no reference to
compare to. Therefore this kind of plagiarism detection category is only indicative and should be used in
conjunction with human supervision. Nevertheless, intrinsic plagiarism is useful when trying to discover
originality and authorship of a document.

2.2 External Plagiarism

Before the comparison between each possible source and the suspicious document can be executed, an
important obstacle is to be resolved. This task consist in defining and gathering the possible sources, and
this is becoming more and more complex as the technology becomes more available. In [5], the suspicious
document is chopped into queries and web search engines are used to obtain a set of candidates sources.
This approach helps tackle this problem but more work is needed.

Another issue to be considered, is when the collection of possible sources become too large. The size
of the set of possible sources can be thousands of documents. In [22], PAN Competition and Workshop,
the external part of the competition, and now merged with the training corpus, considers a set of sources
of 14,428 documents or possible sources. In this case solutions do exist, as reducing the search space using
different data mining techniques.

In [17], the use of n-grams for plagiarism detection is explored. The use of n-grams gives some flexibility
to the detection, as reworded fragments could still be detected. In particular, in [3] the tri-gram structure is
found to be the most effective in this task. This method is possible because the common n-grams between
two documents are usually a low percentage of the total number of n-grams of both text. Due to this, n-grams
could probe promissory for plagiarism detection techniques. Furthremore, in [16], Lyon et al. extended
their work and the Ferret system was implemented, which uses this approximation to detect plagiarism. A
distance is calculated between the documents, based on the n-grams found in common. The results indicate
that this structure is useful and provides flexibility at detecting plagiarism with modifications of words.

Other approaches focus on solving the plagiarism detection problem as a traditional classification prob-
lem from the machine learning community [1, 9, 13]. Bao et al. in [13] and then in [1], proposed to use
a Semantic Sequence Kernel (SSK), and then using it into a traditional Support Vector Machines (SVMs)
formulation based on the Structural Risk Minimization (SRM) [4, 27] principle from statistical learning
theory, where the general objective is finding out the optimal classification hyperplane for the binary clas-
sification problem (plagiarized, not plagiarized). Likewise, other approaches solves the same classification
problem by using Self Organizing Feature Maps (SOFM) [15], with promising results in the classification
performance.

An interesting issue is the multi-lingual and cross-language detection of plagiarism. This topic is cur-
rently under research [2, 21], where promising results for plagiarism and cross-lingual information retrieval
have been presented.
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2.3 Reducing Search Space

One of the issues to be resolved in external plagiarism analysis and detection is the number of source
document candidates. When the task is to detect plagiarism between a small set of suspicious against a
small set of source documents, it is simple to search for plagiarism in every pair of documents. The problem
is presented when the universe of possible sources is not well defined, or the set of documents is too large.
In this case the approach need to be modified, and those changes usually consists in adding a step in the
process of plagiarism discovery: the search space reduction.

The aim of this step is to effectively and efficiently identify which texts are possible sources of plagia-
rism, if any. Usually multiple statistical tools are used in order to reduce the computational time required
for computing a large corpus of documents while trying to maintain accuracy at determining which sources
need to be discarded.

3 Proposed Method

In this section, the main contribution of our work is described. In the first place, the overall FASTDOCODE
algorithm is presented in terms of previously introduced notation. Then, the two steps that defines FAST-
DOCODE, that is, the approximated segment finding algorithm and the exhaustive offset and length search,
are presented in subsections 3.2 and 3.3 respectively. In this section all algorithms are presented as pseudo-
code, together with a brief description on how different parameters could be used.

Let us introduce some concepts. In the following, let V a vector of words that defines the vocabulary to
be used. We will refer to a word w, as a basic unit of discrete data, indexed by {1, ..., |V|}. A document d
is a sequence of S words (|d| = S) defined by w = (w1, ..., wS), where ws represents the sth word in the
message. Finally, a corpus is defined by a collection of D documents denoted by C = (w1, ...,w|D|).

3.1 FASTDOCODE

Given a wide set of parameters Dsource,Dsuspicious, n, k,m, SORTSTRATEGY, θ1, θ2, τmin, St, Pe, the
algorithm tries to find for a corpus C = {Dsource,Dsuspicious} all plagiarized documents in the suspicious
partition, using as search space the source partition. This algorithm is based on external plagiarism detection,
and does not include intrinsic plagiarism nor multi-lingual evaluation. In general terms, the algorithm first
reduces the search space by using an approximated search of segments of n-grams, and then within selected
pairs of documents, using an exhaustive search algorithm, finds the offset and its length for both exact and
obfuscated copy.

Algorithm 3.1: FAST-DOCODE

Data: Dsource,Dsuspicious, n, k,m, SORTSTRATEGY, θ1, θ2, τmin, St, Pe

Result: Vector OL with all Offsets and their lengths for the complete corpus of documents
Initialize Vector pair ← {} and OffsetLenght← {};1

foreach di ∈ Dsuspicious do2

(κi, ti)← PREPROCESSDOCUMENT(di, n = 3, k,m);3

foreach dj ∈ Dsource do4

(κj , tj)← PREPROCESSDOCUMENT(dj , n = 3, k,m);5

if APPROXIMATECOMPARISON(κi, κj , ti, tj , θ1, θ2) then6

p(i, j)← (di,dj) ;7

pair.add(p);8

foreach p ∈ pair do9

ti ← PREPROCESSDOCUMENT(p.di, n = 2, k,m, SORTSTRATEGY);10

tj ← PREPROCESSDOCUMENT(p.dj , n = 2, k,m, SORTSTRATEGY);11

OL.add(FINDOFFSETLENGHT1(ti, tj , τmin, St, Pe));12

OL.add(FINDOFFSETLENGHT2(ti, tj , τmin, St, Pe));13

return OL ;14
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In algorithm 3.1, the general evaluation of a corpus is presented. In particular, different procedures
are used within the code which helps in the preprocessing of documents. The method PREPROCESSDOCU-
MENT, presented in algorithm 3.2, takes as input a given document, and returns a set of n-grams or segments
of n-grams given the case. If n = 2, only a set of bi-grams will be computed, and if n = 3 a process of
finding segments of n-grams will be performed. Segments of n-grams will be intensively used in the ap-
proximated search for reducing the search space, whether the bi-grams will be used in finding all offsets
and their lengths.

Algorithm 3.2: PREPROCESSDOCUMENT

Data: di, n, k,m
if n = 3 then1

REMOVESTOPWORDS(di);2

ti ← GENERATENGRAMS(di, n) ;3

ki ← GENERATEKNGRAMS(ti, k);4

k∗i ← SORT(ki, SORTSTRATEGY) ;5

κi ← SELECTMLASTNGRAMS(k∗i ,m) ;6

return (κi, ti);7

else8

ti ← GENERATENGRAMS(di, n) ;9

return ti;10

As presented in algorithm 3.2, new methods are introduced for the processing, such as the GENERATEN-
GRAMS function that takes a given document di and returns a set of n-grams with the structure
(wi, wi+1 . . . , wi+n),∀i ≥ 1, n ≤ S. Function GENERATEKNGRAMS, generates groups of length k us-
ing all n-grams. Then, a SORT algorithm is used within segments, with a specific sorting strategy. In this
research, an alphabet sorting strategy and a Term Frequency sorting strategy where used as a variation on
the proposed algorithm. Finally, a SELECTMLASTNGRAMS function, as specified in its name definition,
selects only the lastmn-grams within the segment. This approach can be considered as an analogy to a sam-
pling strategy for each segment, thus contributing to minimize the number of comparisons to be executed
and enhancing the runtime of the algorithm.

3.2 Finding Segments Approximation

Algorithm 3.3: APPROXIMATECOMPARISON

Data: κi, κj , ti, tj , θ1, θ2
if SMATCH(ti, tj , s ≥ 1) then1

if SMATCH(κi, κj , s ≥ θ1) then2

if SMATCH(ti, tj , s ≥ θ2) then3

return true ;4

end5

end6

end7

else8

return false;9

end10

Once documents di and dj are processed in n-grams and segments of n-grams, ti, tj and κi, κj re-
spectively, a set of conditions are evaluated in order to set the relation that document di has with document
dj , that is, if they are somehow related (algorithm 3.3 returns true), or if it is not worthy to keep finding
further relationships (algorithm 3.3 returns false). In this sense, this is an approximated finding procedure
that considers both n-grams and their k segments to decide if there is enough information to classify as
plagiarism or not.

Algorithm 3.3 first evaluates an SMATCH(ti, tj , s ≥ 1) algorithm which returns true whether at least
one n-gram from ti matches one n-gram from tj . Also a variation of previous matching method is used
within the segments of n-grams. Condition SMATCH(κi, κj , s ≥ θ1) states that at least θ1 n-grams must
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match in between segments κi and κj . If this is hold, the next condition SMATCH(ti, tj , s ≥ θ2) is associ-
ated to find whether at least θ2 n-grams matches between ti and tj . In general terms, this procedure helps on
reducing the search space, and improving the algorithm in both execution time and hardware requirements.
By using these constraints, it is possible now to go into a further algorithm for finding the needed offset and
its length.

3.3 Find the Offset and its Length

Algorithm 3.4 describes roughly how to find the offset and its length within two documents.

Algorithm 3.4: FINDOFFSETLENGTH

Data: di,dj , ti, tj , τmin, St, Pe
// Find obfuscated and textual copy within documents di and dj

foreach wi ∈ di do1

foreach wj ∈ dj do2

Initialize Vector bp(i)left ← {}, bp(j)right ← {}, bp(j)left ← {}, bp(i)right ← {};3

// Move the XMATCH in both ← and → sides of the document in
steps St and checking that Pe percentage of similar words
within the step

repeat4

bp(i)right.add(ti) and bp(j)right.add(tj)5

until !XMATCH(ti, tj , s = 1,←, St, Pe) ;6

repeat7

bp(i)left.add(ti) and bp(j)left.add(tj)8

until !XMATCH(ti, tj , s = 1,→, St, Pe) ;9

if max{|bp(i)left − bp(i)right|, |bp(j)left − bp(j)right|} > τmin then10

OffsetLength(i).add(bp(i)left, |bp(i)left − bp(i)right|) ;11

OffsetLength(j).add(bp(j)left, |bp(j)left − bp(j)right|) ;12

end13

// Remove all words inside break points for both di and dj

REMOVEINCLUDEDWORDS(ti, bp(i)left, bp(i)right) ;14

REMOVEINCLUDEDWORDS(tj , bp(j)left, bp(j)right) ;15

UPDATE(di);16

UPDATE(dj);17

end18

end19

return Offsetlenght ;20

Previous algorithm 3.4, finds obfuscated and textual copy within documents di and dj , then a match
strategy is moved both left and right side of the document, adding to the offset array the matching segments.
Finally, to avoid the search over detected plagiarism passages, the break points are saved and used to remove
them.

4 Experiments

In this section, the experimental setup and the evaluation criteria is presented. First, the selected partition
of a plagiarism detection corpus from the PAN’09 [22] is discussed together with some of the parameters
selected to evaluate different benchmark plagiarism detection algorithms. Then, the evaluation criteria and
performance measures used for the training step of the algorithm are presented.

4.1 Experimental Setup

The PAN’09 plagiarism detection corpus [22] was used as a seed to train different plagiarism detection
algorithms.
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Figure 1. Dataset distribution in terms of the construction of the number of source documents that each
suspicious document was originated from.

For the experiment, a small sample of the PAN’09 corpus is chosen. This sample considers only external
English plagiarism cases. It is constructed as Figure 1 suggests: maintaining the number of references per
suspicious document from the original corpus.

Four algorithms are used for experimental and testing purposes. Three of the selected algorithms are
based on the previous approach presented in section 3 and a variation of the unix diff command used
to detect changes between two documents was used as benchmark. Due to the lack of space, only a brief
description of each of the selected algorithms is presented. Further information was intentionally discarded
by authors.

The first, named “SimParalell” is an iteration where the pair of documents is compared exhaustively.
The parameters used are n the parameter of the gram structure, sw is the size of an n-gram sliding window
to be considered. Parameter K represents the minimum number of common n-grams to increase a counter
indicator. Finally, parameterC is the number of cores used in a parallelized implementation of the algorithm.

The second algorithm, “SimTF”, is equivalent to algorithm 3.3, but the sorting strategy is based on term
frequency. In this case it is expected a faster running time than the latter, at a cost of a possibly loss of recall
because of the approximated nature of the approach. Then, “SimVP” is the algorithm 3.3 whose pseudo-
code is presented in section 3. In this case, as well as “SimTF”, it is expected a faster running time than
“SimParalell” at a cost of a possibly loss of recall.

Finally, the “Diff” approach is a basic algorithm based on the unix command diff. This approach
is based on the move, delete and add characteristics presented by the command, where each one of these
outputs is used to determine the scoring function for plagiarism detection.

All of these algorithms outputs are considered as an approximation of the plagiarism detection problem,
for which further analysis needs to be taken into consideration for a given pair of documents. They do
not offer the offset nor the length of the plagiarism passages, however they determine how close a pair of
documents are.

4.2 Evaluation Criteria

The resulting confusion matrix of this binary classification task can be described using four possible out-
comes: Correctly classified plagiarized documents or True Positives (TP), correctly classified non plagia-
rized documents or True Negative (TN), wrong classified non plagiarized documents as plagiarized or False
Positive (FP), and wrong classified plagiarized documents as non-plagiarized or False Negative (FN).

The evaluation criteria considered are common information retrieval measures, which are constructed
using the before mentioned classification outcomes.

– Precision, that states the degree in which a pair of documents identified as a plagiarism case have indeed
copy between them, and Recall, that states the percentage of plagiarized documents that the classifier
manages to classify correctly. Can be interpreted as the classifier’s effectiveness.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(1)
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Table 1. Algorithms and their parameters used for the conducted experiment.

Name Description Parameters
SimParalell0 CD Sim paralell original (n = 3, sw = 5,K = 3, c = 16)
SimParalell1 CD Sim paralell modified 1 (n = 2, sw = 6,K = 3, c = 16)
SimParalell2 CD Sim paralell modified 2 n = 4, sw = 8,K = 3, c = 16

SimTF0 CD Sim TF original (n = 3, sw = 5, θ1 = 7, θ2 = 2, k = 150)
SimTF1 CD Sim TF modified 1 (n = 2, sw = 6, θ1 = 7, θ2 = 2, k = 50)
SimTF2 CD Sim TF modified 2 (n = 4, sw = 8, θ1 = 7, θ2 = 2, k = 150)
SimVP0 CD Sim AR original (n = 3, sw = 5, θ1 = 18, θ2 = 5, k = 250)
SimVP1 CD Sim AR modified 1 (n = 2, sw = 6, θ1 = 18θ2 = 5, k = 250)
SimVP2 CD Sim AR modified 2 (n = 4, sw = 8, θ1 = 18, θ2 = 5, k = 250)

Diff0 CD Diff original (Add = -1 , Move = 10 , Delete = -1)
Diff1 CD Diff modified 1 (Add = -10 , Move = 0 , Delete = -10)
Diff2 CD Diff modified 2 (Add = -5 , Move = 0 , Delete = -10 )

– F-measure, the harmonic mean between the precision and recall, and Accuracy, the overall percentage
of correct classified documents.

F-measure =
2 ∗ Precision ∗ Recall

Precision + Recall
, Accuracy =

TP + TN

TP + TN + FP + FN
(2)

5 Results and Discussions

Previous algorithms were evaluated using the evaluation criteria on the selected corpus from the PAN’09
dataset. All results are presented in table 2, where the accuracy, precision, recall, F-measure and the evalu-
ation runtime are listed. The overall evaluation was performed for each plagiarized case, where for a given
suspicious document, the confusion matrix was determined and their performance measures were evalu-
ated. Then, after all suspicious documents were evaluated, the mean performance was recorded and listed
in table 2.

Table 2. Results for Accuracy, Precision, Recall, F-measure and runtime for each algorithm presented in
section 4

Copy Detector Accuracy Precision Recall F-measure runtime (s)
SimParalell0 0.999 0.895 0.914 0.904 20,568
SimParalell1 0.990 0.616 0.958 0.750 21103
SimParalell2 0.961 0.882 0.916 0.899 29,655

SimTF0 0.874 0.824 0.821 0.823 6,959
SimTF1 0.923 0.766 0.800 0.783 7,451
SimTF2 0.874 0.836 0.818 0.827 6,615
SimVP0 0.887 0.865 0.857 0.861 5,393
SimVP1 0.899 0.859 0.852 0.855 5,596
SimVP2 0.849 0.828 0.868 0.847 5,231

Diff0 0.584 0.005 0.349 0.010 6,617
Diff1 0.007 0.007 1.000 0.014 6,529
Diff2 0.584 0.005 0.349 0.010 6,179

The results for the experiment are listed in Table 2. As the numbers indicate, the best results in term of
F-measure are obtained with “SimParalell”. This comes to no surprise, as the algorithm exhaustively checks
the documents. The cost of such results, however, is the worst running time of the group. Alternatively, the
“SimTF” and “SimVP” both get acceptable results but much better running times than “SimParalell”. This
factor is important as the number of pair of documents to compare becomes increasingly high. The “Diff”
variant gets an overall worse result; based on the diff unix command entirely this approach does not take
into account different obfuscation levels.
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Baseline FastDocode

Number of sources for each suspicious document

Figure 2. Results comparing the baseline sources for suspicious documents (blue line), and those retrieved
by FASTDOCODE (green line).

In Figure 2, results for the SimVP0 algorithm, where the expected curve for source-suspicious rela-
tionship is presented together with the source-suspicious relationship that was retrieved with the proposed
algorithm. These results show that in the overall evaluation of the selected corpus, our proposal was robust
in different number of sources for each suspicious evaluated.

6 Conclusions

In this work we have presented a method for uncovering external plagiarism cases. The strategy proposed
is based on word tri-grams and word bi-grams, and consists basically on two phases. The first is aimed at
reducing the search space for possible sources, and the second is aimed at exhaustively search a pair of
document for plagiarized passages, where the offset and its length are computed.

While reducing the search space, we proposed a method that uses a statistical approach; removing
stopwords and selecting samples based on alphabetic order, which helps to reduce considerably the running
time of the algorithm. This proved to be empirically successful but further analysis must be taken into
consideration.

Second, all algorithms parameters used were not selected using an extensive analysis on the algorithms
performance; due to the size of the corpus it was difficult to run an optimization or grid search strategy over
these parameters. We did, however, approximate them by iterating and trying on our sample, thus obtaining
acceptable results.

As future work, it could be interesting to experiment the proposed approach with char n-grams instead
of word n-grams. This could help FASTDOCODE to include an intrinsic evaluation of a given document,
or help the algorithm to detect plagiarized passages with high obfuscation levels.
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