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Abstract. A good clustering performance depends on the quality of the
distance function used to asses similarity. In this paper we propose a pair-
wise document coreference model to improve performance over a word-
vector similarity approach for the WePS 3 clustering task. We identify a
simple criterion which discriminates between highly ambiguous queries,
i.e. many small clusters, and balanced queries, i.e. fewer, larger clusters.
A document clustering framework was developed facilitating direct com-
parison between different parameters, features and algorithms. It uses
a unified feature representation to afford a wide variety of clustering
pipelines. Using the predicted coreference likelihood and a simple clus-
tering algorithm, we achieve comparable results on the WePS 2 dataset,
and competitive performance on the WePS 3 dataset.

1 Introduction

Disambiguating people names in Web search results is an active research area,
combining several Natural Language Processing challenges such as cross-document
coreference, information extraction and document clustering. A good clustering
performance depends upon the quality of the similarity function used. Most pre-
vious work uses a combination of content-based features, e.g. word, bigrams,
NEs, and person attributes, e.g. email, date of birth, title, to compute document
similarity [1].

The main aim of this study is to use a supervised cross-document coreference
approach [2] to improve performance for the WePS clustering task. A pairwise
model is used to predict the likelihood that two documents refer to the same
person. A clustering algorithm will then use these predictions to cluster the
documents. In order to have a better understanding of what works best and
why, we developed a generic framework for document clustering which allows
complex pipelines to be built. By sharing the same feature extraction base, direct
comparison between different parameters and algorithms is straightforward.

This paper is structured as follows: the generic framework is presented in
Section 2. In Section 3 the elements of the processing pipeline are detailed,
and a criterion distinguishing the ambiguity of a query is proposed. The three
clustering algorithms are briefly presented in Section 4, and in Section 5 we
detail the experiments and discuss the results.



2 Generic Architecture

In the recent WePS literature, two main approaches can be distinguished which
need to be accommodated by the framework:

vector-space clustering – documents are represented as a weighted feature vec-
tors – points in a high-dimensional space, which are clustered using a pairwise
distance function. Usually the weighting scheme is tf · idf , the distance func-
tion is either cosine or euclidean, and the algorithm is single-link hierarchical
agglomerative clustering (HAC). The stopping criterion most commonly used
is a threshold limiting the link distance between the two nearest clusters. This
value is learnt from training data [1].

feature-graph clustering – the document×feature occurrence matrix is used to
build a support graph which is used to compute a better document similarity.
Usually a bipartite graph is built in which document node d is connected to
feature node f if the feature f is extracted from document d. Afterwards, either
a document×document graph is built, with the edges’ weights reflecting the
number of shared features (e.g. number of paths of length 2 between the two
documents), or, conversely, a feature×feature graph is built using the common
documents as support. Based on the clusters identified in this derived graph, the
solution to the initial problem is built [3].

While conceptually different, both these approaches can be abstracted using a
unified graph representation: features extracted from the documents are used to
build a derived graph, its nodes are then clustered and the documents associated
with each of the clusters are returned. By sharing the same feature extraction
algorithms, weighting schemes, and distance functions, various approaches can
be directly compared, to gain insights into how efficient solutions to the problem
can be built. In the context of Web search, users expect results to be available
in seconds. For this reason, the ultimate aim of this framework is to analyse
the trade-off between computational cost and performance benefit of different
approaches to the WePS clustering task.

The architecture of the framework is presented in Figure 1. In the first step
of the processing pipeline (a), plain text document views are extracted from the
HTML files. A view can also employ NLP techniques to extract only some of
the contents of another view (b), e.g. a set of snippets mentioning the target
person, or meta data such as keywords, title, author and so on. The second step
is the feature extraction stage (c) when vectors are extracted from document
views. For each different feature F , a frequency matrix is built (m(di, fj) =
how many times feature value fj occurred in document di). The simplest such
feature consists of tokenizing and extracting content words (tokenization, stop
word removal, indexing), while more involved features employ off-the shelf NLP
tools and person-data information extraction. Rows from these matrices can be
merged and/or weighted to create feature vectors. Composite features aggregate
feature vectors from other features. Pairwise features reflect the similarity be-
tween document pairs, computed as a distance between their feature vectors.



In the next step a derived graph is built either directly from frequency data
(feature-graph clustering), or induced by the pairwise distance matrix (vector-
space clustering). This graph is clustered using generic algorithms, and then the
solution is built.

View View View

metadata

snippets

extractsco
n
te

n
t

b)

p
la

in
 t

ex
t

fe
at

u
re

s tokens

entities

attributes

d
oc

 x
 f
ea

tu
re

d)

p
ai

rw
is
e

co
m

p
at

ib
ili

ty

d
oc

 x
 d

ocdistance

corelation

machine learning

f)

parse source format
ex

tr
ac

ti
on

a)

feature extraction, weightingc)

pairwise compatibilitye)

build graph/networkg)

cl
u
st

er
in

g
si
m

ila
ri
ty

Document

clustering 
algorithms

clusters

cl
u
st

er
 x

 d
oc

Fig. 1: General architecture of the framework

In this paper we investigate whether ML can be used to provide better com-
patibility scores rather than afforded by the standard approach which uses cosine
similarity in a tf · idf weighted vector space. The intuition is that a machine
learning algorithm can employ both content-based similarity and semantic rules
to make better predictions regarding coreference likelihood. For example, shar-
ing the same email address is predictive for the coreference relation, while having
different dates of birth entails two distinct persons. Such rules can have prior-
ity over the more generic token based similarity measures. However, we need to
take into account the complexity of the IE task: the attribute values will be noisy
(low precision) and sparse (low recall). Further more, they are not necessarily
unique per document, e.g. several job titles, and could need specialised semantic
similarity measures to be compared, e.g. email addresses are easier to compare
than job titles.



The IE framework employed is described in Section 3.2, while the clustering
algorithms are briefly presented in Section 4. The processing steps are sum-
marised in Table 1.

3 Feature Extraction Framework

The plain text extracted from the documents (dom.view) was tokenised and
indexed using lucene. To extract named entities, a view (NER.view) was imple-
mented wrapping the Stanford NER tool [6]. In was suggested [7] that simply
using capitalisation yields better results, because generic NER tools are usually
trained on news wire corpora and do not perform as well on noisy web data,
therefore we also used this as an alternative feature (cap.view).

To combine both named entities and terminology, a complex analysis tool
based on Wikipedia-Miner2 was used [8]. The tool examines the text of the page
and detects the most relevant Wikipedia articles, based on information such as
the probability of a span s to be a link to an article a and the probability of two
articles to co-occur in the same Wikipedia document [4]. The process is related
to topic indexing and to explicit semantic analysis: each document is represented
as a vector in a high dimensional space, but instead of words, the dimensions
are unambiguous Wikipedia topics, ranked by their relevance score (wiki.view).

A novel pairwise feature is the longest common substring (LCS) between two
textual views. Documents describing the same person, tend to share some phrases
and sentences, sometimes entire paragraphs. While naively parallel, LCS takes
too much time to be computed at query time on the full text of the documents,
but it performed quite well using the smaller snippet.view instead.

3.1 Token-feature weighting

The system which achieved the best official result on WePS 2 [9] showed that
using a web-scale corpus to have more accurate IDF values helped boost perfor-
mance significantly. Therefore we compared two ways of computing IDF : local
– only the set of documents for the current query are used (less than 200 doc-
uments), and global – all the documents in all WePS corpora are used (around
70K documents). To speed up computation, words with DF = 1 were removed.
We also considered increasing the DF threshold to see if this yields better re-
sults. Figure 2 shows that the difference between the two weighting schemes is
significant.

When DF threshold is increased: document vectors become nil, which is
expected. The immediate implication is that the cosine similarity becomes un-
defined. We observed an interesting effect if global IDF is used: frequent words
such as home and contact have very low IDF values, thus considerably more
feature vectors become very small (norm less than 10−6) and are practically nil.
Table 2 shows the percentage of undefined pairwise cosine values. Usually log

2 http://wikipedia-miner.sourceforge.net



Table 1: Main components of the processing pipeline
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dom.text Jericho HTML parser is used to clean HTML and extract
text from the DOM document, then openNLP1 is used to
split the text into sentences

plain.text the w3m text browser is used to render the files and dump
the the textual content as displayed on screen

xhtml.view returns a cleaned xhtml version of the HTML file
snippet.view extracts all snippets spanning ws=300 characters before and

after each target mention; overlapping windows are merged
NER.view employs Stanford NER tool to extract named entities from

the underlying view
capitalization extracts all the capitalised words and/or sequences, a high-

recall NER baseline

d
o
cu
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t
fe

a
tu

re
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words standard tokenization and stop word filtering (using apache
lucene library) to create a word vector representation for each
document

tokens uses only the marked-up entities, e.g. from NER.view
densification detects most relevant Wikipedia topics using a wikification

service based on Wikipedia Miner [4]; the document is rep-
resented as a weighted topic vector

I.E. RegEx-based framework for extracting person-attributes re-
quired in Task1b (see Section 3.2); for each attribute, the
most likely candidate values are extracted

p
a
ir

w
is

e
fe

a
tu

re
s

tf · idf weighting the standard weighting scheme for token-based vectors; we
experimented with two different IDF scopes and several DF
thresholds

cosine similarity dot product of length normalised vectors
Minkowski most experiments carried out for L2 (euclidean distance)

Jaccard index the overlap between attribute values: J(A,B) = |A∩B|
|A∪B|

match if the sets share attribute values: m(A,B) = 1⇐⇒ A∩B 6= φ

overlap weighted version of Jaccard:

∑
x∈A∩B

wA(x)+wB(x)∑
x∈A∪B

wA(x)+wB(x)

M
L

Weka toolkit we experimented mainly with rule based classifiers because
they are fast, granularity can be controlled by pruning and
they also give insights into what works and what does not

cl
u
st

er
in

g

HAC standard hierarchical agglomerative clustering, using a pair-
wise distance matrix and any of the following link types:
single, average, mean, complete, adjcomplete; the maximum
link threshold delta is observed in training data;

CC connected components remaining in a graph after removing
links longer than the threshold

MCL markov clustering [5], a graph clustering algorithm which
is widely used in biology; it uses a parameter inflation (I)
which determines the granularity of the clustering; several
filtering criteria are employed to reduce node degrees before
the algorithm is run



(a) cosine, minDF=2, global vs. local (b) euclidean, minDF=2, global vs. local

(c) cosine, minDF=20, global vs. local (d) euclidean, minDF=20, global vs. local

Fig. 2: Word-vector weighting and pairwise distance; impact of global IDF and
DF threshold on cosine and euclidean measures (red–coreferent, blue–distinct)

smoothing is used to avoid representation errors (we use the default similarity
implementation from Lucene3), but we discovered that queries with many clus-
ters tend to have considerably more undefined values than queries with fewer
clusters.

Table 2: Proportion of undefined cosine similarities for different DF limits

IDF minDF=2 minDF=5 minDF=10 minDF=15 minDF=20

local 3055 1% 3840 1% 4396 1% 4994 1% 6653 2%
global 51943 14% 161604 44% 198633 55% 212035 58% 224715 62%

Previous work suggests that a criterion discriminating between different types
of sets is beneficial. In [7], a simple heuristic that achieves good results is pro-
posed: if at least 3 documents from a random sample of 10 documents are coref-
erent use all-in-one, otherwise use one-in-one. The criterion is manually evalu-
ated and the clustering is not informative, therefore this is yet another baseline.
The performance is Fh = 0.71, compared to the two baselines: Faio = 0.60,
Foio = 0.39. In [1] it is acknowledged that choosing an individual clustering
threshold for each set instead of a global value for the entire data achieves a
high performance F = 0.85. To pick the parameter value for each set an oracle
method is used which exploits gold standard information that is not available to
a normal system. The performance reported serves as a theoretical upper bound.

We used gold data to plot each set as a point in a bi-dimensional space
(Figure 3): the number of clusters vs. the ratiocoref (the proportion of all pairwise
relations that are coreferent). These points were then clustered using k-means
(k=3) yielding 3 types of sets: type I – few clusters and predominantly coreferent

3 http://lucene.apache.org/



Type I

Type II

Type III

Type A Type B

Fig. 3: Relation between the number of clusters (y) and the Ratiocoref (x )

relations, type II – average number of clusters and ratiocoref , and type III – large
number of clusters, predominantly distinct relations. Using as features the ratio
of missing values for different DF thresholds, a ML model was trained on the
train dataset, and its predictions were used to split development and test data
into three parts - experiment 3P. This problem is rather difficult because of
the very little amount of data available (15 of the training queries were deemed
outliers because they have less than 40 documents). In the alternative experiment
2P, only the ratiocoref was used to partition the training data into two sets: Type
A (ratio < 0.3) – ambiguous sets, and Type B (ratio > 0.3) – balanced sets.
We used decision trees and jrip models from Weka [10]. The best performance is
achieved by the J48 classifier: F = 0.63 for the first partition, and F = 0.82 for
the second. These partitions of the WePS data enable us to train models and to
use distinct parameters for each type.

Unlike the cosine similarity, euclidean distance is always defined, with the
drawback that values are not restricted to the interval [0, 1]. Using the same
feature vectors, euclidean vs. cosine measures were compared in terms of their
predictive power regarding the pairwise coreference relation. The euclidean pair-
wise features had a much better ranking than their cosine counterparts when
using χ2, however this does not translate to better performance for the ML
classifiers: while performance on the training data is indeed better, on the de-
velopment set it is considerably worse. The over-fitting behaviour suggests that
the euclidean distance has poor generalization power for our data.

3.2 Attribute Extraction Framework

We employed a simple IE approach based on hand-crafted regular expressions.
Based on their values, there are three types of attributes [7, 9]. The first type
have values which can be matched by regular expressions, e.g. email address,
dates, telephone, url address, post code. The second type have values which can
be looked-up in gazetteers, e.g. degree, occupation, major, nationality. The third
type have named entities as values, e.g. place of birth, place of death, address,
family, mentor, affiliation, school, and therefore rely on NER and capitalization



to detect possible candidates. The attribute extractors usually check a small win-
dow of text around a target entity mention, and use trigger words and phrases
as well as candidate values matcher, i.e. gazetteer, regex, NER. One of the draw-
backs of this approach is that it does not make use of automatic bootstrapping
algorithms and that it relies on textual occurrences of attribute values. In the
document collection more often than not, these attributes are presented in ta-
bles. For example, contact details – address, email, url, telephone, fax, and so
on, tend to be displayed without mentioning the trigger words we rely on. In
this case, special extractors are needed which are able to detect several fields at
the same time [9].

Our extraction framework is ill suited for the noisy Web documents. We al-
lowed several values to be extracted for the same attribute, and we experimented
with overlap measures: Jaccard index, a weighted version which uses value fre-
quencies, and a simple non-void intersection criterion, i.e. the two documents
must share at least one attribute value. To our disappointment, the attribute
features are very sparse.

The attribute features yield mixed results: they are ranked highest using
Information Gain, but lowest using GainRatio, χ2 ranks them lowest of all. This
suggests they are too sparse to have a big impact on the overall result, and that
noise due to inaccurate extraction further limits their utility.

The drawbacks of the IE framework employed make it the biggest limiting
factor for our approach. At the time of writing the final results for Task1b –
Attribute Extraction are not yet available.

4 Clustering Algorithms

To perform both vector-space clustering and feature-space clustering, our frame-
work represents the pairwise similarity function as a matrix, which also corre-
sponds to a weighted graph. This matrix can be computed using arbitrarily
complex methods, e.g. latent semantic analysis, explicit semantic analysis, but
in this case it can only be used with ’stable’ clustering algorithms (e.g. k-medoids
is stable, while k-means is not).

One of the challenges in WePS is that the number of clusters is unknown.
Depending on the clustering algorithm employed, the stopping criterion is con-
trolled via a parameter which is observed on training data. A quality function
is evaluated at each step of the algorithm. Once this function reaches a critical
point the clustering algorithm is stopped.

4.1 Hierarchical agglomerative clustering (HAC)

HAC is one of the most commonly used algorithms due to its simplicity and
ability to control granularity. The algorithm starts with singleton clusters and,
at every step, merges the two nearest clusters. The link distance between two
clusters can be computed in several ways. We investigated five aggregation func-
tions (see Table 3). The algorithm stops when only k clusters remain (k is an



Table 3: HAC: link types

SINGLE the minimum distance between documents
AVERAGE the average distance between documents
MEAN the mean distance between documents
COMPLETE the maximum distance between documents
ADJCOMPLETE adjusted complete link using the largest within cluster distance

input parameter) or when the link distance between the two nearest clusters
is greater than a threshold delta (another input parameter). In WePS, systems
mainly use the second criterion, selecting the value delta which maximises train-
ing performance. We used an implementation based on Weka [10].

4.2 Markov clustering

Markov clustering (MCL) [5] is a general purpose graph clustering algorithm
commonly used in biology. It simulates network flow via two algebraic opera-
tions on stochastic matrices. The algorithm stops when convergence is achieved,
but the clustering granularity can be controlled via an inflation I parameter.
4. Network clustering (community detection) algorithms can benefit from pre-
processing the input graph by e.g. removing edges with low similarity [11]. In our
experiments, removing edges longer than a threshold delta did not have much
impact on clustering outcome: the output is usually one large cluster. A filter-
ing technique which worked well was to limit node degree by keeping the k best
neighbours per node (knn). This technique is common in spectral clustering [11].

4.3 Connected components

The success of single link HAC is intriguing. For the single link delta HAC, none
of the edges with a weight above the threshold are considered by the algorithm,
and can thus be removed. Intuitively, the clusters found will correspond to the
connected components of the rest of the graph. We also used a connected com-
ponents algorithm (CC) to investigate how it compares to the single link HAC
implementation. To our surprise, the results of the two algorithms were different,
with the CC algorithm achieving the best performance in most cases.

5 Experiments and Findings

To build the coreference models, WePS 1 data was used for training (6346 doc-
uments, 70 queries), WePS 2 data was used for parameter tuning – development
data (3444 documents, 30 queries) and the WePS 3 data was used for test (57357

4 mcl version 10-324, http://www.micans.org/mcl/



documents, 300 queries). When the gold standard for WePS 3 became available,
it was used to search for the best clustering parameters on the WePS 3 data.

To compare the content similarity approach with the ML coreference ap-
proach, we ran three main experiments. In the first experiment (wiki), we used
the cosine similarity between vectors produced by Wikipedia Miner (wiki.view).
In the second experiment (3P) we split the data into 3 parts as described in
Section 3.1. A pairwise coreference model was trained for each part, using a
set of over 50 pairwise features. The third experiment is similar, only this time
we use the second partitioning method to split data into 2 parts. The same
set of features was used to train the pairwise coreference models, but this time
more pruning was employed, to avoid over-fitting and to obtain better confidence
scores for the rules learnt. The pairwise features use a combination of parame-
ters: document view, IDF type, DF limit and similarity measure, as well as the
overlap between person attributes.

5.1 Using Wikipedia topics for semantic similarity (wiki)

There are significant differences between the different WePS corpora and their
respective evaluation methodologies. This explains to a certain extent the drop
in performance for all WePS 3 participants. Results in figures 4 and 5 show that
HAC has different behaviour on the test data than on the development data:
single-link HAC drops from best to worst, while for three of the link types per-
formance is almost constant in WePS3, regardless of the delta threshold. This
is most likely due to the larger number of documents in each query: up to four
times more document pairs per query in WePs 3 compared to WePS 1. The
simple CC clustering is the best performer on both data sets, and has consis-
tent behaviour, in both cases reaching maximum F score for delta ∈ [0.7, 0.8].
The first official run, Wolves1, used single link HAC with delta = 77, but only
achieved average performance in the competition.

5.2 Pairwise coreference model (3P)

The number of clusters and their sizes vary greatly from query to query. While
the pairwise similarity values are usually within the [0, 1] interval, their distribu-
tion seems to be very query-specific. Training a ML model on the entire dataset
yielded low performance due to the noisy features. For this reason we applied
the criterion from Section 3.1.

When training the decision trees classifiers, while good classification accuracy
was achieved for types I and III, the kappa statistic was rather low. Our initial
experiments with selecting the delta threshold individually for each set did not
improve performance much. The fact that the maximum score remains almost
constant for most threshold values suggests that the evaluation measures need
to be adjusted to account for chance, in order to better reflect performance.

The size difference between test, 200 documents per query, and development,
100-150 documents per query, affects the performance of MCL: in development,
for low knn it creates many singleton clusters while for values over 90 it creates
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Fig. 4: wiki experiment: performance on the development set
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Fig. 5: wiki experiment: performance on the test set



one large cluster; on test data, MCL only reaches the best performance for higher
thresholds. The second official run, Wolves2, used group average HAC, but for
the selected delta threshold, it performed poorly on test data. Again, CC clus-
tering outperforms both group average HAC and single link HAC on test data.
This suggests that using a set of high precision rules can achieve competitive
performance. Theoretically, for a query with n documents and c clusters, a set
of n− c coreferent edges is enough to build the complete clustering solution. A
future direction of research is to use sampling and weighting approaches to train
high precision–low recall models.
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Fig. 6: 3P experiment: performance on the development set
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Fig. 7: 3P experiment: performance on the test set



5.3 Pairwise coreference model (2P)

This experiment was designed to investigate whether the low performance ob-
tained by the Wolves2 run is due to over-fitting. Training data was split only in
two larger sets, and pruning was increased for the J48 classifiers, from 100 to
1000 minimum covered instances. This experiment achieves the best results, but
it revealed that the clustering threshold influenced performance.
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Fig. 8: 2P experiment: performance on the development set
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Fig. 9: 2P experiment: performance on the test set



Table 4: The best results avhieved on WePS3 by each algorithm and experiment

wiki 3P 2P
P R F P R F P R F

CC 0.61 0.57 0.54 δ=0.71 0.63 0.61 0.54 δ=0.15 0.52 0.71 0.52 δ=0.21

MCL 0.39 0.54 0.41 knn=90 0.50 0.48 0.44 knn=50 0.58 0.57 0.52 knn=125

HACsingle 0.25 0.88 0.36 δ=0.76 0.45 0.70 0.48 δ=0.11 0.54 0.55 0.48 δ=0.16

HACaverage 0.39 0.72 0.40 δ=0.71 0.51 0.50 0.45 δ=0.46 0.55 0.56 0.50 δ=0.61

5.4 Results

At the time of the WePS 3 competition, the framework was still under develop-
ment. Only single and average link HAC runs were available, for two experiments:
wiki and 3P. The first run submitted, Wolves1, used average link HAC on wiki
with delta = 0.77. The experiments carried out after the competition revealed
that the choice for delta does not affect much the performance of this first system
(Figure 5), with the official result on WePS 3 F = 0.40. The second run submit-
ted, Wolves2, used the pairwise predictions of the 3P model and average HAC
clustering. Figure 6 shows that the algorithm plateaus on WePS 2, achieving
F0.5 = 0.66 for delta ∈ [0.06, 0.66] on development. The threshold used for the
official run achieved a poor performance F0.5 = 0.36. Using the gold-standard
for WePS 3, we found that delta = 0.5 yields better performance F0.5 = 0.45;
only one team obtained a better official result.

The MCL algorithm performed well. To achieve the best performance, both
the knn limit and the inflation parameter need to be increased compared to the
development set. It seems that the value for the knn filter is best chosen relative
to the number of documents.

Average and single link perform better than the other link types, but nei-
ther stands out as a clear choice, perhaps due to the differences between the two
data sets. The surprising result was the performance achieved by connected com-
ponents clustering which is a naive algorithm exploiting the network topology.
While it does not improve the state-of-the-art, it achieves competitive results:
best result on WePS3 is F0.5 = 0.54. Table 4 shows the best results found on the
WePS3 test data, after the release of the gold standard.

One issue that became obvious during these experiments is that the standard
evaluation measures used in WePS make comparisons across datasets difficult.
This is because only the upper-bound is normalised: a perfect clustering will
have score 1.00, but the performance of a random uninformative clustering, in-
stead of being 0.00, varies significantly from query to query. The official BCubed
measure is good for relative comparison of two clustering solutions for the same
query, but the overall average is difficult to be interpreted as absolute perfor-
mance score. Perhaps using measures adjusted for chance [12], such as adjusted
Rand index, adjusted mutual information or kappa, is one way to achieve better



Table 5: WePS3 official results

System avg. BCubed precision avg. BCubed recall avg. F-measure

YHBJ 2 unofficial 0.61 0.6 0.55
AXIS 2 0.69 0.46 0.5
WOLVES 1 0.31 0.8 0.4
WOLVES 2 0.26 0.88 0.36
one in one baseline 1 0.23 0.35
all in one baseline 0.22 1 0.32

understanding of what works for WePS and how well it works. Another concern
is that the WePS3 evaluation methodology, by considering documents split into
three clusters – person A, person B and other, differs significantly from the ini-
tial task formulation. This makes it even more difficult to determine if a system
with very high performance on WePS 3 data will perform similarly on real life
data, when more then two clusters, if not all, are evaluated.

Future work will focus on extending the IE framework and on adding feature-
space clustering algorithms which achieve state-of-the-art performance on WePS2.
Mining high precision rules exploiting semantic attributes will also be investi-
gated, as recall seems to be less important. Another model which will be inves-
tigated is to consider pairwise relation as coreferent, undecided and distinct.

6 Conclusions

This paper reports the experiments carried out for the WePS3 clustering task.
A generic framework was developed allowing the implementation and compar-
ison of varied clustering pipelines. We compared a similarity-based approach
in a Wikipedia-topic space representation with two rule-based ML coreference
models trained on pairwise document similarity measures. We showed that a
simple clustering algorithm can exploit high precision predictions of the pair-
wise coreference model, achieving comparable performance on WePS 2 dataset
and competitive performance on the WePS 3 dataset.
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