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Abstract. Automatic plant identification tasks have witnessed increased
interest from the machine learning community in recent years. This pa-
per describes our (team IITK’s) participation in the Plant Identification
Task, CLEF 2012, organized by the Combined Lab Evaluation Forum
(CLEF) where the challenge was to identify plant species based on leaf
images. We first categorize the different types of images and then use a
variety of novel preprocessing methods such as shadow and background
correction, petiole removal and automatic leaflet segmentation for identi-
fying the leaf blobs. We next use complex network framework along with
novel tooth detection method and morphological operations to compute
several useful features. Finally, we use a random forest for classification.
Based on the proposed approach, we achieved 2°¢ rank on the overall
score in the competition.

Keywords: plant identification, leaflet segmentation, shadow correction, peti-
ole removal, complex network features, tooth features.

1 Introduction

Automatic plant identification tasks have gained recent popularity due to its
use in quick characterization of plant species without requiring the expertise of
botanists. Leaf-based features are preferred over flowers, fruits, etc. due to the
seasonal nature of the later and also the abundance of leaves (except may be
for the winter season). The Combined Lab Evaluation Forum (CLEF) hosts an
annual competition on classifying plant species based on images of leaves. While
there are some other important publicly available leaf image datasets such as
the Flavia Dataset [12], the SmithSonian Leaf Dataset [3], and Swedish Leaf
Dataset [11], the ImageCLEF dataset [7] provided by CLEF is more challenging
due to the difficulty of automatically segmenting the leaves in the images. Apart
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Fig. 1. Sample images for the Plant Identification Task, CLEF 2012.

from containing scanned images and images taken in a controlled setup (pseudo-
scan), the dataset also contains natural photographs of plant species. Thus, the
performance achieved on the CLEF dataset is a more realistic benchmark of
the current state-of-the-art in this domain. Fig. 1 shows certain example images
from the dataset.

This paper describes our (team ITTK) approach for the ImageCLEF Plant
Identification Task, CLEF 2012. Our focus for this endeavor was on two main
points: (i) providing good recognition accuracy for natural images and (ii) au-
tomating the process for the controlled setup images. We have been able to
achieve both our targets satisfactorily as corroborated by the fact that one of
our submitted runs achieved the 2" position overall in the competition.

Our contributions in this paper are as follows:

1. We propose novel pre-processing strategies for shadow removal and back-
ground noise correction.

2. We propose a fully automatic leaflet extraction approach for compound
leaves.

3. We propose the use of tooth features, that provide a second level of discrim-
ination for leaves with similar shape.

4. We also incorporate the use of an effective feedback based image segmenta-
tion interface for natural photographs.

2 Proposed Approach

In this section, we present our proposed approach in detail. We begin with a
description of the dataset followed by the preprocessing techniques. Next, we
discuss the image features used and conclude with the classifier.

2.1 The ImageCLEF Pl@ntLeaves II Dataset

The ImageCLEF Pl@ntLeaves II dataset consists of a total of 11572 images from
126 tree species in the French Mediterranean area. The dataset is subdivided into
three different types based on the acquisition methodology used: scans (57%),
scan-like photos, i.e., pseudo-scans (24%) and natural photographs (19%). The
entire dataset is divided into a training and a test set as specified in Table 1.
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Type [[Scan[Pseudo—scan[Natural[[Total[

Training|| 4870 1819 1733 8422
Test || 1760 907 483 3150
Total || 6630 2726 2216 11572

Table 1. Statistics of images in the dataset.

Associated with each image are metadata fields that include acquisition type,
GPS coordinates of the observation, name of the author of the picture. The
training images also contain the tazon name of the leaf species, and the task is
to predict this field for the test images.

To classify an image, we first need to segment the leaf from the image. The
process of segmentation, however, is not straightforward at all owing to the
presence of several bottlenecks such as shadow, occlusion and complex leaves
(Fig. 1 highlights some of these). While some of the roadblocks such as shadow
removal, petiole removal, etc. are common to most of the images, a quick glance
at the dataset suggests that no common segmentation scheme can be applied to
all the images. Images having a single leaf have different issues than compound
leaf images. It is, therefore, useful to group the images with similar issues into
a category and address each category separately. Based on this observation, the
dataset was each divided into three categories as follows

— Category 1: Scan + Pseudo-scan, Single Leaf
— Category 2: Scan + Pseudo-scan, Compound Leaf
— Category 3: Natural Photographs

All natural photographs (type 3) were put in a single category. The remaining
images were put in two separate groups depending on whether they contained
single or compound leaves.

Fig. 2 shows the overview of our system. Based on the category of the image,
we follow different paths. We next discuss the image preprocessing techniques
for each category.

2.2 Image Preprocessing Techniques

The image preprocessing involved steps such as basic segmentation, petiole re-
moval, shadow removal, background noise removal, etc. which collectively aid
the extraction of the leaf part from the image. The procedure is fully automatic
for category 1 and category 2 images while it is semi-automatic (interactive) for
category 3.

Category 1 Images:
This category is composed of scan and pseudo-scan images of single leaf

species. Fig. 3(a) shows one such image. We first perform OTSU thresholding®

3 OTSU performs binarization by selecting an optimum threshold to separate the
foreground and background regions of the image such that their combined (intra-
region) variance is minimal.
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Fig. 2. Plant identification system overview.

[9] on the grayscale image. For many cases, the output is not as expected due to
severe background color variation, confusion of shadow regions as leaf, etc. The
aim of the pre-processing step is to handle these. We use the following three-stage
process to obtain the correct bitmaps for the images in this category:

1. Binarization: The image I is converted to grayscale and OTSU thresh-
olding is performed to obtain a “distorted” bitmap, I,. We use the term
distorted as the output is easily affected by shadow and noise in the back-
ground. Fig. 3(b) shows the output for the example image Fig. 3(a).

2. Shadow and Noise Removal: Since both scan and pseudo-scan images
were taken against a plain background (low saturation), we observed that the
falsely detected problematic background regions almost always had a lower
saturation value than the true leaf region. We leverage this information to
identify the problematic regions in the OTSU thresholded I, by transforming
it into the HSV color space and then deselecting the low saturation regions.
More formally, we performed OTSU thresholding on the saturation space of
I, to obtain I;. We subtract I from I, to get a mask, I,, that contains the
noise regions. Since some leaf regions with low saturation value may also be
sometimes present in I,,, we erode I,, to deselect such regions and invert the
resultant to obtain I,r. A logical AND operation of I,y and I, gives the
shadow- and noise-free bitmap I,4. Fig. 3(c) shows the result for Fig. 3(b).

3. Petiole Removal: Several images contained very long petiole sections which
were part of the output of the previous step and, therefore, were (falsely)
detected as being part of the leaf. Since petioles can adversely affect the
shape characteristics of the leaf if their length is comparable to that of the
leaf, it is needed to deselect them. This is achieved by searching for abrupt
surges in the thickness as we scan each row from top to bottom. Rows whose
thickness fell below a certain threshold (as a ratio of the maximum thickness
of the leaf) were identified as petiole sections and were removed from the
bitmap I,q to obtain the final bitmap Iy which is used for feature vector
computation. Fig. 3(d) shows the bitmap after petiole removal from Fig. 3(c).

Category 2 Images:

This category is composed of scan and pseudo-scan images of compound leaf
species. Fig. 4(a) shows one such example. Such species contains a main stalk
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Fig. 3. Category 1 preprocessing: Fig. 3(a) shows the original image, Fig. 3(b) shows
the bitmap prior to shadow removal, Fig. 3(c) shows the bitmap after shadow removal,
Fig. 3(d) shows the bitmap after petiole removal.

and several leaflets that branch out from the main stalk. Using shape-descriptors
on the entire leaf does not capture the characteristics of the different compound
leaf species. Thus, it is necessary to perform all analysis at the leaflet level. The
challenge then is to segment a single leaflet from the compound leaf image. Our
system undertakes the following steps to achieve the same:

1. Binarization and Shadow and Noise Removal: Since these two steps
do not involve the intricacies of leaf structure, we follow the exact same
procedure as in Category 1 images. Fig. 4(a) shows such an example.

2. Main Stalk Elimination: Since the ultimate aim is to extract a single
leaflet, first the main stalk needs to be identified and removed from the
image. A simple erosion operation does not work as the thickness of the
main stalk can vary quite largely. We fit a curve of order 4 to approximate
the main stalk (using the ’polyfit’ operator from Octave [6]). The curve
so obtained is thickened over neighboring pixels to ensure the formation
of multiple connected components (blobs) in the binary image. Fig. 4(b)
shows the approximated main stalk and Fig. 4(c) shows the image after its
elimination.

3. Ellipse based Blob Ranking: The previous step outputs multiple blobs
that need to be ranked according to their relevance, i.e., how closely they re-
semble a leaflet. We use the simple assumption that the shape of a leaflet can
be approximated by an ellipse, and thus proceed to figure out how much does
a blob resemble an ellipse. For each blob, a “relevance score” is computed
that measures the area of the blob as a ratio of the area of the minimum
bounding ellipse (MBE) around it. Higher this score, higher is the blob likely
to be an ellipse. We retain the top three blobs according to this scoring func-
tion and this is output to the next stage for further refinement.

4. GrabCut Segmentation: The minimum bounding ellipses of the top three
contenders are now used as inputs to the GrabCut algorithm [10] which in
turn returns the images containing the leaflets. We observe that the images
thus obtained are not always perfect and may contain background noise and
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Fig. 4. Category 2 preprocessing: Fig. 4(a) shows the original bitmap image, Fig. 4(b)
shows the image with polyfit curve marked in red, Fig. 4(c) shows the bitmap after
stalk elimination, Fig. 4(d) shows the three extracted leaflets prior to noise and stalk
removal, Fig. 4(e) shows the final extracted leaflets.

petiole fragments around the leaflet. We resolve these in the next steps.
Fig. 4(d) shows the three extracted candidates.

5. Noise Removal: We use a simple range filter to address the background
fragments. We first compute the average RGB values for the background by
traversing around the periphery of the original image. We then account for
the background noise pixels by examining each pixel in the periphery and
deselecting it (from the binary mask) if it falls within a particular range of
the average background color.

6. Stalk Removal: The strategy used for stalk removal for category 1 images
cannot be applied to the leaflets of compound leaves. This is because, unlike
the single leaf images, the leaflets are not vertically oriented and upright.
Hence, an erosion-based scheme is used to eliminate the stalk from the leaflet
bitmap. The inherent assumption in this scheme is that the erosion operation
does not affect the shape and margin of the leaflets. Although this step did
not completely solve the problem, it did manage to reduce the stalk content
(if present) in the image. Fig. 4(e) shows the three candidate leaflets after
noise and stalk removal.

7. Best Candidate Selection: The output of the last step produces three
candidate leaflets of which we need to choose only one. While it is easy
for a human being to choose the “best” among the three, we wanted to
automate the entire process. Hence, we use the following simple method for
the same. For each candidate, we compute a 50-dimensional feature vector
using complex network shape descriptors (see Sec. 2.3 for a description of
the features). We then compute the Euclidean distances between each pair
of candidates and find the maximum pairwise distance. The candidate that
does not feature in this is in some sense in the middle and was, thus, chosen
as the “best” candidate.
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Fig. 5. Sample category 3 images.

Category 3 Images:

Category 3 images consist of natural photographs. There is no distinction
between single and compound leaves in this category. Fig. 5 illustrates a few im-
ages in this category. The images suffer from multiple issues including occlusion,
out of focus problem, etc. It is difficult to design an automated segmentation sys-
tem that is robust to all these issues. We, therefore, resort to a semi-automated,
feedback-based segmentation scheme using the GrabCut algorithm [10]. We de-
velop an interface that iteratively seeks input from the user and makes correc-
tions to the segmented image. The user “corrects” the segmentation output by
undertaking either of the two following actions:

— Specifying missing regions in the current segmentation result (Red)
— Specifying extraneous regions in the current segmentation result (Blue)

Fig. 6 shows the output at various stages for segmentation of leaf from a
sample category 3 image. The top row denotes the user interactions and the
bottom row denotes the output for the corresponding user actions.

2.3 Feature Extraction

The preprocessing phase, as described in Sec. 2.2, results in an image containing
a single leaflet which acts as input to the feature extraction phase. The feature
extraction phase results in a 90-dimensional feature vector comprising of geomet-
rical, shape and texture features for each image. On a coarse level of granularity,
the feature vector can be divided into three categories: 50 complex network, 28
tooth and 12 morphological features. These are described next.

Complex Network Features:

The motivation behind using complex network features [1] as shape descrip-
tors lies in the fact that the data contains noise (even after preprocessing) and
these features are robust, noise tolerant, and scale and rotation invariant. The
complex network construction procedure requires as input the contour of an im-
age represented as a collection of pixels on the 2D plane. A graph G = (V, E)
is built where each pixel of the contour collectively forms the vertex set V and
undirected edges between each pair of vertices form the edge set E. The Eu-
clidean distance between the points of each such pair defines the weight of an
edge (normalized within the interval [0, 1]).
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(a) (b) (c)

Fig. 6. Category 3 user feedback based segmentation: Fig. 6(a) through Fig. 6(c) rep-
resent the iterations 1, 2, and 3 respectively.

The graph thus obtained has connections between every pair of vertices and,
therefore, cannot be considered as a complex network. We accomplish the trans-
formation of this regular network into a complex network by thresholding the
edge weights. We consider views of the network at multiple resolutions (thresh-
olds), each containing different number of edges. An edge is retained if its weight
is less than the threshold at that level and discarded otherwise.

The complex network thus constructed provides five different features that
can be broadly categorized as degree descriptors and joint-degree descriptors.

1. Degree Descriptors: The degrees of the vertices are first normalized into
[0,1] by dividing by the total number of vertices in the network. Then, the
maximum degree and mean degree are realized as the two degree descriptors:

N
) N
Mazimum = maxd;, Mean = E d;/N
i=1
i=1

where d; denotes the degree of vertex v; and N is the total number of vertices.

2. Joint-Degree Descriptors: The joint-degree descriptors rely on the corre-
lations between the degrees of vertices connected by an edge. The correlation
for a degree d; is captured by the probability P(d;) that two neighboring ver-
tices have the same degree d;. This probability is computed empirically as
the ratio of the number of all connected vertices with the same degree d;
to the total number of edges. Using this, the following three descriptors are
realized:

D D D

Entropy = Y _[P(d:)log, P(d;)], Energy =Y [P(d;)]?, Sum=>_[P(d;)]

=0 i=1 i=1

where D is the maximum degree in the network.
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Fig. 7. A tooth point.

We realize the network at 10 different resolutions ranging uniformly from 0.05
to 0.50. At each threshold, we calculate 2 degree descriptors and 3 joint-degree
descriptors, thus producing a total of 50 complex network features.

Tooth Features:

We next describe the tooth features. A tooth point is a pixel on the contour
that has a high curvature, i.e., it is a peak. To determine whether a point P; on
the contour is a tooth point or not, we examine the angle 6 subtended at P; by
its neighbors P,_; and P,y (where k is a threshold). Fig. 7 shows an example.
If the angle @ is within a particular range, then P; is a tooth; otherwise, it is
not. The upper bound of 6 is 7/2, i.e., the right angle. The lower bound was
determined by manual observations. The value that gave the best result was
sin~1 0.8, i.e., the sine of the angle was constrained to be 0.8 < sinf < 1. The
feature value for a leaf at a particular threshold & is the number of tooth points
on its contour.

Fig. 8 shows the output of the tooth point detection method on a leaf for two
different thresholds. As the threshold, &, is increased from 5 to 45, the number
of contour points detected as tooth points decreases from 25 to 11.

Since it is possible for two different types of leaves to have nearly the same
number of teeth at a particular threshold, we compute the tooth-based features
at multiple increasing values of k. While no single threshold may be good enough
to distinguish different leaf margins, they should be sufficiently separated when
multiple thresholds are used. We use 28 thresholds from 3 to 30.

Morphological Features:

For morphological features, we use the same ones as described in [12]*. The
automated process, however, expects the image to be aligned along the vertical
axis with only a small allowable error. This is to facilitate the curve-fitting
operation approximate the upper-most and lower-most points of the main vein
of the leaf.

4 The authors of [12] were generous enough to provide the code for human assisted
extraction of several morphological features. We automate this process and subse-
quently use the system to compute the required features.
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(a) k=5 (b) k =45
Fig. 8. Tooth detection at two different thresholds.

Vertical orientation was performed using principal component analysis (PCA).
It was observed that one of the two principal components generated by PCA is
along the direction of the main vein. This works due to the fact that most of the
leaflets are either ellipsoidal or palmately lobed in shape. The ellipsoidal leaflets
have the main vein along the major axis of the ellipse that fits the leaflet. For pal-
mately lobed leaflets, the two sides of the leaflet along the main vein are almost
symmetric, and hence, the main vein is along one of the principal components.

To determine whether a leaflet is ellipsoidal in nature, we first compare its
area with the minimum enclosing ellipse. If they match well, we consider the
leaflet to be elliptical in shape. To vertically orient the leaflet along the main
vein, we then rotate the image along the first principal component of the ellipse.

For palmately lobed leaflets, on the other hand, we associate a symmetry
measure with each principal component. This measure checks the similarity be-
tween the two sides of the leaflet along the axis represented by that principal
component. The one with a higher symmetry measure is considered to be along
the main vein and the leaflet is rotated along that direction.

This vertical orientation process renders the task of marking endpoints of the
main vein automatic, which in turn, makes computing the set of 12 morphological
features as mentioned in [12] automatic as well. The features are computed from
a set of 5 basic geometric parameters (Fig. 9) described next.

1. Diameter, D: The diameter of the leaf is the longest distance between any
two points on the closed contour defined by the leaf.

2. Physiological Length, L: The physiological length refers to the length of the
line connecting the two terminal points of the main vein in the leaf.

3. Physiological Width, W: The physiological width refers to the distance be-
tween the two endpoints of the longest line segment perpendicular to the
physiological length.

4. Leaf Area, A: The leaf area is the number of pixels in the final preprocessed
(binary) image constituting the leaf part.

5. Leaf Perimeter, P: The leaf perimeter is the number of pixels along the
closed contour of the leaf.
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(a) (b) (c) (d) (e)
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Fig. 9. The five basic morphological parameters.

These geometric parameters yield the following 12 morphological features:

1. Smooth Factor: This is defined as the ratio of the area of the image
smoothened by a 5x5 averaging filter to that smoothened by a 2x 2 averaging
filter.

2. Aspect Ratio: This is defined as the ratio of physiological length to phys-
iological width, i.e., L/W.

3. Form Factor: This measures the “roundness” of the leaf and is computed

as 4r A/ P2

4. Rectangularity: This measures how rectangular the leaf is and is computed
as LW/A.

5. Narrow Factor: This measures the “narrowness” of the leaf and is defined
as D/L.

6. Perimeter Ratio of Diameter: This is defined as the ratio of the perimeter
of the leaf to its diameter of the leaf, i.e., P/D.

7. Perimeter Ratio of Physiological Length and Physiological Width:
This is defined as the ratio of the perimeter of the leaf to the sum of its
physiological length and physiological width, i.e., P/(L + W).

8. Vein Features: The skeletal structure of a leaf is defined by the vein pat-
terns which play an important role in distinguishing the leaves that have
similar shape. The standard and most widely used procedure for computing
the vein features is to perform a morphological opening operation on the
grayscale image. A flat, disk shaped structuring element of radius r is used
and the resultant image is then subtracted from the contour of the leaf. The
output resembles the vein structure of a leaf on which we compute the fol-
lowing 5 features: Ay /A, Ay/A, As/A, Ay/A, Ay/A; where A, denotes the
area of the remaining leaf obtained using a structuring element of radius r,
and A is the area of the original leaf as mentioned earlier.

Complex Images:

The proposed preprocessing techniques failed to successfully segment some
of the images in the dataset (see Fig. 10 for examples). These leaves are, in
a way, compound of compound leaves — each branch of a leaf is analogous to
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(a) Scan (b) Pseudo (c) Photograph
Fig. 10. Examples of complex images.

a compound leaf. This distinction of “complex leaves” is done by examining
the number of connected components calculated after performing the erosion
operation on category 2 images. The leaves with high number of connected blobs
(= 30) are termed as complex, thereby marking the others as normal compound
leaves. Since a successful leaf segmentation is critical to the computation of the
proposed features, we bypass the usual feature extraction process for the complex
leaves, and instead, use a bag of features model [8].

We first compute the SURF descriptors [2] of many randomly sampled patches
from all the complex images. We next cluster the descriptors into 8 groups using
k-means clustering. We use these clusters as a code-book [8] of size 8.

Given a complex image, we then extract all its SURF points, and denote
each SURF descriptor by the nearest cluster center (equivalently, the code cor-
responding to it). This results in a histogram of size 8 for every image where
bin ¢ represents the number of SURF points that correspond to that particular
code. The histogram represents the feature vector of the image.

2.4 Classifier Selection

We tested many classifiers for predicting the type of species, and after extensive
experimentation, chose random forests [4] as the classifier.

3 Results

We submitted four different runs for the CLEF 2012 plant identification task.
All of them used the same preprocessing and classification methodologies and
differed on the basis of (i) inclusion or exclusion of the author id metadata
field, and (ii) choice between two different parameter sets for the random forest
classifier. The two different parameter sets differ on the basis of number of trees
in the random forest and the number of attributes (features) considered at each
node of the trees to make a split. Table 2 provides a complete description of the
classifier parameters.
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Run ID Single Leaf Compound Leaf
# Trees[# Split Features||# Trees[# Split Features
1 350 7 400 7
2 350 30 400 25
3 500 7 400 7
4 350 7 400 7

Table 2. Description of random forest classifier parameters.

Each run was scored based on a scoring function that essentially measures
the mean average precision per photographer per species. Mathematically, it is
denoted as:

1 K1 & B
S:E.Z F'Z N .ZSWW
u=1 vop=1 WP p=1

where U denotes the number of photographers that have submitted at least one
test image, P, denotes the total number of images taken by the u'® photog-
rapher, N, , denotes the number of images of the p'" plant taken by the u'}
photographer, and S, ;, , denotes a value between 0 and 1 explained next.

For each test image, multiple guesses about its correct class were allowed.
The term S, , , measures how good the guess (for the n'!" image of the p'" plant
taken by the u'" photographer) is, and is inversely proportional to the rank of
the correct guess. The later the rank, the lower is the score, and the function
decreases rapidly.

Table 3 shows the details and final standings of our four submitted runs.
Our best submission, Run 3, was the only one that did not use any metadata
information. For the other runs, we used the photographer id metadata field
as the 915 feature as we observed that it improved the classification accuracy
significantly for a 10-fold cross validation evaluation. we utilized SMOTE [5]
to address the class imbalance in the dataset for only Run 4. Consequently, it
ranked higher than Run 1 and Run 2. For a complete description of competition
results, we refer the reader to [7].

4 Conclusion and Future Work

In this paper, we have tackled the problem of plant identification using leaf-
based features. We used the Pl@ntLeaves II dataset by CLEF as the benchmark
to support our results. We proposed novel preprocessing strategies for shadow
removal and background noise correction. We also proposed an automated leaflet
segmentation procedure for compound leaves. We introduced the use of tooth
features to discriminate leaves with similar shapes but different margins. We
also implemented an important improvement on the calculation of morphological
features by automating the process of detecting the endpoints of the main vein.
We finally used a combination of shape, morphological and tooth features with
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Run ID H Scorescan [ Scorepscudo [ Scorenatural HScoreMwage HRank[

1 0.37 0.34 0.43 0.38 10
2 0.30 0.25 0.24 0.27 16
3 0.43 0.40 0.49 0.44 2
4 0.37 0.35 0.43 0.38 8

Table 3. Final standings of our submitted runs (Run 3 achieved the 2°¢ rank).

random forests for classification. Our approach helped us achieve an overall rank
of 2°d in the Plant Identification Challenge, CLEF 2012.

In future, we would like to achieve effective automatic segmentation of natural
photographs as well. We would also like to work on optimal fusion of different
types of features as well as classifier boosting to improve the results.
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