Identifying the most suitable stemmer for the
CHiC multilingual ad-hoc task

Thomas Wilhelm-Stein, Benjamin Schiirer, and Maximilian Eibl

Technische Universitdt Chemnitz, 09107 Chemnitz, Germany,
{wilt, schben, eibl}@hrz.tu-chemnitz.de

Abstract. Because the 2013 Cultural Heritage in CLEF (CHiC) lab fo-
cused on multilingual retrieval, our goals were the integration of Apache
Solr in our Xtrieval framework and the evaluation of different stemmers
available for most of the relevant languages. As there were thirteen lan-
guages to cover, we tried to find a generic stemmer which works with
all languages. We experimented with four setups, where one setup was
without any stemmer, two setups used mainly rule-based stemmers and
the last setup used a dictionary-based stemmer. For the dictionary-based
stemmer we employed the HunSpell stemmer, which works with the same
dictionaries as OpenOffice.

Keywords: stemmer, evaluation, dictionary-based stemmer, rule-based
stemmer, cultural heritage

1 Introduction

In 2013 the Cultural Heritage in CLEF (CHiC) lab focused on multilingual
retrieval, i.e. searching over all available languages. For this task topics and
relevance assessments were provided for a total of thirteen languages. This set
allowed us to perform a large scale evaluation of stemming algorithms for all
available languages.

Our goals for this year were the integration of Apache Solr!' in our Xtrieval
framework [1] and the evaluation of the different stemmers available within Solr
for a broad use on multilingual corpora. Hence we focused on the multilanguage
ad-hoc task.

2 System overview and setup

As usual we used our Xtrieval framework to carry out all our experiments. But
this year we added a new retrieval engine: Apache Solr. It is a very popular
open source enterprise search, [2] which is built on top of Apache Lucene?, and
provides several web service interfaces to conduct the different tasks necessary
to perform large scale searches.

! http://lucene.apache.org/solr
2 http://lucene.apache.org/java

Although we have already been using Apache Lucene for our experiments
since 2006 [3], this new approach has changed the way we have to configure
them. A considerable amount of configuration is now done in Solr using various
XML files. Within these configuration files one can define fields with associated

types where the processing steps are declared.
CHiC ad-hoc
topic

(-
results in

TREC format

-

Xtrieval framework

CHiC no stemmer

documents

standard stemmer

less aggressive stemmer

HunSpell stemmer

+ stopword filter

Apache Solr

Fig. 1. Xtrieval framework using Apache Solr for our stemming experiments

As shown in figure 1, the Xtrieval framework was still an essential part of our
experiments. We used it to read and parse the document collection and fed it
into the Solr web service. At this point there are still some pre-processing steps
left to the Xtrieval framework, which cannot be configured in Solr.

After the indexing, we used our framework to transform the topics into search
queries for the Solr web service and gathered the results in the TREC format in
order to submit them.

This year we focused on the different stemming approaches, which are offered
by Solr. As there were thirteen languages available, we tried to find a generic
stemmer which covers all these languages. We experimented with four settings:
one was without any stemmer, two setups used mainly rule-based stemmers
and the last setup used a dictionary-based stemmer. For the dictionary-based
stemmer we employed the HunSpell stemmer [4], which works with the same
dictionaries as OpenOffice and LibreOffice. Because of the open source nature
of these applications there are large numbers of dictionaries available for almost
every language.

Finally, we set up these stemming experiments:

— No stemmer

— The standard stemmer configured in Solr: In most cases this is the snowball
stemmer or another rule-based stemmer. Where no other stemming algo-
rithm was available the HunSpell stemmer was used.

— A less aggressive stemmer: This was used instead of the standard stemmer
for every language where a less aggressive stemmer was available.

— The HunSpell stemmer: Only languages with HunSpell dictionaries which
had a reasonable performance used this stemmer. There were performance

problems with complex languages, like for example French, where probably
many connections exist between dictionary entries. The bad performance
for this language sometimes resulted in a processing time 1000 times longer
than with the standard stemmer. Therefore we used no stemmer for these
languages.

Furthermore we applied a language detection to determine fields with wrongly
labeled languages and assigned the detected language. We also removed stop
words for each language. Each language was indexed into the same index, but
using separate fields. When processing the topics for each available language a
query was issued to the whole index, i.e. every language in the index.

The mapping of the XML data to the fields of the Solr/Lucene index was the
same we used for our experiments last year. [5]

3 Results

Table 1 shows the results of our experiments. We compared four different mea-
sures: mean average precision (map), geometric mean average precision (gmap),
binary preference (bpref), and precision at R (r-precision). Each line represents
a stemmer configuration as described in the system overview and setup. For each
measure the best score is highlighted.

Table 1. Results of our stemming experiments

stemmer map gmap bpref r-precision
standard 0.2336 0.1423 0.3115 0.3130
less aggressive 0.2338 0.1421 0.3108 0.3140
hunspell 0.1739 0.0928 0.2468 0.2517
no stemmer 0.1534 0.0575 0.2239 0.2117

The difference between standard and less aggressive stemming is marginal
and cannot be rated as significant. Without any stemmer, the results are the
lowest and the HunSpell stemmer performed slightly better than no stemming
at all.

4 Conclusions and future work

It is evident that stemming improves the results, as the experiment with no
stemming scored below every other stemming approach. Despite HunSpell stem-
ming scoring higher than no stemming, it should not be considered a beneficial
approach, because the results do not correspond to the processing time that
must be dedicated to the stemming. However, there are languages without any
other stemming algorithms, which could benefit from the HunSpell stemming.

This should be investigated further, especially in matters of processing time for
these languages.

Another benefit of our participation was the addition of the Apache Solr

interface. Now the Xtrieval framework is able to use Solr for indexing and re-
trieving documents. Furthermore existing retrieval interfaces like AJAX Solr?
can be used to inspect the index and the documents in a more interactive way
than before.

References

1]

Kiirsten, J., Wilhelm, T.: Extensible retrieval and evaluation framework: Xtrieval.
In Baumeister, J., Atzmiiller, M., eds.: LWA. Volume 448 of Technical Report.,
Department of Computer Science, University of Wiirzburg, Germany (2008) 107—
110

Smiley, D., Pugh, E.: Apache solr 3 enterprise search server (2011)

Kiirsten, J., Eibl, M.: Monolingual retrieval experiments with a domain-specific
document corpus at the chemnitz university of technology. [6] 178-185

Halacsy, P., Trén, V.: Benefits of resource-based stemming in hungarian information
retrieval. [6] 99-106

Kiirsten, J., Wilhelm, T., Richter, D., Eibl, M.: Chemnitz at the chic evaluation
lab 2012: Creating an xtrieval module for semantic enrichment. In Forner, P., Karl-
gren, J., Womser-Hacker, C., eds.: CLEF (Online Working Notes/Labs/Workshop).
(2012)

Peters, C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke,
M., Stempfhuber, M., eds.: Evaluation of Multilingual and Multi-modal Infor-
mation Retrieval, 7th Workshop of the Cross-Language Evaluation Forum, CLEF
2006, Alicante, Spain, September 20-22, 2006, Revised Selected Papers. In Peters,
C., Clough, P., Gey, F.C., Karlgren, J., Magnini, B., Oard, D.W., de Rijke, M.,
Stempthuber, M., eds.: CLEF. Volume 4730 of Lecture Notes in Computer Science.,
Springer (2007)

3 https://github.com/evolvingweb /ajax-solr/

