
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

NCBI at 2013 ShARe/CLEF eHealth Shared Task: 

Disorder Normalization in Clinical Notes with DNorm 

Robert Leaman, Ritu Khare, Zhiyong Lu 

National Center for Biotechnology Information, Bethesda, Maryland, USA 

(robert.leaman, ritu.khare, zhiyong.lu)@nih.gov 

Abstract. We describe an application of DNorm – a mathematically principled 

and high performing methodology for disease recognition and normalization, 

even in the presence of term variation – to clinical notes. DNorm consists of a 

text processing pipeline, including the BANNER named entity recognizer to lo-

cate diseases in the text, and a novel machine learning approach based on pair-

wise learning to rank to normalize the recognized mentions to concepts within a 

controlled lexicon. DNorm achieved the second highest performance in Task 1a 

(named entity recognition) and the highest performance (strict accuracy) in 

Task 1b (normalization). A web-based demonstration of DNorm is available at 

http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm/ 
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1 Introduction 

Concept recognition and identification in clinical notes has many applications, includ-

ing automated identification of patients at a high risk for complications, automated 

identification of clinical trial eligibility, and automatic error control in electronic med-

ical records. In this article we describe our approach to the ShARe / CLEF eHealth 

Task 1a (named entity recognition or NER) and Task 1b (normalization) [1]. We use a 

machine learning approach, including BANNER, a named entity recognizer utilizing 

conditional random fields and a rich feature approach [2, 3], and DNorm, a method 

for normalizing disorder mentions that uses a machine learning model learned directly 

from the training data [4]. The DNorm model is based on pairwise learning to rank 

(pLTR), and can represent synonymy, polysemy, and relationships that are not 1-to-1. 

1.1 Corpus Description 

The corpus provided by the organizers consists of clinical notes of 4 different types 

and is split into two sets [1]. The Training set contains a total of 199 clinical notes 

from 4 different types, described in Table 1. The Test set contains 100 clinical notes 

from 3 out of the 4 types present in the Training set, and is described in Table 2. 

Notes in the Training set range from about 150 bytes to about 13,200 bytes. The notes 



in the Training set total about 9,200 lines of text and 5,900 annotations. The minimum 

note size in the Test set was 0 bytes, and the maximum size was approximately 

14,000 bytes. The Test set contained a total of approximately 8,300 lines of text. 

Table 1. Count and average size of each type of clinical note in the Training set 

Type of Report Count (%) Average size (bytes) 

Discharge summary 61 (30.7%) 7,561 

ECG 54 (27.1%) 285 

Echo 42 (21.1%) 2,235 

Radiology 42 (21.1%) 1,941 

Table 2. Count and average size of each type of clinical note in the Test set 

Type of Report Count (%) Average size (bytes) 

Discharge summary 76 (76.0%) 7,178 

ECG 0 (0.0%) N/A 

Echo 12 (12.0%) 2,246 

Radiology 12 (12.0%) 1,717 

 

The Test set was not released until one week prior to results submission, therefore 

the only information about the Test set available during system development was the 

number of notes. Our team assumed, however, that the Training set would be repre-

sentative of the Test set. Comparing the Training and Test sets shows that while the 

average report sizes for each type are relatively similar, the mix of note types included 

is different. In addition to the Test set not containing any ECG notes, the percentage 

of discharge summaries is much higher in the Test set than in the Training set. This 

increases the overall average note length, since discharge summaries are significantly 

longer than the other note types. 

1.2 Lexicon Description 

The lexicon was created using the 2012AB release of the UMLS
®
 Metathesaurus. To 

comply with the annotation guidelines, the concept identifiers (CUIs) were restricted 

to the 11 recommended disorder semantic types, and the SNOMED-CT source vo-

cabulary. For each restricted CUI, we computed the non-suppressed English syno-

nyms available in the Metathesaurus, and included those terms in the lexicon.  

Furthermore, based on our observations of the Training set, we made several major 

changes to the lexicon. The Training set contained several mentions annotated as 

“CUI-less” because the corresponding CUIs lied outside the recommended guidelines, 

e.g., “left ventricular function” and “unable to walk.” We identified the “CUI-less” 

mentions occurring five or more times in the Training set, and appended those men-

tions to the lexicon, using the concept ID “CUI-less.”  

We observed from the Training set that adjective forms were freely substituted for 

the noun form for many words. While stemming handled many of these cases, many 

anatomical terms were not handled well: for example, “femoral” is the adjective form 



of “femur”, and occasionally completely different bases were used, such as “optic” as 

the adjective form of “eye”. We therefore extracted a list of about 60 anatomic adjec-

tive / noun pairs from UMLS and added a synonym containing the adjective form for 

every lexicon name containing the noun form.  

The Training set contained several abbreviations that are not found in the Metathe-

saurus. To address this, we used the Taber’s dictionary of medical abbreviations
1
. The 

Taber’s dictionary was filtered to include only those entries where the expanded form 

exact matched with a synonym of any restricted CUI, and the corresponding abbrevia-

tion was included in the lexicon. In all, 102 entries were added to the lexicon.  

Finally, we observed that several abbreviation mentions in the Training set re-

quired disambiguation, e.g., the mention “AR” matches with the concept “aortic re-

gurgitation” (CUI C0003504) as well as the concept “rheumatoid arthritis” (CUI 

C0003873), and “CAD” matches with the concept “coronary heart disease” (CUI 

C0010068) as well as “coronary artery disease” (CUI C1956346). We refined the 

lexicon to include only one sense of an abbreviation in the following manner. We 

included only those CUIs wherein at least one term demonstrated evidence of the 

relationship between short and long forms, e.g., the CUI C0003504 contains the term 

“AR – aortic regurgitation,” and the CUI C1956346 contains the term “CAD – coro-

nary artery disease,” i.e., each abbreviation letter matches with the corresponding 

word’s first letter in long form. After applying this pattern rule, some terms still re-

quired disambiguation e.g., “MI” matches with “myocardial infarction” as well as 

“mitral incompetence.” We resolved these cases by preferring the sense that appears 

more frequently in the Training set. 

2 Methods 

We create two separate systems based on our previous research on disease name 

recognition and normalization [5 - 7], both of which are described in this section. The 

first is an application of MetaMap, and is used as a baseline rather than to create our 

submission for the task. The second system is an adaptation of DNorm to clinical 

notes, which has previously been applied to the NCBI Disease Corpus [8, 9]. DNorm 

is a methodology for locating and identifying diseases and disorders mentioned in 

biomedical text. DNorm uses a pipeline architecture, with modules to perform named 

entity recognition, abbreviation resolution, and concept normalization (grounding). In 

this study, we adapt DNorm to clinical notes by dropping the abbreviation resolution 

module and introducing a post-processing module for boundary revision. 

2.1 Sentence segmentation 

We segmented each clinical note into sentences using the built-in Java class BreakIt-

erator and manually created rules to correct its output. Examples of the rules we im-

plemented include removing a sentence break after the period in “Dr.” and consider-

                                                           
1http://www.tabers.com/tabersonline/view/Tabers-Dictionary/767492/0/Medical_Abbreviations 



ing a double newline to be a sentence break. Applying the sentence segmenter to the 

Training set resulted in about 9,900 sentences. 

2.2 MetaMap Baseline 

We developed a baseline system using the MetaMap application developed by the 

National Library of Medicine [10]. MetaMap is a highly configurable system for bio-

medical named entity recognition and UMLS normalization. Given a textual passage, 

MetaMap identifies the candidate UMLS concepts and the corresponding spans of the 

mentions. For this study, we used the MetaMap JAVA API to programmatically ac-

cess the MetaMap with the following settings. The source vocabulary was limited to 

the SNOMED-CT, and the semantic categories were restricted to the 11 disorder se-

mantic types as specified in the annotation guidelines.  

The baseline system uses the sentence segmentation module described in Section 

2.1, the MetaMap API, and a post-processing module. Given a clinical report as the 

input, the sentence segmenter splits the report into chunks and each chunk is fed into 

the MetaMap API to obtain the candidate CUIs and spans. For each sentence, the 

post-processing module validates the candidates in the following manner. The over-

lapping candidates are resolved using the longest span (or specific mention) criteria, 

e.g., “breast cancer” is preferred to “cancer.” The candidates that require disambigua-

tion, e.g., “heart failure” maps to multiple CUIs, are resolved using the word sense 

disambiguation module of the MetaMap. In addition, the module filters some generic 

mentions, e.g., “allergies,” “condition,” “disease,” “finding,” etc. 

2.3 Named Entity Recognition 

The system used to create our submission operates in three steps: named entity recog-

nition, described in this subsection, followed by normalization and boundary revision, 

which are described in the following two subsections. We used the BANNER named 

entity recognizer, an open source NER system based on linear-chain conditional ran-

dom fields and a rich feature set. We used a dictionary feature with diseases from the 

UMLS Metathesaurus, as in previous work [3]. To reduce overfitting and increase the 

training performance, we set the labeling model to IO and the order to 1. We created a 

model that employed different labels for continuous and discontinuous mentions. 

Mentions tagged by the model as continuous were returned directly, but tokens la-

beled with the discontinuous mention tag were joined into a single discontinuous 

mention. This significantly reduced the confusion between continuous and discontin-

uous mentions, and allowed either 0 or 1 discontinuous mentions to be represented for 

each sentence. While this is clearly not a complete solution, we found that the majori-

ty of sentences with disjoint mentions only contain one. 

2.4 Normalization with DNorm 

DNorm is a technique for finding the best name from a controlled vocabulary such as 

SNOMED-CT for a given mention. It first converts both the mention and the names 



from the controlled vocabulary to a TF-IDF vector space. It then uses a regression 

model learned directly from the training data to score each name in the controlled 

vocabulary against the mention provided as query, and returns the top ranked name. 

Vector Space Model. Mentions output by BANNER are tokenized by using 

whitespace and punctuation as boundaries. Punctuation, whitespace and stop words 

from the English stop words set in Lucene are removed. Digits are retained, and each 

token is converted to lower case and stemmed with the Porter stemmer. 

We convert the mentions and names to vectors by first defining a set of tokens con-

taining the tokens from all mentions from the Training set and all names from the 

controlled vocabulary. We then convert both mentions and names to TF-IDF vectors 

within the space defined by this token set [11]. The TF of each element in the vector 

is calculated as the number of times the corresponding token appears in the mention 

or name. The IDF for each element in mention and name vectors is calculated from 

the number of names in the lexicon that contain the corresponding token:  

       
                                 

                                                        
 

To correct for the varying lengths of each mention or name, all vectors are normalized 

to unit length. 

Candidate Generation with Ranking. Given the vector space model for mentions 

and names, normalization can be seen as a ranking task between tuples containing one 

vector representing a mention (m) and one vector representing a lexicon name (n). 

Finding the best name can be seen as a scoring task mapping from 〈   〉 onto the set 

of real numbers. Cosine similarity has typically been used for this purpose, but cosine 

similarity is not robust to term variations not present in the lexicon. Instead, we can 

learn a scoring function by introducing a weight matrix, W: 

                ∑        

| |

     

 

This model allows us to learn both positive and negative correlations between tokens, 

and is capable of representing synonymy and polysemy. Since our vectors are already 

unit-length, it is also equivalent to cosine similarity when    , the identity matrix. 

Training DNorm with Pairwise Learning to Rank. We use the training data to 

learn weights that will result in a higher score for matching pairs 〈    〉 than for 

mismatched pairs 〈    〉. We express this constraint as             
           , and therefore choose   so that            . This is a pair-

wise learning to rank (pLTR) approach, following [12]. We initialize   to the identi-

ty matrix   and optimize via stochastic gradient descent (SGD) [13]. In SGD, a train-

ing instance is selected and classified according to the current parameters of the mod-

el. If the instance is classified incorrectly, then the parameters are updated by taking a 

step in the direction of the gradient. We use the ranking loss [14], so that if 



             , then   is updated as                     . 

The learning parameter   controls the size of the change to  .  

Many concepts have multiple names. Instead of iterating through all combinations 

of 〈       〉, we instead iterate through all combinations of 〈       〉, where    is 

fixed as the annotation for  , and    is any other concept from the lexicon. Since we 

intend the best-matching name for    to be ranked higher than the best-matching 

name for all other concepts, we determine    and    as: 

         
           

           

         
           

           

2.5 Boundary Revision 

We implemented a boundary revision module which uses feedback from the normali-

zation to optimize the NER span tagged. This module considers adding or removing 

tokens on the left and the right of the span, and uses a manually-constructed set of 

rules to decide whether to accept the change or not. The boundary revision module 

adds one token to the left or to the right if the normalization score of the new mention 

is at least 0.05 above the score for the current mention. Alternatively, the boundary 

revision module will also add one token to the left if the resulting mention is an exact 

match for any name in the lexicon. Tokens are not removed from the right, as this 

tends to delete headwords. Tokens are removed from the left, however, if the best 

concept for the new mention is the same as the best concept for the old mention, and 

the difference between the two scores is at least 0.3, which is relatively large. 

The boundary revision module also implemented some rule-based post-processing 

to correctly handle both NER and normalization of several consistent patterns that 

BANNER was not able to learn. One example is “w/r/r,” which is an abbreviation for 

concepts “wheezing” (CUI C0043144), rales (CUI C0034642), and ronchi (CUI 

C0035508), though we also observed this abbreviation to be written as “r/w/r” or 

“r/r/w.” 

3 Results 

We used the official task evaluation measures. These consist of the strict f-measure 

and overlapping f-measure to evaluate named entity recognition, and strict accuracy 

and relaxed accuracy for evaluating normalization. We used the definitions provided 

in the task definition, and used the official scoring script for system evaluation during 

development. Precision, recall, and F1 measure are defined as follows: 

  
  

     
   

  

     
   

   

   
 

where tp is defined as the number of spans that the system returns correctly; for the 

strict measure, the span returned must match on both the left and the right side, the 

overlapping measure only requires the spans to have some text in common. Both 



measures are micro-averaged. The strict accuracy measure for normalization is de-

fined as follows: 

                
                                     

                      
 

This is equivalent to the standard definition for recall if a true positive is taken to be 

both the span matching exactly and the concept being correctly identified. Mentions 

marked as “CUI-less” are evaluated as if “CUI-less” were their concept. In other 

words, the system must return “CUI-less” or the concept will be marked incorrect. 

The relaxed accuracy is defined as follows: 

                 
                      

                   
 

Because relaxed accuracy only measures the ability to normalize spans that are cor-

rect, it is possible to obtain very high values for this measure by simply dropping any 

mention with a low confidence span.  

3.1 Official Evaluation Results 

Our team is listed as TeamNCBI in the official task results. TeamNCBI.1 corresponds 

to DNorm without boundary revision and TeamNCBI.2 corresponds to DNorm with 

boundary revision. 

Table 3. Official evaluation results for Task 1a (NER), Strict 

System Precision Recall F-measure 

DNorm, without boundary revision 0.768 0.654 0.707 

DNorm, with boundary revision 0.757 0.658 0.704 

Table 4. Official evaluation results for Task 1a (NER), Relaxed 

System Precision Recall F-measure 

DNorm, without boundary revision 0.910 0.796 0.849 

DNorm, with boundary revision 0.904 0.805 0.852 

Table 5. Official evaluation results for Task 1b (Normalization) 

System Strict Relaxed 

DNorm, without boundary revision 0.587 0.897 

DNorm, with boundary revision 0.589 0.895 

4 Discussion 

Several aspects of the annotations contributed to our results. First, the annotators were 

instructed to annotate all disorders mentioned, even if not a current concern or not 

experienced by the patient, and also only annotate disorders that are referenced textu-

ally, rather than disorders requiring some inference. These instructions favored an 



NER approach based on local textual inference, such as the conditional random field 

with rich feature set approach used by BANNER. In addition, the annotators were 

requested to annotate spans that were an exact match for the concept being annotated. 

In particular, negation is ignored and anaphoric references are not annotated.  

There were two primary difficulties we found with our approach based on localized 

textual inference. First, discontinuous mentions posed a significant difficulty. In addi-

tion, there were some annotations that appeared to require inference from the remain-

der of the clinical note. For example, “aspiration” is sometimes mapped to “pulmo-

nary aspiration” (CUI C0700198) and sometimes to “aspiration pneumonia” (CUI 

C0032290). Another example is “complications,” which was mapped to “complica-

tions of treatment” (CUI C0679861) and also to “late effect of complications of pro-

cedure” (CUI C0160815). It was not entirely clear, however, whether such examples 

indicated that the context should be considered or were merely reflections of the diffi-

culty in maintaining annotation consistency. Our methods attempted to learn the most 

frequent sense based on the localized text, and did not consider the broader context of 

the clinical note. 

5 Conclusion 

In conclusion, we have successfully applied our DNorm method for finding disorder 

mentions to clinical notes. The method uses a pipeline approach to text processing, 

primarily based on localized textual inference, and learns term variations directly 

from the training data by applying a learning algorithm based on pairwise learning to 

rank. We believe that this method may be widely applicable. For future work, we 

intend to improve our ability both to infer the presence of discontinuous mentions and 

to condition our normalization inferences on the context present in the remainder of 

the clinical note.  
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