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Abstract. A unique characteristic of clinical text is the pervasive use of acro-
nyms and abbreviations, which are often ambiguous. The ShARe/CLEF eHealth 
Evaluation Lab organized three shared tasks on clinical natural language pro-
cessing (NLP) and information retrieval (IR) in 2013 and one of them was to 
normalize acronyms/abbreviations to UMLS concept unique identifiers (CUIs). 
This paper describes a hybrid system, which combines different Word Sense 
Disambiguation (WSD) methods and existing knowledge bases to normalize 
and encode clinical abbreviations. Our system achieved the best accuracy of 
0.719 on the independent test set, which was ranked first in the challenge.  
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1 Introduction 

Abbreviations are widely used in clinical texts and often contain important clinical 
meanings. Any clinical NLP systems attempting to extract clinical information from 
free texts have to interpret abbreviations correctly. However, identification and nor-
malization of abbreviations remains a challenging task, as clinical abbreviations are 
highly dynamic and ambiguous. Researchers have applied different methods to detect 
abbreviations from clinical texts [1][2][3], construct clinical abbreviation knowledge 
bases[4][5][6][7], and disambiguate ambiguous abbreviations [8][9][10]. Many clini-
cal NLP systems such as MedLEE[11], MetaMap[12], Knowledgemap[13], and 
cTAKEs[14] have been developed to extract medical concepts from the clinical texts 
to facilitate health care and clinical research. However, recent studies showed that 
performances of these clinical NLP systems on identifying abbreviations were still not 
very satisfactory[15]. 
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The ShARe/CLEF eHealth Evaluation Lab organized three shared tasks in 2013, 
with a focus on Natural Language Processing (NLP) and Information Retrieval (IR) in 
the medical domain.[16] The Task 2 - Normalization of acronyms/abbreviations (we 
will use abbreviations for short in the rest of this paper) was to map acronyms and 
abbreviations to the UMLS (Unified Medical Language System) CUIs (Concept 
Unique Identifiers). The organizers highlighted abbreviations in clinical text and all 
participants were asked to develop a system to map these abbreviations into appropri-
ate UMLS CUIs. This paper presents a detailed description of the abbreviation nor-
malization system developed by the University of Texas School of Biomedical Infor-
matics team. By combining different state-of-the-art word sense disambiguation 
(WSD) methods and knowledge bases, our system achieved the best accuracy of 
0.719, ranked first in the challenge. 

2 Method 

Normalizing abbreviations to UMLS CUIs is an encoding problem. However, 
many abbreviations are ambiguous (has multiple meanings). Therefore we have to 
determine the correct sense/meaning of an abbreviation (a Word Sense Disambigua-
tion (WSD)[17] problem), before mapping it to an UMLS CUI. Different WSD meth-
ods have been developed, including supervised machine learning methods, 
knowledge-based methods, and hybrid approaches [8][18][19]. Different methods 
have their own pros and cons. For example, supervised machine learning based meth-
ods often show good performance; but they require annotated samples for each abbre-
viation[20]. To maximize the performance of our system, we developed a hybrid 
strategy that combines a machine learning based method using Support Vector Ma-
chines (SVMs), a profile-based method using Vector Space Model, and a majority-
sense method to resolve ambiguous abbreviations occurring at different frequency 
levels. Figure 1 shows an overview of our strategy. 

 

 
Figure 1. An overview of our system.  
UTS API: UMLS Terminology Services API 



2.1 Datasets 

The organizer annotated abbreviations in 298 clinical notes, which were broken in-
to a training set (199 notes) and a test set (99 notes). The detailed numbers of annotat-
ed abbreviations with their corresponding CUIs in the training and test sets are shown 
in Table 1. The reported numbers of abbreviations were counted after variation nor-
malization - annotated abbreviations were normalized by removing special symbols 
(“.” , “-”, “_” and “+/-”) and converting into lowercases. 

 
Table 1. Characteristics of the dataset. 

 
Dataset Type #Note #Abbreviation 

Total (Unique) 
#CUI  
Total (Unique) 

#CUI-less 

Training ALL 199 3805 (679) 3624 (696) 181 
ECH 42 684 (57) 680 (58) 4 
RAD 42 543 (156) 505 (137) 38 
DIS 61 2514 (576) 2375 (597) 139 
ECG 54 64 (3) 64 (3) 0 

Test ALL 99 3774 (714) 3553 (706) 221 
ECH 12 207 (39) 207 (39) 0 
RAD 12 134 (53) 129 (55) 5 
DIS 75 3433 (678) 3217 (673) 216 
ECG 0 0 (0) 0 (0) 0 

2.2 Abbreviation Normalization 

Our abbreviation normalization system consisted three steps: 1) find possible sens-
es (also called sense inventory) for each abbreviation; 2) assign a correct sense from 
sense inventories to each occurrence of an abbreviation – the WSD step; and 3) map 
the assigned sense string to an UMLS CUI – the encoding step. 

2.2.1 Sense Inventory.  
A straightforward method of building the sense inventory is to use all annotated 

abbreviations and their senses from the training set. However, there is no guarantee 
that the training data cover all abbreviations and all possible senses in the test data set. 
In this study, we constructed two sense inventories. One is a “limited” sense inventory 
that was built from the training corpus only by collecting all abbreviations and their 
senses annotated in the training set. The other one is a “broad” sense inventory built 
on existing clinical abbreviation knowledge bases. We included knowledge sources 
such as the UMLS LRABR, the ADAM [6] and the Bermen’s pathology abbreviation 
list[4]. For an abbreviation in test set, if it was occurred in training set, we used the 
“limited” sense inventory; otherwise the “broad” sense inventory was used. 



2.2.2 WSD methods 
Our system adopted three different WSD methods, including the machine learning 

based method using SVMs, the profile based method, and the majority-sense method. 
To build SVM-based classifiers for the ambiguous abbreviations, different types of 

features were extracted from the training data, including: 1) Word features - stemmed 
words within a window size of 5 of the annotated abbreviation. The Snowball Stem-
mer from python NLTK (Natural Language Tookit) package was used in this re-
search. 2) Word feature with direction - The relative direction (left side or right side) 
of stemmed words in feature set 1) towards the annotated abbreviation. 3) Position 
feature - The distance between the feature word and the target abbreviation. 4) Word 
formation features from the annotated abbreviation - include: a) special characters 
such as “-” and “.”; b) features derived from the different combination of numbers and 
letters; c) features derived from the number of uppercase letters. 5) Note type feature - 
types of notes derived from the file name. There are four types of notes as shown in 
Table 1. 6) Section feature - we developed a program to automatically extract candi-
date section headers and manually reviewed them to remove false positives and ag-
gregate the variations. A list of 38 unique section headers were constructed and used 
to extract section information. The parameters of SVM were optimized and deter-
mined based on a 5-fold cross validation using the training set.  

In a previous study[8], we have developed a profile-based WSD method that used 
dictated discharge summaries as an external source to build sense profiles and applied 
them to disambiguate abbreviations in admission notes via a vector space model. The 
method starts with a given sense inventory. For each sense of an ambiguous abbrevia-
tion, it searches for the sense string (long form of an abbreviation) in a corpus to au-
tomatically create the pseudo training samples, from which a profile vector is created 
for each sense. During disambiguation, a context vector of the testing sample is creat-
ed and compared with each sense profile vector to calculate the cosine-similarities. 
The sense corresponding to the highest similarity score will be selected as the correct 
sense. In this study, if a testing abbreviation occurred in the training corpus, we built 
sense profiles using the training corpus based on the “limited” sense inventory. Oth-
erwise, we built sense profiles by using 3 years of clinical notes from Vanderbilt Uni-
versity Hospital (2007-2009) based on the “broad” sense inventory. All the features 
used in the machine learning based method (except the group 4) were used to build 
sense profiles. 

The majority-sense based method is very simple. It always takes the majority 
sense of an ambiguous abbreviation as the correct sense. The challenge is to find the 
majority sense. We applied this method to abbreviations occurred in the training cor-
pus only because we could estimate the majority senses of these abbreviations based 
on the training set. 

2.2.3 Encoding senses to UMLS CUIs 
Once we determine the sense of an ambiguous abbreviation, we need to map the 

sense string to an appropriate UMLS CUI in this task. For abbreviations occurred in 
the training set, we used the “limited” sense inventories, where UMLS were already 
associated with each sense based on the annotation. Therefore it is straightforward to 



assign UMLS CUIs for these abbreviations. For abbreviations that were not covered 
by the training corpus, we used the UMLS Terminology Service (UTS) API to assign 
a CUI to a sense string.  

2.2.4 Strategies 
As shown in Figure 1, we divided abbreviations to following different groups 

based on their frequency in the training corpus and applied different sense inventories 
and WSD methods to these different groups.  

1) High Frequency Ambiguous Abbreviation (HFA) – These abbreviations occurred in 
the training corpus no less than 10 times and had more than one sense according to 
the annotation. The machine learning based approach was applied to these abbrevia-
tions. 

2) High Frequency Non-Ambiguous abbreviation (HFNA) - These abbreviations oc-
curred in the training corpus no less than 10 times, but had only one sense according 
to the annotation. Although it is possible that these abbreviations could have other 
senses in the testing set. We assumed the sense based on the training set was the ma-
jority sense and simple applied the majority-sense method to this group. 

3) Low Frequency abbreviation (LF) - These abbreviations occurred in the training 
corpus no less than 10 times. Because of the limited sample sizes, machine learning 
based methods were not appropriate for this group. We primarily applied the profile-
based method to this group of abbreviations, at two settings 1) “limited” sense inven-
tory + profiles based on training corpus, and 2) “broad” sense inventory + profiles 
based on Vanderbilt corpus. To further improve the performance, we combined ma-
jority sense with the profile-based method, as our previous study showed beneficial 
performance with this approach [19]. Here we did not discriminate between ambigu-
ous and non-ambiguous abbreviations. The top ranked sense was selected. Apparent-
ly, the rationale behind setting 1 was to trust the Training data, whereas the setting 2 
was to trust the knowledge base. Our submission 1 used the setting 1 to normalize the 
low frequency abbreviations. In submission 2, we further collected the samples with a 
zero similarity-score from submission 1, and use setting 2 to process these zero scored 
samples. If the samples were not covered by the knowledge-based profiles, we simply 
moved them into the uncovered abbreviation group (see below).  

4) Uncovered abbreviation (UN) - These abbreviations never occurred in the training 
corpus. We applied the “broad” sense inventory and the profile-based method built on 
Vanderbilt corpus. Any abbreviations that were not covered by the sense inventory or 
profile-based WSD method was directly processed by the UTS API to assign a CUI. 
If nothing returns from the UTS API, “CUI-less” was be assigned to the abbreviation. 



2.3 Evaluation 

The accuracy was used to evaluate all participating systems. For each submitted 
system run, the evaluation will generate a “strict accuracy score”, defined as the pro-
portion of correctly normalized abbreviations with the top code selected by the anno-
tators (one best), and a “relaxed accuracy score”, defined as the proportion of correct-
ly normalized abbreviations based on a list of possibly matching codes generated by 
the annotators (n-best). 

3 Result 

By combining existing abbreviation knowledge bases, we were able to construct a 
comprehensive sense inventory composed of 42,613 unique abbreviations with 
102,150 possible senses. We were able to build profiles for 7,503 abbreviations from 
the Vanderbilt Discharge Summaries and 5,345 abbreviations from the Vanderbilt 
Radiology notes. Table 2 shows the final scores of our system reported by the organ-
izer, where the best results are in bold. Our best run (#1) achieved the best strict score 
and relaxed score of 0.719 and 0.725, respectively, which was ranked No. 1 in the 
challenge.  

 
Table 2. Performance of our system on the test set. 

 
 Strict Relaxed 
Run1 0.719 0.725 
Run2 0.683 0.689 

 
Table 3 shows the numbers of abbreviations as well as our system’s performance 

in different frequency groups. There were 50 ambiguous high frequency abbrevia-
tions, which accounted for 40.21% of total abbreviation occurrences in the training 
set. The average accuracy of these 50 ambiguous abbreviations was 88.26% on the 
training set using 5-fold cross validation. There were 43 high frequency non-
ambiguous abbreviations, which contributed 847 occurrences (22.26% of total occur-
rences) in the training set. The low frequency abbreviation group composed of 586 
abbreviations with a total occurrence of 1,428 (37.53% of total occurrences).  
 

Table 3. Strict score for each divided group. 
 

 HFA HFNA LF UN 
#Abbr (#instance) in Training  50 (1530) 43 (847) 586 (1,428) - 
#Abbr (#instance) in Test 50 (1341) 43 (644) 284 (1,226) 337 (563) 
Run1 accuracy 82.03% 96.58% 75.69% 11.20% 
Run2 accuracy 82.03% 96.58% 64.52% 11.20% 

HFA: High Frequency Ambiguous; HFNA: High Frequency Non-Ambiguous; LF: 
Low Frequency; UN: Uncovered 



 
Table 3 also tells us that all 50 ambiguous high frequency abbreviations and 43 

non-ambiguous high frequency abbreviations occurred in the training set also ap-
peared in the test set. However, only 284 out of 586 low frequency abbreviations in 
the training also appeared in the test set. There were 337 abbreviations occurred in the 
test set but not in the training set. For the Low Frequency abbreviations, Run 1 
achieved the best accuracy of 75.69%, which outperformed run 2 for more than 11%. 
The scores for other groups were the same as they adopted the same strategies.  

4 Discussion 

In this study, we developed a hybrid system to normalize abbreviations in clinical 
text to UMLS CUIs and applied it to the 2013 ShARe/CLEF eHealth shared task 2. 
Although ranked first in the challenge, the best performance of our system was an 
accuracy of 0.719, indicating abbreviation normalization is still a challenging task in 
clinical NLP research.  

Different WSD methods have been developed to resolve ambiguity of clinical ab-
breviations. Each of them has its advantages and limitations. Majority-sense based 
method is often used as a baseline and a number of studies have reported reasonable 
performance of this approach in clinical abbreviations [8][20]. However, how to de-
termine the majority sense of each abbreviation is not straightforward. Supervised 
machine learning-based methods often reach high performance in WSD tasks. But it 
requires annotated data for each ambiguous abbreviation, which is not very practical. 
Moreover, it requires that training and test data sets should be similar (e.g., same type 
of clinical notes). In our previous study[8], the profile-based method demonstrated 
reasonable performance and good transportability across different types of clinical 
notes. As shown in Table 2, most of these methods showed expected results. Machine 
learning methods achieved an accuracy of 0.8203 on high frequency ambiguous ab-
breviations and “profile + majority-sense” reached an accuracy of 0.7569 when they 
were built from the training corpus. However, we noticed that the profile-based meth-
od did not work well on uncovered abbreviations (accuracy 0.1120). Most likely this 
is due to that the profiles were created from clinical notes at a different institution 
(Vanderbilt). This finding indicates that the generalizability of the profile-based ap-
proach needs further investigation when it is applied across different institutions.  

Another critical but often-neglected issue of clinical abbreviation normalization is 
the lack of comprehensive knowledge bases that contain abbreviations and their sens-
es (also called sense inventory). In reality, a sense inventory is a prerequisite for any 
WSD methods. In this study, we combined multiple existing abbreviation/sense lists 
and generated a comprehensive sense inventory, with the hope to capture abbrevia-
tions that were not occurred in the training set. However, our analysis showed that 
only about 68.25% uncovered abbreviations were in our list and only about 36% of 
senses of uncovered abbreviations were in our knowledge-based sense inventory. This 
finding indicates the need of building sense inventories for clinical abbreviations. We 



are currently working on this problem, by developing clustering based methods for 
building clinical abbreviation sense inventories [7].   

To further understand the errors of our system and explore opportunities for further 
improvements, we manually reviewed 50 incorrectly normalized abbreviations in the 
uncovered set. Among the 50 abbreviations, the knowledge-based profile covered the 
senses of 18 abbreviations only (36%), indicating insufficient sense inventories. We 
also found that for 25 incorrectly normalized abbreviations, the system predicted 
CUIs were closely related to the gold standard annotations (e.g., the system predicted 
CUI - “C2208743-serum BUN/creatinine ratio” versus the gold standard CUI - 
“C0010294-Creatinine”). This finding suggests that mapping an identified sense 
string to an appropriate UMLS CUI is still challenging. 

5 Conclusion 

In this paper, we introduced a system to normalize pre-annotated abbreviations de-
veloped for the task 2 of ShARe/CLEF eHealth 2013 challenge. Our system achieved 
the best strict score of 0.719 and relaxed score of 0.725, which ranked first in the 
challenge. 
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