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Abstract. We present our participation in Task 2 of the 2013 CLEF-
eHEALTH Challenge, whose goal was to determine the UMLS concept
unique identifier (CUI), if available, of an abbreviation or acronym. We
hypothesize that considering only the abbreviations of the training cor-
pus could be sufficient to provide a strong baseline for this task. We
therefore test how a fully supervised approach, which predicts the CUI
of an abbreviation based only on the abbreviations and CUIs seen in the
training corpus, can fare on this task. We adapt to this task the process-
ing pipeline we developed for CLEF-eHEALTH Task 1, entity detection:
a supervised MaxEnt model based on a set of features including UMLS
Concept Unique Identifiers, complemented here with a rule-based com-
ponent for document headers. This system confirmed our hypothesis, and
was evaluated at 0.664 accuracy (strict) and 0.672 accuracy (relaxed),
ranking second out of five teams.
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1 Introduction

The 2013 CLEF-eHEALTH challenge [9] aims to develop methods and resources
that make electronic medical records (EMRs) more understandable by both pa-
tients and health professionals. The challenge spans three tasks. The second task
focuses on the resolution of abbreviations into UMLS concept unique identifiers
(CUIs). We present here our participation in the second task and develop a sys-
tem that can determine the CUI of an abbreviation. We propose a solution that
combines a simple feature set with external knowledge gathered from the UMLS
Metathesaurus.

Clinical notes often use abbreviations and acronyms (henceforth collectively
named ‘abbreviations’ in this paper). While the number and variety of abbre-
viations is unlimited thanks to the plasticity of language and the inventiveness
of the human mind, the distribution of abbreviations can be expected to fol-
low a Zipfian law, with a small number of distinct abbreviations accounting for
a large part of the total number of occurrences of abbreviations. We therefore
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hypothesize that the sample of abbreviations present in the training corpus pro-
vided by CLEF-eHEALTH for the task should contain most frequently occurring
abbreviations and should hence account for a large part of the occurrences of
abbreviations in the test corpus.

We present a supervised abbreviation resolution system specifically adapted
to the abbreviations of the CLEF eHealth corpus. Our system learns a MaxEnt
model from the training data, based on a simple feature set that combines UMLS
knowledge with information gathered from the EMR text. We present the system
design, its results on the 2013 CLEF-eHEALTH [9] test data, and discuss its
merits and limitations.

2 Related work

Abbreviations and acronyms are pervasive in technical and scientific text, in-
cluding in health and life sciences. They create obstacles to various information
extraction tasks, for instance for coreference resolution in electronic medical
records [10]. This has motivated work on abbreviation detection and expansion
on various types of texts, the most prevalent of which for health are the scien-
tific literature [6, 8, 1] and patient records [11, 3]. Initial work aimed to collect
acronyms and their expansions from large corpora [6, 8], in expressions such as
the numbers of underrepresented minorities (URMs)1 where the expansion of an
abbreviation is directly provided in the input text. This is however not always
the case, and is even fairly rare in patient records.

When abbreviation expansions are not explicit in source texts, abbreviation
processing can be divided into two steps. The first is the detection of abbre-
viations, which determines which expressions in a text are abbreviations (or
acronyms) [11]. This can be compared to an entity detection task. The second
step is the resolution of abbreviations: given an expression, which may map to
multiple expansions, select the appropriate expansion in context. If all possible
expansions are available, this is similar to a disambiguation task [3]. Kim et
al. [3] disambiguate abbreviations with a multi-class SVM classifier trained on
feature vectors including the five preceding and following words (occurring at
least five times in the corpus). They train on a corpus of 9,963 clinical notes in
which full forms have automatically been replaced with abbreviations, follow-
ing Pakhomov [5], using the inventory of abbreviations in the UMLS Specialist
Lexicon file LRABR. They test their method on a corpus of 37 hand-annotated
clinical notes and achieve an F-measure of 0.660 (Precision = 0.683, Recall =
0.637) in exact match and 0.754 in partial match.

Task 2 of the ShARe CLEF eHealth 2013 Challenge addresses the abbrevia-
tion disambiguation step. Gold standard annotations of abbreviation boundaries
are given for the abbreviations present in clinical notes, which removes the need
to address the abbreviation detection step: the task consists of disambiguat-
ing and normalizing each abbreviation into a UMLS Concept Unique Identifier

1 Example from the MEDSTRACT corpus: http://medstract.org/

gold-standards.html.
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(CUI), or the CUI-less label if no UMLS CUI is available. It is close to the task
defined in [3], but it is to our knowledge the first time a dataset of this size is
provided to address abbreviation disambiguation in clinical notes into a refer-
ence terminology. Besides, a rapid examination of the abbreviations found in the
training dataset shows that a number of them are not present in the Specialist
Lexicon LRABR file: for instance, oxygen saturation abbreviated as O2 sat or 02
sat (this latter example uses a zero instead of the letter ‘O’) is not listed among
the 4 abbreviations of oxygen saturation in LRABR (O2 saturation, O2sat, SO2,
SpO2 ), so the semi-supervised method of [5, 3] might not apply here.

3 Materials and methods

3.1 Data

The corpus used for the 2013 CLEF-eHEALTH challenge consists of de-identified
plain text EMRs from the MIMIC II database, version 2.5 [7]. The EMR docu-
ments were extracted from the intensive-care unit setting and included discharge
summaries, electrocardiography reports, echography reports, and radiology re-
ports. The training set contained 200 documents and a total of 94,243 words,
while the test set contained 100 documents and a total of 87,799 words (see
Table 1).

Abbreviations and acronyms are annotated in terms of span and UMLS Con-
cept Unique Identifier (CUI) when available. If no CUI is available for the abbre-
viation the CUI-less code is used. The training set contained 3, 805 annotations,
while the test set contained 3, 774 annotations (see Table 1). CUI-less abbrevi-
ations accounted for about 5% in the training set and 6% in the test set.

Table 1. Description of training and test data sets. Distinct CUIs do not include the
CUI-less code.

Training Test

Documents 200 100
Words 94,243 87,799

Abbreviations 3,805 3,774
Distinct CUIs 696 706

CUI-less abbreviations 181 221

3.2 System design

Document headers (see details below) contain pre-formatted fields, some of which
contain abbreviations. Since these are very regular fields, their CUIs are not
ambiguous, and simple rules can handle them. We therefore divided the problem
into two parts:

– Rule-based resolution of abbreviations in document headers (Section 3.4);
– Supervised resolution of abbreviations in document body (Section 3.3).
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3.3 Supervised resolution of abbreviations in document body

We used a supervised linear-chain Conditional Random Fields (CRF) system
which we restricted to Maximum Entropy mode (see below). We trained a model
using 10-fold cross validation on the training set data, keeping 1/11th of the data
for final tuning of the model. We first present how we formulate the problem.
We then describe the pre-processing steps we performed on the datasets and the
model feature set together with the CRF feature patterns.

Problem formulation Abbreviation resolution is defined here as the deter-
mination of the CUI of an abbreviation, or else the attribution of the CUI-less
label. An abbreviation may be ambiguous, i.e., be found with different CUIs in
different contexts. For instance, in the training set, CATH is used for Catheter-
ization [C0007430] and for Drainage Catheters [C0879005]. When ignoring case,
526 distinct abbreviations are found in the training set, 94 of which are ambigu-
ous given the entries in the training set.

When all candidate CUIs for an abbreviation are known, abbreviation ex-
pansion can be addressed as a supervised classification task—this is what we
do here. We label each abbreviation of the training set with its gold standard
CUI, using a B-I-O scheme where each CUI introduces a B- and possibly some
I- labels. For instance, the two tokens of abbreviation “O2 sat” are labelled as
B-C0523807 and I-C0523807. This results in 738 distinct labels. An obvious lim-
itation of this design is that only those CUIs seen in the training set can be
assigned in the test set, but we found it worth trying.

We used the Wapiti [4]2 implementation of CRFs because it is fast and offers
convenient patterns (e.g., patterns using regular expressions on field values).

Data pre-processing Our data pre-processing and feature production archi-
tecture is schematized in Figure 1. Before using the challenge corpora for training
and testing, we performed the following pre-processing steps:

– the training and test corpora provided by the challenge organizers were de-
identified and thus contained special de-identification marks; to turn de-
identification code into more normal phrases, we performed re-identification
with pseudonyms on the input text.

– EMR documents present in general a well-structured form, with a header,
document body, and a footer. The header and footer contain information
relevant to clinical administration, but the disorder NPs are only encountered
inside the document body. We thus removed the header and footer from the
EMR documents and performed analysis on the document body only. Since
headers may contain abbreviations, we handled them specifically (see below).

2 http://wapiti.limsi.fr/
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Fig. 1. Diagram of feature production.

System features Given a sentence s = . . . w−2w−1w0w1w2 . . . and a token of
interest wk, we define features over wk and n-grams centered at wk.

1. Lexical and morphological features: we include information on the to-
ken in the form of unigrams over wk−1, wk, wk+1 and bigrams over wk−1wk.
Additionally we include as unigram features over wk token prefixes ranging
from 1 to 4 characters. We also add a 5-gram feature which detects patterns
containing two slashes, such as “m/r/g”, which may help disambiguate be-
tween disorders and abbreviations, and apply it over wk−4, wk−2, wk (the
non-slash positions of the pattern).

2. Document structure features: the feature set contains as features the
document type (e.g., radiology report, discharge summary) and the section
type (e.g., Findings, Laboratory data, Social History). We extract the section
type using a rule-based section extraction tool that identifies the occurrence
of section names within the EMR. The section extraction tool uses a list of
58 manually defined section names. Both document type and section type
are unigram features over wk.

3. UMLS features: we include UMLS information from two sources. We first
run cTAKES over the texts and keep concept unique identifiers (CUIs, de-
fined over unigrams wk). We use an additional UMLS mapping where we
directly search for UMLS strings within the EMR text through exact match
and include the concept unique identifier (CUI) of the identified phrase. The
direct UMLS mapping features are unigram features over wk.

4. Abbreviation feature: gold standard boundaries for abbreviations are pro-
vided. These are used as unigram features over wk.

All features pertaining to multi-token expressions instead of only single tokens
(for instance, being a UMLS term with a given CUI, or being an abbreviation)
are encoded with the Begin Inside Outside (B-I-O) scheme: given a label L, the
first token is labeled B-L, the next tokens are labeled I-L, and tokens not having
this feature are labeled O. An advantage of linear-chain CRFs is that they can
include label bigrams in the model they learn. However, in our experiments on
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the training set, we were not able to use label bigrams because of the large
number of labels (738 in the model we finally used): with label bigrams, the
number of generated features for a CRF pattern which involves x observed values
and y labels is x × y2, and it seems that the feature space generated when we
tested with these label bigrams was to vast for the CRF to find a solution when
training. Having no label bigrams means that our CRF is used basically as a
Maximum Entropy classifier, with no dependency on the previous label. The
total number of features generated for evaluation by the CRF for this model is
about 50 million, among which it selects about 400,000.

3.4 Rule-based resolution of abbreviations in document headers

We examined abbreviations in the training set headers and wrote rules to label
them. These rules are shown in Table 2. They handle the 6 abbreviations found in
the document headers of the training set. The resulting annotations are merged
with those obtained by the CRF.

Table 2. Task 2. Rules to address abbreviations in document headers.

Document type Pattern Abbrev = CUI

DISCHARGE Sex : M M = C0024554
DISCHARGE Sex : F F = C0015780
ECG ECG ECG = C0013798
ECHO ECHO ECHO = C0013516
RADIO PORTABLE AP AP = C1999039
RADIO CT HEAD CT = C0040405

4 Results and discussion

4.1 Evaluation metrics

We evaluate the system’s ability to correctly generate the codes (CUIs or CUI-
less) of abbreviations. The evaluation measure is the accuracy of codes, defined
as

Accuracy =
Correct

Total
(1)

where
Correct= Number of pre-annotated acronyms/abbreviations with correctly gen-
erated code;
Total= Number of pre-annotated acronyms/abbreviations.

In some cases the human annotators generated a ranked list of codes for a
given abbreviation. This makes it possible to define two variants of the accuracy
score. In the strict variant, only the top code selected by the annotators (one
best) is considered. In the relaxed variant, a code is considered correct if it is
contained in the full list generated by the annotators (n-best).
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4.2 Rule-based resolution of abbreviations in headers

Rule-based resolution of abbreviations in headers obtained the results displayed
on Table 3. 109 abbreviations were located in the headers; the rules identified

Table 3. Headers: Rule-based resolution of abbreviations. ECG is null because there
was no ECG report in the test corpus. The two substitutions and the insertion actually
seem to be errors in the gold standard.

Abbreviation CUI GS Correct Substitution Deletion Insertion Accuracy

M C0024554 42 41 1 1 0.98
F C0015780 31 30 1 0.97

ECG C0013798 0 0
ECHO C0013516 12 12 1.00

AP C1999039 12 12 1.00
CT C0040405 2 2 1.00

Others 10 0 10 0.00

Total 109 97 2 10 1 0.89

GS = Gold Standard. Accuracy = Correct / (Correct + Substitution + Deletion).

100, out of which 97 matched the gold standard. The two substitutions (the gold
standard CUI was different from that proposed by the system) are both cases
where human annotators marked as CUI-less an M (Male) or F (Female) abbre-
viation in the header, which seems to be an error in the gold standard.3 Since we
did not constrain rules to apply to gold standard abbreviation boundaries, the
system also identified an M abbreviation which the human annotators forgot to
mark in a document header (insertion).4 If this is correct, rule-based resolution
of abbreviations had perfect accuracy.

However, the headers were processed only through these rules, and other
abbreviations in the headers were thus not examined. 10 such abbreviations
were missed (deletions), so that overall, our resolution of abbreviations in headers
achieved an accuracy of 0.89 against the gold standard. All in all, the hundred of
abbreviations present in headers are only a small part of the 3,774 abbreviations
of the test corpus (about 3%), so this part of the method only contributed a
small fraction of the performance of the system.

4.3 Resolution of abbreviations in full documents

This section presents the global results that we obtained on the full documents,
merging codes obtained through rule-based and supervised methods. We sub-
mitted one run which achieved an accuracy of 0.664 under the strict evaluation
and 0.672 under the relaxed setting.

3 01163-001840-DISCHARGE SUMMARY.txt:235–236,
00534-017453-DISCHARGE SUMMARY.txt:216–217

4 15230-012950-DISCHARGE SUMMARY.txt:219–220
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The training set contained 696 distinct CUIs (plus the CUI-less label), whereas
the test set contained 706 distinct CUIs (plus CUI-less) (see Table 1). When
training our final CRF model we kept 1/11th of the corpus for development,
resulting in a model which has knowledge for 654 CUIs (plus CUI-less). Only
346 of these were present in the test set, which means that our system could
only identify about one half of the 706 distinct CUIs of the test set.

However, considering the number of occurrences of these CUIs draws a quite
different picture. Table 4 shows that among the 3774 occurrences of abbreviations
contained in the test set, 2906 had CUIs seen in the training corpus (including
221 occurrences of CUI-less, see Table 5). Correctly identifying these known CUIs

Table 4. Full documents: Resolution of abbreviations (strict evaluation) is much better
for seen CUIs than for unseen CUIs. A CUI is seen if it was fed to the CRF model
during training.

CUI GS Correct Substitution Deletion Insertion Accuracy

Seen 2906 2354 456 96 285 0.810
Unseen 868 151 650 67 0.174

All 3774 2505 1106 163 285 0.664

GS = Gold Standard. Accuracy = Correct / (Correct + Substitution + Deletion).

would have led to an accuracy of 2906/3774 = 0.770, which would outperform
the best system of the challenge (0.719). Our hypothesis according to which
considering only the abbreviations of the training corpus could be sufficient to
provide a strong baseline is therefore confirmed.

Besides, our system correctly identified the CUIs of 2354 occurrences of ab-
breviations, i.e., 81% of the best it could have done given its inherent limitations.
In the case of unseen abbreviations, our system can only be right if the abbre-
viation is CUI-less and the system does assign this code to it; this occurred for
151 occurrences. Whether or not an abbreviation had a CUI did not affect much
the performance of the system, as can be seen on Table 5.

Table 5. Full documents: Resolution of abbreviations (strict evaluation) fares about
as well on abbreviations with and without CUIs.

CUI GS Correct Substitution Deletion Insertion Accuracy

CUI-less 221 151 57 13 48 0.683
with CUI 3553 2354 1049 150 237 0.663

All 3774 2505 1106 163 285 0.664

GS = Gold Standard. Accuracy = Correct / (Correct + Substitution + Deletion).

We conclude this discussion with a word on insertions and deletions. These
were not expected given the task definition: given gold standard abbreviation
boundaries, determine the CUI of the abbreviation. Using a CRF with a B-I-O
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scheme allowed us to keep the very same framework as we prepared for Task 1
of the challenge, Entity Recognition [2]. Its drawback is that without additional
constraints, it decides where to set the boundaries of the CUI or CUI-less codes
that it assigns to its input tokens. When this created boundary changes, they
caused a mismatch between the gold standard and system abbreviations, which
can be counted as a deletion (missing gold standard abbreviation) combined to
an insertion (spurious system abbreviation).

For instance, the gold standard considered the string NCAT as two tokens
NC [CUI-less] AT [CUI-less] while the system tagged it as one token: NCAT
[CUI-less]. Conversely, the system tagged 02 sat [C0523807] as two tokens 02
[C0030054] sat [C0523807], and tagged LE’s [C0023216] as three tokens LE
[C0023216] ’ [C1444662] s [C0023901]. A split into multiple tokens occurred
more frequently than the reverse situation, which explains why insertions (285)
are more numerous than deletions (163). Since the gold standard boundaries are
given, a post-processing step could be added in the future to predict a code for
the actual abbreviation span based on the CRF output. The cleanest way to
cope with this issue though will be to rewrite the system to quit the linear-chain
framework of our Task 1 system and switch to a standard Maximum Entropy
(or other) classifier.

5 Conclusion and perspectives

We present an abbreviation resolution system prepared for participation in
Task 2 of the 2013 CLEF-eHEALTH challenge. We design our system as a deriva-
tion of our Task 1 framework into a supervised Maximum Entropy classifier with
lexical, document structure, and UMLS features, complemented by rule-based
processing of abbreviations in document headers. Our system obtains an accu-
racy of 0.664 (strict) and 0.672 (relaxed), which gives it a second position among
five systems. We have tested the bold hypothesis that relying only on the CUIs
seen in the training set is enough to provide a strong baseline. The data in the
test set and the obtained results show that this hypothesis holds. We have seen
that in principle this framework might even fare better than the current best
challenge participant. Further work can go into two directions. One is to keep
the current framework and strengthen it, for instance by removing deletions and
insertions, and by studying the current causes of substitutions. The other is to
move to dynamic generation of candidate expansions. This may require to aban-
don the neat supervised classification framework which was possible here, but
is needed to extend processing to abbreviations unseen in the training set or in
existing databases such as the UMLS Specialist Lexicon LRABR.
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