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Abstract. The article presents the experiments carried out as part of the 
participation in the Tweet Contextualization (TC) track of INEX 2013. In our 
system there are three major sub-systems; i) Offline multi-document 
summarization, ii) Focused IR and iii) online multi-document Summarization. 
The Offline multi-document summarization system is based on document 
graph, clustering and sentence compression.  In the Focused IR system, 
Wikipedia documents are indexed using Lucene with NE field. The most 
relevant documents are retrieved using the tweet. Online multi-document 
summary are generated from the most relevant Wikipedia documents and the 
offline summary of entity (if any). Most relevant sentences are retrieved and 
each retrieved sentence is assigned a ranking score in the online summary with 
a limit of 500 words. The three unique runs differ in the way of how many 
documents are retrieved per tweet.  The evaluation score of informativeness is 
0.9397 and Readability is 46.72% and both of which achieved 7th rank among 
the automatic runs. 

Keywords: Question Answering, Multi-document Summarization, Automatic 
Summarization, Information Retrieval, Information Extraction, Tweet 
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1   Introduction 

With the explosion of information in Internet, Natural language Question Answering 
(QA) is recognized as a capability with great potential. Traditionally, QA has 
attracted many AI researchers, but most QA systems developed are toy systems or 
games confined to laboratories and to a very restricted domain. Several recent 
conferences and workshops have focused on aspects of the QA research. Starting in 
1999, the Text Retrieval Conference (TREC)1 has sponsored a question-answering 
track, which evaluates systems that answer factual questions by consulting the 
documents of the TREC corpus. A number of systems in this evaluation have 
successfully combined information retrieval and natural language processing 
techniques. More recently, Conference and Labs of Evaluation Forums (CLEF)2 are 
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organizing QA lab from 2010. INEX3 has also started Question Answering track. 
INEX 2011 designed a QA track [1] to stimulate the research for real world 
application. The Question Answering (QA) task performed by the participating 
groups of INEX 2011 is contextualizing tweets, i.e., answering questions of the form 
"what is this tweet about?" using a recent cleaned dump of the Wikipedia (April 
2011). In 2012 they renamed this task as Tweet Contextualization [2]. 

Current INEX 2013 Tweet Contextualization (TC) track gives QA research a new 
direction by fusing IR and summarization with QA. The TC track of INEX 2013 had 
two major sub tasks. The first task is to identify the most relevant document from the 
Wikipedia dump, for this we need a focused IR system. And the second task is to 
extract most relevant passages from the most relevant retrieved document. So we need 
an automatic summarization system. The general purpose of the task involves tweet 
analysis, passage and/or XML elements retrieval and construction of the answer, more 
specifically, the summarization of the tweet topic.  

Automatic text summarization [3] has become an important and timely tool for 
assisting and interpreting text information in today’s fast-growing information age. 
Text Summarization methods can be classified into abstractive and extractive 
summarization. An Abstractive Summarization ([4] and [5]) attempts to develop an 
understanding of the main concepts in a document and then expresses those concepts 
in clear natural language. Extractive Summaries [6] are formulated by extracting key 
text segments (sentences or passages) from the text, based on statistical analysis of 
individual or mixed surface level features such as word/phrase frequency, location or 
cue words to locate the sentences to be extracted. Our approach is based on Extractive 
Summarization.  

In this paper, we describe a hybrid Tweet Contextualization system of offline 
multi-document summarization, focused IR and online multi-document 
summarization for TC track of INEX 2013. The offline multi-document 
summarization system is based on document graph, clustering and sentence 
compression. The focused IR system is based on Nutch architecture and the online 
multi-document summarization system is based on TF-IDF based sentence ranking 
and sentence extraction techniques. The same sentence scoring and ranking approach 
of [7] and [8] has been followed. We have submitted three runs in the TC track (267, 
270 and 271). 

2   Related Works 

Recent trend shows hybrid approach of tweet contextualization using Information 
Retrieval (IR) can improve the performance of the TC system. Reference [9] removed 
incorrect answers of QA system using an IR engine. Reference [10] successfully used 
methods of IR into QA system. Reference [11] used the IR system into QA and [12] 
and [13] proposed an efficient hybrid QA system using IR in QA. 

Reference [14] presents an investigation into the utility of document 
summarization in the context of IR, more specifically in the application of so-called 
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query-biased summaries: summaries customized to reflect the information need 
expressed in a query. Employed in the retrieved document list displayed after retrieval 
took place, the summaries’ utility was evaluated in a task-based environment by 
measuring users’ speed and accuracy in identifying relevant documents. This was 
compared to the performance achieved when users were presented with the more 
typical output of an IR system: a static predefined summary composed of the title and 
first few sentences of retrieved documents. The results from the evaluation indicate 
that the use of query-biased summaries significantly improves both the accuracy and 
speed of user relevance judgments. 

A lot of research work has been done in the domain of both query dependent and 
independent summarization. MEAD [15] is a centroid based multi document 
summarizer, which generates summaries using cluster centroids produced by topic 
detection and tracking system. NeATS [16] selects important content using sentence 
position, term frequency, topic signature and term clustering. XDoX [17] identifies 
the most salient themes within the document set by passage clustering and then 
composes an extraction summary, which reflects these main themes. Graph based 
methods have been also proposed for generating summaries. A document graph based 
query focused multi-document summarization system has been described by [18], [7] 
and [8]. 

In the present work, we have used the offline multi-document summarization 
system as described in [7] and [8]. The IR system as described in [11], [12], [13], [19] 
and [20] and the online multi-document summarization system as discussed in [19], 
[20], [21] and [22]. In the later part of this paper, section 3 describes the corpus 
statistics and section 4 shows the system architecture of combined TC system of 
offline summarization, focused IR and online summarization for INEX 2013. The 
Offline Multi-document Summarization technique is described in section 5. Section 6 
details the Focused Information Retrieval system architecture. Section 7 details the 
Online Multi-document Summarization system architecture. The evaluations carried 
out on submitted runs are discussed in Section 8 along with the evaluation results. The 
conclusions are drawn in Section 9. 

3   Corpus statistics 

The training data is the collection of documents that has been rebuilt based on recent 
English Wikipedia dump (from November 2012). All notes and bibliographic 
references have been removed from Wikipedia pages to prepare plain xml corpus for 
an easy extraction of plain text answers. Each training document is made of a title, an 
abstract and sections. Each section has a sub-title. Abstract and sections are made of 
paragraphs and each paragraph can have entities that refer to Wikipedia pages. 
Therefore, the resulting corpus has this simple DTD as shown in table 1. 

A two columned text file containing the Entity list are provided in the test data set. 
The file contains all the entities extracted from the entire Wikipedia dump. Entity id is 
in the first column and corresponding entity is given in the second column. There are 
total 39,02,345 entities in the list. 



 

Test data is made up of 598 tweets in English have been collected by the 
organizers from Twitter®. They were selected among informative accounts (for 
example, @CNN, @TennisTweets, @PeopleMag, @science...), in order to avoid 
purely personal tweets that could not be contextualized. There are two different 
formats of tweets, one is the full JSON format with all information such as the user 
name, tags or URLs as shown in the table 2 and another is a single xml file with three 
fields: topic, title and txt. The topic field contains the tweet id as attribute, 
the title field shows the tweet text, for people not wanting to bother with JSON format 
and the txt field contains full JSON format with all tweet metadata, as shown in the 
table 3. 

Table 1. The DTD for Wikipedia pages  

<!ELEMENT xml (page)+> 
<!ELEMENT page (ID, title, a, s*)> 
<!ELEMENT ID (#PCDATA)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT a (p+)> 
<!ELEMENT s (h, p+)> 
<!ATTLIST s o CDATA #REQUIRED> 
<!ELEMENT h (#PCDATA)> 
<!ELEMENT p (#PCDATA | t)*> 
<!ATTLIST p o CDATA #REQUIRED> 
<!ELEMENT t (#PCDATA)> 

  <!ATTLIST t e CDATA #IMPLIED> 

Table 2. A full JSON format with all tweet metadata of INEX 2013 test corpus 

"created_at":"Fri, 03 Feb 2012 09:10:20 +0000",       
"from_user":"XXX",    
"from_user_id":XXX,    
"from_user_id_str":"XXX",   
"from_user_name":"XXX",    
"geo":null,     
"id":XXX,     
"id_str":"XXX",     
"iso_language_code":"en",    
"metadata":{"result_type":"recent"},    
"profile_image_url":"http://XXX",    
"profile_image_url_https":"https://XXX",   
"source":"<a href='http://XXX'>",    
"text":"blahblahblah",     
"to_user":null,     
"to_user_id":null,    
"to_user_id_str":null,     
"to_user_name":null  



 

Table 3. An example of a tweet topic in xml format of INEX 2013 test corpus 

<topic id="306410030352195585"> 
<title>How does pop art differ across the world and cultures? 
http://t.co/j6oFJK4pwp</title> 
<txt> 

{"source":"&lt;a href=&quot;http://www.hootsuite.com&quot;&gt; 
HootSuite&lt;/a&gt;", "geo":null, "profile_image_url": 
"http://a0.twimg.com/profile_images/1326615844/ 
twitterlogo_normal.jpg", "id_str": "306410030352195585", 
"from_user_id":5225991, "profile_image_url_https": 
"https://si0.twimg.com/profile_images/1326615844/ 
twitterlogo_normal.jpg", "iso_language_code": "en", "created_at": 
"Tue, 26 Feb 2013 14:26:58 +0000", "text": "How does pop art differ 
across the world and cultures? http://t.co/j6oFJK4pwp", "metadata": 
{"result_type":"recent"}, "from_user_name":"Tate", "id": 
306410030352195585, "from_user_id_str": "5225991", "from_user": 
"Tate"} 

</txt> 
</topic> 

4   System Architecture 

In this section the overview of the system framework of the current INEX system has 
been shown. The current INEX system has three major sub-systems; i) Offline multi-
document summarization, ii) Focused IR and iii) online multi-document 
Summarization. The Offline multi-document summarization system is based on 
document graph and clustering. The Focused IR system has been developed on the 
basic architecture of Nutch4, which use the architecture of Lucene5. Nutch is an open 
source search engine, which supports only the monolingual Information Retrieval in 
English, etc. The Higher-level system architecture of the combined Tweet 
Contextualization system of INEX 2013 is shown in the Figure 1. 

5   Offline Multi-document Summarization 

All the entities in the Wikipedia documents are tagged using the entity tag and a list 
of all the entities present in the entire test Wikipedia documents are provided along 
with the test data set. Entities are the key terms or topic of a document. So, we 
retrieved most relevant 10 Wikipedia documents for each entity and then we 
generated a multi-document summary for each entity. This process does not need the 
tweets and that’s why it is a complete offline process. We can prepare the offline  
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Fig. 1. Higher level system architecture of current INEX system 

summaries using the Wikipedia documents and their entities only. For retrieval, 
traditional Lucene indexer and Nutch have been used. 

5.1   Wikipedia Document Parsing, Indexing and Retrieval 

The web documents are full of noises mixed with the original content. In that case it is 
very difficult to identify and separate the noises from the actual content. INEX 2013 
corpus, i.e., Wikipedia dump, had some noise in the documents and the documents are 



 

in XML tagged format. So, first of all, the documents had to be preprocessed. The 
document structure is checked and reformatted according to the system requirements. 

XML Parser. The corpus was in XML format. All the XML test data has been parsed 
before indexing using our XML Parser. The XML Parser extracts the Title of the 
document along with the paragraphs. 

Noise Removal. The corpus has some noise as well as some special symbols that are 
not necessary for our system. The list of noise symbols and the special symbols is 
initially developed manually by looking at a number of documents and then the list is 
used to automatically remove such symbols from the documents. Some examples are 
“&quot;”, “&amp;”, “'''”, multiple spaces etc.  

Named Entity Recognizer (NER). After cleaning the corpus, the named entity 
recognizer identifies all the named entities (NE) in the documents using Stanford 
NER engine6 and tags them according to their types, which are indexed during the 
document indexing. 

Document Indexing. After parsing the Wikipedia documents, they are indexed using 
Lucene, an open source indexer. 

Document Retrieval. After indexing, each entity is searched into the Lucene index 
using Nutch and a set of retrieved top 10 documents in ranked order for each entity is 
received. First of all, all entities were fired with AND operator. If at least ten 
documents are retrieved using the entity with AND operator then the entity is 
removed from the entity list and need not be searched again. If less than 10 
documents are retrieved using AND search then the entity are fired again with OR 
operator. OR searching retrieves at least 10 documents for each entity. Now, the top 
10 ranked relevant documents for each entity is considered for offline multi-document 
summary. 

5.2   Graph based Multi-document Summarization 

Graph Based Clustered Model. The proposed graph based multi-document 
summarization method consists of following steps: 

(1) The document set D = {d1,d2, … d10} is processed to extract text fragments, 
which are sentences in this system as it has been discussed earlier. Here, It has been 
assumed that the entire documents in a particular set are related i.e. they describe the 
same event. Some document clustering techniques may be adopted to find related 
documents from a large collection. Document clustering is out of the scope of this 
current discussion and is itself a research interest. Let for a document di, the sentences 
are {si1, si2, … sim}. But the system can be easily modified to work with phrase level 
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extraction. Each text fragment becomes a node of the graph i.e. all the sentences 
become a node. 

(2) Next, edges are created between nodes across the documents where edge score 
represents the degree of correlation between inter-documents nodes. 

(3) Seed nodes are extracted which identify the relevant sentences within D and a 
search graph is built to reflect the semantic relationship between the nodes. 

(4) Now, each node is assigned a entity dependent score and the search graph is 
expanded. 

(5) A entity dependent multi-document summary is generated from the search 
graph. 

Each sentence is represented as a node in the graph. The text in each document is 
split into sentences and each sentence is represented with a vector of constituent 
words. If pair of related document is considered, then the inter document graph can be 
represented as a set of nodes in the form of bipartite graph. The edges connect two 
nodes corresponding to sentences from different documents. 

Construct the Edge and Calculate Edge Score. The similarity between two nodes is 
expressed as the edge weight of the bipartite graph. Two nodes are related if they 
share common words (except stop words) and the degree of relationship can be 
measured by equation 1 adapting some traditional IR formula from [23]. 

 (1) 

where, tf(d , w) is number of occurrence of w in d, idf (w) is the inverse of the 
number of documents containing w, and size(d) is the size of the documents in words. 
Actually for a particular node, total edge score is defined as the sum of scores of all 
out going edges from that node. The nodes with higher total edge scores than some 
predefined threshold are included as seed nodes. 

But the challenge for multi-document summarization is that the information stored 
in different documents inevitably overlap with each other. So, before inclusion of a 
particular node (sentence), it has to be checked whether it is being repeated or not. 
Two sentences are said to be similar if they share for example, 70% words in 
common. 

Construction of Search Graph. After identification of seed/topic nodes a search graph 
is constructed. For nodes, pertaining to different documents, edge scores are already 
calculated, but for intra document nodes, edge scores are calculated in the similar 
fashion as said earlier. Since, highly dense graph leads to higher search / execution 
time, only the edges having edge scores well above the threshold value might be 
considered.  

Identification of Sub-topics through Markov Clustering. In this section, we will 
discuss the process to identify shared subtopics from related multi source documents. 
We already discussed that the subtopics shared by different news articles on same 
event form natural (separate) clusters of sentences when they are represented using 

  
Edge_Score =

((tf (t(u),w)+ tf (t(v),w))× idf (w))
w∈(t (u)∩t (v ))
∑

size(t(u))+ size(t(v))



 

document graph. We use Markov principle of graph clustering to identify those 
clusters from the document graph. 

Markov Graph Clustering Principle. The MCL algorithm is designed specifically for 
the settings of simple and weighted graph [24]. Given that the multi document 
summarization problem can be represented in the framework of weighted graph 
structure, it is possible to apply MCL for identifying subtopical groups already 
present in the input document set. MCL process consists of following steps: In the 
first step, the associated matrix of the input (document) graph MG is transformed into 
Markov Matrix TG according to TG= MGd-1, where d denote the diagonal matrix that 
has diagonal entries as the column weights of MG, thus ,  0kk ik ij

i
d M d= =∑ , and 

i≠j. The Markov matrix TG is associated with a graph G′, which is called the 
associated Markov graph of G. In the second step, the MCL process simulates random 
walks in the Markov graph by iteratively performing two operations, expansion and 
inflation. The process will converge to a limit. The MCL process generates a 
sequence of stochastic matrices starting from the given Markov matrix. Expansion 
coincides with taking the power of stochastic matrix using the normal matrix product 
and Inflation corresponds to taking the Hadamard power (entrywise power) of the 
matrix, followed by scaling step, such that the resulting matrix is stochastic again, i.e., 
the matrix elements correspond to probability value. The MCL algorithm is described 
in figure 2.  

 
Fig. 2: Pseudo code of MCL Principle 

The construction of entity independent part of the Markov clusters completes the 
document-based processing phase of the system. 

Key Term Extraction. Key Term Extraction module has two sub modules, i.e., entity 
term extraction and Title words extraction. 

Entity Term Extraction. First the entity is parsed using the Entity Parsing module. In 
this Entity Parsing module, the Named Entities (NE) are identified and tagged in the 
given entity using the Stanford NER engine. The remaining words after stop words 
removal are stemmed using Porter Stemmer. 

Title Word Extraction. The titles of each retrieved documents are extracted and 
forwarded as input given to the Title Word Extraction module. After removing all the 

T1 = Associated Markov Matrix  
For k = 1 to ∞ do  
1. T2k = Expand(T2k-1) ;  
2. T2k+1 = Γr(T2k) ;  
3. If T2k+1 is limit  
Break;  
End For 



 

stop words from the titles, the remaining tile words are extracted and used as the 
keywords in this system. 

Entity Dependent Process. The nodes of the already constructed search graph are 
given a entity dependent score. Using the combined scores of entity independent score 
and dependent score, clusters are reordered and relevant sentences are collected from 
each cluster in order. Then each collected sentence has processed and compressed 
removing the unimportant phrases. After that the compressed sentences are used to 
construct the summary. 

Recalculate the Cluster Score. There are three basic components in the sentence 
weight like entity terms dependent score, title words dependent score and synonyms 
of entity terms dependent score. We collect the list of synonyms of the each word in 
the entities from the WordNet 3.07 and form a set of synonyms.  

The entity terms dependent score is calculated using equation 2.  

𝑤! = 𝑛! − 𝑒 + 1 1 −
𝑓!! − 1
𝑁!!

×3
!!

!!!

 (2) 

where, we is the entity terms dependent score of the sentence i, e is the no. of the 
entity term, ne is the total no. of entity term, 𝑓!! is the possession of the word which 
was matched with the entity term e in the sentence i, Ni is the total no. of words in 
sentence i. A boost factor of the entity term, which is 3 for entity term, is multiplied at 
the end for boosting the entity dependent score.  

The title words dependent score is calculated using equation 3.  

𝑤! = 𝑛! − 𝑡 + 1 1 −
𝑓!! − 1
𝑁!!

×2
!!

!!!

 (3) 

where, wt is the title words dependent score of the sentence i, t is the no. of the title 
words, nt is the total no. of title word, 𝑓!! is the possession of the word which was 
matched with the title word t in the sentence i. A boost factor of the title words, which 
is 2, is multiplied at the end for boosting the title words dependent score. 

The synonyms of entity terms dependent score is calculated using equation 4.  

𝑤! = 𝑛! − 𝑠 + 1 1 −
𝑓!! − 1
𝑁!!

!!

!!!

 (4) 

where, ws is the synonyms dependent score of the sentence i, s is the no. of 
synonyms, ns is the total no. of synonym, 𝑓!! is the possession of the word which was 
matched with the synonym s in the sentence i. There is no boosting the synonyms 
dependent score. 

These three components i.e. wq, wt and ws, are added to get the final weight of a 
sentence. 
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Recalculate the Cluster Ranking. We start by defining a function that attributes values 
to the sentences as well as to the clusters. We refer to sentences indexed by i and 
entity terms indexed by j. We want to maximize the number of entity term covered by 
a selection of sentences: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑒!
!

 (5) 

where, 𝑤!!is the weight of entity term j in the sentence i and ej is a binary variable 
indicating the presence of that entity term in the cluster.  

We also take the selection over title words. We refer to title words indexed by k. 
We want to maximize the number of title word covered by a selection of sentences: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑡!
!

 (6) 

where, 𝑤!! is the weight of title word k in the sentence i and tk is a binary 
variable indicating the presence of that title word in the cluster. 

To take the selection over synonyms of the entity terms, we refer to 
synonyms indexed by l. We want to maximize the number of synonyms 
covered by a selection of sentences: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑤!!𝑠!
!

 (7) 

where, 𝑤!!is the weight of synonym l in the sentence i and sl is a binary variable 
indicating the presence of that synonym in the cluster. 

So, the entity dependent score of a cluster is the weighted sum of the entity terms it 
contains. If clusters are indexed by x, the entity dependent score of the cluster x is: 

𝑐!! = 𝑤!!𝑒! +
!

𝑤!!𝑡! +
!

𝑤!!𝑠!
!

!

!!!

!

!!!

!

!!!

 (8) 

where, 𝑐!
! is the entity dependent score of the cluster x, n is the total no. of 

sentences in cluster x. Now, the new recalculated combined score of cluster x is:
  𝑐! = 𝑐!

! + 𝑐!! (9) 

where, cx is the new score of the cluster x and  is the entity independent cluster 
score in the graph of cluster x. Now, all the clusters are ranked with their new score 
cx. 

Retrieve Sentences for Summary. Get the highest weighted two sentences of each 
cluster, by the following equation:

 
 

max 𝑤!
!𝑞! +

!

𝑤!!𝑡! +
!

𝑤!!𝑠!
!

∀𝑖 (10) 

where, i is the sentence index of a cluster. The original sentences in the documents 
are generally very lengthy to place in the summary. So, we are actually interested in a 
selection over phrases of sentence. After getting the top two sentences of a cluster, 

 cx
g



 

they are split into multiple phrases. The Stanford Parser8 is used to parse the sentences 
and get the phrases of the sentence. 

Sentence Compression. All the phrases which are in one of those 34 relations in the 
training file, whose probability to drop was 100% and also do not contain any entity 
term, are removed from the selected summary sentence as described by [7]. Now the 
remaining phrases are identified from the parser output of the sentence and search 
phrases that contain at least one entity term then those phrases are selected. The 
selected phrases are combined together with the necessary phrases of the sentence to 
construct a new compressed sentence for the summary. The necessary phrases are 
identified from the parse tree of the sentence. The phrases with nsubj and the VP 
phrase related with the nsubj are some example of necessary phrases. 

Sentence Selection for Summary. The compressed sentences for summary have 
been taken until the length restriction of the summary is reached, i.e. until the 
following condition holds:

 
 

𝑙!𝑆! < 𝐿
!

 (11) 

where, li is the length (in no. of words) of compressed sentence i, Si is a binary 
variable representing the selection of sentence i for the summary and L (=1000 words) 
is the maximum summary length. After taking the top two sentences from all the 
clusters, if the length restriction L is not reached, then the second iteration is started 
similar to the first iteration and the next top most weighted sentence of each cluster 
are taken in order of the clusters and compressed. If after the completion of the 
second iteration same thing happens, then the next iteration will start in the same way 
and so on until the length restriction has been reached. 

Sentence Ordering and Coherency. In this paper, we will propose a scheme of 
ordering; in that, it only takes into consideration the semantic closeness of 
information pieces (sentences) in deciding the ordering among them. First, the starting 
sentence is identified which is the sentence with lowest positional ranking among 
selected ones over the document set. Next for any source node (sentence) we find the 
summary node that is not already selected and have (correlation value) with the 
source node. This node will be selected as next source node in ordering. This ordering 
process will continue until the nodes are totally ordered. The above ordering scheme 
will order the nodes independent of the actual ordering of nodes in the original 
document, thus eliminating the source bias due to individual writing style of human 
authors. Moreover, the scheme is logical because we select a sentence for position p 
at output summary, based on how coherent it is with the (p-1)th  sentence. The main 
sentence’s number has been taken as the sentence number of the fused sentence. 
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Offline Summary. Now, each generated multi-document summary is indexed along 
with it entity. There are 39,02,345 entities in the entity list provided in the test data 
set. So it will be very time consuming to generate such a huge numbers of multi-
document summaries. For the time constrain, we have simplified the task. We have 
selected all the entities, those are present in the tweets and then we have created 
multi-document summary of such matched entities. 

6   Focused Information Retrieval (IR) 

6.1   Tweets Parsing 

The tweets had to be processed to retrieve relevant documents. Each tweet / topic was 
processed to identify the query words for submission to Lucene. The tweets 
processing steps are described below: 

Stop Word Removal. In this step the tweet words are identified from the tweets. The 
stop words and question words (what, when, where, which etc.) are removed from 
each tweet and the words remaining in the tweets after the removal of such words are 
identified as the query tokens. The stop word list used in the present work can be 
found at http://members.unine.ch/jacques.savoy/clef/. 

Named Entity Recognizer (NER). After removing the stop words, the named entity 
recognizer identifies all the named entities (NE) in the tweet using Stanford NER 
engine and tags them according to their types, which are used during the scoring of 
the sentences of the retrieved document. 

Stemming. Query tokens may appear in inflected forms in the tweets. For English, 
standard Porter Stemming algorithm9 has been used to stem the query tokens. After 
stemming all the query tokens, queries are formed with the stemmed query tokens. 
 

6.2   Document Retrieval using Tweet 

The same Lucene index described in the section 5.1, has been used to retrieve 
documents using tweet. After searching each query into the Lucene index, a set of top 
10 retrieved documents in ranked order for each tweet is received. Same Boolean 
logic as proposed in section 5.1, are used to retrieved the top ranked 10 relevant 
documents for each tweet and considered for final multi-document summarization.  

                                                             
9 http://tartarus.org/~martin/PorterStemmer/java.txt 



 

7   Online Multi-document Summarization 

The entity words are identified and marked by the # before each entity word in the 
tweet. So the entity words are extracted from the tweet and searched into the entity 
list. Then the pre-generated offline summaries of the matched entities and taken for 
the final / online summary generation. E.g. if a tweet contains a entity word of entity 
ei and si is the offline summary of entity ei, then offline summary si will also be taken 
along with the 10 retrieved Wikipedia documents for generating the final/online 
summary. 

7.1   Sentence Extraction 

The documents texts and the summary text are parsed and the parsed text is used to 
generate the summary. This module will take the parsed text of the documents as 
input, filter the input parsed text and extract all the sentences from the parsed text. So 
this module has two sub modules, Text Filterization and Sentence Extraction. 

Text Filterization. The parsed text may content some junk or unrecognized character 
or symbol. First, these characters or symbols are identified and removed. The text in 
the query language are identified and extracted from the document using the Unicode 
character list, which has been collected from Wikipedia10. The symbols like dot (.), 
coma (,), single quote (‘), double quote (“), ‘!’, ‘?’ etc. are common for all languages, 
so these are also listed as symbols 

Sentence Extraction. In Sentence Extraction module, filtered parsed text has been 
parsed to identify and extract all sentences in the documents. Sentence identification 
and extraction is not an easy task for English document. As the sentence marker ‘.’ 
(dot) is not only used as a sentence marker, it has other uses also like decimal point 
and in abbreviations like Mr., Prof., U.S.A. etc. So it creates lot of ambiguity.  A 
possible list of abbreviation had to created to minimize the ambiguity.  Most of the 
times the end quotation (”) is placed wrongly at the end of the sentence like .”. These 
kinds of ambiguities are identified and removed to extract all the sentences from the 
document. 

7.2   Key Term Extraction 

Key Term Extraction module has three sub modules like Query Term, i.e., tweet term 
extraction, tweet text extraction and Title words extraction. All these three sub 
modules have been described in the following sections. 

                                                             
10 http://en.wikipedia.org/wiki/List_of_Unicode_characters 



 

Query/Tweet Term Extraction. First the query generated from the tweet, is parsed 
using the Query Parsing module. In this Query Parsing module, the Named Entities 
(NE) are identified and tagged in the given query using the Stanford NER engine.  

Title Word Extraction. The title of the retrieved document is extracted and 
forwarded as input given to the Title Word Extraction module. After removing all the 
stop words from the title, the remaining tile words are extracted and used as the 
keywords in this system. 

7.3   Top Sentence Identification 

All the extracted sentences are now searched for the keywords, i.e., query terms, 
tweet’s text keywords and title words. Extracted sentences are given some weight 
according to search and ranked on the basis of the calculated weight. For this task this 
module has two sub modules: Weight Assigning and Sentence Ranking, which are 
described below. 

Weight Assigning. This sub module calculates the weights of each sentence in the 
document. There are three basic components in the sentence weight like query term 
dependent score, tweet’s text keyword dependent score and title word dependent 
score. These three components are calculated and added to get the final weight of a 
sentence. 

Query/Tweet Term dependent score: Query/Tweet term dependent score is the most 
important and relevant score for summary. Priority of this query/tweet dependent 
score is maximum. The query dependent scores are calculated using equation 12. 
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where, QS is the query/tweet term dependent score of the sentence s, q is the no. of the 
query/tweet term, nq is the total no. of query terms, fp

q  is the possession of the word 
which was matched with  the query term q in the sentence s, Ns is the total no. of 
words in sentence s,  

Fq =
0; if querytermqisnot found
1; if querytermqis found

       (13) 

and    p =
5; if query term is NE
3; if query term is not NE

       (14) 

At the end of the equation 12, the calculated query term dependent score is 
multiplied by p to give the priority among all the scores. If the query term is NE and 
contained in a sentence then the weight of the matched sentence are multiplied by 5 as 
the value of p is 5, to give the highest priority, other wise it has been multiplied by 3 
(as p=3 for non NE query terms). 



 

Title Word dependent score: Title words are extracted from the title field of the top 
ranked retrieved document. A title word dependent score is also calculated for each 
sentence. Generally title words are also the much relevant words of the document. So 
the sentence containing any title words can be a relevant sentence of the main topic of 
the document. Title word dependent scores are calculated using equation 15. 

Ts = Ft nt − t +1( ) 1−
fp
t −1
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where, TS is the title word dependent score of the sentence s, t is the no. of the title 
word, nt is the total number of title words, fp

t  is the position of the word which 
matched with the title word t in the sentence s, Ns is the total number of words in 
sentence s and  

Ft =
0; if titleword t isnot found
1; if titleword t is found

.      (16) 

After calculating all the above three scores the final weight of each sentence is 
calculated by simply adding all the two scores as mentioned in the equation 17. 

Ws =Qs +Ts                                           (17) 
where, WS is the final weight of the sentence s. 

Sentence Ranking. After calculating weights of all the sentences in the document, 
sentences are sorted in descending order of their weight. In this process if any two or 
more than two sentences get equal weight, then they are sorted in the ascending order 
of their positional value, i.e., the sentence number in the document. So, this Sentence 
Ranking module provides the ranked sentences. 

7.4   Summary Generation 

This is the final and most critical module of this system. This module generates the 
Summary from the ranked sentences. As in [15] using equation 11, the module selects 
the ranked sentences subject to maximum length L (=500 words) of the summary. 

Now, the selected sentences along with their weight are presented as the INEX 
output format. 

8   Evaluation 

8.1   Informative Content Evaluation 

The organizers did the Informative Content evaluation [1], [2] by selecting relevant 
passages. The organizers have used a standalone evaluation toolkit based on Porter 
stemmer and implementing a new normalized ad-hoc dissimilarity defined as 
following:  



 

 

(18) 

(19) 

(20) 

where T is the set of terms in the reference and for every 𝑡 ∈ 𝑇, fT(t) is its 
frequency in the reference and fS(t) its frequency in the summary. The idea was to 
have a dissimilarity which complement has similar properties to usual IR Interpolate 
Precision measures. Actually, 1−Dis(T, S) increases with the Interpolated Precision at 
500 tokens where Precision is defined as the number of word n-grams in the 
reference. The introduction of the log is necessary to deal with highly frequent words. 

As previously announced, we used this software to evaluate informativeness and 
like in INEX QA tracks, we considered as T three different sets based on Porter 
stemming: 

– Unigrams made of single lemmas (after removing stop-words). 
– Bigrams made of pairs of consecutive lemmas (in the same sentence). 
– Bigrams with 2-gaps also made of pairs of consecutive lemmas but 

allowing the insertion between them of a maximum of two lemmas. 
Informativity has been evaluated based on three overlapping references: 

1. prior set of relevant pages selected by organizers while building the 2013 
topics (40 tweets, 380 passages, 11 523 tokens), 

2. pool selection of most relevant passages from participant submissions for 
tweets selected by organizers (45 tweets, 1 760 passages, 58 035 tokens), 

3. all relevant text merged together with an extra selection of relevant passages 
from a random pool of ten tweets (70 tweets, 2 378 passages, 77 043 tokens) 

Ranking. Runs are ranked by decreasing score of divergence with the final reference 
(All.skip). The organizers rank both manual and automatic runs. But we have 
recalculate the rank considering only the automatic runs, which has been shown here. 
Before our run there are two manual runs in the ranked list. So, the rank provided by 
the organizers are 2 more than what we have shown in the rank column. 

We have submitted three runs (267, 270 and 271). The evaluation scores of 
informativeness by organizers of all topics are shown in the table 4. 

Table 4. The evaluation scores of Informativeness by organizers of all topics  

Run Rank All. 
skip 

All 
.bi 

All 
.uni 

Pool 
.skip 

Pool.
bi 

Pool 
.uni 

Prior 
.skip 

Prior 
.bi 

Prior 
.uni 

270 7 0.9397 0.9365 0.8481 0.9274 0.9246 0.8418 0.9686 0.9642 0.8529 
267 8 0.9468 0.9444 0.8838 0.9389 0.9362 0.8802 0.9625 0.9596 0.883 
271 9 0.95 0.9475 0.8569 0.9446 0.9421 0.8543 0.9793 0.9759 0.867 



 

8.2   Readability Evaluation 

For Readability evaluation [1], [2] all passages in a summary have been evaluated 
according to Syntax (S), Anaphora (A), Redundancy (R) and Trash (T). If a passage 
contains a syntactic problem (bad segmentation for example) then it has been marked 
as Syntax (S) error. If a passage contains an unsolved anaphora then it has been 
marked as Anaphora (A) error. If a passage contains any redundant information, i.e., 
an information that have already been given in a previous passage then it has been 
marked as Redundancy (R) error. If a passage does not make any sense in its context 
(i.e., after reading the previous passages) then these passages must be considered as 
trashed, and readability of following passages must be assessed as if these passages 
were not present, so they were marked as Trash (T).  

Readability has been evaluated by organizers over the ten tweets having the largest 
text references (t-rels). For these tweets, summaries are expected to have almost 500 
words since the reference is much larger. For each participant summary, we have then 
check the number of words over 500 in passages that are: 

1. Relevant (T) i.e. clearly related to the tweet, 
2. Sound (A) i.e. no issues about resolving references to earlier or later items 

in the discourse. 
3. Non redundant (R) with previous passages. 
4. Syntactically (S) correct. 

Non-relevant passages have also been considered non-sound, redundant and 
syntactically incorrect. 

Ranking. Runs are ranked according to mean average scores per summary over 
Soundness, Non redundancy and Syntactically correctness among Relevant passages. 
The readability evaluation scores are shown in the table 5. Here also we have 
recalculate the rank considering only the automatic runs, which has been shown here. 

Table 5. The evaluation scores of Readability Evaluation 

Run Rank Mean 
Average 

Relevancy 
(T) 

Non 
redundancy (R) 

Soundness 
(A) 

Syntax 
(S) 

267 7 46.72% 50.54% 40.90% 49.56% 49.70% 
270 8 44.17% 46.84% 41.20% 45.30% 46.00% 
271 9 38.76% 41.16% 35.38% 39.74% 41.16% 

9   Conclusion and Future Works 

The tweet contextualization system has been developed as part of the participation in 
the Tweet Contextualization track of the INEX 2013 evaluation campaign. The 
overall system has been evaluated using the evaluation metrics provided as part of this 
track of INEX 2013. Considering that this is the second participation in the track, the 



 

evaluation results are satisfactory, which will really encourage us to continue work on 
it and participate in this track in future.  

Future works will be motivated towards improving the performance of the system 
by concentrating on co-reference and anaphora resolution, multi-word identification, 
para phrasing, feature selection etc. In future, we will also try to use semantic 
similarity, which will increase our relevance score. 
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