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Abstract. An ever increasing amount of Linked Data is made available
every day. Public triple stores offer the possibility of querying hundreds
of millions of triples. But this information can only be retrieved using
specialized query languages like SPARQL, so for the majority of Inter-
net users, it is still unavailable. This paper presents a prototype system
aimed at streamlining the access to the information stored as RDF. The
system takes as input a natural language question formulated in English
and generates an equivalent SPARQL query. The mapping is based on
the analysis of the syntactic patterns present in the input question. In
the initial evaluation results, against the 99 questions in the QALD-3
DBpedia test set, the system provides a correct answer to 30 questions
and a partial answer for another 3 questions, achieving an F-measure of
0.32.
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1 Introduction

The rise of semantic web technologies in the last decade has had an important
outcome: large amounts of structured data have been made available in standard
formats such as RDF and OWL. Big data repositories fostered the development
of efficient algorithms for storing, indexing and querying RDF.

Collaborative knowledge bases such as DBpedia [2] and Yago2 [8] now contain
millions of interlinked facts extracted with high accuracy from manually created
structured data, like Wikipedia, GeoNames and WordNet. The access to all
this information is, however, restricted. Specialized query languages, such as
SPARQL, are the only interfaces available. For this reason, finding information
in RDF stores presupposes, on one hand, being comfortable with the store’s
query language, and on the other hand, having a good understanding of how the
data was modelled.

Consider, for example, Q71 from the QALD-3 test set, When was the Statue
of Liberty built? The SPARQL query that would provide the correct answer is
shown below. As you can see, there is no string similarity between the property
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that provides the correct answer, dbp:beginningDate1, and the verb used in the
question, built. Additional knowledge about how buildings are modelled in DB-
pedia, specifically how the building date is defined, is necessary in order to select
the correct predicate.

SPARQL query for Q71 from the QALD-3 test set, ”When was the Statue of
Liberty built?”

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX res: <http://dbpedia.org/resource/>

SELECT DISTINCT ?date

WHERE {

res:Statue_of_Liberty dbp:beginningDate ?date .

}

The need for more advanced, semantic, question answering systems that o-
perate over large repositories of Linked Data has also been the motivation for
the QALD (Question Answering over Linked Data) series of workshops. The first
workshop, QALD-1 [12], was organized in 2011 and it offered a test set containing
100 questions whose answer could be found in the DBpedia and MusicBrainz [13]
datasets (50 each). QALD-2 and QALD-3 offered 200 questions over the same
datasets (100 each). The questions vary in length and complexity and are meant
to be indicative of what a typical user of such a semantic question answering
system would ask.

This paper presents Intui2, a prototype for an RDF backed question an-
swering system that can transform transform natural language questions into
SPARQL queries, thus giving the end users access to the information stored in
RDF repositories. The name of the system comes from the Romanian verb a intui
(Engl. to intuit), which means ”to know, sense or understand by intuition”2.

The system is based on three central ideas:

(1) Grammatically correct questions are built of synfragments. A synfragment
corresponds, from a syntactic point of view, to a subtree of the syntactic
parse tree of the question. From a semantic point of view, a synfragment is a
minimal span of text that can be interpreted as a concept URI, as an RDF
triple or as a complex RDF query (see Fig. 1 for an example).

(2) The interpretation of a parent synfragment is obtained by combining the
interpretations of its child synfragments in a way that is particular to the
parent synfragment due to its syntactic and/or semantic characteristics (see
end of section 2.2 for details).

(3) The interpretation of a question in an RDF query language can be com-
posed though a recursive interpretation of its synfragments, visited in a
most-informative-first order (see section 2.2 for details).

1 dbp denotes the DBpedia property namespace, http://dbpedia.org/property/,dbo the
DBpedia ontology namespace, http://dbpedia.org/ontology/ and res the DBpedia
resource namespace, http://dbpedia.org/resource/

2 according to the definition in the Merriam-Webster online dictionary,
http://www.merriam-webster.com/
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Fig. 1. Synfragments for Q2 from the QALD-3 DBpedia test set, Who was the successor
of John F. Kennedy? Solid boxes surround synfragments that are interpreted as URIs,
dashed boxes mark synfragments that are interpreted as one triple and dotted boxes
indicate synfragments that correspond to a complex SPARQL query.

The system interprets the question with respect to the provided RDF back-
end, by mapping the occurring natural language expressions to concepts in the
triple store.

2 System Description

The system receives as input a natural language question formulated in English
and outputs the query that will retrieve the answer to the question from the
RDF backend. The architecture of the system is illustrated in Fig. 2.

2.1 Preprocessing Phase

The natural language question is first preprocessed using the Stanford CoreNLP
suite ([11], [14]), in particular tokenized, lemmatised, POS tagged and parsed.
An additional preprocessing step is retrieving the information rank (IR) for
each token. The IR gives an estimation of the specificity of a token: frequently
occurring words, such as determiners, pronouns, verbs like is, has, does, give,
married or nouns such as country, river, city get a small IR, while less common
words like monarchical, astronauts or proper names are assigned a high IR. To
compute the information rank we constructed a large word list by taking all the
words in a Wikipedia dump, converting them to lower case, computing their
frequencies over the whole Wikipedia and then sorting them in decreasing order
of frequency. The information rank of a word is the index of the word in this
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sorted word list. The list has about 880,000 entries, and does not contain the
words that appear less than 10 times in the whole Wikipedia. If a word is not
in the list, it is assigned the rank -1. To ensure good coverage of the DBpedia
concepts in the QALD-3 test set, we generated the word list using the same
Wikipedia dump used to extract DBpedia 3.8.

Fig. 2. Intui2 system architecture.

2.2 Analysis Phase

All the data gathered in the preprocessing phase is provided as input for the
analysis phase. The analysis of a question entails the recursive traversal of the
question’s parse tree, starting at the ROOT node, in a most-informative-first
order. The order is established by computing the cumulative rank (CR) of each
subtree of the current node. The cumulative rank of a tree is the sum of the
information ranks of all its leaf nodes. The subtrees of each node are then tra-
versed in decreasing cumulative rank order. In the case of the parse tree in Fig.
3, the nodes are processed in the following order: first the NP over ”the same
timezone” with the highest CR, 135.633, then the NP over ”Utah” with the CR
3.303, than the IN over ”as”, with the CR 16, then the parent PP, with the CR
3.319, than the NP with CR 138.952, the IN with CR 6, the PP with CR 138.958
and so on until the whole tree has been processed.

The system distinguishes between two types of nodes: those that correspond
to low-level syntactic patterns (preterminals and pre-preterminals) and those
corresponding to high-level syntactic patterns (non-terminal nodes that are nei-
ther preterminals nor pre-preterminals). The syntactic pattern of a node is the
label of the node plus the labels of all its immediate children, in a left-to-right
order. For example, in Fig. 3, the syntactic pattern corresponding to the NP
node above ”the same timezone” is NP DT JJ NN. The difference between the
two levels is that a node with a low-level syntactic pattern is always analysed as
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Fig. 3. Information ranks (enclosed by square brackets) and cumulative ranks (enclosed
by parentheses). Punctuation marks are assigned the information rank 0.

a URI whereas for the high-level syntactic patterns the system must construct
the interpretation of the node’s subtrees before the actual interpretation of the
node.

The syntactic patterns for the QALD-3 DBpedia test set were obtained by
parsing the questions and then doing a recursive traversal of each of the parse
trees. During the traversal, the syntactic pattern of each non-terminal node was
added to the global set of patterns. We obtained this way 138 syntactic patterns,
split into 16 groups based on the syntactic category of the head node: 52 patterns
that start with an NP node, 26 patterns that start with a VP node, 13 patterns
with a WHNP node, etc. As an exercise, we computed the number of syntactic
patterns in the QALD-3 DBpedia training set, and we discovered 154 syntactic
patterns grouped in 19 categories. To measure the overlap between the two, we
counted the number of patterns in the combined test and training set, which
resulted in 204 syntactic patterns grouped in 19 categories. This shows that
while the number of possible syntactic patterns is virtually infinite, in practice a
relatively small number of syntactic patterns can cover a large amount of natural
language questions similar to the ones in the QALD datasets.

For each syntactic pattern we then manually provided a mapping suggestion.
Due to the larger number of patterns that had to be mapped, we only provided
mapping suggestions for the syntactic patterns covering the QALD-3 DBpedia
test set. A mapping suggestion specifies two attributes:
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(i) The slot that this syntactic pattern should fill in the triple: either subject,
object or predicate. In ambiguous cases, the pattern can used to fill two or
even all three slots.

(ii) The URI pattern: for example, predicate URI patterns are built through
concatenation using the camel-case convention, while the subject and ob-
ject URI patterns are formed by concatenation using the underscore as a
delimiter.

For example, one of the most frequent syntactic patterns is NP NNP NNP,
that is a noun phrase made of two proper nouns, like Benjamin Franklin. The
mapping suggestion provided by the system for this pattern is: (slot - subject or
object, URI pattern - NNP NNP). Another frequent pattern is NP DT NN, a
noun phrase made from a determiner and a common noun. For this pattern the
system generates a mapping suggestion covering all three slots (subject, predi-
cate, object). The URI pattern for the subject and object slots is the capitalized
version of the NN, and the URI pattern for the predicate slot is the NN itself.
So for example the capital has the URI pattern Capital when in the subject or
object slot and the URI pattern capital when in the predicate slot. Observe that
both URI patterns ignore the determiner, which proved uninformative in the
case of this syntactic pattern.

The analysis begins with an empty queue of analysis results. At this point, the
current node can only be analysed as a single URI, depending on the mapping
suggestion for the current syntactic pattern. The result of this step is one or
more lists of URIs, depending on how many slots were defined by the mapping.
This result is added to the queue of analysis results and the analysis is continued
with the next node.

When the analysis queue is non-empty, the analysis can proceed along one
of the following two paths:

• The top of the queue is of type URI. In this case, the result that is
the head of the queue is popped out and the current node is analysed with
respect to it. If the result specifies a subject or object URI, then the current
node is interpreted as a predicate. If the result specifies a predicate URI,
then the current node is first interpreted as a subject/object URI and then
the existing result predicate is reinterpreted with respect to it.
The interpretation of a predicate given a subject or object URI involves
querying the triple store for all the triples with that subject or object and
then scoring each of the predicates obtained with respect to the specified
predicate pattern.
If at the end of this analysis there is no resulting query, the initial URI result
is re-added to the queue, with a flag that specifies that it has already been
analysed once. This allows the system to give the answer ”OUT OF SCOPE”
when no corresponding predicate is found, which means that the answer to
a specific question is not covered by the data in the current RDF backend.

• The top of the queue is of type Query. In this case, the top result is
removed from the queue and it is rewritten by transforming any occurrence
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of the answer variable into a variable with a random name, e.g. randomVar.
Then the system generates two queries: one where the randomVar is the
subject, and one where randomVar is the object of the query. The queries
are then scored and added to the queue of analysis results, and the analysis
continues.

2.3 Scoring Synfragments

Every synfragment is assigned a score between 0 and 1. Complex synfragments
are scored by multiplying the scores of all their constituents. URI synfragments
are scored in the following manner:

• Subject/object URIs are scored using a simple, bigram-based string sim-
ilarity measure between the words in the question and the concepts in the
RDF backend.

• Predicate URIs are scored initially using the same string similarity mea-
sure between the surface form of the predicate and the properties in the
backend. If the score is under a specified threshold (0.5), then the predicate
is re-scored using the WordNet similarity measure described by Hirst and
St. Onge (HSO) [7] and implemented in WS4J [16]. For example, the pair
(nicknames, http://dbpedia.org/property/nickname) has a string similarity
score of 0.93, whereas the pair (mayor, http://dbpedia.org/ontology/leader)
has a string similarity score of 0, but a HSO score of 0.375.

Additionally, the URIs that belong to the http://dbpedia.org/ontology/ name-
space are boosted by doubling the initially assigned score. This makes the system
favour the URIs from the manually corrected DBpedia ontology as opposed to
those that are part of the automatically extracted http://dbpedia.org/property/
namespace.

2.4 Reranking Phase

All the possible partial analyses of a question are scored and kept until all
the synfragments of the question are analysed. Given the syntactic patterns
present in the question, the expected answer type can sometimes be very easily
inferred. For example, questions that begin with Who... expect an answer of
type dbo:agent or dbo:person. This can be easily specified in the query by means
of the rdf:type property in the following manner:

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

SELECT DISTINCT ?answer

WHERE {

?answer rdf:type dbo:Person .

}
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The correctness of a given query is then measured as the number of results
that have the correct answer type divided by the total number of answers. The
final score of the query is obtained by multiplying the existing score with the
computed correctness. This technique provides us with a very precise reranking
of the end results, but unfortunately not all the questions have an easy to extract
pattern when it comes to the expected answer type. The current system only
has rerankers for the case when the answer should be an Agent/Person and for
when the answer should be a number.

3 System Evaluation

The QALD-3 challenge offered 99 test questions whose answer had to be found
either in DBpedia or in a federated triple store containing additional data from
Yago2 and MusicBrainz. In terms of complexity, the test questions are either sim-
ple questions, whose interpretation only involves recognizing the components of
a triple, or complex questions that require aggregation or some form of semantic
resolution to be interpreted.

Our prototype system currently focuses on the simple questions, as it is
not yet equipped for dealing with complex natural language constructions. This
reduces the number of questions our system could actually have constructed a
correct query for to 67. Our system got 30 of the questions right, and for another
3 it got a partially right answer. Out of these, 26 questions could be answered
via a query with a single triple, 3 with a query with two triples and 4 had the
answer OUT OF SCOPE. The results over the QALD-3 test and training sets are
detailed in Table 1. The difference in the F-measure between the training and the
test set can be explained by the fact that the train set was run against the same
system as the test set, without manual addition of mapping suggestions for the
syntactic patterns that occurred only in the training set. The system, running
on a single core 2.4Ghz Intel processor with 4GB of RAM, needed on average
103 seconds to answer a question. The required time depends directly on the
complexity of the question itself (how many triples have to be constructed) and
on the concepts that appear in it (a question containing the name of a country
or continent will take longer to process because there are usually many triples
referring to such a concept, while processing a proper name will usually involve
the analysis of much fewer triples).

For efficiency reasons, we made use of a locally installed version of DBpedia,
powered by Jena TDB [10]. The repository can be queried using the Jena ARQ
query engine [9]. Given that the triple store contains over 150 million triples,
doing string matching queries directly is very ineffective and time consuming.
To mitigate this problem we generated 3 index files, containing all the unique
subjects, predicates and objects of the triples in the repository. We used these in-
dex files to speed up the lookup times for URIs. The additional markup existent
in DBpedia is used to ensure a better mapping from concepts to their lexicalisa-
tions. The system searches for triples with the predicate dbo:wikiPageRedirects
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for all the URIs retrieved via the index. If such triples are found, they are then
added to the list of candidate URIs for the specified pattern.

Table 1. Evaluation results for the Intui2 system

Test Set Total Right Partially Recall Precision F-measure

QALD-3 DBpedia test 99 30 3 0.32 0.32 0.32
QALD-3 DBpedia train 100 18 2 0.2 0.19 0.19

3.1 Problematic Cases

We analysed the questions where our system gave a wrong answer. These ques-
tions can be split into the following categories:

• Synfragments that should be interpreted directly as a query. We dis-
covered synfragments that correspond to another interpretation paradigm:
the answer is an entity of a specified type with a specified property. For
example, books by Kerouac, from Q81, should not be interpreted by looking
at the concept Kerouac and then searching for triples with a predicate like
books, but rather directly using the query

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

SELECT DISTINCT ?answer

WHERE {

?answer rdf:type dbo:Book .

?answer dbo:author res:Jack_Kerouac .

}

The system could be improved by constructing multiple possible interpre-
tations of a question, e.g. by interpreting upfront such a synfragment using
both the general triple matching and the more specialised type matching
paradigms. Other synfragments that display the same problem are are lakes
in Denmark, Argentine films, companies in Munich, etc.

• Cases when both the string similarity and the HSO scorer failed to
assign a high score to the correct predicate. The actual reasons for this
are quite diverse, but this is obviously one of the biggest challenges for such
a system. An RDF predicate can be verbalized in tens of different ways in
natural language, so finding a mapping between the two is not always trivial.
The predicate used to model the relation can be lexically and semantically
different from the verbalisation used in the question, as is the case with the
pair (beginningDate, built) from Q71 that was described in the Introduction.
The WordNet similarity measures also fail when the compared items have
separate POS tags, but clearly belong to the same semantic field, like the pair
(die, death) from Q74, or when the words are not in the WordNet database,



10 Intui2: A Prototype System for Question Answering over Linked Data

like in the example (placeOfBurial, buried), where burial is not covered by
WordNet. Moreover, there are cases when the DBpedia predicate maps to
complex natural language expressions, like in the case of Q98, Where does the
creator of Miffy come from?, where the pattern Where does X come from?
should be mapped to the predicate dbo:nationality.
Solving these cases would imply finding new ways of mapping predicates to
natural language expressions. Promising methods include concept embed-
dings [3], Extended Semantic Analysis (ESA) [5] and using automatically
extracted pattern libraries such as BOA [6].

• Predicates that have a given property both as a subject and as an
object, like dbo:parent. For Q67, Who are the parents of the wife of Juan
Carlos I?, the Queen Sofia of Spain is the object of the relation dbo:parent
whose subject are her parents and the subject of the same relation when the
object are her own children. The system generates both interpretations and
gives them both the score 1, and chooses randomly one of them at the end
of the analysis, in this case the wrong one.
For choosing the correct triple in this case, the system would have to offer a
more precise specification of the predicate, for example by adding an extra
test triple with the inverse relation.

• Named Entity Recognition In Q97, Who painted The Storm on the Sea
of Galilee?, the system fails to recognize that The Storm on the Sea of Galilee
is the name of a famous painting by Rembrandt and tries to interpret Galilee
as a location and then the sea and the storm as predicates relating to it.
Such errors can be avoided through an extra preprocessing step for identi-
fying such named entities with the help of large indexes of proper names
(which could be directly extracted from Wikipedia).

4 Existing Approaches

Several systems were already tested in the context of the QALD workshops, all
presenting different approaches to the interpretation of natural language ques-
tions as SPARQL queries. The system of Unger et. al [15] operates under the
assumption that the template of the target SPARQL query can be determined by
analysing the syntactic structure of the question and by interpreting it with re-
spect to an ontology-based grammar. The constructed template contains empty
slots, that have to be further specified in a second step of the analysis, that deals
with entity identification and property detection. Their system, evaluated on the
QALD-1 test set of 50 DBpedia-related question, answered 19 questions right
and got a partial answer for another 2 questions.

Aggarwal et. al [1] describe an approach that uses typed dependency in-
formation to guide the identification of DBpedia concepts. The predicates are
matched using relatedness measures based on WordNet. The evaluation against
the QALD-2 test set of 100 DBpedia questions revealed that the system could
answer 32 questions right and had a partially correct answer for an extra 7
questions.
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The QAKiS system presented by Cabrio et. al [4] introduces yet another
method of interpreting natural language questions as SPARQL queries. Their
approach is based on the automatic identification of a set of relevant relations
between entities in the natural language question and their subsequent match-
ing against a repository of relational patterns automatically extracted from
Wikipedia. The system answers 11 questions correctly and is partially right in
the case of 4 questions from the 100 test questions in the QALD-2 challenge.

5 Conclusion and Future Work

We have presented a prototype system for question answering over Linked Data,
that can answer natural language questions with respect to a given RDF backend
by analysing them in terms of the synfragments they are composed of.

We plan to further improve the system, first by redesigning the synfragment
interpretation paradigm to accommodate the interpretation of the same syn-
fragment on multiple levels (as a URI, triple or query). Also, we plan to look
into more advanced techniques for mapping natural language input to database
concepts, like concept embeddings and Explicit Semantic Analysis.

The mapping of the syntactic patterns to slots and URI patterns was done
manually for this version of the system. We intend to enhance the system with
an automatically induced mapping, obtained through the exploration of large
amounts of syntactic patterns.

Our intention is to extend the system to other input languages, either directly,
by integrating a machine translation module that would translate the initial
queries to English, or by integrating language processing tools for other languages
and then mapping directly to the DBpedia concepts from those languages.
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