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Abstract. This paper presents the recommendation algorithms used by
the Insight UCD team participating in the CLEF-NewsREEL 2014 online
news recommendation challenge.

1 Introduction

Recommender systems have become an essential part of our day-to-day lives,
when it comes to dealing with the overwhelming amount of information avail-
able, especially online. Recommender systems improve user experience and in-
crease revenue in the context of online retail stores (Amazon, eBay), online news
providers (Google News, BBC) and many more. In this work we present a wide
range of online recommender algorithms and compare their performance in the
scope of the CLEF-NewsREEL 2014 online challenge.

In CLEF-NewsREEL 2014, participating teams connect to the Plista Open
Recommendation Platform [1, 2] and have to respond to real-time user requests
for recommendations. Given that recommender systems have traditionally been
evaluated offline, this poses an interesting challenge in terms of algorithm effi-
ciency, tracking users, building quality models of user browsing behaviours and
preferences, and in terms of dealing with a highly dynamic domain like news
in which there is a constant cycle of new articles appearing and older articles
becomming redundant. We consider the challenges of online news recommenda-
tion more fully in Section 3.1.

The rest of this article is organised as follows: in Section 2 we present some
related research in news recommendation; in Section 3 we provide a more detailed
description of the Plista ORP framework[3] and the CLEF-NewsREEL challenge,
the challenges of online news recommendation, and our system architecture; in
Section 4 we describe our recommender algorithms; in Section 5 we report and
analyse the data collected and the performance of our recommender algorithms,
and in Section 6 we conclude and discuss directions for future research.

2 Background

Within the field of recommender systems, the problem of recommending news
articles to readers has a number of unique and interesting features. In many
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traditional application domains of recommender systems a user profile is built
from a users transaction or preference history, for example movies that have
been rated or products purchased. The profile is associated with the user as
they interact with the site, and feeds into the creation of personalised recom-
mendations. In the news domain it is generally not common to have detailed
user profiles, as users are not often required to sign in or create profiles. It is also
uncommon in the news domain for users to explicitly provide feedback on each
news article they read and often the only feedback available is implicit in the
logs of the users click patterns. This presents a particular challenge for collabo-
rative filtering methods which rely on the opinions of similar users to generate
recommendations [4–6].

Further complications for collaborative filtering arise from the dynamic na-
ture of the users and the news articles themselves [7, 8]. In general, users will
prefer fresher news articles, and building an accurate model of user preferences
based on the items they have previously read can be difficult [7, 9, 10]. While
users may have preferred categories of news articles, or topics they are particu-
larly interested in, these preferences are difficult to learn [11, 12]. User preferences
change over time too, and another challenge is to provide a diverse set of inter-
esting recommendations, accounting for known users preferences and recency
and popularity of the news articles themselves [13, 14].

Content based approaches can run into problems where some measures of
similarity identify news articles which are in fact about different topics. Ex-
tracting the constantly changing distribution of topics in the news presents a
challenge [9, 15] in addition to learning how users choices are influenced by these
latent factors [6, 16, 17].

3 Methodology

Plista provides the ORP platform for making live recommendations to a num-
ber of their client sites. Plista communicates with the teams via an HTTP API,
by sending (JSON) messages. These messages are triggered when a user reads
an article or clicks on a recommendation (event notification), and whenever an
article is created or updated by the publisher (item update). Requests for article
recommendations (recommendation request) are sent as message to the teams,
to which a response must be given within a certain timeframe (100ms). The
resulting dataset is unique in many respects, providing detailed user profile in-
formation for some users where available and cross-domain data from 11 different
news providers. The dataset is fully described in [1].

With each message type (request, event, update) the Plista ORP framework
provides additional metadata regarding the current user and article. Although
the Plista ORP API documentation lists almost 60 fields of information, in
practice we found many were unclear, or not useful or detailed enough to use.
Fields like Filter allowosr typify the ones we simply didn’t understand (they had
no description either), and popular demographic signals like age, gender and
income, expressed as probabilities (male vs female, age and income brackets)
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turned out to be too vague to be of use in reality. In the end, we settled on 8
metadata fields for use in our recommenders:

geo user The geolocation of the user
time weekday The day of the week
category The subcategory under which an article is published within a given

domain, e.g. sport, world, local etc.
time hour The hour of the day
item source The unique item (article) identifier
publisher The publisher (domain) of an article.
keyword Keywords with their corresponding counts occurring in the article
user cookie The user id, which is not necessarily unique

Note that the category, publisher and keyword fields only provide a numerical
id rather than a textual representation. For category and publisher it was possible
to exploit URLs in order to determine this information, but for keywords there
was no way to uncover what the words actually were, or how they were chosen.
Nonetheless, we found that despite this the keywords still provided a useful
signal. In Section 5 we provide a deeper analysis of the data provided and used.

3.1 Challenges

In this section we present the challenges of producing online news recommenda-
tions. In the section that follows, we detail the system architecture that we have
implemented to cope with these challenges.

Traditionally, recommender systems are evaluated offline, with plenty of time
to build complex models of user browsing behaviours and preferences. In real-
time online scenarios like CLEF-NewsREEL however, such leisure is not afforded;
not only do teams have to respond within a very tight timeframe (100ms), they
also have to deal with factors like the lack of rich user browsing history as users
are not obliged to register and therefore do not always have persistent profiles
or identifiers. Moreover, a user can access the news sites from different devices,
and many users can do so from the same shared device, further complicating
the ability to reliably track their browsing, as pointed out in [1]. Tracking user
preferences is also non-trivial, as users do not provide any explicit feedback about
recommendation quality, and clickstream data is the only signal of relevance
available. Finally, the nature of the news domain itself throws its own set of
challenges into the mix due to the dynamic nature of the data, where many new
articles appear every hour, and older articles quickly become redundant. In such
unstructured and dynamic environments, it is necessary to apply techniques that
satisfy requirements such as response time and scalability while improving the
user experience using limited and sometimes noisy information.

3.2 System Architecture

Our system architecture, shown in Fig 1, is implemented in Python and is de-
signed to accomplish our goals of scalability, speed and extensibility. The first
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Fig. 1: System Architecture

point of interaction with Plista is NGINX, a load balancing HTTP server, which
filters and redirects the different types of Plista messages to individual python
processes (using the Tornado framework, one for each different types of mes-
sage). All Tornado servers write to a permanent archive database, for which
we use MongoDB. In order to make content-based recommendations we use an
ElasticSearch instance, which keeps only data that is relevant to recommendable
news articles, (articles often expire after a few days and get flagged as unavailable
for recommendation).

Rather than trying to guarantee accurate recommendations in under 100ms,
we precompute the recommendations and store them in a Redis instance. For
each of our recommendation algorithms, we have a long running process which
continually reads the latest events and articles from the database to build its
recommendations. With this offline approach, there is a danger that we might
send back a recommendation for an article which has expired during the time it
took to compute the recommendations. To deal with this possibility, we refresh
our recommendations in the background as frequently as possible so that our
recommendations have a minimal lag. A typical refresh time for the most de-
manding recommenders (usually the content-based ones) is less than 5 minutes.
We have constructed the system with a goal of compromising between accuracy
or freshness and scalability. Our architecture is capable of sending recommen-
dations back to Plista with a typical response time of about 3ms. We can easily
scale it to handle many different algorithms for testing and evaluation purposes.

4 Recommendation Algorithms

In this section we describe our recommender algorithms. For each we describe the
algorithm by how it selects the candidate set i.e. the larger set of items that will
be considered for recommendation, and its ranking strategy, i.e. how it ranks the
candidate items for recommendation, before returning the top-N to the user. We
refer to the target user as the user for whom the recommendations are required,
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and the current article as the news article the user is currently reading. We have
implemented sixteen recommenders in total: six popularity-based recommender,
seven content-based recommenders, a feedback-based recommender, a recency-
based recommender and an ensemble recommender.

Before returning the top-N recommendations to the user, we apply three
basic filters to the candidate set:

Exclude items from other domains Recommendations must come from the
same domain as the current article; we do not consider cross-domain recom-
mendations although this is something we would like to investigate in the
future, once we have an understanding of how single-domain recommenders
work in this space.

Exclude already read articles We do not make recommendations of articles
we know the target user has already read, however we do allow previously
recommended articles to be re-recommended if the user did not click on the
recommendation the first time. As always, it’s hard to interpret non-clicks
in recommender systems; a more mature model might limit the number of
times the same recommendation is ultimately shown to a user.

Exclude non-recommendable items These are items that are flagged as non-
recommendable (usually older articles) by Plista.

Each of the six popularity recommenders rank their candidate set by item
popularity, i.e. the number of users who have read an article. However, they
differ in the way they compile their candidate sets. We have developed a basic
as well as more advanced recommenders that use additional features. They can
be described as follows:

Popularity - Basic The candidate set is all items in the dataset.
Popularity - Geolocation The candidate set is all items that have been read

by users in the same geographical location as the target user.
Popularity - Item Categories Every item is associated with zero or more

news categories (business, sports, politics, etc.). The candidate set is all
items whose categories intersect with the target article’s categories.

Popularity - Weekday The candidate set is all items that have been seen at
least once in the same week day as the target article.

Popularity - Hour The candidate set is all items that have been seen at least
once in the same hour as the target article.

Popularity - Freshness The candidate set is all articles that have been pub-
lished or updated in the last 24 hours.

Similar to the Lucene-based recommender described in [2], the group of
content-based recommenders recommend articles that are similar to the current
article. The intention here is not to present the user with an article essentially
the same as the current one, something which would of course be undesirable,
but rather to find articles that are strongly related to the current article. We
believe that in the case of news stories that evolve over a period of days or even
weeks such as the recent disappearance of the Malaysia Airlines flight MH370,
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such recommendations would be especially desirable, as new facets of the story
unfold and change.

Each of the content-based recommenders we deploy use the conventional TF-
IDF vector space model[18] to derive the candidate set. However, each algorithm
uses a different selection of content within an article over which to apply the
model. For each of the following content-based recommenders, the candidate set
is always ranked in decreasing order of similarity to the current article.

Content - Title and Summary The candidate set is all articles, represented
by the terms in their titles and summaries.

Content - Title and Summary + Freshness As above, but candidate set
articles must also be fresh i.e. published or updated in the last 24 hours.

Content - Title and Summary + New As above but candidate set articles
must be brand new i.e. published in the last hour, rather than fresh.

Content - Keywords The candidate set is all articles, represented by their
keywords provided by Plista (recall that Plista provides a set of keywords
and their frequencies within a document, although how the keywords are
selected, or what they actually are is not disclosed).

Content - German Entities The candidate set is all articles, represented by
their entities; using AlchemyAPI we extract entities, in German, from the
full text of the articles.

Content - English Entities The candidate set is all articles, represented by
their entities. This time, we use Google Translate to first translate the articles
into English and then use OpenCalais to extract entities from the full text
of the articles.

Content - English Entities in Context Expanding on the previous rec-
ommender, we represent articles using both their entities and the context
surrounding them in the article. In OpenCalais context represents the rele-
vant text before and after an entity.

Positive Implicit Feedback The candidate set is all articles that have been
successfully recommended in the past (by any team’s algorithm) to some
user, i.e. clicked by the user. The more popular an article is as a recommen-
dation, i.e. the more clicks it has, the higher the algorithm ranks it.

Most Recent The candidate set is all articles in the dataset. Candidate articles
are then ranked in reverse chronological order of when they were published
or updated.

Ensemble Recommendations are produced based on a combination of all the
popularity- and content-based recommenders above. The candidate set is
the union of candidate sets from each recommender. Candidate articles are
then ranked using the sum of the rankings for the top n articles from each
recommender. If, for any recommender, an article does not occur in the top
n recommendations, it receives the maximum ranking of n, plus a penalty
of 1, as in equation 1. We set n = 100 in these experiments.

rank(a) =
∑

r∈recommenders

{
rankr(a) if a ∈ recommendations(r)

n + 1 otherwise
(1)

830



5 Analysis and Evaluation

In this section we give a brief overview of the data we receive from Plista, in
order to better understand the performance of our recommender algorithms. We
will finish with a discussion on possible evaluation methods.

5.1 Dataset Overview

To illustrate the nature and dynamic quality of the data and how it informs our
choice of recommender algorithms, we look closely at a one week sample, between
Wed, 25 May ’14 and Tue, 30 Jun ’14. During this time period we observe 11
websites. They range from domain-specific news e.g. sport, (sport1.de) to more
general news (tagesspiegel.de) to online home and gardening stores (wohnen-und-
garten.de). There were approximately 8 million visits from 1.75 million unique
users to 400 thousand unique articles published. The mean number of observed
articles per user is approximately 4, and the data sparsity is 99.99%.

Over 90% of the traffic generated cumulatively from the websites is event
notifications (impressions and clicks). This traffic is unevenly distributed across
the domains, with sport1.de contributing almost 40% and together with ksta.de
and channelpartner.de over 80% of all traffic. We find that most of the users
that visit tagesspiegel.de also visit most of the rest of the websites, indicating the
broad appeal of this domain. Surprisingly enough, there is a noticeable overlap
between users of sport1.de (sports website) and wohnen-und-garten.de (online
home and gardening store). On the other hand, users who frequent motor-talk.de
rarely visit any of other websites. The uneven patterns of cross-domain traffic
are certainly interesting, but for simplicity we have restricted our algorithms to
only make recommendations in the same top-level domain for this work.

5.2 Evaluation

We show the average and maximum CTR results as reported by Plista in Fig. 2,
and we compare the CTR with our algorithms in Table 1. We also show the
precision results from an offline evaluation we additionally performed, as we dis-
cuss later in this section. With the objective of testing many algorithms the final
averaged CTR < 1% is not particularly competitive. We can also see that there
is a noticable difference between the average and maximum CTR. This could be
due to a number of reasons including network congestion, server overload and
change in algorithm performance based on features such as the domain, time
of the day, user geolocation, etc. In future work we plan to get a better under-
standing of the specifics of the problem and bring the average CTR closer to the
maximum. In contrast, the scalability of our architecture is apparent in the high
number of requests that we were able to respond to.

We show the distribution of article popularity in Fig. 3(a). Although, most
articles have very low popularity among users, there are plenty with higher popu-
larities suggesting that popularity-based recommenders should perform compar-
atively well and that is what we find - three of the top five of our recommenders
are popularity-based.
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Recommender Avg CTR Max CTR Precision @10

Content-based (title and summary + freshness) 0.98 1.91 0.07

Content-based (German entities) 0.95 2.44 0.03

Popularity-based (weekday) 0.87 1.21 0.15

Popularity-based (user geolocation) 0.84 1.19 0.14

Popularity-based (item categories) 0.83 1.18 0.07

Content-based (English entities) 0.82 1.09 0.11

Popularity-based (basic) 0.79 1.04 0.20

Positive implicit feedback 0.78 1.17 0.84

Popularity-based (hour) 0.77 1.07 0.12

Content-based (title and summary) 0.76 1.01 0.13

Ensemble 0.73 2.00 0.18

Content-based (title and summary + new) 0.72 0.96 0.01

Content-based (English entities in context) 0.69 0.98 0.14

Popularity-based (freshness) 0.69 1.00 0.17

Most recent 0.57 0.76 0.08

Content-based (keywords) 0.523 0.92 0.15

Table 1: Average, max and precision of algorithms

The complex dynamics of the news cycle are apparent in the relative perfor-
mances of our popularity recommendations based on different timeframes. We
find better performance recommending articles that are popular over the course
of a day compared to the course of an hour, indicating particular daily cycles in
users’ news consumption. It will be interesting to examine further the optimal
timeframe over which recommendations should be made, and how this varies
across each domain.

Our popularity recommendations based on geographic location of the user
(see Fig. 3(b)), also performed well, and this highlights the importance of ac-
counting for local and spatial contexts in news recommendations. Similar per-
formance is found with category-based recommendations. Our intuitive under-
standing is that users tend to read news from the same category, and to further
test this idea we looked at a transition matrix for user clicks from category to
category in a single domain Fig. 4 (we chose the news domain ksta.de). We
clearly see just a few dominant categories and clicks between these categories
account for the vast majority of items that are read. However, it is clear that
there are important patterns of activity between certain less popular categories
and future recommender algorithms will attempt to exploit these.

The strong correlations in the click-transitions of a domain’s categories sug-
gests that content based recommenders are likely to have some success. We find
high CTR for our content-based algorithms Content - Title and Summary, al-
though the best performing variant is one which returns fresh recommendations.
While users seem to express some degree of preference for articles that are sim-
ilar, the behaviour is very different across domains and also changes over time.

Content-based recommenders have shown to be quite successful in the past.
Our Content - Title and Summary recommenders perform among the best of our

832



Fig. 2: Average CTR (orange/lighter colour) and number of requests
(blue/darker colour). Due to problems with our server the number of requests
are not is their expected flat line state.

algorithms. This shows that users enjoy articles that are related to the target
article. The best performing variant is one which returns fresh recommendations.

Alchemy and OpenCalais are entity extraction services which tag text and
use linked data sources to identify entities in text such as people, companies,
etc., and relationships between entities. While each service returns largely sim-
ilar results, there are differences which can be significant (noticeable gaps in
knowledge about non-English entities). The resulting recommendations achieve
comparatively good scores, although it should be noted that for technical rea-
sons we did not run all of our entity recommenders for the entire duration of the
competition. Based on the maximum CTR they achieved (2.44%) we expect to
look more closely at tuning these algorithms for further use.

The fact that the Content - German Entities outperforms Content - English
Entities suggests that something is lost during the translation of articles into
another language, even with entities which one might expect would be more
reliably translated than full text. We also find that including contextual text that
OpenCalais provides reduces recommendation accuracy. This is likely because
this text firstly is not cleaned and contains stopwords, and secondly is likely to
be more useful for identifying sentiment associated with entities, rather than
more accurately classifying what the article is about.

The Plista competition provides a single evaluation metric - CTR. There are
many possible approaches to evaluation [19], and in order to evaluate our own al-
gorithms we constructed an ‘offline’ testing setup which allows us to ‘rewind’ the
dataset to any point in time. We can then perform our recommendations against
the data as if they were live and evaluate the results against the actual clicks
that users are observed to perform. We use a simple average precision metric for
evaluation, assuming that the order of the recommendations is not relevant. Our
offline precision calculation allows us to shed more light on the crudely averaged
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user could be located at Berlin and over 1.25 million at Munich.

Fig. 3

CTR provided by Plista, and provides us with many interesting suggestions for
further work to improve our algorithmic techniques and evaluations.

6 Conclusions and Future Work

We have presented our results for the CLEF-NewsREEL 2014 Challenge. We
have described our scalable architecture for delivering recommendations and
detailed various algorithmic approaches that we have taken. We have highlighted
some of the issues with the dataset which impact on the type of algorithms we can
implement. For future work we intend to examine more closely the user features
which are most relevant for collaborative filtering approaches. The dynamic click
behaviour associated with browsing patterns is a rich area to exploit, and we also
intend to improve on our content-based algorithms with better entity detection
and similarity measures.
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Fig. 4: Click transition matrix for categories on the ksta.de domain. We have
excluded the category ids for which there are no click transitions to any other
category. The colour scale represents the number of click transitions.
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