
InBeat: News Recommender System as a Service
@ CLEF-NEWSREEL’14

Jaroslav Kuchař1,2 and Tomáš Kliegr2,3

1 Web Engineering Group, Faculty of Information Technology,
Czech Technical University in Prague
firstname.lastname@fit.cvut.cz

2 Dep. of Information and Knowledge Engineering,
Faculty of Informatics and Statistics, University of Economics Prague

firstname.lastname@vse.cz
3 Multimedia and Vision Research Group

Queen Mary, University of London

Abstract. Interest Beat (inbeat.eu) is a service for recommendation
of content. InBeat was designed with emphasis on versatility, scalability
and extensibility. The core contains the General Analytics INterceptor
module, which collects and aggregates user interactions, the Preference
Learning module and the Recommender System module. In this paper,
we describe InBeat general architecture, putting emphasis on its high-
performance architecture that was used in the CLEF-NEWSREEL: News
Recommendation Evaluation Lab.

Keywords: recommender system, web service, architecture, preference
learning, scalability, challenge

1 Introduction

The large amount of content to choose from causes the Information Overload
problem for visitors of news websites. Based on the analysis of past usage pat-
terns, recommender systems can make a personalized list of preselected content,
alleviating the users of the effort entailed in the process of choosing the content
they should consume next and limiting the number of choices they need to make.

There are various existing recommendation systems and algorithms, both
in academia and industry.While recommender systems were used on large e-
commerce websites for more than a decade [6], there is still a limited range of
generic recommender systems that are deployable with little or no customiza-
tion. With InBeat, we aim at providing a ready-made and versatile recommender
for high-throughput use cases. InBeat provides RESTful services for all inputs
and outputs, which streamlines its integration with any Internet-connected ap-
plication supporting the HTTP protocol.

In this paper, we introduce the InBeat architecture and algorithms in the
context of its participation in the CLEF-NEWSREEL: News Recommendation
Evaluation Lab (further only Challenge), which focused on recommending news

837



Load Balancer

API 
Instance

API 
Instance

API 
Instance

Public

InBeat API

Processing 
LogicCache Storage

Business Logic

InBeat Logic

Fig. 1. InBeat scalable solution

articles in real-time.In section 2 presents the system architecture and technical
solution. Section 3 presents InBeat as a news recommender system in the Chal-
lenge’s on-line task, including the details on performance. Section 4 presents our
attempt at the off-line task. Finally, Section 5 provides a list of other InBeat use
cases along with some reflections on the organization of the Challenge.

2 Technical Solution

InBeat’s was designed for scalability and low utilization of resources per one
client. A simplified overview of the technical solution is given in Figure 1. The
main entry point is load balancer nginx 4, which distributes the workloads across
multiple instances of API applications. Nginx is focused on high concurrency,
performance and low memory usage. It uses asynchronous event-driven approach
and is able to provide high performance under high loads.

Instances are created with Node.js5, which is a platform for building fast and
scalable applications. Node.js uses an event-driven, non-blocking I/O model that

4 http://nginx.org/
5 http://nodejs.org/

838



makes it lightweight and efficient, suitable for data-intensive real-time applica-
tions that run across distributed devices. As storage we selected MongoDB6,
which met our demands on scalability, performance and high availability. Its key
advantage is schema-less design, which allows to use custom set of attributes
in an individual use case without the need to update the schema. MongoDB
also supports map/reduce procedures that are used for aggregation of data and
for providing different views on data by InBeat. We use MongoDB mainly as a
storage of historic data (e.g. latest N thousands interactions per news portal or
descriptions of items) and aggregated statistics (e.g. number of interactions per
item etc.). The Cache is implemented with Redis7, a highly scalable in-memory,
key-value store. It provides essential performance improvement under high work-
loads, reducing the latency of business logic including storage operations.

3 On-line task: Setup and Results

The CLEF-NEWSREEL: News Recommendation Evaluation Lab8 is focused
on recommending news articles in real-time. The emphasis of the Challenge is
on scalability and response time limitation. Recommendations had to be pro-
vided in real-time (within 100 ms), and the winning criterion was set to the
total number of successful recommendations, rather than the prediction accu-
racy (clickthrough rate). There are practical problems with real time processing
of recommendations that are not incurred when there is “unlimited time” to
provide the recommendation. It is necessary to balance the architecture and
technologies with the complexity of the involved algorithms. The InBeat plat-
form deals with real time processing of data using special features of NoSQL
databases and map/reduce principles.

3.1 Task Definition

This section describes simplified definition of the news recommender task.
Inputs: The main inputs are the users’ interactions and news item descriptions.
– interaction(type, userId, itemId, context)

where type = {impression|click} and context describes the features of the
user (e.g. browser version, geolocation, etc.) and special features related to
items and their presentation (e.g. keywords, position).

– item(itemId, domain, description)
where domain is the identifier of items from the same group (e.g. news
portal) and desciption provides more detailed information about items (e.g.
title, text, time of last update).

Outputs: Set of recommended items for the specific user who is reading the
item within a given context.
– (userId, itemId, context) → {itemx, itemy, ...}

6 http://www.mongodb.org/
7 http://redis.io/
8 http://www.clef-newsreel.org/

839



3.2 Algorithms

In this section we describe a set of algorithms we used in the Challenge.

Top Interacted This algorithm is based on the daily popularity of news items.
To avoid excessive effect of high short-time popularity of one item the interac-
tions are aggregated on a daily basis. This approach deals with an evolution of
popularity over time and decrease an influence of peaks appeared at the spe-
cific days. We implemented the algorithm using simple incremental updates in
a MongoDB collection represented as a triple (Date, ItemId, count). The result
is s list of items sorted by the number of interactions.

Most Recent Since we are in the highly dynamic news domain, the recency
of an article plays an important. Our baseline recency-based algorithm uses a
simple heuristic based on the newest news item within the same group as the
group of the item the user is reading at the time of the request. The results is
ordered list of items sorted by creation time.

Rule Based Since this algorithm is more complex than the previous one, we
decided to describe it in greater detail.

Table 1. Training dataset for rule based recommender.

Context Class

browser isp os geo weekday lang zip item
312613 281 431229 19051 26887 49021 62015 127563250
457399 45 952253 18851 26887 48985 65537 45360072

For each interaction(type, userId, itemId, context) stored in our database,
we prepared one entry in the training dataset as described in Table 1. Interactions
are described only by the contextual features that are provided by the platform
(e.g. Location, Browser, ...) and by an identifier of item the user interacted with.

The training dataset was used to learn association rules. The contextual
features could appear only in the rule body (antecedent) and the identifier of
the item only on the right side of rule (consequent). We used association mining
algorithm apriori implemented in R - arules9. Example of a rule:

isp = “281” ∧ os = “431229” → item = “1124541”

Additional mining setup is as follows. We used latest N thousands interactions
as training dataset from our database. We experimentally set N to five thousands.
The apriori algorithm is experimentally constrained with minimal support of five
interactions, and minimum confidence of 0.2.

9 http://cran.r-project.org/web/packages/arules/

840



Fig. 2. Network Traffic on InBeat server.

All discovered rules are imported into our simple rule engine. The engine finds
all rules that match the contextual features of a recommendation request. The
consequent of each matching rule represents a recommended item. The output
is a list of unique item identifiers from the right side of the matching rules.

The association rule-based algorithm was added at the end of Challenge and
thus did not participate in all evaluation weeks.

3.3 Performance

In this section, we present the performance of the InBeat recommender in the
Challenge. The metrics used in the Challenge to select the winning recommender
systems was the cumulative number of clicks (number of successful recommen-
dations) over the three different evaluation periods. The additional metrics pro-
vided by the organizers include number of impressions and click-through rate.

Sum of the number of impressions with the number of clicks can be inter-
preted as the performance of the systems – the ability to process large number
of interaction on the server.

Figure 2 shows the network traffic on our server infrastructure within the last
week of the Challenge. During this period, InBeat handled thousands of recom-
mendation requests. The peaks in the graph correspond to the higher number
of interaction in daytime. Note that the gap between Monday and Tuesday is
caused by the maintenance break of our infrastructure. Figure 3 depicts the CPU
load on the server. The server load was kept mostly under ten percent even in
peak periods. InBeat was run on a single virtual machine assigned four Core
i7@3.20GHz cores and 8GB of RAM.

Figure 4 presents the results for the last evaluation period. The table is sorted
by the cumulative number of clicks. InBeat team is on the third position. The
table provides only results that are aggregated per team participating in the
Challenge. There are no specific results for each recommendation algorithm. In
click-through rate, the second metric, InBeat is on the fourth position.

Since the CTR reported in Figure 4 is the average for all algorithms, also
report the numbers for the individual InBeat algorithms:

841



Fig. 3. CPU Load on InBeat server.

Fig. 4. Leaderboard with cumulative number of clicks and average click-through
rate per team in Challenge - last evaluation period 2014-05-25 - 2014-05-31. Source:
http://orp.plista.com

– Top Interacted has 1.4% CTR,
– Most Recent has 0.8% CTR,
– Rule Based has 1.5% CTR.

The most successful algorithm is Rule Based, which we explain by the fact
that it takes into account both popularity and contextual features. Most Recent
is influenced only by temporal aspects and Top Interacted takes into account
only the popularity.

4 Off-line task: Setup and Results

In addition to the on-line challenge CLEF-NEWSREEL offered an off-line task.
The dataset consisted of 84 million records of recommendation data across mul-
tiple portals [1].

4.1 Task definition

From the off-line dataset, we used a subset of 26,875 records.10 The data were
preprocessed to the form shown at Table 1 and randomly split to a training

10 From the portal with the smallest number of records.

842



dataset (90%) and test dataset (10%). The task was to predict the label (item
viewed), given the description of the context. In our approach, we have not
exploited the temporal relations between entries in the training dataset. Each
row was considered as a separate training instance.

4.2 Algorithms

We have used several standard approaches as a baseline, and compared it with
the proprietary InBeat rule learning solution.

Baseline: Decision trees, SVM. We used the implementations of common
machine learning algorithms available in RapidMiner 5: Decision trees (CHAID
and the RapidMiner’s ”Decision Tree“), and SVM (LibSVM).

Rule learning – basic. R-arules implementation of the apriori algorithm, in
the fastest setup described in Section 3. The resulting rule set is sorted according
to confidence, support, and rule length (shorter is ranked better/higher). The
top ranked rule matching a test object is used for classification.

Rule learning – with pruning. R-arules implementation of the apriori algo-
rithm. After learning, the rules are pruned using our database coverage pruning
implementation [4]. The rules are matched with test data using the same ap-
proach as in the basic setup. This setup is a simplification of the seminal CBA
(Classification Based on Associations) algorithm.

Rule learning – pruning with extension. Same as the previous setup, but
the rules in the pruned rule set are additionally post-processed using rule ex-
tension (working version of our experimental algorithm). The rules are matched
with test data using the same approach as in the basic setup.

Rule learning – pruning with extension and mixture classification.
Same as the previous setup, but all rules matching the test object contribute to
the final classification using the rule mixture approach (a working version of our
experimental algorithm).

4.3 Performance

The results are depicted on Table 2. The baseline algorithms were run with
default parameters in the RapidMiner environment.11 Rule learning was run
with 0.02 minimum confidence and 0.001 minimum relative support threshold.

The worst results were provided by CHAID and Decision Tree algorithms,
the best performing result was provided by SVM (with RBF kernel).

11 For CHAID and DecTree we tried several different parameter configurations, but
with no or negligible improvement.

843



Table 2. Training dataset for rule based recommender.

SVM CHAID DecTree RL-Basic RL-PR RL-PR-Ext RL-PR-Ext-Mix

Accuracy 0.15 0.02 0.02 0.02 0.06 0.08 0.11

The results clearly indicate that while our experimental rule-based system
surpassed other symbolic learning algorithms incl. CHAID and Decision Tree, it
was not able to beat the SVM with RBF kernel baseline.

5 Conclusion and Future Work

In this paper we introduced the InBeat experimental recommender system.
There is an on-going work on extending the set of recommendation algorithms
available in InBeat and their customization to the constraints imposed by the
Challenge platform, which remains open for further experiments.

It should be noted that InBeat or its modules are or were deployed also
in other use cases. The first version of its component was conceived as a web
analytics solution compatible with Google Analytics [2] and was deployed on a
travel agency website. The option to process web analytics data was extended in
the current version with support for the recent version of the Google Analytics
tracking code ga.js. InBeat is currently primarily extended as a component of
a “SMART-TV” recommender system [5]. The most recent development in this
direction is the ability to process feedback from user-behaviour tracking with
Microsoft Kinect [3].

Acknowledgement. This work was supported by the Czech Technical Uni-
versity grant SGS14/104/OHK3/1T/18, by the University of Economics, Prague
by grant IGA 26/2011 and by the EC project FP7-287911 LinkedTV.

References

1. B. Kille, F. Hopfgartner, T. Brodt, and T. Heintz. The plista dataset. In NRS’13:
Proceedings of the International Workshop and Challenge on News Recommender
Systems, ICPS, p. 14–22. ACM, 10 2013.

2. T. Kliegr. Clickstream Analysis. University of Economics in Prague, Faculty of
Informatics and Statistics, Prague, 2007. Master Thesis.

3. T. Kliegr and J. Kuchař. Orwellian Eye: Video recommendation with Microsoft
Kinect. In In Conference on Prestigious Applications of Intelligent Systems
(PAIS’14) collocated with European Conference on Artificial Intelligence (ECAI’14).
IOS Press, August 2014. To appear.

4. T. Kliegr, J. Kuchař, D. Sottara, and S. Voj́ı̌r. Learning business rules with associ-
ation rule classifiers. In RuleML. 2014. To appear.

5. J. Kuchař and T. Kliegr. GAIN: web service for user tracking and preference learning
- a SMART TV use case. In 7th ACM Conference on Recommender Systems, RecSys
’13, Hong Kong, China, October 12-16, 2013. 2013.

6. J. B. Schafer, J. Konstan, and J. Riedl. Recommender systems in E-commerce.
In Proceedings of the 1st ACM Conference on Electronic commerce, EC ’99, pp.
158–166. ACM, New York, NY, USA, 1999.

844




