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Abstract. This paper describes the Antinomyra System that partici-
pated in the BioASQ Task 2a Challenge for the large-scale biomedical
semantic indexing. The system can automatically annotate MeSH terms
for MEDLINE citations using only title and abstract information. With
respect to the official test set (batch 3, week 5), based on 1867 annotat-
ed citations out of all 4533 citations (June 6, 2014), our best submission
achieved 0.6199 in flat Micro F-measure. This is 9.8% higher than the
performance of official NLM solution Medical Text Indexer (MTI), which
achieved 0.5647 in flat F-measure.

Keywords: MeSH Indexing; Logistic Regression; Learning to Rank;
Multi-Label Classification.

1 Introduction

1.1 The Problem

Medical Subject Headings (MeSH) are used by National Library of Medicine
(NLM) to index articles in MEDLINE [1]. MeSH is organized in hierarchical
structure, and slightly updated every year. In 2014, there are altogether 27149
MeSH headings5. Usually each article is annotated by 5 to 20 MeSH headings.
Many studies have been carried out to utilize MeSH for efficiently retrieving
and mining biomedical documents for knowledge discovery [2, 3, 4, 5, 6, 7]. The

? Corresponding author
5 http://www.nlm.nih.gov/mesh/introduction.html
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accurate prediction of MeSH headings for each citation will greatly reduce the fi-
nancial and time cost of annotating biomedical documents. The BioASQ Task2a
is a large scale biomedical semantic indexing competition for automatic MeSH
annotation. Each week, thousands of new MEDLINE citations are provided to
the competition participants, who are required to submit predicted MeSH head-
ings of each citation in 21 hours. Since each MeSH heading can be deemed as a
class label, the MeSH annotation problem is a multi-label classification problem.
For each citation, our Antinomyra system tries to assign it a certain number of
MeSH headings out of all 27149 MeSH headings.

1.2 Challenges

Simple mapping does not work well Many MeSH headings do not appear
directly in the title or abstract of a target citation, which means that a simple
mapping does not work very well. This is why we resort to advanced machine
learning methods to predict MeSH headings.

The amount of information is insufficient During the competition, we
have very limited information of target citations, more specifically, only titles
and abstracts are available in this task. By contrast, MeSH indexers have the full
text for annotating MeSH headings. Since the main text contains some important
clues, predicting MeSH headings with very limited information is a big challenge
for the competition participants. Indeed, it will be very interesting if we can know
the performance of professional MeSH annotators with the same information as
the BioASQ Task2a participants. This may bring more insights on how to make
use of the information in the title and abstract.

Table 1. The frequencies of some typical MeSH headings in our Local MEDLINE
database of 12,504,999 citations.

ID MeSH Count Frequency Rank

6801 Humans 8152852 1
8297 Male 4777692 2
18570 Risk Assessment 129816 100
2540 Cerebral Cortex 74513 200
12987 Soil 23178 1000
12045 Regulatory Sequences, Nucleic Acid 12503 2000
23001 Transplantation Tolerance 1532 10000
6991 Hypnosis, Anesthetic 199 20000

There are large variations in the occurrence of different MeSH head-
ings Some MeSH headings, such as check tags Humans, Male and Female, ap-
pear very frequently, while some others are very rare. We have counted the oc-
currence of each MeSH heading in the whole MEDLINE. Only about 150 MeSH
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headings have occurred in more than 1% of the whole MEDLINE. That is to say,
a vast majority of MeSH headings do not appear very often. It is not surprising
that, for many MeSH headings, we lack of enough positive examples (citations)
to train accurate models. As illustrated in Table 1, MeSH heading“Hypnosis,
Anestheti” only occurs in 199 out of more than 12 million citations.

2 Related Work

In the past few years, especially for the last BioASQ challenge (task 1a) [8],
many studies have been carried out to improve the prediction accuracy of MeSH
heading suggestions [9, 10, 11]. In addition to NLM’s official solution MTI [12],
there are two other methods most closely related to our method [9, 10, 11]. The
first one is MetaLabeler, which was proposed in [13] and utilized by Tsoumakas
et al. in BioASQ Task1a for MeSH prediction [9]. In this method, firstly, for
each MeSH heading, a binary classification model was trained using linear SVM.
Secondly, a regression model was trained to predict the number of MeSH head-
ings for each citation. Finally, given a target citation, different MeSH headings
were ranked according to the SVM prediction score of each classifier, and the
top K MeSH headings were returned as the suggested MeSH headings, where K
is the number of predicted MeSH headings by the model. The second one is the
learning to rank (LTR) method, which was widely used in information retrieval
[14] and utilized by Lu et al. for automatic MeSH annotation [10, 11]. In this
method, each citation was deemed as a query and each MeSH headings as a doc-
ument. LTR method was utilized to rank candidate MeSH headings with respect
to target citation. The candidate MeSH headings came from similar citations (n-
earest neighbors). In our system, we also made use of the LTR framework for
predicting MeSH headings. However, in addition to the information from similar
citations, we also use the prediction scores from individual MeSH classifier to
improve the prediction accuracy.

3 Method

3.1 Data processing

We downloaded the whole PubMed database in an XML format. The cita-
tions without abstract or MeSH annotations were then filtered. Finally we ob-
tained 12,504,999 citations. Some citations have subsections, such as background-
s, methods and results, but we didn’t treat these subsections separately. Based
on target journals in BioASQ Task2a, we kept the latest 20,000 citations for
validation and testing, and 1,000,000 additional latest citations for training.
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3.2 Tokenization

BioTokenizer6[15] was used in our system for the tokenization task. We also
tried CoreNLP7 and doc2mat8, but the performance of BioTokenizer was the
best. After the processing of BioTokenizer, the text of a citation was tokenized
and the stemming task was carried out simultaneously. Finally, based on the
tokenization result, we compiled a dictionary for converting the text of each
citation into a vector.

3.3 Primary Classifiers

Similar to MetaLabeler[9], we trained a binary classifier for each label (MeSH
heading). We call these binary classifiers as Primary Classifiers in our framework.
For efficiency, we used logistic regression instead of SVM to train these classi-
fiers. For a target citation, each Primary Classifier can predict the annotation
probability of the corresponding label.

3.4 Nearest Neighbors

Given a target citation, we used NCBI efetch9 to find its similar (neighbor) c-
itations. The MeSH headings from these neighbors were deemed as promising
candidates to annotate the target citation. It is generally believed that candi-
date MeSH headings from most similar citations are more important than those
from less similar citations. To measure the importance of each candidate MeSH
heading, we added up the similarity scores between the target citation and its
neighbor citations that contain this candidate MeSH heading. These similarity
scores could be also retrieved by NCBI efetch.

3.5 Learning to Rank Framework

Features

We used a learning to rank framework to integrate multiple types of information,
such as the information from Primary Classifiers and nearest neighbors. For a
target citation, firstly we used the Primary Classifiers to calculate the annotation
probability (score) of every MeSH heading. Then we retrieved similar citations
for the neighbor scores. Finally, these two scores were considered as features in
the LTR framework. In the BioASQ task2a challenge, the default results of NLM
official solution MTI were also considered as a feature in the LTR framework.

Candidates

6 See http://sifaka.cs.uiuc.edu/jiang4/software/BioTokenizer.pl
7 See http://nlp.stanford.edu/software/corenlp.shtml
8 See http://glaros.dtc.umn.edu/gkhome/files/fs/sw/cluto/doc2mat.html
9 See http://www.ncbi.nlm.nih.gov/books/NBK25499/
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For a target citation, a MeSH label could be a candidate MeSH of this citation
if and only if it satisfied any of the two following requirements.

1. The label appeared in the similar citations of the target citation;
2. The labels Primary Classifier score was in the top 100 of all MeSH labels.

LTR method

Each citation was treated as a query, and the candidate MeSH headings as
documents. Then LambdaMART[16] was used as the ranking method in the
learning to rank framework. The LTR training data contained about 30,000
citations from BioASQ task1a test set. 1000 decision trees were used in the
LambdaMART model without overfitting. After getting the LTR score of each
candidate MeSH, we used the best threshold which was tuned from the validation
set to determine how many labels we should return.

4 Experimental Results

4.1 Implementation

The whole project was coded in C++. We used some third part libraries in our
solution: Liblinear10[17] for Logistic Regression, RankLib11 for LambdaMART
algorithm and JsonCpp12 for Input/Output json files. We also used OpenMP13

to make our task parallel.

4.2 Computational performance

The server we used for the challenge has 4 * Intel XEON E5-4650 2.7GHzs
CPU and 128GB RAM. The most computational expensive part is the training
of Primary Classifiers, which took 5 days. All other training tasks took about 1
day. However, the time cost for prediction is low. For annotating 10,000 citations,
it only took 2 hours.

4.3 Label based & Example based Performance

As shown in Table 2, we compared the performance of five different methods,
MTIFL, MTIDEF, directly mapping, MetaLabeler, and LTR. These methods
were evaluated on a test set of 9040 citations, which were published in BioASQ
task2a target journal between 2012 and 2013. By integrating multiple types
of information, LTR achieved the highest MiF of 0.61, followed by MTIDEF

10 See http://www.csie.ntu.edu.tw/ cjlin/liblinear/
11 See http://sourceforge.net/p/lemur/wiki/RankLib/
12 See http://jsoncpp.sourceforge.net/
13 See http://openmp.org/wp/
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(0.572), MTIFL (0.564), Metalabeler (0.56) and directly mapping (0.27). Based
on this framework, in the last week of Batch 3 of BioASQ Task2a (annotated
articles: 1867/4533 on 6 June)14, our system achieved the highest performance
in terms of both flat F-Measure (0.6199) and hierarchical F-Measure (0.5145)

Table 2. The performance comparsions of 5 methods. These methods are evaluated
on an offline testing set that has 9040 citations published between 2012 and 2013.

Method MiP MiR MiF EBP EBR EBF MaP MaR MaF

MTI FirstLine Inedx (MTIFL) 0.614 0.522 0.564 0.619 0.539 0.555 0.516 0.492 0.471
Default MTI (MTIDEF) 0.574 0.571 0.572 0.578 0.591 0.564 0.513 0.537 0.494
Directly Mapping 0.236 0.314 0.270 0.250 0.329 0.268 0.374 0.415 0.349
MetaLabeler 0.558 0.561 0.560 0.556 0.577 0.550 0.460 0.462 0.436
LTR Without MTI Features 0.612 0.593 0.603 0.606 0.613 0.594 0.507 0.485 0.470
LTR Ensemble 0.621 0.601 0.610 0.616 0.623 0.603 0.523 0.507 0.490

5 Discussions and Conclusions

Although our system performed very well in the competition, the system could
be further improved in several aspects. Firstly, for the local offline evaluation,
we used only flat measures (MiF) to tune our method, which leads to the un-
derperformance of our system in hierarchical measure (LCA-F). Considering the
significant difference between MiF and LCA-F, we could further improve the
performance of our system by using LCA-F to tune the model. Secondly, we
can consider some special MeSH headings separately. It is noticed that, for some
most frequent MeSH headings, such as check tags, direct prediction may improve
the annotation accuracy of these MeSH headings[18]. Finally, we have not used
any indexing rules in our system. Incorporating this kind of human knowledge
into the system would be a very promising direction for significantly increasing
the accuracy of MeSH heading recommendations.

As a general framework, the LTR we used for MeSH heading recommenda-
tions can also be applied to some other types of tasks. Moreover, the performance
could be further improved if more information is integrated. As such, it raises
an interesting question as to what the upper bound of our system will be in the
presence of more information integrated in the LTR framework.
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14 See http://bioasq.lip6.fr/results/2a/
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